
  
    
      
    
  








Vorwort

Das vorliegende Buch entstand im Verlauf von Vorlesungen über Allgemeine Re-

lativitätstheorie an der Universität Siegen. Es richtet sich an Physikstudenten, die

die Kurse über Theoretische Mechanik und Elektrodynamik erfolgreich absolviert

haben. Wie eine Vorlesung soll es als erste Einführung in das Thema dienen. Die

Darstellung bewegt sich auf dem Niveau einer Kursvorlesung in Theoretischer Phy-

sik, also auf einem für das Thema eher einfachen Niveau. Dabei wird mehr Wert

gelegt auf anschauliche Erläuterungen und konkrete Beispiele als auf formale Be-

weise und mathematische Akribie. Die Verbindung zur Elektrodynamik wird, wo

immer es sich anbietet, ausführlich dargestellt. Anhand der Ähnlichkeiten und Un-

terschiede zu dieser dem Leser schon bekannten Theorie wird der Zugang erleichtert

und eine erste Einordnung in das Gesamtgebiet der Theoretischen Physik möglich. 

Ich habe einen ähnlichen physikalischen Zugang und weitgehend den gleichen

mathematischen Formalismus gewählt wie Steven Weinberg in seinem Buch  Gra-

 vitation and Cosmology [1]. Einige Anregungen habe ich ferner dem Buch [2] von

Sexl und Urbantke entnommen. Das umfassendste Standardwerk  Gravitation [3]

wurde von Misner, Thorne und Wheeler verfasst. Eine weitere Empfehlung gilt den

Lehrbüchern von Rindler [4], Stephani [5] und Kenyon [6]. Für die Grundlagen der

Mechanik verweise ich gelegentlich auf meine  Mechanik [7]. Übersichtsartikel zu

wissenschaftlichen Fragen, die über den Rahmen dieses Buchs hinausführen, kann

der Leser bei Hall und Pulham [8] finden. 

In enger Anlehnung an den Text, teilweise aber auch zu dessen Fortführung und

Ergänzung werden mehr als 40 Übungsaufgaben gestellt (seit der fünften Auflage

mit Musterlösungen). Diese Aufgaben erfüllen ihren Zweck nur dann, wenn sie vom

Studenten möglichst eigenständig bearbeitet werden. Diese Arbeit sollte daher vor

der Lektüre der Musterlösungen liegen. 

Alle bisherigen Experimente stimmen mit den Vorhersagen der Allgemeinen

Relativitätstheorie überein. Dabei wurden die Fehlergrenzen der experimentellen

Ergebnisse im Laufe der Zeit immer kleiner. Für die angeführten Ergebnisse beziehe

ich mich meistens auf den Übersichtsartikel [9] von Will. 

Mit den großen Entdeckungen der 1960 er Jahre (Quasare, kosmische Hinter-

grundstrahlung, Pulsare) konnte die Kosmologie sich als experimentelle Wissen-

schaft etablieren. Neue astrophysikalische Experimente seit den 1990 er Jahren (wie

das Hubble-Space-Teleskop und andere Satelliten- und Raumsondenmissionen) ha-

ben zu einem weiteren Aufschwung und zu einer erstaunlich genauen Kenntnis der

kosmologischen Parameter [10] geführt. 

VI

In der vorliegenden sechsten Auflage wurden zunächst einige der zitierten ex-

perimentellen Ergebnisse aktualisiert [9,10], einige Fehler beseitigt, und an zahl-

reichen Stellen kleinere Ergänzungen und Verbesserungen vorgenommen. Die Be-

handlung der Schwarzen Löcher wurde erweitert, insbesondere wird in einem neu-

en Kapitel die Frage einer Massenuntergrenze diskutiert. In diesem Zusammenhang

wird auch auf die Frage eingegangen, ob eventuell gefährliche Schwarze Löcher in

Beschleunigern erzeugt werden könnten. 

Bei Ernst W. Behrens, Jan Jeske, Michael Gölles, David Walker und weiteren

Lesern früherer Auflagen bedanke ich mich für wertvolle Hinweise. Ein spezieller

Dank gilt meinen Kollegen Yasusada Nambu, Tatsuo Shoji and Ryo Sugihara von

der Universität Nagoya, die die 4. Auflage dieses Buchs ins Japanische übersetzt

haben und die mir im Laufe dieser mühevollen Arbeit viele nützliche Ratschlääge

gegeben haben. Für die aktuelle Neuauflage verdanke ich Claus Lämmerzahl (Bre-

men) und Gerhard Schäfer (Jena) wichtige Hinweise. Viele Neuformulierungen und

Korrekturen in den Teilen IX bis X beruhen auf Vorschlägen von David Walker

(Sternwarte Lübeck). 

Fehlermeldungen, Bemerkungen und sonstige Hinweise sind jederzeit willkom-

men, etwa über den Kontaktlink auf meiner Homepage www2.uni-siegen.de/

∼flieba/. Auf dieser Homepage finden sich auch eventuelle Korrekturlisten. 

April 2012

Torsten Fließbach
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I Einleitung

1 Newtons Gravitationstheorie

Im Jahr 1687 veröffentlichte Newton seine „Philosophiae naturalis principia mathe-

matica“, in denen er die Mechanik und die Gravitationstheorie behandelt. Newtons

Gravitationstheorie war ein wichtiger Schritt zur Vereinheitlichung der Physik: Sie

erklärte die Fallgesetze und die Keplergesetze im Rahmen einer einzigen Theorie. 

Die Allgemeine Relativitätstheorie (ART) ist eine relativistische Verallgemei-

nerung der Newtonschen Gravitationstheorie. Wir beginnen daher mit einer kurzen

Einführung in Newtons Theorie. 

In Newtons Gravitationstheorie wird die Bewegung von N Massenpunkten, die sich

gegenseitig durch Gravitation anziehen, durch

N

d2r



i

mi mj (ri − rj )

mi

= −G

(1.1)

dt 2

|r

j =1, j =i

i − rj |3

beschrieben. Dabei gibt ri(t) die Position des i-ten Körpers zur Zeit t an, und mi

seine Masse. Die Gravitationskonstante G ist experimentell zu

m3

G = (6.674 ± 0.001) · 10−11

Gravitationskonstante

(1.2)

kg s2

bestimmt1. Für die in (1.1) eingeführte Gravitationskraft gilt:

• Sie ist anziehend und wirkt in Richtung des Vektors rj − ri. 

• Sie ist proportional zum Produkt der beiden Massen. 

• Sie fällt mit dem Quadrat des Abstandes ab. 

1 2010 CODATA recommended values  unter http://physics.nist.gov/cuu/constants. Einen Überblick über die Methoden zur Bestimmung der Gravitationskonstanten gibt G. T. Gillies, Rep. Progr. 

Phys. 60 (1997) 151. 

1

T. Fließbach,  Allgemeine Relativitätstheorie, DOI 10.1007/978-3-8274-3032-8_1, 

© Springer-Verlag Berlin Heidelbe g 2012
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Die Beziehung (1.1) kann als Grundgleichung der Newtonschen Gravitationstheorie

angesehen werden. Hiermit können etwa Wurfparabeln, Keplerellipsen und Kome-

tenbahnen beschrieben werden. Wir bringen diese Grundgleichung in eine andere

Form, die für die angestrebte Verallgemeinerung besser geeignet ist. Dazu führen

wir das skalare Gravitationspotenzial Φ(r ) ein:





mj

Φ(r) = −G

= −G d3r (r)

|r − rj |

|r − r |

(1.3)

j

Im letzten Ausdruck wurde über die einzelnen Beiträge dm = (r) d3r der Mas-

sendichte  summiert. Den Bahnvektor des herausgegriffenen i-ten Massenpunkts

in (1.1) bezeichnen wir nun mit r = r(t) = ri(t). Aus (1.1) und (1.3) folgt dann d2r

Bewegungsgleichung

m

= −m ∇Φ(r)

(1.4)

dt 2

in Newtons Theorie

Dies ist die  Bewegungsgleichung  eines Teilchens im Gravitationsfeld. Das Gravita-

tionspotenzial Φ(r) wird durch die Massen aller anderen Teilchen bestimmt. Aus

(1.3) folgt die  Feldgleichung  für Φ(r), 

Feldgleichung in

 Φ(r) = 4πG(r)

(1.5)

Newtons Theorie

Dies ist eine lineare partielle Differenzialgleichung zweiter Ordnung; als Quelle des

Felds tritt auf der rechten Seite die Materiedichte (r ) auf. Im Folgenden betrachten wir (1.5) und (1.4) als die Grundgleichungen der Newtonschen Gravitationstheorie. 

Diese Gleichungen (1.5) und (1.4) haben dieselbe Struktur wie die Feldglei-

chung der Elektrostatik, 

 Φe = −4πe

(1.6)

und die nichtrelativistische Bewegungsgleichung eines geladenen Teilchens:

d2r

m

= −q ∇Φe

(1.7)

dt 2

Dabei ist e die Ladungsdichte und Φe das elektrostatische Potenzial. Als Kopp-

lungskonstante der Wechselwirkung tritt in (1.7) die Ladung q auf, also eine von

der Masse m auf der linken Seite unabhängige Größe; die Masse m und die Ladung

q sind unabhängige Eigenschaften des betrachteten Körpers. Analog dazu wäre es

denkbar, dass die an die Gravitation gekoppelte  schwere Masse (m rechts in (1.4))

sich von der  trägen Masse (m links in (1.4)) unterschiede. Dies ließe die Struktur

der Newtonschen Gravitationstheorie ungeändert. Experimentell stellt man jedoch

mit hoher Präzision fest, dass die Gravitationskraft proportional zur trägen Masse

ist. Galilei formulierte dies so: „Alle Körper fallen gleich schnell“. Sofern dies gilt, 

sind schwere und träge Masse zueinander äquivalent. Diese Äquivalenz erscheint

Kapitel 1 Newtons Gravitationstheorie

3

in der Newtonschen Theorie zufällig; in der ART ist sie dagegen ein grundlegender

Ausgangspunkt. 

Die Gleichungen (1.4) und (1.5) der Newtonschen Gravitationstheorie sind für

viele Zwecke ausreichend, zum Beispiel für die Berechnung einer Fahrt zum Mond. 

Es ist jedoch auch klar, dass diese Gleichungen nicht streng gültig sein können; 

denn sie sind nicht relativistisch. Daher ist die Newtonsche Gravitationstheorie aus

heutiger Sicht nur als Grenzfall einer allgemeineren Theorie akzeptabel. Die ART

ist eine solche allgemeinere Theorie. 







2 Ziel der Allgemeinen Relativitätstheorie

Das Ziel der Allgemeinen Relativitätstheorie (ART) ist die relativistische Verallge-

meinerung der Newtonschen Gravitationstheorie (1.5, 1.4). Diese Verallgemeine-

rung kann verglichen werden mit dem Übergang von der Elektrostatik (1.6, 1.7) zur

Elektrodynamik. Eine Skizze der Ähnlichkeiten und der Unterschiede zwischen die-

sen Verallgemeinerungen ermöglicht eine erste, vorläufige Beschreibung der Struk-

tur der aufzustellenden Gravitationstheorie. 

Die folgende Diskussion setzt die Kenntnis der Speziellen Relativitätstheorie (SRT)

und der Elektrodynamik voraus; im Gegensatz zum Vorgehen in den folgenden Ka-

piteln werden die eingeführten Größen hier nicht näher erläutert. Die für die Ent-

wicklung der ART relevanten Aspekte der SRT und der Elektrodynamik werden

aber in Teil II in einiger Ausführlichkeit dargestellt. 

Wir skizzieren die wohlbekannte Verallgemeinerung der Elektrostatik zur re-

lativistischen Theorie, der Elektrodynamik. In einer dynamischen Theorie hängen

die Ladungsdichte e(r, t) und das Potenzial Φe(r, t) von der Zeit t ab. Wenn man nun lediglich e = e(r, t) und Φe = Φe(r, t) in (1.6) einsetzt, erhält man ein Fernwirkungsgesetz; das heißt eine Änderung der Ladungsdichte e an einem Ort

würde ein gleichzeitige Änderung des Felds Φe an allen anderen Orten implizieren. 

Damit sich solche Änderungen nur mit Lichtgeschwindigkeit c fortpflanzen, muss

der Laplace-Operator in (1.6) durch den d’Alembert-Operator ersetzt werden, 

∂2



⇒ 2 = 1

− 

(2.1)

c2 ∂t 2

Lässt man relativ zueinander bewegte Inertialsysteme zu, so ist die Ladungsdichte

e zwangsläufig mit einer Stromdichte verknüpft; Ladungsdichte und Stromdichte

transformieren sich ineinander. In der vollständigen Theorie tritt daher an die Stelle

der Ladungsdichte e die Stromdichte j α, 





 

e

⇒

e c, e vi = j α

(2.2)

Dabei bezeichnet vi die kartesischen Komponenten der Geschwindigkeit v. Der

Verallgemeinerung der Quellterme (2.2) entspricht eine analoge Verallgemeinerung

der Potenziale, 









Φe

⇒

Φe, Ai = Aα

(2.3)

Die relativistische Verallgemeinerung der Feldgleichung lässt sich somit durch

 Φe = −4πe

⇒ 2Aα = 4π jα

(2.4)

c

4
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ausdrücken. Die 0-Komponente der vier rechten Gleichungen reduziert sich im sta-

tischen Fall auf die linke Gleichung. Die rechten Gleichungen sind äquivalent zu

den Maxwellgleichungen. Sie sind noch zu ergänzen durch die zugehörige Eichbe-

dingung der Potenziale und die relativistische Verallgemeinerung der Bewegungs-

gleichung (Kapitel 6). Für gegebene Quellen werden sie durch die retardierten Po-

tenziale gelöst. 

Da Elektrostatik und Newtonsche Gravitationstheorie die gleiche mathemati-

sche Struktur haben, liegt der Versuch nahe, die Gravitationstheorie in analoger

Weise zu verallgemeinern. Im Vergleich zum Vorgehen in (2.1) – (2.4) ergeben sich

Ähnlichkeiten und Unterschiede, die wir kurz skizzieren. 

Zunächst wird man die Ersetzung (2.1) auch in (1.5) vornehmen. Der nächste

Punkt ist dann die (2.2) entsprechende Verallgemeinerung der Massendichte. Hier

ergibt sich ein erster, wesentlicher Unterschied: Die Ladung q eines Teilchens ist

unabhängig davon, wie sich das Teilchen bewegt; dies gilt nicht für seine Masse. Als

Beispiel betrachte man ein Wasserstoffatom, das aus einem Proton (Ruhmasse mp, 

Ladung qp = e) und einem Elektron (Ruhmasse me, Ladung qe = −e) besteht. Im

Atom haben das Elektron und das Proton endliche Geschwindigkeiten. Die Ladung

des Atoms ist q = qp + qe = 0, für die Masse gilt dagegen m = mp + me. 

Formal bedeutet dies, dass die Ladung ein Lorentzskalar ist; deshalb können wir

Elementarteilchen auch eine Ladung (und nicht etwa nur eine Ruhladung) zuordnen. 

Im Gegensatz dazu ist nur die Ruhmasse eine Eigenschaft eines Elementarteilchens. 

Da die Ladung ein Lorentzskalar ist, transformiert sich die Ladungsdichte

e = Δq/ΔV wie die 0-Komponente eines Lorentzvektors (der Stromdichte j α); 

denn 1/ΔV erhält wegen der Längenkontraktion einen Faktor γ . Eine analog zu

e definierte Energie-Massendichte  = Δm/ΔV transformiert sich dagegen wie

die 00-Komponente eines Lorentztensors, den wir als Energie-Impuls-Tensor T αβ

bezeichnen. Dies liegt daran, dass die Energie selbst die 0-Komponente eines 4-

Vektors (des Viererimpulses pα, Kapitel 4) ist. Daher tritt an die Stelle von (2.2) die

Ersetzung





 c2

 c vi







⇒

∼ T αβ

(2.5)

 c vi

 vi vj

Die hier nur unvollständig eingeführten Größen (Energie-Massendichte, Energie-

Impuls-Tensor T αβ) werden in Kapitel 7 definiert. Die Ersetzung (2.5) impliziert

eine analoge Verallgemeinerung des Gravitationspotenzials Φ zu einer zweifach

indizierten Größe, die wir als metrischen Tensor gαβ bezeichnen. Daraus ergäbe

sich folgende Struktur der relativistischen Feldgleichung der Gravitation:

 Φ = 4πG

⇒ 2gαβ ∼ G T αβ

(2.6)

Die numerische Konstante in der rechten Gleichung ist so zu bestimmen, dass die

00-Komponente im statischen Fall mit der linken Gleichung übereinstimmt. Für

schwache Felder werden wir in der Tat relativistische Feldgleichungen mit ähnlicher

Struktur erhalten. 
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Wegen der Masse-Energie-Äquivalenz kommt eine grundlegende Komplikation

hinzu, die in der Elektrodynamik nicht auftritt: Da das Gravitationsfeld auch Trä-

ger von Energie ist, stellt es selbst eine Quelle des Felds dar. Dies führt zu einer

 Nichtlinearität  der exakten Feldgleichungen. Im Gegensatz dazu ist das elektro-

magnetische Feld nicht Quelle des Felds; die elektromagnetischen Felder (oder die

Photonen) tragen keine Ladung. 

Wir fassen die wesentlichen Punkte, die die Struktur der gesuchten Gravitati-

onstheorie bestimmen, zusammen:

1. Die ART ist eine relativistische Verallgemeinerung der Newtonschen Gra-

vitationstheorie. Die identische Struktur der Newtonschen Theorie und der

Elektrostatik führt zu zahlreichen Analogien zwischen der ART und der Elek-

trodynamik. 

2. Weil die Energie-Massendichte sich wie die 00-Komponente eines Lorentz-

tensors transformiert, führt die Verallgemeinerung von (1.5) zu einer Tensor-

feldgleichung und nicht wie in der Elektrodynamik zu einer Vektorfeldglei-

chung. 

3. Weil das Gravitationsfeld Energie enthält, stellt es selbst eine Quelle des Felds

dar. Dies bedingt nichtlineare Feldgleichungen. 



II Spezielle Relativitätstheorie

3 Lorentztransformationen

Das Verständnis der Allgemeinen Relativitätstheorie (ART) setzt die Kenntnis der

Speziellen Relativitätstheorie (SRT) voraus. In den folgenden Kapiteln 3 – 8 werden

die wichtigsten Ergebnisse der SRT zusammengestellt1. Diese Zusammenstellung

orientiert sich daran, was später für die Darstellung der ART gebraucht wird. 

Relativitätsprinzip: Galilei oder Einstein

Die Beschreibung physikalischer Vorgänge erfordert ein Bezugssystem. So müssen

etwa für die Beschreibung der Bahn x(t ), y(t ), z(t ) eines Teilchens kartesische

Koordinaten x, y, z und eine Zeitkoordinate t eingeführt werden. Ein Bezugssystem

ist zum Beispiel durch einen konkreten Laborraum gegeben, dessen eine Ecke mit

drei orthogonalen Kanten das kartesische Koordinatensystem bildet und in dem eine

Uhr die Zeit t anzeigt. Ein Bezugssystem mit festgelegter Koordinatenwahl nennen

wir auch Koordinatensystem. 

In bestimmten Bezugssystemen, die  Inertialsysteme (IS) genannt werden, er-

scheinen physikalische Vorgänge einfacher als in anderen Bezugssystemen. Insbe-

sondere gelten die Newtonschen Bewegungsgleichungen nur in IS. Experimentell

stellt sich heraus, dass IS solche Systeme sind, die sich relativ zum Fixsternhimmel

mit konstanter Geschwindigkeit bewegen. Nicht-IS sind Bezugssysteme, die relativ

dazu beschleunigt sind (zum Beispiel ein Karussell). 

Die Beschreibung physikalischer Vorgänge in einem IS ist unabhängig von

der Geschwindigkeit, mit der das IS sich gegenüber dem Fixsternhimmel bewegt. 

Dieser experimentelle Befund wurde von Galilei als  Relativitätsprinzip  formuliert:

„Alle IS sind gleichwertig“. Unter Gleichwertigkeit wird dabei verstanden, dass

grundlegende physikalische Gesetze in allen IS die gleiche Form haben. Formal

heißt dies, dass die Gesetze  kovariant  sind unter den Transformationen, die von

einem IS zu einem anderen IS führen. Kovariant bedeutet hier forminvariant; die

Gleichungen sind also in jedem IS von derselben Form. Wir betrachten zunächst die

Transformationen zwischen den IS, wie sie von Galilei angenommen wurden. 

1Der Inhalt der Kapitel 3 – 5 ist wesentlich ausführlicher in Teil IX meiner  Mechanik [7] dargestellt. 
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Mit x, y, z, t (im Folgenden auch mit x1, x2, x3, t bezeichnet) wird ein  Ereig-

 nis  in IS definiert. Damit kann etwa der Ort eines bestimmten Teilchens zur Zeit t

gemeint sein, oder der Ort, an dem zwei Teilchen zur Zeit t zusammenstoßen. Das-

selbe Ereignis hat dann in einem anderen IS andere Koordinaten x, y, z, t . Die

allgemeine  Galileitransformation  zwischen den Koordinaten dieses einen Ereignis-

ses in IS und IS lautet:

x i = αi xk + ai + vi t

(3.1)

k

t  = t + t0

(3.2)

Dabei sind xi , vi und ai die kartesischen Komponenten von Vektoren (etwa

v = vi ei mit den Einheitsvektoren e1 = ex, e2 = ey und e3 = ez). Als  Summenkonvention  führen wir ein, dass über gleiche Indizes, von denen einer hoch und

einer tief gestellt ist, summiert wird. Dies bedeutet, dass in (3.1) über k zu sum-

mieren ist; der freie Index i nimmt dagegen wahlweise einen der Werte 1, 2 oder 3

an. Als Konvention wird ferner vereinbart, dass lateinische Indizes die Werte 1, 2, 

3 annehmen, griechische dagegen 0, 1, 2, 3. 

In (3.1, 3.2) gibt v die Relativgeschwindigkeit zwischen IS und IS an, a und t0

eine konstante räumliche und zeitliche Verschiebung, und αi eine relative Drehung

k

der Koordinatenachsen. Die Matrix α = (αi ) ist durch die Bedingung

k

 n

αi αT

= δi

n

oder

α αT = 1

(3.3)

k

k

eingeschränkt. Die inverse Matrix ist gleich der transponierten, α−1 = αT; eine

solche Matrix heißt orthogonal. Die Bedingung α αT = 1 garantiert die Invarianz

des Wegelements ds2 = dx2 + dy2 + dz2. Die durch α beschriebene Drehung

lässt sich durch drei Eulerwinkel festlegen. Insgesamt stellen (3.1) und (3.2) eine

10-parametrige Gruppe von Transformationen dar (Galileigruppe). 

Im Folgenden sehen wir von relativen Verschiebungen und Drehungen ab und

legen die Relativgeschwindigkeit in x-Richtung. Dann erhalten wir die spezielle

Galileitransformation für die in Abbildung 3.1 gezeigten Inertialsysteme:

x = x − v t , 

t  = t

(3.4)

In der Formulierung von Galilei gilt das Relativitätsprinzip insbesondere für die

Mechanik: Die Transformationen (3.1, 3.2) ändern nicht die Form der Newtonschen

Bewegungsgleichungen; diese Gleichungen sind also kovariant. Die Maxwellglei-

chungen sind dagegen nicht kovariant unter Galileitransformationen, denn sie im-

plizieren die feste Geschwindigkeit c = 3 · 108 m/s für eine Wellenfront. Maxwell

selbst betrachtete sie daher als nichtrelativistisch; sie sollten nur gültig sein in dem

speziellen IS, das relativ zum tragenden Medium (wie etwa Luft für Schallwellen)

ruht. Überraschenderweise stellten Michelson und Morley 1887 experimentell fest, 

dass Licht sich in verschiedenen IS mit derselben Geschwindigkeit c ausbreitet. 

Daher postulierte Einstein ein neues, modifiziertes Relativitätsprinzip: Die physi-

kalischen Gesetze  inklusive  der Maxwellgleichungen gelten in allen IS. Dieses  Einsteinsche Relativitätsprinzip  erfordert eine andere Transformation zwischen den IS; 
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IS 6y

IS 6y

Ereignis (x, t)

oder (x, t)

v

Abbildung 3.1 Ein bestimmtes Er-

-

eignis () habe die Koordinaten x, t

im Inertialsystem IS. Welche Koordi-

-

x

naten x, t hat dasselbe Ereignis dann

-

in IS, das sich relativ zu IS mit der

v t

x

Geschwindigkeit v bewegt? 

die Galileitransformation wird durch die  Lorentztransformation  ersetzt. Dies impli-

ziert dann auch andere mechanische Gesetze. Im Folgenden bestimmen wir diese

Lorentztransformationen. 

Mit den Minkowskikoordinaten

x0 = c t , 

x1 = x , 

x2 = y , 

x3 = z

(3.5)

führen wir die Komponenten xα eines Vektors in einem abstrakten 4-dimensionalen

Raum ein. Wir werden Vierervektoren selbst (etwa r = xα eα) nicht verwenden, 

sondern lediglich ihre Darstellung durch die Komponenten xα. Konkrete Rechnun-

gen werden ohnehin in einem Bezugssystem und damit für die Größen xα ausge-

führt. In einer verkürzenden Sprechweise wird xα selbst im Folgenden als Vektor

(oder 4-Vektor) bezeichnet, anstelle von „Komponenten eines Vierervektors“. 

In dem betrachteten IS sind die Koordinaten x, y und z gleich den physikali-

schen Abständen, die der Raumpunkt relativ zu den Koordinatenebenen hat; diese

Abstände werden mit ruhenden Maßstäben vermessen. Die Koordinate t ist die Zeit, 

die in IS ruhende Uhren anzeigen. 

Wir betrachten ein bestimmtes Ereignis mit den Koordinaten xα in IS und xα

in IS. Der Zusammenhang zwischen diesen Koordinaten wird nach Galilei durch

(3.1, 3.2) und nach Einstein durch eine Lorentztransformation (LT) gegeben. Die

Homogenität von Raum und Zeit bedingt, dass die Transformation zwischen xα

und xα in jedem Fall  linear  ist:

x α = Λα xβ + aα

(3.6)

β

Hierbei steht aα für eine räumliche und zeitliche Translation. Die relative Drehung

und Bewegung werden durch die 4 × 4 Matrix Λ = (Λα) beschrieben. Die Ho-

β

mogenität von Raum und Zeit impliziert zum Beispiel, dass die Transformation der

Geschwindigkeit eines Teilchens nicht von dem Raum-Zeit-Punkt abhängen kann, 

an dem sich das Teilchen gerade befindet. Dies ist genau dann gewährleistet, wenn

die Koeffizienten Λα nicht von xα abhängen, also wenn die Transformation linear

β

ist. 

Im Folgenden betrachten wir (3.6) als Ansatz für die gesuchten Lorentz-

transformationen. Wir bestimmen die Λα so, dass sich das Quadrat des Weg-

β

elements

ds2 = ηαβ dxα dxβ = c2dt2 − dr2

(3.7)
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bei der Transformation (3.6) nicht ändert. Dabei ist ηαβ durch

⎛

⎞

+1

0

0

0





⎜ 0 −1 0

0 ⎟

η

⎜

⎟

αβ

= ⎝ 0 0 −1 0 ⎠

(3.8)

0

0

0

−1

definiert. Der vierdimensionale Raum mit dem Wegelement (3.7) heißt  Minkowski-

 raum. 

Wir beziehen uns auf die spezielle, in Abbildung 3.1 gezeigte Anordnung und

erläutern hierfür den Unterschied zwischen Galilei- und Lorentztransformation. Für

beide Transformationen gilt y = y und z = z; in Frage steht nur die Beziehung

zwischen (x, t ) und (x, t ). Wir betrachten eine Lichtwellenfront, die sich in IS mit

der Geschwindigkeit c = dx/dt bewegt. Die Geschwindigkeit in IS hängt dann

davon ab, ob man die Galilei- oder die Lorentztransformation verwendet:

dx =

x = x − v t, t = t

c

-

dx = c + v

(3.9)

dt 

Galileitransformation

dt

dx =

c2dt2 − dx2 = c2dt2 − dx2

c

-

dx = c

(3.10)

dt 

Lorentztransformation

dt

Das Michelsonexperiment zeigt, dass die Geschwindigkeit von Licht in jedem IS

gleich c ist. Damit scheidet die Galileitransformation aus. Der Michelsonversuch

verifiziert die Invarianz von ds2 speziell für ds2 = 0. Andere Experimente (etwa

die Messung von ds2 für ein materielles Teilchen) bestätigen die Invarianz von ds2

auch für ds2 = 0. 

Transformationsmatrix der LT

Wir bestimmen jetzt die Transformationsmatrix Λα in (3.6). Dazu setzen wir (3.6)

β

in die Invarianzbedingung ds2 = ds2 ein:

β

ds 2 = ηαβ dxα dxβ = ηαβ Λα Λ dxγ dxδ != η

γ

δ

γ δ dxγ dxδ

(3.11)

Hieraus folgt

β

Λα Λ η

γ

δ

αβ = ηγ δ

oder

ΛTη Λ = η

(3.12)

Dies ist mit (3.3) zu vergleichen; ebenso wie dort haben wir auch die zugehörige

Matrixschreibweise angegeben. Die Translationen aα spielen in (3.11) keine Rolle, 

da sie in den Differenzialen

dx α = Λα dxβ

(3.13)

β

wegfallen. Die Rotationen sind als Spezialfall

x α = Λα xβ

= αi , Λ0 =

= Λ0 =

β

mit

Λi

1

und

Λi

0

(3.14)

k

k

0

0

i
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in Λ enthalten. Hierbei haben die αi die gleiche Bedeutung wie in (3.1). Die vol-

k

le Gruppe der Lorentztransformationen heißt Poincaré-Gruppe; sie enthält wie die

Galileigruppe 10 Parameter. Die Translationen und Rotationen bilden eine Unter-

gruppe sowohl der Galileigruppe wie der Poincaré-Gruppe. Durch die Festlegungen

det α = 1 und det Λ = 1 schließen wir räumliche und zeitliche Spiegelungen aus

(obwohl sie das Wegelement invariant lassen). 

Im Folgenden betrachten wir keine Translationen und Rotationen, da sich die

Galilei- und Lorentztransformationen bezüglich dieser Untergruppe (mit 7 Parame-

tern) nicht unterscheiden. Wir nehmen also aα = 0 und αi = δi an und beschränken

k

k

uns auf die Abhängigkeit von der Relativgeschwindigkeit v zwischen IS und IS (3

Parameter). 

Für die spezielle Lorentztransformation von Abbildung 3.1 ist Λ wegen x2 =

x 2 und x3 = x3 von der Form

⎛

⎞

Λ0

Λ0

0 0

⎜ 0

1

⎜

⎟

Λ1

Λ1

0 0 ⎟

Λ = (Λα) = ⎜

0

1

⎟

β

⎝ 0

0

1 0 ⎠

(3.15)

0

0

0 1

Wir schreiben (3.12) im x0-x1–Unterraum an:



 

 







Λ0

Λ1

1

0

Λ0 Λ0

1

0

0

0

0

1

=

(3.16)

Λ0

Λ1

0 −1

Λ1 Λ1

0 −1

1

1

0

1

Ausmultipliziert sind dies vier Bedingungen, von denen aber zwei gleich sind. Die

drei verbleibenden Bedingungen lauten





 

 

 

2

2

2

2

Λ0

− Λ1 = 1 , − Λ1 + Λ0 = −1 , Λ0 Λ0 − Λ1 Λ1 = 0

(3.17)

0

0

1

1

0

1

0

1

Ohne Einschränkung der Allgemeinheit kann Λ1 = − sinh ψ und Λ0 = − sinh φ

0

1

gesetzt werden. Dann folgt Λ0 = ± cosh ψ und Λ1 = ± cosh φ. Wir schließen

0

1

Spiegelungen aus und beschränken uns daher auf das positive Vorzeichen. Aus der

letzten Bedingung in (3.17) folgt φ = ψ, also









Λ0

Λ0

cosh ψ

− sinh ψ

0

1

=

(3.18)

Λ1

Λ1

− sinh ψ

cosh ψ

0

1

Für den Ursprung von IS gilt (siehe Abbildung 3.1)

x 1 = 0 = Λ1 c t + Λ1 v t

(3.19)

0

1

Hieraus folgt

Λ1

v

tanh ψ = − 0 =

(3.20)

Λ1

c

1
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Die Lorentztransformation ist nun durch (3.15), (3.18) und (3.20) festgelegt. Als

Funktion der Geschwindigkeit v lauten die Matrixelemente

−v/c

Λ0 = Λ1 = γ =

1



, 

Λ0 = Λ1 = 

(3.21)

0

1

1

0

1 − v2/c2

1 − v2/c2

Die betrachtete spezielle Lorentztransformation lässt sich damit als

x − v t

c t − xv/c

x = 

, 

y = y , 

z = z , 

c t  = 

(3.22)

1 − v2/c2

1 − v2/c2

schreiben. Diese Transformation ist nur für v < c definiert. Tatsächlich lassen sich

auch nur Inertialsysteme realisieren, die sich relativ zueinander mit v < c bewegen; 

dies folgt aus den Bewegungsgleichungen von Kapitel 4. Für v/c  1 wird (3.22)

zur speziellen Galileitransformation

x = x − v t , 

y = y , 

z = z , 

t  = t

(3.23)

Die Verallgemeinerung von (3.21) für eine beliebige Richtung der Geschwindigkeit

lautet:

j

vi vj

Λ0 = γ , 

Λ0 = Λ = −γ vj /c , 

Λi = δi + (γ − 1)

(3.24)

0

j

0

j

j

v2

In diesem Fall (ohne Drehungen) ist die Matrix Λ symmetrisch, ΛT = Λ. Auf der

rechten Seite sind die Geschwindigkeitskomponenten (v1, v2, v3) = (vx, vy, vz)

einzusetzen. Die Umkehrtransformation erhält man durch die Ersetzung v → −v. 

Additionstheorem

Die in (3.20) definierte Größe

v

ψ = artanh

Rapidität

(3.25)

c

heißt  Rapidität. Der Zusammenhang zwischen der Rapidität ψ und der Geschwin-

digkeit v ist in Abbildung 3.2 gezeigt. 

Die Nützlichkeit der Rapidität zeigt sich unter anderem bei der Addition von

Geschwindigkeiten. So ergibt die Multiplikation von zwei Matrizen (3.18) mit ψ1

und ψ2 wieder eine Matrix dieser Form, und zwar mit

Addition paralleler

ψ = ψ1 + ψ2

(3.26)

Geschwindigkeiten

















Kapitel 3 Lorentztransformationen

13

6v

c ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ··

Abbildung 3.2 Zusammenhang zwischen

der Geschwindigkeit v und der Rapidität ψ. 

Bei zwei sukzessiven, speziellen Lorentz-

transformationen werden die Rapiditäten

addiert (3.26). Hierfür ergibt sich aus der

Abbildung, dass die Gesamtgeschwindig-

··········································································-

keit v immer kleiner als c ist (für v1 < c

1

ψ

und v2 < c). 

Bei zwei sukzessiven, speziellen Lorentztransformationen können die Rapiditäten

also addiert werden. Aus dem Additionstheorem des tangens hyperbolicus und aus

(3.25) und (3.26) folgt für die Geschwindigkeiten:

v1 + v2

v =

(3.27)

1 + v1 v2/c2

Dieses Resultat gilt auch für die Geschwindigkeit v eines Teilchens in IS, das in IS

(mit v1 relativ zu IS bewegt) die Geschwindigkeit v2 hat. Nach der Ableitung ist

(3.27) auf v2 < c beschränkt. Für ein Photon, das sich mit v2 = c in IS bewegt, 

ergibt (3.27) aber das richtige Resultat v = c. Daher können wir die Grenzfälle

v2 = c (und auch v1 = c) in (3.27) zulassen. 

Für nichtparallele Geschwindigkeiten erhält man das Additionstheorem durch

Multiplikation der durch (3.24) definierten Matrizen Λ(v1) und Λ(v2). 

Die Matrix (3.18) ist zu vergleichen mit der orthogonalen Matrix für eine Dre-

hung um einen Winkel φ; das Minuszeichen im Wegelement (3.7) führt dazu, dass

in (3.18) anstelle der Sinus- und Cosinusfunktionen die hyperbolischen Funktionen

auftreten. Zwei Drehungen um die gleiche Achse können wie in (3.26) addiert wer-

den; ebenso wie die beiden betrachteten speziellen Lorentztransformationen ver-

tauschen sie miteinander. Dagegen vertauschen zwei Drehungen um verschiedene

Achsen oder zwei LT mit verschiedenen Richtungen der Geschwindigkeit nicht mit-

einander; die Multiplikation der Transformationsmatrizen ist nichtkommutativ. 

Eigenzeit

Die Zeitkoordinate t von IS ist die Zeit, die ruhende Uhren in IS anzeigen. (In IS

ruhende Uhren können leicht synchronisiert werden). Wir wollen die Anzeige τ

einer Uhr bestimmen, die sich in einem IS mit v(t ) bewegt. Zu einem bestimmten

Zeitpunkt t betrachten wir ein IS, das sich mit der konstanten Geschwindigkeit

v0 = v(t) gegenüber IS bewegt. Während des folgenden (infinitesimal) kleinen

Zeitintervalls bewegt sich die Uhr mit v ≈ 0 in IS. Sie zeigt daher dieselbe Zeit

an, wie die in IS ruhenden Uhren, also





v 2

dτ = dt =

1 − 0 dt =

1 − v(t)2 dt

(3.28)

c2

c2
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Für das nächste kleine Zeitintervall wird dann dieselbe Überlegung für das IS mit

v0 = v(t +dt) angewendet. Die Aufsummation der angezeigten Intervalle dτ ergibt die  Eigenzeit





t2

Anzeige einer mit

τ =

dt

1 − v(t)2

v

(3.29)

(t ) bewegten Uhr

t

c2

1

Für zwei beliebige Ereignisse 1 und 2 zeigen alle Uhren, die in IS ruhen, die Zeit-

spanne t2 − t1 an. Eine mit v(t) bewegte Uhr zeigt zwischen diesen beiden Ereig-

nissen dagegen die kleinere Zeit τ an; die bewegte Uhr geht also langsamer. Dieser

Effekt wird auch als  Zeitdilatation (oder relativistische Zeitdehnung) bezeichnet. 

Die Anzeige einer bestimmten Uhr kann nicht vom Bezugssystem abhängen. 

So könnten die beiden Ereignisse 1 und 2 in (3.29) das An- und Abstellen einer

Stoppuhr sein. Die resultierende Anzeige der Stoppuhr ist offensichtlich für jeden

Beobachter dieselbe. Jeder Beobachter kann die Zeit τ in seinem speziellen IS ge-

mäß (3.29) berechnen. Dabei hängen t1, t2 und v(t) von dem gewählten IS ab; das

Resultat τ ist aber unabhängig von dieser Wahl. Die Unabhängigkeit des Resultats

vom Inertialsystem folgt formal daraus, dass dτ bis auf einen Faktor gleich dem

invarianten Wegelement ds ist:









dτ 2 = ds2/c2

= dt2 − dr2/c2

(3.30)

Uhr

Uhr







4 Relativistische Mechanik

Wir geben die relativistische Verallgemeinerung der Newtonschen Bewegungsglei-

chung für einen Massenpunkt an und diskutieren die Äquivalenz von Masse und

Energie. Für eine ausführlichere Behandlung wird auf Kapitel 38 und 39 meiner

Mechanik [7] verwiesen. 

Bewegungsgleichung

Wir gehen davon aus, dass die Newtonschen Bewegungsgleichungen im Grenzfall

v  c gültig sind. Wir betrachten ein Inertialsystem IS, in dem das Teilchen zu

einem bestimmten Zeitpunkt ruht. In IS sollte daher das Newtonsche Axiom

dv

m

= F

in IS

(4.1)

dt 

N

relativistisch richtig sein. Die Definition der Masse m und der Kraft F erfolgt wie

N

in der Newtonschen Mechanik1. Diese Definition wird jetzt aber auf das momentane

Ruhsystem IS bezogen. Die dadurch definierte  Ruhmasse  m ist ein Lorentzskalar. 

Durch eine Lorentztransformation (LT) können wir aus der relativistisch richti-

gen Gleichung (4.1) dieselbe Aussage in einem anderen IS erhalten. Dies ist dann

die gesuchte relativistische Bewegungsgleichung. Praktisch geht man anders vor:

Man stellt eine Lorentzvektorgleichung auf, die sich in IS auf (4.1) reduziert. Dies

ist ein allgemeines Verfahren, um SRT-Gesetze aus dem nichtrelativistischen Grenz-

fall abzuleiten. Wir werden einen analogen Gedankengang auch zur Ableitung von

Gesetzen der ART verwenden. 

Die relativistische Verallgemeinerung der Geschwindigkeit vi = dxi/dt ist die

 Vierergeschwindigkeit

dxα

uα =

(4.2)

dτ

Da dτ = ds/c invariant ist, transformiert sich uα wie dxα in (3.13), also

u α = Λα uβ

(4.3)

β

1Die Messung der Beschleunigungen, die eine unbekannte Kraft auf zwei Körper hervorruft, 

ergibt das Verhältnis m1/m2. Eine bestimmte Masse wird willkürlich als eine Masseneinheit definiert; damit ist die Massenskala festgelegt. Kräfte können dann nach (4.1) durch die Messung der Beschleunigung bestimmt werden. 
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Jede Größe, die sich so transformiert, ist ein  Vierervektor  oder  Lorentzvektor. Mit (4.2) sind auch duα und die linke Seite von

duα

m

= F α

Relativistische

(4.4)

dτ

Bewegungsgleichung

Lorentzvektoren (da dτ und m Lorentzskalare sind). Auf der rechten Seite haben

wir einen Lorentzvektor F α eingeführt, der noch zu bestimmen ist. Für (4.4) gilt:

1. Die Gleichung ist eine Lorentzvektorgleichung. Bei einer LT wird sie zu

m du α/dτ = F α. Die Gleichung ist also kovariant (forminvariant) unter

LT. 

2. Die Gleichung reduziert sich für v  c auf den bekannten Newtonschen

Grenzfall. Dies setzt allerdings voraus, dass F α geeignet gewählt wird. 

Nach Punkt 2 ist (4.4) in einem speziellen Inertialsystem, dem momentan mitbe-

wegten IS, gültig. Aus dieser gültigen Aussage erhält man durch LT dieselbe Aus-

sage in einem anderen IS. Nach Punkt 1 ändert aber eine LT nicht die Form der

Gleichung. Daher ist (4.4) in einem beliebigen IS gültig; (4.4) ist die richtige relati-

vistische Gleichung. 

Im Grenzfall v  c ergibt die linke Seite von (4.4) m (0, dv/dt). Die gefor-

derte Übereinstimmung mit (4.1) legt die Minkowskikraft F α in IS fest:











F α = F 0, F   = 0, F

(4.5)

N

Hieraus erhalten wir durch eine Lorentztransformation mit −v die Kraft in dem

System, in dem das Teilchen die Geschwindigkeit v hat:

F α = Λα(−v) F β

β

(Minkowskikraft)

(4.6)

Wir werten dies mit (3.21) für v = v1 e1 aus:

v1F 1

F 0 = γ

N , 

F 1 = γ F 1, 

F 2 = F 2, 

F 3 = F 3

(4.7)

c

N

N

N

Man kann die Newtonsche Kraft F = F

N

N
 + FN⊥ in den zu v parallelen und senk-

rechten Teil aufspalten. Nach (4.7) erhält der parallele Anteil einen Faktor γ , der

senkrechte aber nicht. Damit lautet die Verallgemeinerung für eine beliebige Rich-

tung von v, 

v · F

F 0 = γ

N , 

F = γ F

c

N
 + FN⊥

(4.8)
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 Energie-Impuls-Beziehung

Der  Viererimpuls  pα = muα ist ebenfalls ein Lorentzvektor. Mit Hilfe von (3.28)

drücken wir pα = m dxα/dτ durch die Geschwindigkeit vi aus:





 





mc

m vi

E

pα =



, 

=

, p

(4.9)

1 − v2/c2

1 − v2/c2

c

Im letzten Schritt haben wir die relativistische Energie E und den relativistischen

Impuls p eingeführt:

mc2

m v

E = 

, 

p = 

(4.10)

1 − v2/c2

1 − v2/c2

Im nichtrelativistischen Grenzfall wird p zum Newtonschen Impuls, p ≈ p =

N

m v. Mit (4.8) wird die 0-Komponente von (4.4) zu

dE = v · F

(4.11)

dt

N

Dies rechtfertigt die Bezeichnung  Energie  für die Größe E = γ mc2, denn v · F ist N

die auf das Teilchen übertragene Leistung. 

Aus ds2 = c2 dτ 2 = ηαβ dxα dxβ folgt ηαβ pα pβ = m2c2 und damit

E2 = m2 c4 + c2p2

Energie-Impuls-Beziehung

(4.12)

Diese Energie-Impuls-Beziehung hat die Grenzfälle



 mc2 + p2/2m (p  mc)

E =

m2c4 + c2p2 ≈

(4.13)

c p

(p  mc)

wobei p = |p|. Für Teilchen mit verschwindender Ruhmasse (Photon, Neutrino)

gilt exakt E = cp. 

Äquivalenz von Masse und Energie

Wir können die Energie E in die Ruhenergie

E0 = mc2

(Ruhenergie)

(4.14)

und die kinetische Energie E kin = E − E0 = E − mc2 aufteilen. Die kinetische

Energie ist die Energie, die nötig ist, um ein ruhendes Teilchen auf die Geschwin-

digkeit v zu bringen. 
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In Prozessen mit mehreren Teilchen sind die Gesamtenergie und der Gesamt-

impuls erhalten. Dies gilt aber nur für die in (4.10) definierten Größen, die daher zu

Recht als Energie und Impuls bezeichnet werden. Nicht erhalten sind dagegen die

Ruhenergie (oder Ruhmasse) und die kinetische Energie für sich; sie können viel-

mehr ineinander umgewandelt werden. Jeder Änderung ΔE eines Energiebeitrags

(etwa der kinetischen oder potenziellen Energie) entspricht dabei eine Änderung

Δm der Ruhmasse, also

ΔE = Δm c2

(4.15)

Dieser Sachverhalt wird als  Äquivalenz von Masse und Energie  bezeichnet. 

Die Masse oder Massendichte tritt in einer Gravitationstheorie als Quelle des

Felds auf; wir widmen ihr daher besondere Aufmerksamkeit. Unter Masse verste-

hen wir im Folgenden immer die Ruhmasse. Die Äquivalenz von Masse und Ener-

gie impliziert, dass in zusammengesetzten Systemen (zum Beispiel in einem Stern)

verschiedene Energieformen zur Masse beitragen. Wir erläutern dies anhand einiger

Beispiele:

• Atomkerne: Bei der Verschmelzung (Fusion) von zwei Deuteriumkernen

(Masse md) zu Helium (mHe) wird die Energie (2md − mHe)c2 frei; die nega-

tive Bindungsenergie von Helium reduziert die Masse mHe gegenüber 2md. 

Umgekehrt ist Kernspaltung möglich, weil die Ruhmasse eines Urankerns

größer ist als die Summe der Massen der Spaltfragmente. Die Masse eines

Atomkerns ergibt sich aus den Massen der konstituierenden Nukleonen und

den Beiträgen der kinetischen und potenziellen Energien. 

• Stern: Ein Stern wird durch Gravitationskräfte zusammengehalten. Die Gravi-

tationsbindungsenergie reduziert die Masse des Sterns gegenüber der Summe

der Massen der Bestandteile. 

• Kasten mit Teilchen: Wir betrachten einen ruhenden Kasten, dessen Wände

die Masse MWand haben. In dem Kasten seien Teilchen mit den Massen mi

und den Geschwindigkeiten vi. Daneben gebe es Photonen mit den Energien

¯hωj. Die Ruhmasse M des Kastens ist dann



m



i

¯hωj

Epot

M = MWand +



+

+

+ . . . 

(4.16)

c2

c2

i

1 − v 2/c2

i

j

Zur Masse des Kastens tragen alle in ihm enthaltenen Energieformen bei. Da-

zu gehören zum Beispiel die im Kasten enthaltene elektromagnetische Strah-

lung oder die Energie Epot der Wechselwirkungen zwischen den Teilchen. 

Die relativistischen Bewegungsgleichungen (4.4) und ihre Konsequenzen sind um-

fangreich getestet, insbesondere in Beschleunigern für Teilchen mit v ≈ c, und

haben sich voll bewährt. 
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Aufgaben

 4.1 Zeitdilatation bei Raumfahrt

Ein Raumschiff werde für 5 Jahre (vom Raumschiff aus gemessen) so von der Erde

weg beschleunigt, dass der Raumfahrer sein normales Erdgewicht Mg spürt (M:

Masse des Raumfahrers, g = 10 m/s2). In den nächsten 5 Jahren Raumschiffzeit

wird es mit −g wieder zum Stillstand gebracht. Danach kehrt es mit zeitumgekehr-

ter Bewegung zur Erde zurück. Um wieviel älter ist der auf der Erde zurückge-

bliebene Zwillingsbruder des Astronauten bei dessen Rückkehr? Wie weit war das

Raumschiff von der Erde entfernt? 

5 Tensoren im Minkowskiraum

Die relativistische Bewegungsgleichung (4.4) für einen Massenpunkt ist eine

Lorentzvektorgleichung. Analog hierzu werden alle grundlegenden physikalischen

Gesetze als Lorentztensorgleichungen formuliert. Sie haben damit in allen Inertial-

systemen dieselbe Form, sie genügen also dem (Einsteinschen) Relativitätsprinzip. 

In diesem Kapitel werden Lorentztensoren formal definiert, und zwar als indi-

zierte Größen, die sich komponentenweise wie die Koordinaten transformieren. 

Wir haben bereits die Bezeichnung  Vierervektor  eingeführt für jede Größe, die sich

wie

V α

⇒ V α = Λα V β

β

(5.1)

transformiert; synonym hierzu verwenden wir die Bezeichnungen 4-Vektor und

Lorentzvektor. Außer diesen  kontravarianten  Komponenten (mit obenstehendem

Index) definieren wir noch  kovariante  Komponenten (mit untenstehendem Index)

eines Vektors, im Folgenden kurz kovarianter Vektor genannt, durch

Vα ≡ ηαβ V β

(5.2)

Dabei ist ηαβ durch (3.8) gegeben. Die Bezeichnung  kovariant  hat auch noch die

schon verwendete Bedeutung  forminvariant. 

Wir definieren die Matrix (ηαβ) als die zu (ηαβ) inverse Matrix:

 1

(α = γ )

ηαβ ηβγ = δα =

γ

(5.3)

0

(α = γ )

Damit gilt

⎛

⎞

+1

0

0

0









⎜ 0 −1 0

0 ⎟

η

⎜

⎟

αβ

= ηαβ = ⎝ 0 0 −1 0 ⎠

(5.4)

0

0

0

−1

Die Größen ηαβ und ηαβ sind damit durch konstante Zahlen definiert. Durch

Multiplikation mit ηαβ können wir (5.2) nach den kontravarianten Komponenten

auflösen:

V α = ηαβ Vβ

(5.5)
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Transformation des kovarianten Vektors

Die Größen ηαβ sind durch Zahlenzuweisung (5.4) festgelegt und hängen damit

nicht vom IS ab. Daher transformiert sich ein kovarianter Vektor gemäß

V  =

α

ηαβ V β = ηαβ Λβγ V γ = ηαβ Λβγ ηγ δ Vδ = –

Λδα Vδ

(5.6)

–

Im letzten Schritt haben wir die Größen Λδα eingeführt:

–

Λ δ = η

ηγ δ

α

αβ Λβ

γ

(5.7)

Wir multiplizieren dies mit Λα :

–

Λδ Λα = η

ηγ δΛα = ηγ δ η

α



αβ Λβ

γ



γ  = δ δ



(5.8)

Im vorletzten Schritt wurde (3.12) verwendet. Analog hierzu gilt

–

Λ Λ δ = Λ η

δ

α

δ

αβ Λβ

γ ηγ δ = ηβ ηαβ = δ 

α

(5.9)

β

Im vorletzten Schritt wurde Λ Λ

δ

γ ηγ δ = ηβ verwendet. Dies folgt ΛT η Λ = η, 

(3.12), wenn man hierin die kontravarianten Komponenten von η = (ηαβ) verwen-

det. 

Aus (5.8) folgen die Rücktransformationen

γ

V γ = δ V β = –

Λγ Λα V β = –

Λγ V  α

(5.10)

β

α

β

α

Vγ = δβ V

Λα V

V 

γ

β = –

Λβα γ β = Λαγ α

(5.11)

– α

Wir fassen zusammen: Kontravariante Vektoren werden mit Λα , kovariante mit Λ

β

β

transformiert. Die jeweils andere Größe vermittelt die Rücktransformation. 

β

Wir gehen noch kurz auf die Matrixschreibweise ein. Für die Matrix Λ = (Λγ )

haben wir mit (3.15) vereinbart, dass der obere Index die Zeile angibt, und der unte-

re die Spalte. Wenn wir die rechte Seite von (5.7) als (ηΛη)δα schreiben, dann ist α

–

der Zeilenindex der Matrix ηΛη, und δ der Spaltenindex. Für Λδα auf der linken Sei-

te muss dies aber genau anders herum sein. Daher wird (5.7) in Matrixschreibweise

zu

–



T

Λ = η Λ η

(5.12)

– α

Da nun sowohl in Λδ

Λ

α wie in

β der obere Index der Zeilen- und der untere der

–

Spaltenindex ist, entsprechen (5.8) und (5.9) den Matrixgleichungen ΛΛ = 1 und

–

ΛΛ = 1. Hieraus folgt



T

Λ −1 = –

Λ = η Λ η

(5.13)
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Allgemeine Rechenregeln für Tensoren

Wir betrachten nun Größen mit r Indizes. Eine solche Größe ist ein  Tensor  r -ter

 Stufe, wenn sie sich komponentenweise wie die Koordinaten xα transformiert:

T  α1...αr = Λα1 . . . Λαr T β1...βr

(5.14)

β1

βr

Diese Aussage bezieht sich auf das Verhalten unter Lorentztransformationen. Die

so definierten Tensoren heißen daher Lorentztensoren (oder 4-Tensoren) oder auch

 Tensoren im Minkowskiraum. Dies ist zu unterscheiden von Tensoren im dreidi-

mensionalen euklidischen Raum, die sich unter orthogonalen Transformationen in

bestimmter Weise verhalten; ein Beispiel hierfür ist der übliche Trägheitstensor ei-

nes starren Körpers. 

Ein Tensor nullter Stufe ist ein Skalar, ein Tensor erster Stufe ist ein Vektor; 

hierfür wurde die Definition (also die Transformationsbedingung) bereits angege-

ben. Als weiteres explizites Beispiel geben wir die Transformation für einen Tensor

dritter Stufe mit gemischten Komponenten an:

–

T  α

¯

βγ = Λα Λ Λν T δ

δ

β

γ

ν

(5.15)

Man zeigt leicht, dass sich aus folgenden Operationen wieder Tensoren der entspre-

chenden Stufe ergeben:

1. Linearkombinationen gleichartiger Tensoren (etwa 3 U αβ + V αβ), 

2. Produkten von Tensoren (T αβ V γ ), 

3. Kontraktionen von Tensoren (T αββ, T αβ Vβ), 

4. Differenziationen von Tensorfeldern (∂α T αβ). 

Der Übergang zwischen ko- und kontravarianten Komponenten eines Tensors ist

wie in (5.2) und (5.5) definiert. Man beachte, dass es dabei im Allgemeinen auf

die Reihenfolge der oberen und unteren Indizes ankommt; sie dürfen also nicht

übereinander geschrieben werden. In diesem Zusammenhang sei angemerkt, dass

die Λα  keine  Tensoren sind. Für einen Tensor müssen ja die Komponenten sowohl

β

in IS wie in IS überhaupt erst einmal definiert sein. Dies ist für Λ nicht der Fall; 

vielmehr gibt es nur ein Λ bezüglich zweier Inertialsysteme. 

 Beispiele

Aus den Rechenregeln folgt zum Beispiel, dass V α U β ein Tensor zweiter Stufe

ist, sofern V α und U β Vektoren sind. Durch Kontraktion entsteht ein Tensor nullter

Stufe, also ein Skalar. Wir zeigen explizit, dass das  Skalarprodukt  zweier Vektoren

Vα U α = V α Uα = ηαβ Vα Uβ = ηαβ V α U β

(5.16)
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invariant unter Lorentztransformationen ist:

–

V  α U  = Λα Λδ V β U

α

β

α

δ = V β Uβ

(5.17)

Umgekehrt folgt aus der Invarianz von V α Uα und der Vektoreigenschaft einer der

beiden Größen die Vektoreigenschaft der anderen: Wir setzen voraus, dass V α Uα

ein 4-Skalar und V α ein 4-Vektor ist. Daraus folgt

V  α U  = V β U

V  α U

α

β = –

Λ β

α

β

(5.18)

Der Vergleich der Koeffizienten bei V α zeigt

U  = –

Λ β U

α

α

β

(5.19)

Also ist Uα ein 4-Vektor. 

 Minkowski- und Levi-Civita-Tensor

In (5.4) wurde η = (ηαβ) = (ηαβ) als konstante Matrix eingeführt. Tatsächlich

können wir η als Tensor auffassen und mittransformieren:

–

(3.12)

–

(5.9)

η

= –

Λ γ Λδ η

=

–

Λγ Λδ Λμ Λν η

= η

αβ

α

β

γ δ

α

β

γ

δ

μν

αβ

(5.20)

Der Tensor η heißt Minkowskitensor. Wegen seines Auftretens im Wegelement (3.7)

ist η der metrische Tensor (Kapitel 9) des hier betrachteten Minkowskiraums. Spe-

ziell ist

ηα

α

β = ηαγ ηγ β = δα = η

(5.21)

β

β

Damit ist auch das Kroneckersymbol δα ein Tensor. Wegen der Symmetrie können

β

wir in diesem speziellen Fall die Indizes übereinanderschreiben (ηα

α

β = ηβ

= ηα). 

β

Eine weitere konstante Größe, die als Tensor im Minkowskiraum aufgefasst

werden kann, ist der total antisymmetrische Tensor:

⎧

⎨ +1

(α, β, γ , δ) = gerade Permutation von (0, 1, 2, 3)

αβγ δ =

−

⎩ 1

(α, β, γ , δ) = ungerade Permutation von (0, 1, 2, 3)

(5.22)

0

sonst

Unter Beachtung von det Λ = 1 zeigt man leicht, dass das  Levi-Civita-Symbol

αβγ δ ein Tensor im oben definierten Sinn ist, das heißt

 αβγ δ = αβγ δ

(5.23)

Die kovarianten Komponenten definiert man durch

αβγ δ ≡ ηαα ηββ ηγ γ  ηδδ αβγ δ = −αβγ δ

(5.24)
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Tensorfelder

Wir zeigen zunächst, dass sich ∂/∂xα wie ein kovarianter Vektor transformiert. Es

gilt

∂

∂xβ

∂

=

(5.25)

∂x α

∂x α ∂xβ

Aus (5.10) folgt

∂xβ = –Λβ

∂x α

α

(5.26)

Damit ergibt sich

∂

∂

= –

Λ β

(5.27)

∂x α

α ∂xβ

Für partielle Ableitungen verwenden wir folgende Kurzschreibweise:

∂

∂

∂α ≡

und

∂α ≡

(5.28)

∂xα

∂xα

Nach (5.27) ist ∂α ein kovarianter Vektor; ∂α ist dann ein kontravarianter Vektor. 

Der d’Alembert-Operator

2

∂2

≡ ∂α ∂α = ηαβ ∂α ∂β = 1

− 

(5.29)

c2 ∂t 2

ist ein Lorentzskalar. 

Die partiellen Ableitungen ∂α wirken auf Funktionen der Raumzeitkoordina-

ten x = (x0, x1, x2, x3). Solche Funktionen heißen  Felder. Wir betrachten Felder, 

die Lorentztensoren sind. Die Funktionen S(x), V α(x) und T αβ(x) stellen jeweils

Skalar-, Vektor- oder Tensorfelder dar, falls

β

S(x) = S(x) , 

V  α(x) = Λα V β(x) , 

T  αβ (x) = Λα Λ T γ δ(x)

β

γ

(5.30)

δ

Hierbei ist das Argument mitzutransformieren, das heißt x steht für (xα) =

(Λα xβ ). 

β
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Aufgaben

 5.1 Lorentztensor zweiter Stufe

Die Beziehung V α = T αβ Wβ gelte in jedem Inertialsystem. Es sei bekannt, dass

V α und W α Lorentzvektoren sind. Beweisen Sie, dass dann T αβ ein Lorentztensor

ist. 

 5.2 Levi-Civita-Tensor im Minkowskiraum

Zeigen Sie, dass der Levi-Civita-Tensor ein Pseudotensor 4-ter Stufe ist, also dass

β

γ

 αβγ δ = (detΛ) Λαα Λβ Λγ  Λδδ αβγ δ

(5.31)

gleich αβγ δ ist. 

 5.3 Ladung als Lorentzskalar

Für den Lorentzvektor j α(x) gilt ∂α j α = 0. Zeigen Sie, dass dann die Größe



q = d3r j 0/c ein Lorentzskalar ist. Überzeugen Sie sich zunächst davon, dass q

in der Form



q = 1

daα j α

(5.32)

c x0=const. 

geschrieben werden kann. Dabei ist

daα = 1 εαβγ δ daβγ δ

6

ein Lorentzvektor und daβγ δ ein antisymmetrischer Tensor, der durch die Zuwei-

sungen

da012 = dx0 dx1 dx2 , 

da102 = −dx0 dx1 dx2 , und so weiter

festgelegt wird. Damit stellen die daβγ δ dreidimensionale „Flächenelemente“ des

vierdimensionalen Minkowskiraums dar. 











6 Elektrodynamik

Wie bereits in Kapitel 2 gesagt, hat die zu entwickelnde Gravitationstheorie forma-

le Ähnlichkeiten zur Elektrodynamik; daneben gibt es natürlich auch grundlegende

Unterschiede. Unter dem Gesichtspunkt der Nützlichkeit für die spätere Diskussion

geben wir hier die Grundgleichungen und den Energie-Impuls-Tensor der Elektro-

dynamik an. 

Die Unabhängigkeit der Lichtgeschwindigkeit vom Inertialsystem (Kapitel 3) kann

zu der Aussage verallgemeinert werden, dass die Maxwellschen Feldgleichungen

∂E

div E = 4π

j

e , 

rot B = 4π

+ 1

(6.1)

c

c ∂t

∂B

rot E = −1

, 

div B = 0

(6.2)

c ∂t

in allen IS gelten. Die Quellen der elektromagnetischen Felder E(r, t ) und B(r, t ) sind die Ladungsdichte e(r, t) und Stromdichte j (r, t). Wir verwenden das Gauß-

sche Maßsystem, in dem E und B in gleichen Einheiten gemessen werden. 

Die Kontinuitätsgleichung divj + ∂t e = 0, die aus (6.1) folgt, lässt sich in der

Form

∂α j α = 0

(6.3)

mit

 





j α = c e, j i

(6.4)

schreiben. Gleichung (6.3) drückt die Ladungserhaltung aus; aus ihr folgt für ein



abgeschlossenes System ∂t d3r j 0 = 0. Mit (6.1, 6,2) gilt auch (6.3) in jedem

Inertialsystem. Daher ist ∂α j α ein Lorentzskalar. Da ∂α ein kovarianter Vektor ist, 

muss j α ein kontravarianter Vierervektor sein. 



Wegen der Lorentzvektoreigenschaft von j α ist die Ladung q =

d3r j 0 ein

Lorentzskalar (Aufgabe 5.3). Die Unabhängigkeit der Ladung vom IS, oder von

der Geschwindigkeit des Ladungsträgers in einem gegebenen IS, wird mit hoher

Genauigkeit durch die elektrische Neutralität der Atome verifiziert. 

Wir führen die antisymmetrische Matrix

⎛

⎞

0

−Ex −Ey −Ez





⎜ E

⎟

F αβ = ⎜ x

0

−Bz

By

⎝

⎟

E

⎠

(6.5)

y

Bz

0

−Bx

Ez −By

Bx

0
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ein. Man zeigt leicht, dass die inhomogenen Maxwellgleichungen (6.1) äquivalent

zu

∂α F αβ = 4π j β

(6.6)

c

sind. Da j β ein 4-Vektor ist, impliziert die Gültigkeit der Maxwellgleichungen in je-

dem IS, dass ∂α F αβ ein 4-Vektor ist. Daraus folgt, dass F αβ ein Tensor ist. Er heißt

 Feldstärketensor. Die Tensoreigenschaft von F legt das Transformationsverhalten

der elektrischen und magnetischen Felder fest. Die homogenen Maxwellgleichun-

gen (6.2) werden zu

αβγ δ ∂β Fγ δ = 0

(6.7)

Nach der Umschreibung in (6.6) und (6.7) ist klar, dass die Maxwellgleichungen

unter Lorentztransformationen forminvariant sind. 

Für die Lösung der homogenen Maxwellgleichungen (6.7) ist folgende Form

von F αβ notwendig und hinreichend:

F αβ = ∂αAβ − ∂βAα

(6.8)

Die inhomogenen Maxwellgleichungen können nun alternativ für die 4-Potenzial-

felder (Aα) = (Φ, Ai) formuliert werden. Aus (6.8) folgt, dass die  Eichtransfor-

 mation

Aα

⇒ Aα + ∂αχ

(6.9)

die Felder F αβ nicht ändert. Dies gilt für ein beliebiges skalares Feld χ (x). Diese

Freiheit erlaubt es, eine skalare Bedingung an die Potenziale zu stellen. Wählt man

hierfür die Lorenzeichung

∂α Aα = 0

(6.10)

so entkoppeln die inhomogenen Maxwellgleichungen (6.6) zu

2Aα = 4π jα

(6.11)

c

Damit haben wir drei Formulierungen der Maxwellgleichungen angegeben: (6.1)

und (6.2), (6.6) und (6.7), (6.11) mit (6.10). Die erste Form kann für spezielle An-

wendungen vorteilhaft sein. Für die beiden anderen ist dagegen die Kovarianz unter

LT evident. Die zweite Form hat den Vorzug, dass sie sich auf die physikalischen

Felder bezieht; die dritte ist dagegen besonders einfach zu lösen. 

Außer den Feldgleichungen des elektromagnetischen Felds geben wir noch

die Bewegungsgleichung eines Teilchens mit der Ladung q im Feld an. Die i-

Komponenten der Vektorgleichung

duα

q

m

=

F αβ uβ

(6.12)

dτ

c
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lassen sich in der Form





d

m v

v



= q E +

× B

(6.13)

dt

1 − v2/c2

c

schreiben. Die rechte Seite ist die bekannte Lorentzkraft. Auf der linken Seite steht

die zeitliche Änderung des relativistischen Impulses p = γ mv. Im momentanen

Ruhsystem IS reduziert sich (6.13) auf die Form (4.1), 

dv

m

= q E = F

(in IS)

(6.14)

dt 

N

Die Verallgemeinerung von (6.14) zu (6.12) ergibt sich ganz analog zum Schritt von

(4.1) nach (4.4). 

Wir führen den Energie-Impuls-Tensor des elektromagnetischen Felds ein, 





T αβ = 1

F α F γβ + 1 ηαβF

em

γ δ F γ δ

(6.15)

4π

γ

4

Die 00-Komponente ist die Energiedichte uem des Felds, 





u

E2

em = T 00 = 1

+ B2

em

(6.16)

8π

Die 0i -Komponenten ergeben die Energiestromdichte S (auch Poynting-Vektor ge-

nannt):



S = c

T 0i e

E × B

em

i = c

(6.17)

4π

i

Unter Verwendung der Maxwellgleichungen erhalten wir für die Divergenz von

αβ

Tem , 

∂α T αβ = − 1 F βγ j

em

γ

(6.18)

c

Im ladungsfreien Raum (jα = 0) gilt also für die Energie-Impuls-Dichte die Kon-

αβ

tinuitätsgleichung ∂α Tem = 0. So wie (6.3) die Ladungserhaltung impliziert, folgt

hieraus die Erhaltung des 4-Impulses des Felds für ein abgeschlossenes System



β

0β

(Pem = d3r Tem = const.). 

Wir fassen die räumlichen Komponenten der rechte Seite von (6.18) zu einem

3-Vektor zusammen und drücken ihn durch die Felder E, B und die Quellen , j aus:

1 Fiγ j e

j

γ

i =  E + 1

× B = f

(6.19)

c

c

Der Vergleich mit der Lorentzkraft in (6.13) zeigt, dass f die Lorentzkraft dichte  ist. 

Damit können wir (6.18) als

∂β T αβ = −f α

em

(6.20)

mit der elektromagnetischen Minkowskikraftdichte f α schreiben. Dies ist die Kraft-

dichte, die das Feld auf eine Stromverteilung ausübt. Über diese Kraftdichte kann

Energie und Impuls zwischen dem Feld und den Ladungsträgern ausgetauscht wer-

den. 
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Aufgaben

 6.1 Relativistische Bewegungsgleichung

Die kovariante Form der Bewegungsgleichungen eines Teilchens im elektromagne-

tischen Feld lautet m duα/dτ = (q/c) F αβ uβ . Leiten Sie daraus die 3-Vektorform





d

m v

v



= q E +

× B

dt

1 − v2/c2

c

ab. 

 6.2 Dopplereffekt

Die freien Maxwellgleichungen 2Aα = 0 haben Lösungen in Form von ebenen

Wellen:





Aα(x) = eα exp i kβxβ

(6.21)

Begründen Sie, dass (kα) = (ω/c, ki) ein 4-Vektor ist. Leiten Sie aus dieser Eigen-

schaft den relativistischen  Dopplereffekt  für Lichtwellen ab. Der Dopplereffekt ist

die Frequenzänderung aufgrund der Relativbewegung (mit der Geschwindigkeit v)

zwischen Quelle und Empfänger. Von welcher Ordnung in v/c ist dieser Effekt für

v 
 k und für v ⊥ k? 

 6.3 Hamiltonsches Prinzip

√

Die Lagrangefunktion L0(uα) = −mc uα uα beschreibt die relativistische Bewe-

gung eines freien Teilchens. Für ein Teilchen in einem äußeren Vektorfeld Aβ(x)

addiert man den einfachst möglichen lorentzinvarianten Term:

√

q

L = −mc uα uα − Aβ uβ

(6.22)

c



Leiten Sie aus dem Hamiltonschen Prinzip δ dτ L = 0 die Bewegungsgleichun-

gen m duα/dτ = (q/c) F αβ uβ ab. 















7 Relativistische Hydrodynamik

Die Bewegung einer idealen Flüssigkeit wird durch die Euler- und die Kontinuitäts-

gleichung bestimmt. Wir stellen die relativistische Verallgemeinerung dieser Glei-

chungen auf. Dies führt zum Energie-Impuls-Tensor der Flüssigkeit. In der nicht-

relativistischen Gravitationstheorie ist die Massendichte die Quelle des Felds. Wie

in (2.5), (2.6) skizziert, wird die Massendichte in der relativistischen Verallgemei-

nerung durch den Energie-Impuls-Tensor ersetzt. 

Die folgenden Überlegungen beziehen sich auf  ideale Flüssigkeiten. Darunter

verstehen wir ein physikalisches System, das durch eine Massendichte (r , t ), ein

Geschwindigkeitsfeld v(r, t ) = vi ei und einen isotropen Druck P (r, t) beschrieben werden kann. Nicht berücksichtigt wird dabei die Viskosität (innere Reibung)

der Flüssigkeit. Die resultierenden Gleichungen können nicht nur auf Flüssigkeiten

angewendet werden, sondern etwa auch auf Gase oder auf eine Staubwolke. 

Die Newtonsche Bewegungsgleichung für ein Massenelement Δm der Flüssig-

keit lautet Δm dv/dt = ΔF . Wir führen die Massendichte  = Δm/ΔV und die

N

Newtonsche Kraftdichte fN = ΔF /ΔV ein; dabei ist ΔV das zugehörige Volu-

N

menelement. Die Kraftdichte fN = −∇P + f0 teilen wir auf in den Beitrag des Druckgradienten −∇P (r, t) und in sonstige äußere Kräfte f0(r, t) (zum Beispiel die Schwerkraft f =

0

 g). Für ein herausgegriffenes Massenelement ändert sich

die Geschwindigkeit zum einen, weil v(r, t ) explizit von der Zeit abhängt, und zum anderen, weil sich das Massenelement während dt um dr = v dt bewegt und v(r, t) vom Ort abhängt. Zur formalen Ableitung schreiben wir das totale Differenzial für

v(x, y, z, t) an:





∂v

∂v

∂v

∂v

∂v





dv = dt

+ dx

+ dy

+ dz

=

+ v · ∇ v dt

(7.1)

∂t

∂x

∂y

∂z

∂t

Für den zweiten Schritt wurde dr = v dt eingesetzt. Wir setzen dies und die Auf-teilung der Kräfte in die Newtonsche Bewegungsgleichung  dv/dt = fN ein:





∂v







+ v · ∇ v = −∇P + f

∂t

0

(7.2)

Diese Gleichung heißt  Eulergleichung. Wegen der Erhaltung der Masse gilt außer-

dem die Kontinuitätsgleichung

∂ + ∇ · ( v) = 0

(7.3)

∂t

30
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Die Eulergleichung (7.2) und die Kontinuitätsgleichung (7.3) sind die nichtrelativis-

tischen Feldgleichungen für ideale Flüssigkeiten. Die Ableitung dieser Gleichungen

ist (zusammen mit einfachen Anwendungen) ausführlicher in Kapitel 32 meiner

 Mechanik [7] dargestellt. 

Die vier Gleichungen (7.2) und (7.3) reichen nicht zur Bestimmung der fünf un-

bekannten Felder vi, P und  aus. Man benötigt zusätzlich eine Zustandsgleichung, 

die die Beziehung zwischen  und P angibt. Dies könnten zum Beispiel  = const. 

für eine inkompressible Flüssigkeit oder P = const. ·  für ein ideales Gas bei

vorgegebener Temperatur T sein. 

Wir wollen die relativistische Verallgemeinerung der hydrodynamischen Grund-

gleichungen (7.2) und (7.3) aufstellen. Dazu ist zunächst das Geschwindigkeitsfeld

vi(r, t ) durch das Lorentzvektorfeld uα(x) zu ersetzen. Das Argument x steht für

(x0, x1, x2, x3). Die linke Seite der Eulergleichung (7.2) ist quadratisch in den Ge-

schwindigkeiten und proportional zur Dichte. Wir betrachten daher die Matrix

Mαβ =  uαuβ

(7.4)

Wir präzisieren die Definition der Massendichte (x) dahingehend, dass  in dem

IS zu bestimmen ist, in dem das betrachtete Flüssigkeitselement (ΔV bei x) mo-

mentan ruht. Die so durch

Δm

 =

= Ruhmasse

(7.5)

ΔV

Eigenvolumen

definierte  Massendichte  ist ein Lorentzskalar. Damit ist Mαβ ein Lorentztensor. 

Mit (uα) = γ (c, vi) und γ −2 = 1 − v2/c2 können wir Mαβ durch vi ausdrücken

⎛

⎞

1

v1/c

v2/c

v3/c





⎜ v1/c

⎟

Mαβ =  γ 2c2 ⎝

⎠

(7.6)

v2/c

vi vj /c2

v3/c

Die Größe



 = M00 = γ 2 =



(7.7)

c2

1 − v2/c2

bezeichnen wir als  Energie-Massendichte. Während  als Lorentzskalar definiert

wurde, transformiert sich 

 = γ 2 = M00/c2 wie die 00-Komponente eines Ten-

sors. Analog dazu wird gelegentlich auch die „relativistische Masse“ 

m = γ m =

p0/c anstelle des Lorentzskalars m eingeführt. Welche dieser Größen man als Mas-

se und Massendichte bezeichnet, ist eine Konvention und eine Frage der Zweck-

mäßigkeit. Im nichtrelativistischen Grenzfall sind diese Größen jeweils gleich. In

einer relativistischen Theorie müssen diese Größen dagegen als 4-Tensoren oder

als Komponenten von 4-Tensoren definiert werden. 

Die hier gewählte Definition (7.5) der Massendichte entspricht nicht derjeni-

gen der elektrischen Ladungsdichte e. Die elektrische Ladungsdichte wurde in

Kapitel 6 als 0-Komponente eines Vektors definiert, e = j 0/c, also als Ladung
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pro Volumen und nicht als Ladung pro Eigenvolumen. Für den Vergleich zwischen

Elektrostatik und Elektrodynamik einerseits und Newtonscher Theorie und ART

andererseits haben wir uns in Kapitel 2 auf die zu e analoge Größe bezogen; dies

ist die Energie-Massendichte 

 = M00/c2. 

Wir berechnen die Divergenz von Mαβ:







∂β M0β = c ∂t 

 + ∂k 

 vk

(7.8)









∂β Miβ = ∂t 

 vi + ∂k 

 vivk











= 

 ∂t vi + vk ∂k vi + vi ∂t 

 + ∂k 

 vk

(7.9)

Im nichtrelativistischen Grenzfall reduzieren sich diese Ausdrücke auf die linken

Seiten von (7.3) und (7.2). Die relativistische Verallgemeinerung von (7.3) und (7.2)

im kräftefreien Fall (P = 0, f =

0

0) lautet daher

∂β M0β = 0

(Kontinuitätsgleichung)

(7.10)

∂β Miβ = 0

(Kräftefreie Eulergleichung)

(7.11)

Diese Gleichungen lassen sich in der Form

∂β Mαβ = 0

(7.12)

zusammenfassen. Diese kovarianten Gleichungen reduzieren sich im nicht-relativis-

tischen Grenzfall auf die als richtig bekannten Gleichungen (7.2) und (7.3). Damit

ist (7.12) die relativistisch gültige Gleichung (im kräftefreien Fall). Inhaltlich ist

(7.10) die Kontinuitätsgleichung für die Energie und (7.11) diejenige für den Im-

puls. Damit ist (7.12) der differenzielle Erhaltungssatz für die Viererimpulsdichte

der Flüssigkeit. 

Wir wollen nun in (7.12) den Druck berücksichtigen. Die allgemeine Formulie-

rung des Zusammenhangs „Druck mal Fläche ist gleich Kraft“ lautet

3



dF i =

P ij dAj

(7.13)

j =1

Eine solche Form wird für nichtisotrope Medien benötigt, bei denen die Kraft dF i

im Allgemeinen nicht parallel zum Flächenvektor dAi ist. Für die betrachtete Flüs-

sigkeit setzen wir im jeweiligen Ruhsystem IS eines herausgegriffenen Flüssig-

keitselements einen isotropen Druck voraus, also

⎛

⎞





P

0

0

P  ij = ⎝ 0 P

0 ⎠

(im momentan mitbewegten IS)

(7.14)

0

0

P

Die relativistische Verallgemeinerung dieser Größe muss ein 4-Tensor P αβ sein. Im

lokalen, momentanen Ruhsystem IS gelten (7.2) und (7.3); also muss (7.11) den
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Zusatzterm ∂  P = ∂  P ij bekommen, während (7.10) unverändert. Dazu muss auf

i

j

der linken Seite von (7.12) der 4-Vektor





∂ 

=

β P  αβ

(0, ∂ P )

i

(7.15)

hinzugefügt werden. Aus (7.15) folgt

⎛

⎞

0

0

0

0





⎜ 0 P 0 0 ⎟

P  αβ = ⎜

⎝

⎟

0

0

P

0 ⎠

(im momentan mitbewegten IS)

(7.16)

0

0

0

P

Dabei ist P der im Ruhsystem IS des betrachteten Volumenelements gemessene

Druck. Dieser  Eigendruck  P (x) ist wie die Massendichte ein Lorentzskalar; er wur-

de deshalb auch nicht mit einem Strich versehen. 

Der Drucktensor P αβ in dem IS, in dem sich das Flüssigkeitselement bei x mit

uα(x) bewegt, ergibt sich durch eine Lorentztransformation mit −v, also P αβ =

β

Λα Λ P  γ δ

γ

(Aufgabe 7.1). Das Ergebnis lautet:

δ





uαuβ

P αβ = P

− ηαβ

(7.17)

c2

Dieser Ausdruck ist richtig, weil er ein Lorentztensor ist und weil er sich in IS

wegen (uα) = (c, 0) auf (7.16) reduziert. Die kovariante Gleichung

∂β Mαβ + ∂β P αβ = 0

(7.18)

reduziert sich im nichtrelativistischen Fall auf (7.2) mit f =

0

0 und auf (7.3). Wir

schreiben sie in der Form

∂β T αβ = 0

(7.19)

mit dem Energie-Impuls-Tensor





T αβ = Mαβ + P αβ =  + P

uα uβ − ηαβP

(7.20)

c2

Die Interpretation von T αβ als  Energie-Impuls-Tensor  wird im nächsten Kapitel

erläutert. Falls äußere Kräfte (f0 in (7.2)) vorhanden sind, ist die entsprechende

Minkowskikraftdichte f α hinzuzufügen:

∂β T αβ = f α

Relativistische Verallgemei-

(7.21)

nerung von (7.2) und (7.3)

Dies sind die relativistischen Grundgleichungen der Hydrodynamik. 
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In Kapitel 4 und hier haben wir eine besondere Art der Ableitung von physika-

lischen Gesetzen kennengelernt. Es wurden Gleichungen gesucht, die

1. kovariant unter Lorentztransformationen sind, und

2. sich für v  c auf den bekannten Newtonschen Grenzfall reduzieren. 

Dies ist ein Weg, um bekannte (nichtrelativistische) Gesetze relativistisch zu ver-

allgemeinern. Eine solche Verallgemeinerung kann auch von der Elektrostatik zur

Elektrodynamik führen. Die Gültigkeit der so gewonnenen Gleichung ergibt sich

letztlich aus dem Vergleich der Vorhersagen der verallgemeinerten Gleichung mit

dem Experiment. Dabei sind die Vorhersagen meist viel umfangreicher als in der ur-

sprünglichen Theorie. Dazu sei etwa auf das Magnetfeld verwiesen, das sich bei der

relativistischen Verallgemeinerung von Φe = −4πe ergibt; analoge „magneti-

sche“ Effekte erwarten wir auch aus der Verallgemeinerung von Φ = 4πG. 

Diese Art der Ableitung folgt einem allgemeinen Prinzip, das wir in Kapitel 19

(dann vor allem im Hinblick auf die ART) noch ausführlicher diskutieren werden. 

Es werden Gleichungen gesucht, 

1. die kovariant unter bestimmten Transformationen sind, und

2. die sich in einem bestimmten Grenzfall auf bereits bekannte Gleichungen

reduzieren. 
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Aufgaben

 7.1 Drucktensor aus Lorentztransformation

Im momentanen Ruhsystem eines herausgegriffenen Flüssigkeitselements lautet der

Drucktensor

⎛

⎞

0

0

0

0





⎜ 0 P 0 0 ⎟

P  αβ = ⎜

⎝

⎟

0

0

P

0 ⎠

0

0

0

P

Führen Sie hierfür eine Lorentztransformation durch. Zeigen Sie, dass das Ergebnis

mit der kovarianten Form





uαuβ

P αβ = P

− ηαβ

c2

übereinstimmt. 























8 Energie-Impuls-Tensor

Der Energie-Impuls-Tensor (7.20) einer idealen Flüssigkeit, 





P

T αβ =  +

uα uβ − ηαβP

(8.1)

c2

tritt in der relativistischen Gravitationstheorie als Quelle des Felds auf. Wir bestim-

men die Erhaltungsgrößen, die sich aus ∂β T αβ = 0 ergeben. Wir diskutieren die

möglichen Beiträge anderer Energieformen zum Energie-Impuls-Tensor und den

Anwendungsbereich von (8.1). 

Energie-Impuls-Erhaltung

Wir betrachten ein abgeschlossenes System. Ein solches System hat keine Wechsel-

wirkung mit anderen Systemen. Damit gilt f α = 0 in (7.21), also

Kontinuitätsgleichung

∂β T αβ = 0

(8.2)

für Energie und Impuls

Wir beziehen dies zunächst auf den Energie-Impuls-Tensor (8.1) und später auf den

allgemeinen Fall. 

Das betrachtete System sei räumlich begrenzt. Dann kann ein Volumen V so

gewählt werden, dass das System vollständig innerhalb von V liegt. Wir integrieren

(8.2) über dieses Volumen V . Mit ∂β T αβ = ∂0 T α0 + ∂i T αi erhalten wir







∂

d3r T α0 = −

d3r ∂i T αi = −

dSi T αi = 0

(8.3)

∂(c t ) V

V

S(V )

Dabei haben wir mit dem Gaußschen Satz das Volumenintegral in ein Oberflächen-

integral verwandelt. Der Integrand an der Oberfläche S(V ) verschwindet, weil das

System innerhalb von V liegt. Aus (8.3) folgt daher



Energie-Impuls-Erhaltung

P α = 1

d3r T α0 = const. 

(8.4)

c

im abgeschlossenen System

Anstelle eines endlichen Integrationsvolumens, das das betrachtete System voll-

ständig umfasst, können wir auch den gesamten Raum betrachten. Für den letzten
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Schritt in (8.3) genügt es dann, dass der Integrand T αi für große Abstände hinrei-

chend schnell gegen null geht. 

Die Größe P α ist von der Dimension eines Impulses. Sie ist außerdem ein

Lorentzvektor; dies kann analog zu Aufgabe 5.3 gezeigt werden. Damit stellt P α

den erhaltenen Viererimpuls des durch T αβ beschriebenen Felds dar. Somit ist c P 0

die Energie und P i der Impuls des Felds. Daraus folgt die Interpretation der Kom-

ponenten von T 0α, 

T 00 = Energiedichte, 

T 0i /c = Impulsdichte

(8.5)

Damit ist Gleichung (8.2) der differenzielle Ausdruck für die Erhaltung der Energie

und des Impulses. 

Allgemeiner Energie-Impuls-Tensor

Energie- und Impulserhaltung gelten nur für ein abgeschlossenes System; dazu sind

alle Teile des physikalischen Systems, mit denen eine Wechselwirkung besteht, zu

berücksichtigen. Als Beispiel hierzu betrachten wir eine geladene Flüssigkeit, auf

die elektromagnetische Kräfte wirken. Die Kraftdichte f α ist durch die elektro-

magnetischen Felder gegeben. Mit (6.20) erhalten wir

∂β T αβ = f α = −∂β T αβ

em

(8.6)

oder





∂β T αβ + T αβ =

em

0

(8.7)

Die Energie-Impuls-Erhaltung gilt nun nicht mehr separat für die Systeme Flüssig-

keit und elektromagnetisches Feld, sondern nur für das Gesamtsystem. 

Wenn es neben der geladenen Flüssigkeit und dem elektromagnetischen Feld

noch weitere Bestandteile im betrachteten System gibt, so treten sie als Kräfte auf

der rechten Seite von (8.7) in Erscheinung. In einem zu (8.6) → (8.7) analogen

Schritt können diese Kräfte zu einem Bestandteil des Energie-Impuls-Tensors um-

geformt werden. Im Prinzip sind daher alle auftretenden Energieformen im Energie-

Impuls-Tensor T αβ zu berücksichtigen:

T αβ = Mαβ + P αβ + T αβ + . . . 

em

(8.8)

Für diesen allgemeinen Energie-Impuls-Tensor gilt

∂β T αβ = 0, 

T αβ = T βα

(8.9)

Die Symmetrie der einzelnen Beiträge in (8.8) überträgt sich auf T αβ. Der Erhal-

tungssatz ∂β T αβ = 0 gilt, wie in (8.6), (8.7) demonstriert, für das Gesamtsystem. 

Sofern die verschiedenen Anteile nicht miteinander koppeln, gilt der Erhaltungssatz

auch für jedes Teilsystem. 
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Quelle des Gravitationsfelds

Wir begründen, dass der Energie-Impuls-Tensor als Quellterm in den relativisti-

schen Feldgleichungen der Gravitation auftritt. Nach der Einführung der relevanten

Größen kann die in Kapitel 2 angedeutete Argumentation hierfür präzisiert werden. 

Wir beziehen uns wieder auf die Analogie zur Elektrodynamik. In der Elektro-

statik ist die Ladungsdichte e die Quelle des Felds. In einer dynamischen Theorie

lautet der Erhaltungssatz für die Ladung ∂αj α = 0, wobei j 0 = c e. Die relativisti-

sche Verallgemeinerung der Elektrostatik ist daher von der Ersetzung e → j α im

Quellterm begleitet. 

In der Newtonschen Gravitationstheorie ist die Massendichte  die Quelle des

Felds. In Kapitel 4 wurde in einer Reihe von Beispielen diskutiert, dass alle mög-

lichen Energieformen zur Massendichte beitragen können. Der Erhaltungssatz für

alle diese Beiträge lautet ∂αT αβ = 0. 

Dem Erhaltungssatz ∂αT αβ = 0 entspricht die Kontinuitätsgleichung ∂αj α = 0

der Elektrodynamik. Damit ist 

 = T 00/c2 die zu e = j 0/c analoge Größe. Der

Verallgemeinerung e → j α (Elektrostatik zu Elektrodynamik) entspricht die Ver-

allgemeinerung 

 → T αβ (Newtonsche Gravitationstheorie zu ART). Für die rechte

Seite in (1.5) bedeutet dies  → T αβ; denn im Newtonschen Grenzfall verschwin-

det der Unterschied zwischen 

 und . 

Wegen der Äquivalenz von Masse und Energie können alle Energieformen zur

Masse beitragen. Jede Energieform sollte daher als Quelle des Gravitationsfelds in

Erscheinung treten; alle Beiträge sollten in (8.8) berücksichtigt werden. Offen ist

allerdings, wie dies für den Energiebeitrag des Gravitationsfelds selbst geschehen

soll; denn der Energie-Impuls-Tensor eines bestimmten Feldes ist aus der zugehö-

rigen Feldtheorie abzuleiten. Wir kommen auf diese Frage bei der Aufstellung der

Einsteinschen Feldgleichungen (Kapitel 21) zurück. 

Anwendungen

In den späteren Anwendungen benötigen wir nicht die allgemeine Form (8.8), viel-

mehr werden wir immer vom Energie-Impuls-Tensor (8.1) einer idealen Flüssigkeit

ausgehen. Dies ist möglich, weil der Anwendungsbereich von (8.1) weit über ge-

wöhnliche Flüssigkeiten hinausgeht. Voraussetzung für (8.1) ist, dass das physika-

lische System durch eine Massendichte , ein Geschwindigkeitsfeld v und einen

isotropen Druck P beschrieben werden kann ( und P jeweils im lokalen und mo-

mentanen Ruhsystem). Diese Voraussetzungen können auch für ein Gas oder einen

Festkörper gelten. Wir betrachten dazu einige Beispiele:

(a) Gas aus Atomen oder Molekülen: Die individuellen Geschwindigkeiten vn

der Atome tragen zur Ruhmasse eines Volumenelements bei, siehe (4.16). Au-

ßerdem bestimmen sie den Druck und tragen hierüber zum Energie-Impuls-

Tensor bei. Die mittlere Geschwindigkeit v = vn der Atome in einem Volu-

menelement ΔV bestimmt das Geschwindigkeitsfeld (uα) = γ (c, v) an der

Stelle des Volumenelements. 
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Die mittleren Geschwindigkeiten sind oft viel kleiner als die individuellen, 

statistisch verteilten Geschwindigkeiten. So ist zum Beispiel für Luft bei

Zimmertemperatur |vn| ≈ 400 m/s, während für die mittlere Strömungs-

geschwindigkeit etwa v ∼ 1 m/s (Zugluft) oder v ∼ 30 m/s (Orkan) gilt. 

Die Beiträge der individuellen Geschwindigkeiten zur Massendichte sind von

der Ordnung (|vn|/c)2  1. Für den Druck gelte das ideale Gasgesetz

P ≈ NkBT /V . Wegen kBT ∼ m|v|2 ist dann P ∼ |v|2   c2; der

Beitrag des Druck ist zum Energie-Impuls-Tensor ist also auch von der Ord-

nung (|vn|/c)2  1. Die mittlere Geschwindigkeit kommt dagegen auch in

der Ordnung v/c im Energie-Impuls-Tensor vor. 

(b) Festkörper oder Flüssigkeit: Für eine Flüssigkeit oder einen Festkörper aus

Atomen gilt immer P   c2; andernfalls halten die Atomhüllen dem Druck

nicht stand. Der Druckbeitrag kann daher in (8.1) vernachlässigt werden. Für

einen Festkörper könnte sich das Geschwindigkeitsfeld uα aus einer starren

Rotation ergeben. 

(c) Photonengas: Die Energiedichte uem der Photonen trägt mit str = uem/c2 zur

Massendichte bei. Wie bereits in (4.16) erläutert, trägt die elektromagnetische

Strahlung in einem Kasten (oder in einem Stern) zur Masse (Ruhmasse!) des

Kastens bei. Der Druck eines Photonengases ist P = uem/3 = str c2/3. 

Die angegebenen Formeln setzen ein IS voraus, in dem die Impulsverteilung

und damit der Druck des Photonengases isotrop sind. In diesem System ist

dann (uα) = (c, 0) in (8.1) zu setzen; ansonsten ist uα die Geschwindigkeit

des betrachteten IS relativ zu dem durch die Isotropie ausgezeichneten IS. Die

in str = uem/c2 berücksichtigten statistischen elektromagnetischen Felder

αβ

treten nicht in Tem in (8.8) auf. 

Wenn die auftretenden Geschwindigkeiten wie in den Beispielen (a) und (b) nicht-

relativistisch sind, übersteigt die Ruhenergie der Materie die kinetischen Energie-

beiträge um viele Größenordnungen. Dann gilt

T 0i

vi

T ij





T 00 ≈  c2, 

≈

 1, 

= O (v/c)2, P /c2  1 (8.10)

T 00

c

T 00

Für viele Anwendungen genügt daher die Näherung

⎛

⎞

 c2

0

0

0





⎜ 0

0

0

0 ⎟

T αβ ≈ ⎝

⎠

(nichtrelativistischer Grenzfall)

(8.11)

0

0

0

0

0

0

0

0

Diese Näherung ist etwa für folgende Systeme möglich:

• Erde: Die Massendichte der Erde sei (r). Die Eulergleichung mit v = 0

ergibt ∇P =  g für die Materie im (ortsabhängigen) Gravitationsfeld g. 
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Hieraus folgt P ∼ |∇P |RE ∼  gRE =  c2 (gRE/c2) < 

∼ 10−9 c2. Im letz-

ten Schritt wurde der Erdradius RE ≈ 6400 km und die Gravitationsbeschleu-

nigung g ≈ 10 m/s2 eingesetzt. Wegen P   c2 ist der Druckbeitrag zum

Energie-Impuls-Tensor vernachlässigbar klein. 

Die Erddrehung führt zu Geschwindigkeiten vi = 0, die in die uα in (8.1)

eingehen. Wegen vi  c können auch diese Beiträge meist vernachlässigt

werden. In Kapitel 30 gehen wir allerdings einen Schritt über (8.11) hinaus

und untersuchen Effekte der Ordnung v/c. 

• Sonne: Es gilt P   c2 und v  c, so dass die Näherung (8.11) möglich ist. 

Diese Näherung ist auch für andere Sterntypen wie etwa einen Weißen Zwerg

möglich. 

• Universum: Die Massen der Galaxien und Sterne können durch eine kontinu-

ierliche Massendichte beschrieben werden, wenn man über hinreichend große

Bereiche (zum Beispiel 108 Lichtjahre) mittelt. Im heutigen Universum gilt

(8.11), während im frühen Universum (Kapitel 55) die Situation eines hoch-

relativistischen Gases vorlag. Die kosmische Hintergrundstrahlung trägt mit

str = uem/c2 zur Massendichte im Universum bei. 

III Physikalische Grundlagen der ART

9 Bezugssysteme

Die Grundgleichungen der Speziellen Relativitätstheorie (SRT) gelten in ihrer üb-

lichen Form nur in Inertialsystemen. Nach einer Diskussion der Inertialsysteme

untersuchen wir die Modifikationen, die sich beim Übergang zu beschleunigten

Bezugssystemen ergeben. 

Inertialsysteme

Die Newtonschen Bewegungsgleichungen haben in allen Inertialsystemen (IS) die

gleiche Form, das heißt sie sind kovariant unter Galileitransformationen (3.1, 3.2). 

Die Gleichungen haben dagegen eine andere Form in beschleunigten Bezugssyste-

men. In solchen Systemen treten zusätzliche Kräfte auf, wie etwa die Coriolis- und

Zentrifugalkraft in einem rotierenden System. Die IS sind experimentell durch das

Fehlen dieser Trägheitskräfte ausgezeichnet. 

Die hervorgehobene Rolle der IS wurde als Beweis für die Existenz eines ab-

soluten Raums und einer absoluten Zeit angesehen. Versetzt man einen Eimer mit

Wasser in Drehung, so ist die Wasseroberfläche anfangs eben, dann gewölbt. Nach

Newton zeigt dieser Versuch die beschleunigte Bewegung gegenüber dem abso-

luten Raum: Anfangs ruht das Wasser im absoluten Raum, dann rotiert es relativ

dazu. Der absolute Raum erklärt allerdings nicht, warum relativ zueinander beweg-

te IS gleichberechtigt sind. Man würde ja eher ein ausgezeichnetes IS erwarten, das

relativ zum absoluten Raum ruht. 

Bevor Einstein 1905 die SRT aufstellte, vermutete man, dass ruhende und be-

wegte IS durch Experimente zur Lichtausbreitung unterschieden werden könnten. 

Die Galileitransformation galt als die selbstverständlich richtige Transformation

zwischen den IS. Damit hatte Maxwells Theorie das Manko, nicht „relativistisch“

zu sein. Maxwell selbst beanspruchte die Gültigkeit seiner Gleichungen nur für das

IS, das gegenüber einem fiktiven  Äther (lichttragendem Medium) ruht. Für relativ

dazu bewegte IS wurden abweichende Lichtgeschwindigkeiten erwartet. 

Experimentell zeigte sich jedoch (Michelson und Morley 1887), dass die Licht-

geschwindigkeit in allen IS gleich ist. Deshalb formulierte Einstein ein modifi-

ziertes Relativitätsprinzip: In allen IS haben die physikalischen Grundgesetze  ein-

 schließlich der Maxwellgleichungen  dieselbe Form. Daraus folgt dann, dass die Ga-
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lileitransformation nicht (exakt) richtig sein kann. Die richtigen Transformationen

zwischen IS sind vielmehr die in Kapitel 3 vorgestellten Lorentztransformationen. 

An der Auszeichnung der Inertialsysteme ändert dies aber nichts; die Galilei-

und die Lorentztransformationen vermitteln innerhalb derselben Klasse von IS. 

Zwar werden die Begriffe  absolute Zeit  und  absoluter Raum  in der SRT  relativiert, es bleibt aber bei einer  absoluten Raum-Zeitstruktur, die bestimmte Bezugssysteme, 

eben die IS, auszeichnet. 

Die Auszeichnung der Inertialsysteme ist unerklärt; es bleibt die Frage, gegen-

über was (absoluter Raum?) diese Systeme nicht beschleunigt sind. Der durch die

IS ausgezeichnete Raum führt außerdem zu folgender Schwierigkeit: Er wirkt auf

die Bewegung von Körpern, es gibt jedoch keine Rückwirkung auf ihn. 

Der erste konstruktive Angriff auf den absoluten Raum kam von Mach (1838-

1916). Die Zentrifugalkräfte bei einer Rotation deutete Mach als Kräfte, die durch

die beschleunigte Bewegung  relativ zur Erde und anderen Himmelskörpern  hervor-

gerufen werden. Nach Mach kommt dem Raum keine eigene Bedeutung zu, er ist

lediglich eine Hilfsgröße. Was zählt, ist nur die relative Beziehung (Abstand, Be-

wegung) aller Körper. So sollte die träge Masse eines Körpers in irgendeiner Weise

von allen anderen Massen bestimmt sein. Das IS an einer Stelle wäre dann durch

ein geeignetes Mittel über die Positionen und die Bewegungen aller anderen Massen

festgelegt. 

Zu Newtons Eimerversuch schreibt Mach1: „Niemand kann sagen, wie der Ver-

such quantitativ und qualitativ verlaufen würde, wenn die Gefäßwände immer di-

cker und massiger, zuletzt mehrere Meilen dick würden.“ Wenn die anderen vor-

handenen Massen (Erde, Sterne) tatsächlich die Inertialsysteme bestimmen, dann

müsste die Krümmung der Wasseroberfläche umso mehr abnehmen, je dicker die

Wände des mitrotierenden Eimers sind. Mehr philosophisch und hypothetisch for-

muliert könnte man sagen, wenn die Wände des Eimers  alle  Massen (alle Galaxien

des Kosmos) enthalten, dann verliert die Aussage „der Eimer rotiert“ ihren Sinn. Es

ist nichts mehr da, gegenüber dem die Rotation wahrzunehmen ist; es sollten daher

keine Zentrifugalkräfte auftreten. 

Unter dem  Machprinzip  verstehen wir heute die Hypothese, dass die anderen

vorhandenen Massen (Sterne, Galaxien) die IS bestimmen. Für dieses Machprinzip

spricht folgender einfacher Versuch: Bei einer Pirouette unter sternklarem Himmel

erfahren die Arme Zentrifugalkräfte, zugleich rotieren die Sterne für die Bezugs-

person. Die Frage ist, ob die Sterne  zufällig  in dem Bezugssystem, in dem keine

Zentrifugalkräfte auftreten, ruhen – oder ob sie nicht vielmehr selbst dieses IS fest-

legen. 

Der Terminus  Machprinzip  wurde 1918 – also nach Machs Tod – von Einstein

geprägt. Im Hinblick auf seine Feldgleichungen verstand Einstein darunter, dass

die Quellterme (die Massen im Kosmos) die Metrik des Raums (und damit die Lo-

kalen Inertialsysteme) bestimmen. Tatsächlich beantwortet die Allgemeine Relati-

vitätstheorie (ART) einige der von Mach aufgeworfenen Fragen, insbesondere die

1E. Mach,  Die Mechanik, Seite 226, 9. Auflage, Brockhausverlag, Leipzig 1933
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Rückwirkung der Massen auf den Raum. Insgesamt stellt die ART aber keine Ver-

wirklichung von Machs Vorstellungen dar. So wird der Raum in der ART nicht eli-

miniert, wie es Mach forderte. Der Raum und seine Dynamik spielen vielmehr eine

zentrale Rolle; so treten Gravitationswellen als Anregungsmoden des leeren Raums

auf. Die Struktur und Dynamik des Raums ist aber zugleich eng mit den vorhande-

nen Massen verknüpft. Masse und Raum wirken aufeinander, so wie Ladungen und

elektromagnetische Felder in der Elektrodynamik. 

Einstein war von Machs Ideen beeinflusst2. Die ART stellt jedoch keine ma-

thematische Formulierung dieser Ideen dar, sie hat einen anderen Ausgangspunkt

(Kapitel 10). Trotzdem führt sie zu einer Bestätigung und Berechenbarkeit eini-

ger Vorstellungen von Mach. Insbesondere kann quantitativ berechnet werden, wie

die Krümmung der Wasseroberfläche mit zunehmender Masse der Eimerwände ab-

nimmt (Kapitel 30). Der Zusammenhang zwischen den Inertialsystemen und der

Massenverteilung im Universum kann anhand einer Lösung der Einsteinschen Feld-

gleichungen geklärt werden (Kapitel 44). 

Beschleunigte Bezugssysteme in der SRT

In Inertialsystemen sind die Gesetze der SRT von der bekannten, invarianten Form. 

Um die Auszeichnung der IS zu untersuchen, betrachten wir die Modifikationen, 

die sich für beschleunigte Bezugssysteme ergeben. 

Die Gesetze der SRT wie (4.4), (6.6), (6.12) und (7.21) gelten in dieser Form

nur in IS. Dies heißt aber  nicht, dass andere Bezugssysteme unzulässig wären. So

verwendet man ja auch in der klassischen Mechanik rotierende Bezugssysteme (et-

wa für die Kreiselbewegung), obwohl die Grundgesetze (Newtons Axiome) nur in

IS gelten. Nicht-IS sind also zulässig, in ihnen haben die Gesetze aber nicht mehr

ihre gewohnte Form. Setzt man etwa in das zweite Newtonsche Axiom eine Trans-

formation in ein rotierendes Bezugssystem ein, so erhält die Bewegungsgleichung

zusätzliche Terme (Zentrifugal- und Corioliskraft). 

Als Beispiel betrachten wir ein Bezugssystem KS (mit den Koordinaten xν), 

das gegenüber einem Inertialsystem (IS mit xα) gleichförmig rotiert. Eine einfache, 

mögliche Form der Transformation zwischen den Koordinaten xα und xν ist

x = x cos(ω t) − y sin(ω t), 

z = z

(9.1)

y = x sin(ω t) + y cos(ω t), 

t = t

Dabei beschränken wir uns auf den Bereich ω2 (x2 + y2)  c2. Wir setzen (9.1)

2Ausführliche Diskussionen von Machs Ideen und ihrem Einfluss auf Einstein findet der Leser

in  Mach’s Principle: From Newton’s Bucket to Quantum Gravity, ed. by J. Barbour and H. Pfister, Birkhäuser, Boston 1995. 
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in die bekannte IS-Form des Wegelements ds ein:

ds2 = ηαβ dxα dxβ = c2dt2 − dx2 − dy2 − dz2







=

c2 − ω2 x2 + y2

dt  2 + 2 ω ydx dt − 2 ω xdy dt

− dx2 − dy2 − dz2 = gμν(x) dxμ dxν

(9.2)

Im Nicht-IS hat das Wegelement ds also eine kompliziertere Gestalt. Die Form

ds2 = ηαβ dxαdxβ war Grundlage der SRT; im KS werden die relativistischen

Gesetze daher eine andere Form haben. Wir zeigen zunächst, dass ds2 für  belie-

 bige  Koordinaten xν eine quadratische Form der Koordinatendifferenziale ist. Wir

setzen eine allgemeine Koordinatentransformation zwischen xα (in IS) und xν (in

KS) an:

xα = xα(x) = xα(x0, x1, x2, x3)

(9.3)

Damit erhalten wir

∂xα ∂xβ

ds2 = ηαβ dxα dxβ = ηαβ

dxμ dxν = gμν(x) dxμ dxν

(9.4)

∂xμ ∂xν

Durch

∂xα ∂xβ

gμν(x) = ηαβ

(9.5)

∂xμ ∂xν

definieren wir den  metrischen Tensor  des KS. Der metrische Tensor ist symme-

trisch, gμν = gνμ. Er ist eine Funktion der Koordinaten x = (x0, x1, x2, x3). 

Die Größe gμν heißt  metrisch, weil sie die Abstände ds zwischen verschiedenen

Punkten des Koordinatensystems bestimmt. Auf die Bezeichnung  Tensor  kommen

wir später zurück. Aus einem gegebenen Ausdruck für ds2, wie etwa (9.2), können

die gμν abgelesen werden. 

Aus der Mechanik wissen wir, dass im beschleunigten Bezugssystem Trägheits-

kräfte auftreten. So ergibt sich im rotierenden Bezugssystem unter anderem eine

Zentrifugalkraft Z. Sie kann durch ein Zentrifugalpotenzial Φ beschrieben werden:





ω2

Φ = −

x 2 + y2

und

Z = −m ∇Φ

(9.6)

2

Wir stellen fest, dass g00 aus (9.2) mit Φ zusammenhängt:

g00 = 1 + 2Φ

(9.7)

c2

Das Zentrifugalpotenzial taucht also im metrischen Tensor auf. Wie wir in Kapitel

11 im Detail sehen werden, bestimmen die ersten Ableitungen des metrischen Ten-

sors die Kräfte in der relativistischen Bewegungsgleichung. Die gμν können daher

als relativistische Beschleunigungspotenziale betrachtet werden. 
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Das Einsetzen der Koordinatentransformation in ds2 = ηαβ dxα dxβ ändert

nicht die Bedeutung von ds, sondern nur den Ausdruck für ds. Insbesondere gilt für

die Anzeige einer Uhr dsUhr = c dτ , (3.30). Damit können wir den Zusammenhang

herstellen zwischen der Anzeige τ einer in KS ruhenden (dx = dy = dz = 0)

Uhr und der KS-Zeitkoordinate t :





ds

√

dτ =

Uhr = g00 dt = 1 + 2 Φ dt = 1 − v2 dt

(9.8)

c

c2

c2

Der letzte Ausdruck gibt an, wie die Zeit dτ im IS zu bestimmen ist, (3.28). Wegen

v = ω ρ stimmt dies mit dem KS-Resultat (vorletzter Ausdruck) überein. 

Die Koeffizienten gμν(x) des metrischen Tensors sind Funktionen der Koordi-

naten. Eine solche Koordinatenabhängigkeit ergibt sich auch für krummlinige Ko-

ordinaten. So erhält man zum Beispiel für Zylinderkoordinaten

x 0 = c t, 

x 1 = ρ, 

x 2 = φ, 

x 3 = z

(9.9)

das Wegelement

ds2

= c2dt2 − dx2 − dy2 − dz2

= c2dt2 − dρ2 − ρ2dφ2 − dz2 = gμν(x) dxμ dxν

(9.10)

und damit den metrischen Tensor (gμν) = diag (1, −1, −ρ2, −1). Eine Koordina-

tenabhängigkeit des metrischen Tensors kann also auf der Beschleunigung des be-

trachteten Bezugssystems oder auf der Verwendung nichtkartesischer Koordinaten

beruhen. 

Wir zeigen an einem Beispiel, wie relativistische Effekte in einem beschleunig-

ten Bezugssystem berechnet werden können. Dazu betrachten wir die Raumfahrer-

Zwillinge aus Aufgabe 4.1. Der erste Zwilling (1) bleibt auf der Erde, die nähe-

rungsweise ein IS ist. Der zweite Zwilling (2) unternimmt eine Weltraumfahrt. 

Seine Rakete stellt ein beschleunigtes Bezugssystem KS dar. Die gemeinsamen

Raumzeitpunkte der Abfahrt und der Rückkehr werden mit A und R bezeichnet. 

Die Lebensuhr von Zwilling 1 (oder eine andere physikalische Uhr auf der Erde)

zeigt nach der Rückkehr die Zeitspanne





R

R

T1 = 1

ds1 =

dt = tR − tA

(9.11)

c

A

A

an. Die Uhr 2 an Bord der Rakete bewegt sich mit einer Geschwindigkeit v(t ) und

zeigt daher die Eigenzeitspanne









R

R

T2 = 1

ds2 =

dt

1 − v(t)2 = T1 1 − v2 < T1

(9.12)

c

A

A

c2

c2

an. Hierbei ist v2 ein geeigneter zeitlicher Mittelwert. Die Uhr 2 zeigt also bei R

weniger an als die Uhr 1; der zweite Zwilling ist nach der Rückkehr jünger als der

erste. Beide Zeiten wurden im IS der Erde aus (3.29) bestimmt. 
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Ein scheinbares Paradoxon ergibt sich, wenn man im Bezugssystem der Rakete

die Gesetze der SRT anwendet, um etwa die Eigenzeit der (von diesem Standpunkt

aus) bewegten Erduhr zu berechnen. Dann müsste ja die Uhr 1 die Zeit T2 und

die Uhr 2 die Zeit T1 anzeigen. Diese Argumentation ist jedoch falsch: Zwar kann

man in ein KS gehen, in dem die Uhr 2 ruht. Dieses ist jedoch zwangsläufig ein

KS mit gμν = ημν. Damit ist in KS die Berechnung der Uhrzeiten komplizierter; 

insbesondere gilt (3.29) nicht für KS. Die Verwendung von SRT-Gesetzen (wie

(3.29)) in KS ist vergleichbar mit der Berechnung einer Wegstrecke über ds2 =

dρ2 + dφ2 in Zylinderkoordinaten (anstelle von ds2 = dρ2 + ρ2 dφ2) oder mit

der Erwartung eines Billardspielers, auch auf einem Karussell wie gewohnt Billard

spielen zu können. 

Wie sieht nun die Berechnung der Uhrzeiten in einem KS aus, in dem die Uhr 2

ruht? Eine mögliche Transformation (für nicht zu große Zeiten) zu einem solchen

KS wäre

g t  2

t = t, 

x = x +

, 

y = y, 

z = z

(9.13)

2

Für kleine Zeiten bedeutet dies, dass der Ursprung von KS relativ zu IS konstant

beschleunigt ist. Das Linienelement in KS folgt aus (9.13):





ds2 = ηαβ dxαdxβ = c2 −g2 t2 dt2 −2 g t dxdt −dx2 −dy2 −dz2 (9.14)

Damit zeigt die Uhr 2, die in KS ruht (dx = dy = dz = 0), die Zeit











R

R

R

T2 = 1

ds2 =

dt 

1 − g2 t2 =

dt

1 − v(t)2

(9.15)

c

A

A

c2

A

c2

Also zeigt die Uhr 2 – jetzt in KS berechnet – genau die Zeit (9.12) an, die wir in IS

berechnet haben. Sie zeigt also insbesondere nicht die KS-Zeit t  − t = t

R

A

R − tA =

T1 an. Die in (9.13) eingeführte Zeitkoordinate t ist zwar geeignet, verschiede-

ne Punkte der Raketenbahn zu unterscheiden, sie ist aber nicht das physikalische

Zeitmaß entlang dieser Bahn. Analog dazu kann der Winkel φ als Koordinate ge-

eignet sein, dφ ist aber nicht der Abstand zwischen den beiden Punkten (ρ, φ, z)

und (ρ, φ + dφ, z). Über

t = t2, 

x = x + g t4/2

(9.16)

könnten wir abweichend von (9.13) eine andere Zeitkoordinate t  einführen. Dies

ändert dann (9.14) so, dass die Eigenzeit auch mit diesem t  richtig berechnet wer-

den kann. Ebenso steht es uns frei, etwa in (9.2) Zylinderkoordinaten einzuführen:





ds2 = c2 − ω2ρ2 dt2 − 2 ω ρ2 dφ dt − dρ2 − ρ2 dφ2 − dz2

(9.17)

Offensichtlich beschreiben die metrischen Tensoren in (9.17) und (9.2) die gleiche

physikalische Situation. Für (9.17) berechnen wir noch einmal die Eigenzeit einer
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Uhr, die im rotierenden KS ruht. Für die ruhende Uhr gilt dρ = 0, dφ = 0 und

dz = 0, also

 



ds

√

dτ =

= g00 dt = 1 − ω2ρ2 dt

(9.18)

c

c2

Uhr

Die Diskussion dieses Kapitels hat gezeigt:

1. Im beschleunigten System KS erhält man für das Wegelement die Form

ds2 = gμν(x) dxμ dxν. An die Stelle des konstanten Minkowskitensors ηαβ

tritt also der koordinatenabhängige metrische Tensor gμν(x). 

2. Die beschleunigte Bewegung von KS legt die gμν teilweise fest. So muss die

Transformation (9.3) gewährleisten, dass sich der Ursprung von KS mit der

vorgesehenen Geschwindigkeit v(t ) = (dx/dt)x=0 bewegt. Dadurch liegen

(9.3) und damit (9.5) teilweise fest. 

3. Der metrische Tensor von KS ist durch die vorgegebene Beschleunigung

nicht vollständig festgelegt. Vielmehr können willkürliche Koordinatentrans-

formationen die tatsächliche Form von gμν ändern. Hierzu vergleiche man

(9.2) mit (9.17). 

Die Freiheit in der Koordinatenwahl erlaubt es, Koordinaten zu einzuführen, 

die dem jeweiligen Problem angepasst sind (zum Beispiel Kugelkoordinaten

bei sphärischer Symmetrie). 

4. Die Bedeutung der Koordinaten folgt aus ds2 = gμν dxμdxν. So bestimmt

zum Beispiel die Längenmessung mit dσ 2 = dρ2 + ρ2 dφ2 die Bedeutung

von ρ und φ. 

Für eine Uhr mit den Koordinaten xμ sind die angezeigten Zeitintervalle

gleich dτ = ds/c. Speziell für eine ruhende Uhr gilt

 

ds

√

dτ =

= g00 dt

(9.19)

c

Uhr

Hierdurch ist die Bedeutung der Zeitkoordinate x0 = c t festgelegt. 

5. Im rotierenden System gilt g00 = 1 + 2Φ/c2, wobei Φ das Zentrifugalpoten-

zial ist. 

Der letzte Punkt legt nahe, die gμν als die relativistischen Beschleunigungspotenzia-

le anzusehen. Zusammen mit der Äquivalenz von Trägheits- und Gravitationskräf-

ten (Kapitel 10) ergibt sich hieraus, dass die Funktionen gμν(x) die  relativistischen

 Gravitationspotenziale  sind. 
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Aufgaben

 9.1 Uhrzeit in beschleunigtem System

In einem Inertialsystem IS (mit den Koordinaten t, x, y, z) oszilliert die Position

einer Uhr gemäß rUhr = ex a sin(ω t); es gilt a ω  c. Zur Zeit t = 0 wird die Uhr mit einer IS-Uhr (etwa einer Uhr, die bei r = 0 ruht) synchronisiert. 

Nach einer halben Schwingung (t = t0 = π/ω) ist die bewegte Uhr wieder

bei r = 0 und wird mit der dort ruhenden Uhr verglichen. Welche Zeitspannen Δt

und Δt  zeigen die IS-Uhr und die bewegte Uhr an? Berechnen Sie diese Zeitspan-

nen zunächst im IS. Setzen Sie dann eine geeignete Transformation ins Ruhsystem

KS der bewegten Uhr an, und berechnen Sie die Uhrzeiten in diesem System. Die

relativistischen Effekte sollen jeweils in führender Ordnung angegeben werden. 







10 Äquivalenzprinzip

Die physikalische Grundlage der Allgemeinen Relativitätstheorie (ART) ist das von

Einstein postulierte Äquivalenzprinzip1. Dieses Prinzip besagt, dass Gravitations-

kräfte äquivalent zu Trägheitskräften sind. 

Wir werden folgende Feststellungen erläutern und begründen:

1. Schwere und träge Masse sind gleich. 

2. Gravitationskräfte sind äquivalent zu Trägheitskräften. 

3. Im Lokalen Inertialsystem (Satellitenlabor) gelten die bekannten Gesetze der

Speziellen Relativitätstheorie (SRT)  ohne  Gravitation. 

Punkt 1 gibt die experimentelle Voraussetzung des Äquivalenzprinzips an. Punkt 2

ist die zentrale physikalische Aussage des Äquivalenzprinzips. Punkt 3 ist eine For-

mulierung des Äquivalenzprinzips, die wir für das weitere Vorgehen (Aufstellung

von relativistischen Gesetzen mit Gravitation) benötigen. 

Die  träge Masse  mt ist die Masse im zweiten Newtonschen Axiom, also m auf

der linken Seite von (1.4). Die Gravitationskräfte sind proportional zur  schweren

 Masse  ms; dies ist m auf der rechten Seite von (1.4). Für die vertikale Bewegung

in einem homogenen Schwerefeld wird (1.4) damit zu mt ¨z = −ms g. Die Lösung

dieser Differenzialgleichung, 

ms

z(t ) = −1

g t 2

(10.1)

2 mt

beschreibt den freien Fall. Galileis Aussage „Alle Körper fallen gleich schnell“ be-

deutet, dass das Verhältnis ms/mt für alle Körper gleich ist. Anstelle des freien Falls

kann man die Schwingungsperiode T eines Pendels (Länge ) betrachten; für klei-

ne Auslenkungen gilt (T /2π)2 = (mt/ms)(/g). Newton zeigte experimentell mit

einer Genauigkeit von 10−3, dass verschiedene Körper die gleiche Schwingungs-

dauer T ergeben. Eötvös baute 1890 ein anderes Experiment (Torsionswaage) auf, 

mit dessen verbesserter Version 1922 schließlich Genauigkeiten von 5·10−9 erreicht

wurden. Neuere Experimente [9] erreichen Genauigkeiten von bis zu 4 · 10−13. 

1Wir verwenden den Begriff „Äquivalenzprinzip“ immer in diesem Sinn. Abweichend hiervon

könnte dieser Begriff auch für die Äquivalenz von Masse und Energie verwendet werden. 
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Sofern träge und schwere Masse zueinander proportional sind, können sie durch

geeignete Wahl der Einheiten gleichgesetzt werden, also mt = ms. Für die in (1.2)

angegebene Gravitationskonstante wurden ms = mt und [ms] = [mt] = kg voraus-

gesetzt. 

Wegen der Äquivalenz von Energie und Masse (Kapitel 4) tragen alle Energie-

formen zur Masse bei. Die Feststellung ms = mt impliziert, dass jede Energieform

ΔE (etwa der Beitrag der elektromagnetischen oder der starken Wechselwirkung)

mit ΔE/c2 zur trägen und zur schweren Masse beiträgt. In den gerade erwähn-

ten Experimenten spielt allerdings die gravitative Bindungsenergie keine Rolle. In

Kapitel 31 kommen wir auf die Frage zurück, ob auch der Energiebeitrag der Gravi-

tationswechselwirkung selbst (der für planetare Körper eine Rolle spielt) dem Äqui-

valenzprinzip genügt. 

Sofern schwere und träge Masse gleich sind, sind Gravitationskräfte äquiva-

lent zu Trägheitskräften. Dies bedeutet, dass Schwerefelder durch einen Übergang

in ein beschleunigtes Koordinatensystem (KS) eliminiert werden können. Wir de-

monstrieren dies an einem einfachen Beispiel. Im homogenen Schwerefeld an der

Erdoberfläche lautet Newtons Bewegungsgleichung für einen Massenpunkt

d2r

m

g

t

= ms

(10.2)

dt 2

Dabei ist g die konstante Erdbeschleunigung. Diese Bewegungsgleichung gilt in

einem auf der Erdoberfläche ruhenden System; für den jetzigen Zweck ist dies in

hinreichend guter Näherung ein Inertialsystem (IS). Wir betrachten nun folgende

Transformation zu einem beschleunigten KS, 

r = r + 1 g t2, 

t = t

(10.3)

2

Der Ursprung r = 0 von KS bewegt sich im IS mit r = g t2/2. Das Bezugssystem KS kann durch einen „frei fallenden Fahrstuhl“ realisiert werden. Wir setzen die

Transformation (10.3) in (10.2) ein und erhalten

d2r





m

g

t

= ms − mt

= 0

(10.4)

dt  2

Falls ms = mt gilt, ist die resultierende Bewegungsgleichung in KS die eines freien

Teilchens. Die Gleichheit von träger und schwerer Masse ermöglicht also ein KS, in

dem die Gravitationskräfte wegfallen. Im Bezugssystem „frei fallender Fahrstuhl“

spürt der Benutzer keine Schwerkraft. 

Einstein geht von einer Verallgemeinerung dieses Befundes aus. Sein Postulat

lautet: In einem frei fallenden KS laufen  alle  Vorgänge so ab, als ob kein Gravita-

tionsfeld vorhanden sei. Damit wird zum einen der Befund von mechanischen auf

 alle  physikalischen Prozesse (zu allen Zeiten, an allen Orten) ausgedehnt. Außer-

dem werden inhomogene Gravitationsfelder zugelassen. 

Das so verallgemeinerte Äquivalenzprinzip nennen wir  Einsteinsches Äquiva-

 lenzprinzip  oder auch  starkes Äquivalenzprinzip. Die oben diskutierte Gleichheit
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Abbildung 10.1 Nach dem Äquivalenzprinzip gelten im Satellitenlabor SL die Gesetze

der SRT ohne Gravitation. Man erhält daraus die relativistischen Gesetze mit Gravitation

in einem anderen Bezugssystem KS (etwa einem Labor auf der Erde), indem man eine

allgemeine Koordinatentransformation einsetzt. 

von träger und schwerer Masse wird dagegen  schwaches Äquivalenzprinzip ge-

nannt. Es ist Gegenstand der wissenschaftlichen Diskussion, ob in einer konsis-

tenten relativistischen Theorie der Gravitation das Einsteinsche Äquivalenzprinzip

aus dem schwachen Äquivalenzprinzip abgeleitet werden kann. Im Folgenden ver-

stehen wir unter Äquivalenzprinzip immer Einsteins Äquivalenzprinzip. 

Ein mögliches frei fallendes System ist ein die Erde umkreisendes Satelliten-

labor SL (ohne Eigenrotation). Ist das SL hinreichend klein, so können wir in ihm

die Inhomogenität des Gravitationsfelds vernachlässigen. Fernsehaufnahmen aus

Satellitenlabors demonstrieren anschaulich, dass hier mechanische Vorgänge so ab-

laufen, als sei kein Gravitationsfeld vorhanden. So bewegen sich freie Körper in SL

geradlinig. Das Äquivalenzprinzip postuliert verallgemeinernd: In SL laufen  alle

Vorgänge so ab, als sei kein Gravitationsfeld vorhanden. 

Die geradlinige Bewegung freier Massenpunkte in SL bedeutet, dass dort die

Vorgänge so  wie in einem IS  ablaufen. Daher bezeichnen wir dieses lokale Bezugs-

system, in dem sich keine Gravitationskräfte bemerkbar machen, als  Lokales IS. Die

Großschreibung von  Lokal  betont:  Das Lokale IS ist kein IS. Ein Satellitenlabor ist ja gegenüber dem Fixsternhimmel  beschleunigt. Nach der Einführung des Begriffs

‘Lokales IS’ lautet das Äquivalenzprinzip:

ÄQUIVALENZPRINZIP:

Im Lokalen Inertialsystem gelten die Gesetze der SRT. 

Der Beobachter in SL stellt fest, dass physikalische Vorgänge nach den SRT-

Gesetzen ablaufen; dabei treten keine Gravitationskräfte auf. Ein Beobachter auf

der Erde sieht die Vorgänge im SL dagegen anders: Für ihn bewegt sich das SL

im Gravitationsfeld. Dieses Feld ist etwa in 200 km Höhe nur geringfügig schwä-

cher als auf der Erdoberfläche. Zusätzlich treten im SL Trägheitskräfte auf, weil das
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SL beschleunigt ist. Die Bewegung des SL (freier Fall) ist gerade so, dass sich die

Trägheitskräfte und die Gravitationskräfte aufheben (wie auf der rechten Seite von

(10.4)). 

Die Aufhebung von Beschleunigungs- und Gravitationskräften gilt exakt nur für

den Schwerpunkt des SL. Das Äquivalenzprinzip bezieht sich daher auf ein  kleines

SL oder eben ein  Lokales  IS. Das Satellitenlabor oder der frei fallende Fahrstuhl

sind geeignete Lokale IS für das Feld der Erde, da ihre Ausdehnung klein ist gegen-

über der Länge (Erdradius), auf der sich das Feld wesentlich ändert. Betrachtet man

das mittlere Gravitationsfeld des Weltalls (etwa gemittelt über viele Galaxienab-

stände), so kann hierfür ein Lokales IS auch eine entsprechend große Ausdehnung

(zum Beispiel 105 Lichtjahre) haben. 

Das Äquivalenzprinzip erlaubt die Aufstellung von  relativistischen Gesetzen mit

 Gravitation. Dazu geht man von den bekannten SRT-Gesetzen aus, die die Vorgän-

ge in SL korrekt beschreiben. Hierin setzt man eine Koordinatentransformation zu

einem anderen Bezugssystem KS ein, etwa einem Labor auf der Erde (Abbildung

10.1). Man geht also nach folgendem Schema vor:

SRT-Gesetz

Koordinaten-

Relativistisches Gesetz

-

ohne Gravitation

transformation

mit Gravitation

In der Koordinatentransformation ist die relative Beschleunigung zwischen SL und

KS enthalten, die dem Gravitationsfeld entspricht. Die Transformation hinterlässt

„Spuren“ in dem betrachteten Gesetz. Diese Spuren geben die mathematische Form

an, durch die das Gravitationsfeld beschrieben werden kann. Als nichtrelativisti-

sches Beispiel betrachte man hierzu noch einmal (10.2) – (10.4) mit mt = ms = m. 

Gleichung (10.4) beschreibt die geradlinige Bewegung im frei fallenden Fahrstuhl

(Gesetz ohne Gravitation). Die Transformation (10.3) führt zu (10.2). Als Spur die-

ser Transformation ergibt sich die Kraft mg in (10.2). Im Gegensatz zu diesem

einfachen Beispiel ist die Elimination des Gravitationsfelds durch eine Koordina-

tentransformation im realen Fall (nichthomogenes Feld) aber nur  lokal  möglich. 

Riemannscher Raum

Wir bezeichnen die Minkowskikoordinaten im Lokalen IS oder im SL mit ξ α. Nach

dem Äquivalenzprinzip gelten hier die Gesetze der SRT, insbesondere

ds2 = ηαβ dξ α dξ β

(Lokales IS, Minkowskiraum)

(10.5)

Der Übergang vom Lokalen IS zu einem KS mit den Koordinaten xμ erfolgt durch

eine Koordinatentransformation, 

ξ α = ξ α(x0, x1, x2, x3)

(10.6)

Wir setzen diese Transformation in (10.5) ein und erhalten

ds2 = gμν(x) dxμ dxν

(KS, Riemannscher Raum)

(10.7)
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mit dem metrischen Tensor

∂ξ α ∂ξ β

gμν(x) = ηαβ

(10.8)

∂xμ ∂xν

Die Rechnung verläuft wie in (9.3) – (9.5). Ein Raum mit einem Wegelement der

Form (10.7) heißt  Riemannscher Raum. Als Konvention verwenden wir die Indizes

α, β, γ , δ, . . . im Minkowskiraum und κ, λ, μ, ν, . . . im Riemannschen Raum. In

beiden Fällen laufen die Indizes über die Werte 0, 1, 2 und 3. 

Die gμν sind durch die Koordinatentransformation (10.6) bestimmt. Diese

Transformation hängt von der relativen Beschleunigung zwischen dem KS und dem

Lokalen IS ab. Für die Lokalen IS an zwei verschiedenen Orte sind diese Beschleu-

nigungen unterschiedlich. Daher gilt:

• Für reale Gravitationsfelder gibt es keine  globale  Transformation, die (10.7)

auf die Minkowskiform (10.5) bringt. 

In Kapitel 18 werden wir zeigen, dass diese Aussage gleichbedeutend mit einer

 Krümmung  des durch (10.7) beschriebenen Raums ist. Umgekehrt gilt, dass der

Raum eben ist, wenn es eine solche globale Transformation gibt (dies ist zum Bei-

spiel für das rotierende System mit dem Wegelement (9.2) der Fall). 

Nach dem Äquivalenzprinzip können die Gravitationsfelder lokal vollständig

(das heißt für alle physikalischen Effekte) eliminiert werden. Dies bedeutet zu-

gleich, dass sie vollständig beschrieben werden durch die allgemeinen Koordinaten-

transformationen, die am jeweils betrachteten Punkt zum Lokalen IS führen. In der

zentralen Größe des Wegelements führen diese Transformationen zum metrischen

Tensor. Dieser enthält dann die relativistische Beschreibung des Gravitationsfelds. 

Wie wir in Kapitel 11 sehen werden, bestimmen die Ableitungen der gμν die

Gravitationskräfte in der relativistischen Bewegungsgleichung. Die gμν sind daher

die  relativistischen Gravitationspotenziale. Insbesondere gilt (9.7), 





g00(x) = 1 + 2 Φ(x)

|Φ|  c2

(10.9)

c2

auch für das Newtonsche Gravitationspotenzial Φ. 

Aus dem Äquivalenzprinzip folgen die relativistischen Gesetze im Gravitations-

feld. Das Äquivalenzprinzip kann aber nicht die Feldgleichungen für die gμν(x)

festlegen; denn diese Gleichungen haben keine Entsprechung in der SRT. Die Feld-

gleichungen beschreiben den Zusammenhang zwischen den Gravitationsfeldern

gμν(x) und ihren Quellen. 





11 Bewegung im Gravitationsfeld

Aus dem Äquivalenzprinzip folgt die Bewegungsgleichung für ein Teilchen im Gra-

vitationsfeld. Die Gravitationskräfte werden durch die Christoffelsymbole beschrie-

ben, die proportional zu den ersten Ableitungen des metrischen Tensors sind. Für

kleine Geschwindigkeiten und schwache statische Gravitationsfelder ergibt sich der

Newtonsche Grenzfall. 

Bewegungsgleichung

Nach dem Äquivalenzprinzip gelten im Lokalen Inertialsystem (Satellitenlabor) die

Gesetze der SRT. Die Bewegung eines kräftefreien Massenpunkts wird daher durch

d2ξ α = 0

(11.1)

dτ 2

beschrieben. Dies folgt aus (4.4) mit f α = 0 und uα = dξ α/dτ , wobei die ξ α =

ξ α(τ ) die Minkowskikoordinaten des Teilchens sind. Die Eigenzeit τ ist durch

ds2 = c2dτ 2 = ηαβ dξ αdξ β

(11.2)

gegeben. Die Integration von (11.1) liefert eine Gerade, 

ξ α = aα τ + bα

(11.3)

Nach dem Äquivalenzprinzip bewegt sich Licht (oder ein Photon) im Lokalen IS

geradlinig. Daher kann auch die Bahn eines Photons durch (11.3) oder (11.1) be-

schrieben werden. In diesem Fall darf aber der Parameter τ nicht mit der Eigenzeit

identifiziert werden, denn für eine Lichtfront ist ds = c dτ = 0. Dies bringen wir

dadurch zum Ausdruck, dass wir den Bahnparameter mit λ bezeichnen, 

d2ξ α = 0

(Photon)

(11.4)

dλ2

Die Bahnkurve ξ i (λ) kann auf den Schwerpunkt eines elektromagnetischen Wellen-

pakets bezogen werden, oder sie kann als Strahlkurve in der geometrischen Optik

interpretiert werden. In jedem Fall wird vorausgesetzt, dass die Wellenlänge viel

kleiner ist als die Länge, auf der sich das Gravitationsfeld wesentlich ändert. 

Wir betrachten nun ein globales KS mit Koordinaten xμ und der Metrik gμν(x). 

An jeder Stelle x kann das Wegelement ds2 = gμν(x) dxμdxν lokal in die Form
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(11.2) gebracht werden. Das heißt für jeden Punkt P existiert eine Transformati-

on ξ α(x) = ξ α(x0, x1, x2, x3) zwischen ξ α und xμ. Diese Transformation ist von

Punkt zu Punkt verschieden; dies ist etwa für benachbarte Satellitenlabors offen-

sichtlich. Die vollständige Notation müsste daher ξ α(x) lauten; dies bedeutet ins-

P

besondere, dass es keine globale Transformation von xμ zu ξ α gibt. Die folgenden

Formeln beziehen sich jeweils auf die Umgebung eines bestimmten Punkts P, so

dass wir den Index P in ξP weglassen können. 

Wir setzen die Transformation ξ α = ξ α(x) in das Wegelement (11.2) ein:

∂ξ α ∂ξ β

ds2 = ηαβ dξ αdξ β = ηαβ

dxμ dxν = gμν(x) dxμdxν

(11.5)

∂xμ ∂xν

Hieraus ergibt sich der metrische Tensor

∂ξ α ∂ξ β

gμν(x) = ηαβ

(11.6)

∂xμ ∂xν

Das Bezugssystem KS mit den Koordinaten xμ könnte auch ein rotierendes Be-

zugssystem sein. Dann würden die gμν außer Gravitationskräften auch Zentrifugal-

und Corioliskräfte beschreiben. In der jetzt betrachteten Theorie sind solche Kräfte

äquivalent. 

Wir setzen die Transformation ξ α = ξ α(x) nun in (11.1) ein:





d

∂ξ α dxμ

∂ξ α d2xμ

∂2ξ α

dxμ dxν

0 =

=

+

(11.7)

dτ

∂xμ dτ

∂xμ dτ 2

∂xμ ∂xν dτ

dτ

Durch Multiplikation mit ∂xκ /∂ξ α können wir dies wegen

∂ξ α ∂xκ = δκ

∂xμ ∂ξ α

μ

(11.8)

nach d2xκ /dτ 2 auflösen. Damit erhalten wir die Bewegungsgleichungen

d2xκ

dxμ dxν

= −

Bewegungsgleichung

Γ κ

(11.9)

dτ 2

μν

dτ

dτ

im Gravitationsfeld

wobei

∂xκ

∂2ξ α

Γ κ =

μν

(11.10)

∂ξ α ∂xμ ∂xν

Die Größen Γ κ

μν werden  Christoffelsymbole  genannt. Die Gleichungen (11.9) sind

die gesuchten Bewegungsgleichungen. Sie sind Differenzialgleichungen 2. Ord-

nung für die Funktionen xκ (τ ). Die xκ (τ ) beschreiben die Bahn des Teilchens im

KS mit gμν(x), also in einem Bezugssystem mit Gravitationsfeld. 

Auf der rechten Seite der mit der Masse m multiplizierten Gleichung (11.9) ste-

hen die Gravitationskräfte; dazu vergleiche man etwa (11.9) mit (4.4) oder (6.12). 

Die Gravitationskräfte beschreiben die Kopplung zwischen dem Gravitationsfeld
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und der Materie (hier speziell ein Teilchen). Die Gleichung (11.9) wurde aus dem

Äquivalenzprinzip abgeleitet. Das Äquivalenzprinzip legt also die Kopplung zwi-

schen Gravitationsfeld und Materie fest. 

Die Geschwindigkeit dxμ/dτ muss wegen (11.5) zusätzlich der Bedingung

dxμ dxν

c2 = gμν

(m = 0)

(11.11)

dτ

dτ

genügen; dabei haben wir dτ = 0, also m = 0 vorausgesetzt. Wegen (11.11) sind

nur 3 der 4 Komponenten dxμ/dτ voneinander unabhängig. Diese Einschränkung

kennen wir bereits von der 4-Geschwindigkeit uα = dξ α/dτ der SRT, die sich

durch die drei Größen vi ausdrücken lässt, (4.9). 

Für ein Photon leiten wir aus (11.4) völlig analog die entsprechende Bahnglei-

chung ab:

d2xκ

dxμ dxν

= −Γ κ

(11.12)

dλ2

μν

dλ

dλ

Wegen dτ = 0 gilt zusätzlich

dxμ dxν

0 = gμν

(m = 0)

(11.13)

dλ

dλ

Christoffelsymbole

Der Vergleich von (11.6) und (11.10)

∂ξ α ∂ξ β

∂xκ

∂2ξ α

gμν(x) = ηαβ

, 

Γ κ =

(11.14)

∂xμ ∂xν

μν

∂ξ α ∂xμ ∂xν

legt nahe, dass die Christoffelsymbole durch erste Ableitungen des metrischen Ten-

sors ausgedrückt werden können. Wir betrachten folgende Kombination von ersten

Ableitungen:

∂gμν

∂g

∂g

∂2ξ α

∂ξ β

∂ξ α

∂2ξ β

+

λν − μλ = ηαβ

+ ηαβ

∂xλ

∂xμ

∂xν

∂xμ ∂xλ ∂xν

∂xμ ∂xν ∂xλ

∂2ξ α

∂ξ β

∂ξ α

∂2ξ β

∂2ξ α

∂ξ β

+ ηαβ

+ ηαβ

− ηαβ

∂xλ ∂xμ ∂xν

∂xλ ∂xν ∂xμ

∂xμ ∂xν ∂xλ

∂ξ α

∂2ξ β

∂2ξ α

∂ξ β

− ηαβ

= 2 ηαβ

(11.15)

∂xμ ∂xλ ∂xν

∂xμ ∂xλ ∂xν

Im Zwischenausdruck heben sich der zweite und sechste, sowie der vierte und fünfte

Term auf (α und β können ineinander umbenannt werden; die partiellen Ableitun-

gen vertauschen miteinander). Der erste und dritte Term sind gleich und ergeben

das Resultat. 
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Aus (11.14) folgt

∂ξ α ∂ξ β ∂xσ

∂2ξ γ

∂ξ α

∂2ξ β

gνσ Γ σ

=

η

= η

μλ

αβ

αβ

∂xν ∂xσ ∂ξ γ

!" # ∂xμ ∂xλ

∂xν ∂xμ ∂xλ

= β

δγ





(11.15)

∂g

∂g

∂g

=

1

μν + λν − μλ

(11.16)

2

∂xλ

∂xμ

∂xν

Mit (gμν) führen wir die zu (gμν) inverse Matrix ein, 

gκν gνσ = δκσ

(11.17)

Damit können wir (11.16) nach den Christoffelsymbolen auflösen:





gκν

∂gμν

∂gλν

∂gμλ

Γ κ =

+

−

λμ

(11.18)

2

∂xλ

∂xμ

∂xν

Die Christoffelsymbole sind symmetrisch in den beiden unteren Indizes, 

Γ ρ =

μν

Γ ρ

νμ

(11.19)

Die Gravitationskräfte auf der rechten Seite von (11.9) ergeben sich als Ableitung

der Potenziale gμν. Der Vergleich von (11.9) mit der Bewegungsgleichung (6.12)

eines Teilchens im elektromagnetischen Feld zeigt, dass die Γ λ

μν den Feldern F αβ

entsprechen, und die gμν den Potenzialen Aα. 

Newtonscher Grenzfall

In Newtons Theorie lautet die Bewegungsgleichung eines Teilchens im Gravitati-

onsfeld m ¨r = −m ∇Φ(r) oder

d2xi

∂Φ

= −

(11.20)

dt 2

∂xi

Wir zeigen, dass die relativistische Bewegungsgleichung (11.9) sich im Grenzfall

kleiner Geschwindigkeiten und eines schwachen, statischen Felds auf (11.20) redu-

ziert. 

Wir schreiben den metrischen Tensor in der Form

gμν = ημν + hμν

(11.21)

Die Annahme  schwacher Felder  bedeutet

$$ $ $

$

h

$

$

$

μν

= gμν − ημν  1

(11.22)
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Damit haben die Koordinaten (x0, x1, x2, x3 ) = (c t, xi ) bis auf kleine Abwei-

chungen die gewohnte Bedeutung; sie sind Fast-Minkowskikoordinaten. Die Grö-

ßen vi = dxi/dt sind dann die Komponenten der Geschwindigkeit des Teilchens. 

Für  kleine Geschwindigkeiten, 

dxi

dx0

vi  c

oder



(11.23)

dτ

dτ

folgt aus (11.9)



2

d2xκ

dxμ dxν

dx0

= −Γ κ

≈ −Γ κ

(11.24)

dτ 2

μν

dτ

dτ

00

dτ

Wir berechnen die benötigten Christoffelsymbole für  statische Felder, 

















gκ i ∂g00

ηκ i ∂h00

1 ∂h00

Γ κ

= −

≈ −

= 0, 

(11.25)

00

2

∂xi

2

∂xi

2 ∂xi

Dabei wurde nur die erste Ordnung in den kleinen Größen hμν mitgenommen. Wir

setzen die Γ κ in (11.24) ein:

00





d2t

d2xi

c2 ∂h

dt 2

=

00

0

und

= −

(11.26)

dτ 2

dτ 2

2 ∂xi

dτ

Dies ergibt dt /dτ = const. und

d2xi = − c2 ∂ h00

(11.27)

dt 2

2 ∂xi

Dies stimmt für h00 = 2Φ/c2 mit dem Newtonschen Grenzfall (11.20) überein, 

also





g00(r) = 1 + 2 Φ(r)

|Φ|/c2  1

(11.28)

c2

Für die anderen hμν erhalten wir keine Aussage. Später werden wir sehen, dass

für statische, schwache Felder die hii von der Ordnung (Φ/c2) sind und dass die

Außerdiagonalelemente verschwinden. 

Den Zusammenhang (11.28) hatten wir bereits in (9.7) aus einer elementaren

Diskussion für das Beschleunigungspotenzial erhalten. Die jetzige Ableitung be-

zieht sich direkt auf das Newtonsche Gravitationspotenzial. 

Die Zahl 2 |Φ|/c2 gibt die absolute Stärke des Gravitationsfelds an. Für ein Teil-

chen der Masse m ist diese Zahl das doppelte Verhältnis zwischen der Gravitations-

energie m |Φ| und der Ruhenergie mc2. Die Zahl 2|Φ|/c2 bestimmt die Abwei-

chung von der Minkowskimetrik und die Größe der relativistischen Korrekturen der

ART gegenüber der Newtons Gravitationstheorie. Wir wollen diese Zahl für einige

Fälle abschätzen. 
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Im Grenzfall schwacher, statischer Felder gilt die Newtonsche Feldgleichung

(1.5). Für eine kugelsymmetrische Massenverteilung wird sie durch

GM

Φ(r) = −

(r > R)

(11.29)

r

gelöst. Dabei ist M die Gesamtmasse und r der Abstand vom Zentrum; die Masse

liege innerhalb des Radius R. 

Wir betrachten zunächst die Erde mit der Masse ME und dem Radius RE =

6 400 km. An der Oberfläche ruft das Gravitationsfeld die Beschleunigung g =

GME/R 2 ≈ 10 m/s2 hervor. Damit erhalten wir für die absolute Stärke des Gravi-

E

tationsfelds:

|Φ(RE)|

GM

g R

=

E =

E ≈ 7 · 10−10

(Erde)

(11.30)

c2

c2RE

c2

Wir vergleichen dies mit der Stärke des Potenzials an der Oberfläche einiger astro-

nomischer Objekte:

⎧

⎪

⎪

⎨ 1.4 · 10−9

Erde

2 |Φ| ≈

4 · 10−6

Sonne

(11.31)

c2

⎪

⎪

⎩ ∼ 3 · 10−4

Weißer Zwerg

∼ 3 · 10−1

Neutronenstern (Pulsar)

Der nächste zu betrachtende Sterntyp wäre ein Schwarzes Loch. Hierfür sind die

relativistischen Effekte so stark, dass sie nicht mehr als Korrektur behandelt werden

können. 

Aufgaben

 11.1 Christoffelsymbole

Berechnen Sie die Christoffelsymbole für

1. R3 mit Kugelkoordinaten. 

2. R3 mit Zylinderkoordinaten. 





3. Kugeloberfläche mit dem Wegelement ds2 = a2 dθ2 + sin2 θ dφ2 . 

 11.2 Beschleunigungskräfte aus metrischem Tensor

Werten Sie die Bewegungsgleichung d2xκ /dτ 2 = −Γ κ (dxμ/dτ )(dxν/dτ )

μν

für

die gμν eines mit konstanter Winkelgeschwindigkeit rotierenden Systems im New-

tonschen Grenzfall aus. Identifizieren Sie die Zentrifugal- und die Corioliskraft in

der resultierenden Bewegungsgleichung. 























12 Gravitationsrotverschiebung

Wir untersuchen den Gang von Uhren in einem statischen Gravitationsfeld. Als

spezielle Uhren betrachten wir Atome, die Photonen einer bestimmten Frequenz

emittieren. Bei einem Beobachter außerhalb des Felds kommen diese Photonen mit

kleinerer Frequenz an. Dieser Effekt heißt Gravitationsrotverschiebung, weil Spek-

trallinien im sichtbaren Bereich zum roten Ende des Spektrums hin verschoben sind. 

Eigenzeit

Das Wegelement dsUhr = c dτ einer Uhr bestimmt die Anzeige τ der Uhr. Für eine

Uhr im Gravitationsfeld gilt





ds

dτ =

Uhr = 1

gμν(x) dxμ dxν

(12.1)

c

c

Uhr

Dabei beziehen sich x = (xμ) und dxμ auf die Koordinaten der Uhr. Eine Koor-

dinatentransformation ändert den konkreten Ausdruck auf der rechten Seite, nicht

aber den Wert von dτ . Die Zeitkoordinate von KS schreiben wir immer als x0 = c t. 

Aus (12.1) ergibt sich der Zusammenhang zwischen der Koordinatenzeit t und der

Uhrzeit τ . 

Im Allgemeinen wird der Gang der Uhr sowohl durch das Gravitationsfeld wie

auch durch die Bewegung der Uhr beeinflusst. Das Gravitationsfeld wird durch die

gμν(x) beschrieben. Die Bewegung der Uhr innerhalb von KS ergibt sich dagegen

aus den dxi. Wir betrachten zwei einfache Spezialfälle:

1. Es liege kein Gravitationsfeld vor und das betrachtete KS sei ein IS. Dann

können wir Minkowskikoordinaten verwenden, also gαβ = ηαβ. Für die be-

wegte Uhr setzen wir dxi = vi dt und dx0 = c dt in (12.1) ein:







v2

(bewegte Uhr, 

dτ = 1

ηαβ dxα dxβ

= 1 −

dt

(12.2)

c

c2

kein Feld)

Uhr

Damit ist die Koordinate t gleich der Zeit, die von ruhenden Uhren angezeigt

wird, also gleich der IS-Zeit. Nach (12.2) gehen relativ dazu bewegte Uhren

 langsamer. Dieses Ergebnis ist als relativistische  Zeitdilatation  aus Kapitel 3

bekannt. 
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2. Für eine ruhende (dxi = 0) Uhr wird (12.1) zu



(ruhende Uhr im

dτ =

g00(x) dt

(12.3)

Gravitationsfeld)

Für ein schwaches, statisches Feld setzen wir (11.28) ein:



dτ =

1 + 2 Φ(r) dt

(ruhende Uhr, |Φ|  c2 )

(12.4)

c2

Damit ist die Koordinate t die Zeit, die eine bei unendlich ruhende Uhr an-

r→∞

zeigt (Φ −→ 0). Relativ hierzu gehen Uhren im Gravitationsfeld  langsamer, 

denn das Gravitationspotenzial Φ ist negativ, siehe etwa (11.29). 

Die beiden betrachteten Effekte treten im Allgemeinen zusammen auf. Im Folgen-

den untersuchen wir nur den zweiten Effekt. 

Rotverschiebung

Für Uhrenvergleiche setzen wir geeichte Uhren voraus, also Uhren, die unter glei-

chen Bedingungen gleich schnell laufen. Dies könnten etwa technisch hergestellte

Uhren sein, die innerhalb bekannter Fehlergrenzen gleich gehen. Als Uhren kom-

men aber insbesondere auch Atome in Frage, die Licht mit einer bestimmten Fre-

quenz emittieren oder absorbieren. Die minimale Unschärfe dieser Eigenfrequenzen

(also die Ungenauigkeit der Atomuhr) ist durch die natürliche Linienbreite gegeben. 

Diskrete Eigenfrequenzen können als Spektrallinien im Sonnen- oder Sternlicht be-

obachtet werden. 

Wir betrachten ein statisches Gravitationsfeld. In diesem Fall hängen die Gra-

vitationspotenziale gμν(r) nur vom Ort, nicht aber von der Zeit ab. Eine bei rA ruhende Quelle sende eine monochromatische elektromagnetische Welle aus. Diese

Welle werde von einem Empfänger, der bei rB ruht, beobachtet. Bei der Quelle und

beim Empfänger ruhende Uhren zeigen die Eigenzeiten





dτA =

g00(rA) dtA , 

dτB =

g00(rB) dtB

(12.5)

an. Als Zeitintervalle betrachten wir die Zeitspanne zwischen zwei aufeinanderfol-

genden Wellenbergen, die bei A weglaufen oder bei B ankommen. Dann sind dτA

und dτB gleich den Perioden der elektromagnetischen Schwingung bei A und B, 

also gleich den inversen Frequenzen:

dτA = 1 , 

dτB = 1

(12.6)

νA

νB

Um von A nach B zu gelangen, braucht der erste Wellenberg die gleiche KS-Zeit Δt

wie der zweite; denn es handelt sich um die gleiche Wegstrecke, und das Gravitati-

onsfeld und damit der metrische Tensor sollen zeitunabhängig sein. Daher kommen
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Abbildung 12.1 Von der Oberfläche eines Sterns (A) wird Licht der Frequenz νA aus-

gesandt. Am Ort B außerhalb des Gravitationsfelds wird dieses Licht mit der Frequenz

νB < νA empfangen; es ist rotverschoben. 

die beiden Wellenberge in dem zeitlichen Abstand (KS-Zeit) an, in dem sie ausge-

sandt werden:

dtB = dtA

(12.7)

√

Aus (12.5) – (12.7) folgt νA/νB =

g00(rB)/g00(rA) . Die Frequenzänderung wird

üblicherweise durch die dimensionslose Zahl

νA

λB

z =

− 1 =

− 1

(12.8)

νB

λA

ausgedrückt. Die Größe z heißt  Rotverschiebung  oder auch Rotverschiebungspa-

rameter. Im sichtbaren Spektrum bedeutet eine Verschiebung zum roten Ende hin

λB > λA, also z > 0. Im übertragenen Sinn spricht man auch in anderen Bereichen

des Spektrums von Rotverschiebung, wenn z > 0 gilt. 

Aus (12.5) – (12.8) folgt

g00(rB)

z =

− 1

Gravitationsrotverschiebung

(12.9)

g00(rA)

Für schwache Felder, g00 = 1 + 2Φ/c2, erhalten wir hieraus

Φ(r





B) − Φ(rA)

z =

|Φ|  c2

(12.10)

c2

Bei den betrachteten Quellen handelt es sich meistens um Atome mit bestimmten

Eigenfrequenzen. Diese Atome können Photonen emittieren oder absorbieren; die

oben angenommene monochromatische Welle ist eine Annäherung für die Wellen-

pakete dieser Photonen. Die Eigenfrequenzen werden als Spektrallinien beobachtet. 

Das charakteristische Muster von Spektrallinien erlaubt die Zuordnung zu bestimm-

ten Atomen und damit die Bestimmung der Frequenzverschiebung. 

Im Allgemeinen gibt es drei Effekte, die zur Frequenzverschiebung von Spek-

trallinien führen können:

1. Die  Dopplerverschiebung  aufgrund der Bewegung der Quelle (Aufgabe 6.2). 
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2. Die  Gravitationsrotverschiebung  aufgrund des Gravitationsfelds am Ort der

Quelle, Abbildung 12.1. 

3. Die  kosmologische Rotverschiebung  aufgrund der Expansion des Weltalls

(Kapitel 51). In diesem Fall ist der metrische Tensor zeitabhängig. 

In die Ableitung von (12.9) ging ein, dass Quelle und Empfänger ruhen (Vorausset-

zung für (12.5)), und dass das Gravitationsfeld statisch ist (Voraussetzung für die

Zeitunabhängigkeit von g00 und für (12.7)). Dadurch wurden der 1. und 3. Effekt

ausgeschlossen. 

Photon im Gravitationsfeld

Wir diskutieren das Ergebnis für ein einzelnes Photon, also ein Quant des elektro-

magnetischen Felds mit der Energie Eγ = ¯hω = 2π ¯hν. Hierfür gibt (12.10) die

Frequenzänderung eines Photons an, das im Gravitationsfeld von A nach B läuft. 

Wenn das Photon speziell im homogenen Erdfeld um die Strecke h = hB − hA > 0

nach oben fliegt, gilt

νA

Φ(r B) − Φ(rA)

g (hB − hA)

g h

z =

− 1 =

=

=

(12.11)

νB

c2

c2

c2

Die relative Größe der Frequenzänderung Δν = νB − νA ist

Δν = − gh

(12.12)

ν

c2

Das Photon ändert seine Energie um ΔEγ = −(Eγ/c2)g h, wenn es sich gegen das

Gravitationsfeld (nach oben) bewegt. Dies entspricht der Verringerung der kineti-

schen Energie eines Teilchens mit der Masse Eγ/c2, das gegen das Feld anläuft. 

Das Ergebnis (12.12) kann man auch aus dem Energiesatz und der Äquivalenz

von Masse und Energie ableiten. Dazu betrachten wir den in Abbildung 12.2 skiz-

zierten Prozess: Ein Teilchen der Masse m ruhe zunächst bei B; seine Energie be-

trägt somit mc2. Das Teilchen falle nun von B nach A; dabei wächst seine Energie

auf mc2 + mgh an. Bei A werde das Teilchen in ein Photon mit der Energie 2π ¯hνA

umgewandelt. Dieses Photon steige nach B auf. Dort hat es eine zunächst unbe-

kannte Frequenz νB und Energie 2π ¯hνB. Es werde bei B in ein ruhendes materielles

Teilchen verwandelt. Da der Endzustand gleich dem Anfangszustand ist (und keine

Energie zugeführt wurde), müssen folgende Relationen gelten:

2π ¯hνA = mc2 + mgh und 2π ¯hνB = mc2

(12.13)

Hieraus folgt (12.12). 
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Abbildung 12.2 Zur Ableitung der Rotverschiebung im Gravitationsfeld der Erde (g ≈

10 m/s2) wird folgender Kreisprozess betrachtet: Ein ruhendes materielles Teilchen (Ener-

gie mc2) fällt von B nach A und erreicht die Energie mc2 + mg h. Es wird in ein Photon

(Frequenz νA) umgewandelt. Das Photon fliegt die Strecke h nach oben und hat dann die

Frequenz νB. Es wird dort in ein ruhendes materielles Teilchen umgewandelt. 

Mößbauereffekt

Wenn die hochenergetische Strahlung eines bestimmten Kernübergangs von gleich-

artigen Kernen wieder absorbiert werden, spricht man von Resonanzfluoreszenz. 

Dieser Vorgang wird im Allgemeinen dadurch behindert, dass die Energie der emit-

tierten γ-Quanten durch den unvermeidlichen Rückstoß auf den Kern geändert wird. 

Im Kristall kann bei tiefen Temperaturen der Rückstoß durch den gesamten Kristall

aufgenommen werden; anders ausgedrückt, bei der Emission des γ-Quants wird mit

endlicher Wahrscheinlichkeit kein Phonon angeregt. Bei dieser rückstoßfreien Re-

sonanzfluoreszenz, dem  Mößbauereffekt, kommt es zu sehr scharfen γ-Linien. Die

Linien haben dann nur noch ihre natürliche Breite, die durch die endliche Lebens-

dauer des angeregten Kernzustands gegeben ist. 

Pound und Snider1 haben mit Hilfe dieses Mößbauereffekts die Frequenzver-

schiebung (12.12) im Erdfeld nachgewiesen. In ihrem Experiment waren Quelle

und Empfänger durch einen Höhenunterschied von h = 22.6 m getrennt, so dass

Δν

ν

g h

= B − νA = −

h = 22.6 m

=

−2.46 · 10−15

(12.14)

ν

νA

c2

Da die natürliche Linienbreite Γ des betrachteten Übergangs (Eγ = 14.4 keV

in 57Fe) immerhin noch Γ /ν ≈ 10−12 beträgt, waren zusätzliche experimentelle

Tricks nötig, um die viel kleinere Verschiebung (12.14) nachzuweisen. Die Analyse

der Experimente1 ergab

(Δν)exp = 1.00 ± 0.01

(Mößbauereffekt)

(12.15)

(Δν)theor

1R. V. Pound and J. L. Snider, Phys. Rev. 140 B (1965) 778
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Sonnenlicht

Gravitationsrotverschiebung im engeren Sinn ist die Rotverschiebung von Licht, 

das uns von der Oberfläche von Sternen erreicht. Wir betrachten ein Photon, das

von der Sonnenoberfläche (rA) mit der Frequenz νA ausgesandt wird, Abbildung

12.1. Auf der Erde (rB) kommt es dann mit der  kleineren  Frequenz νB an. Nach

(12.10) gilt

Φ(r B) − Φ(rA)

Φ(rA)

GM

z =

≈ −

=

≈ 2 · 10−6

(12.16)

c2

c2

c2R

Dabei haben wir |Φ(rB)|  |Φ(rA)|, M = 2 · 1033 g und R = 7 · 105 km

verwendet. 

Das Plasma der Sonnenoberfläche emittiert ein kontinuierliches Spektrum (ein

Plancksches Strahlungsspektrum). In kälteren Schichten der Sonnenatmosphäre

werden hieraus diskrete Frequenzen absorbiert; dadurch ergeben sich Absorptions-

linien (Fraunhofersche Linien). Das Spektrum mit diesen diskreten Linien wird ge-

mäß (12.16) verschoben. Diese Verschiebung kann quantitativ bestimmt werden, 

wenn man die Absorptionslinien bekannten Atomübergängen zuordnet. 

Die Bestimmung der Rotverschiebung aus dem beobachteten Sonnenspektrum

wird durch folgende Effekte erschwert:

• Relativgeschwindigkeit Erde-Sonne

• Thermische Bewegung der Atome

• Konvektion der solaren Gase. 

Der erste Effekt kann relativ leicht berücksichtigt werden. Der zweite führt zu einer

erheblichen Verbreiterung der Spektrallinie: Bei einer Oberflächentemperatur der

Sonne von T ≈ 6 000 K ist die thermische Geschwindigkeit von Kohlenstoff- oder

Sauerstoffatomen von der Größe v ∼ 3 km/s. Nun führt aber bereits eine Relativ-

geschwindigkeit von v = 2 · 10−6 c = 0.6 km/s zu einer Dopplerverschiebung der

Größe (12.16). Der dritte Effekt ist am störendsten, da er ebenfalls relativ groß ist

und statistischen Schwankungen unterliegt. 

Die Analyse2 der gemessenen Frequenzverschiebung im Sonnenlicht ergibt

(Δν)exp = 1.01 ± 0.06

(Sonnenlicht)

(12.17)

(Δν)theor

Bewegte Uhren

Bisher haben wir ruhende Uhren in einem Gravitationsfeld betrachtet. Für bewegte

Uhren im Gravitationsfeld gμν ergibt sich die Relation zwischen den Uhrzeiten und

der KS-Zeit aus (12.1) durch Einsetzen der Geschwindigkeit der Uhr. Damit ist ein

Vergleich aller in Frage kommenden Uhren möglich. 

2J. L. Snider, Phys. Rev. Lett. 28 (1972) 853
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Als Beispiel betrachten wir eine Uhr, die auf der Erdoberfläche ruht, und ei-

ne gleichartige Uhr in einem die Erde umkreisenden Satelliten. Im Vergleich zur

Erduhr geht die Uhr im Satelliten

(i)  schneller, weil das Gravitationspotenzial am Ort des Satelliten schwächer ist. 

(ii)  langsamer, weil die Geschwindigkeit des Satelliten größer ist. 

Der Effekt (i) folgt aus (12.4) mit |ΦSat| < |ΦErde|. Der Effekt (ii) folgt aus (12.2)

mit |vSat| > |vErde|. 

Moderne Satelliten-Ortungssysteme müssen beide Effekte berücksichtigen3. 

Zur Berechnung des Gesamteffekts betrachtet man etwa ein IS, in dem die Bahn-

geschwindigkeit der Erde um die Sonne momentan (praktisch heißt das in guter

Näherung für einige Wochen) verschwindet. In diesem IS ergibt sich die Geschwin-

digkeit für die Erduhr aus der Eigendrehung der Erde, und für die Satellitenuhr aus

der Umlaufgeschwindigkeit. Für einen erdnahen Satelliten überwiegt der zweite Ef-

fekt (ii), für einen erdfernen Satelliten dagegen der erste (i), Aufgabe 12.1. 

Experimente mit Uhren in Flugzeugen, Raketen und Satelliten bestätigen die

theoretischen Vorhersagen, die aus (12.1) folgen. Für eine Uhr (Wasserstoffmaser)

in einer Rakete konnte eine experimentelle Genauigkeit von 2·10−4 erreicht werden

[9]. 

Die Behandlung der Gravitationsrotverschiebung beruht auf dem Einsteinschen

Äquivalenzprinzip. Die hier diskutierten Experimente stellen daher einen Test des

Äquivalenzprinzips dar. Die Feldgleichungen der ART spielen hierbei keine Rolle. 

3E. W. Grafarend und V. S. Schwarze,  Das Global Positioning System, Physik Journal 1 (2002) 39







Kapitel 12 Gravitationsrotverschiebung

67

Aufgaben

 12.1 Zeitverschiebung für Satelliten

Ein Satellit (Masse m) bewegt sich auf einer Kreisbahn (Radius r0) im Gravitations-

potenzial

G ME m

V (r) = −

= m Φ(r)

(12.18)

r

Hierbei ist G die Gravitationskonstante und ME die Masse der Erde. Eine Uhr im

Satelliten zeigt die Zeit tS an. Eine Uhr, die bei r = ∞ ruht, zeigt die Zeit t∞ an. 

Bestimmen Sie den Zeitunterschied aufgrund der relativistischen Zeitdilatation in

der Form tS/t∞ = 1 + δ in niedrigster, nichtverschwindender Ordnung in v/c. 

Drücken Sie δ durch Φ(r0) aus. 

Zusätzlich beeinflusst das Gravitationsfeld den Gang der Uhr:

tS

Φ(r

=

0)

1 + δ +

(12.19)

t∞

c2

Eine Uhr im Labor auf der Erdoberfläche zeigt die Zeit t L ≈ t∞ (1 + Φ(R)/c2) an; 

die Geschwindigkeit aufgrund der Erddrehung wird vernachlässigt. Bestimmen Sie

die relative Zeitverschiebung (t L − tS)/t L zwischen Labor und Satellit als Funktion

von r0/R für Φ/c2  1. Welche Größenordnung und welches Vorzeichen hat dieser

Effekt für einen erdnahen und für einen geostationären Satelliten? 

13 Geometrische Aspekte

Wir diskutieren einige geometrische Aspekte der Beschreibung der Gravitationsfel-

der durch einen metrischen Tensor gμν. Die Koordinatenabhängigkeit von gμν(x)

bedeutet im Allgemeinen, dass der durch das Wegelement ds2 definierte Raum

gekrümmt ist. Die Bahnkurven von Teilchen im Gravitationsfeld sind geodätische

Linien des Raums. 

Krümmung des Raums

Das Wegelement eines N -dimensionalen Riemannschen Raums mit den Koordina-

ten x = (x1, x2, . . . , xN ) lautet

ds2 = gik(x) dxi dxk

(13.1)

Die formale Untersuchung der Krümmungseigenschaften dieses Raums erfolgt in

Teil IV. Für eine qualitative und anschauliche Diskussion beschränken wir uns auf

den zweidimensionalen Fall









2

2

ds2 = g11(x1, x2) dx1

+ 2 g12(x1, x2) dx1 dx2 + g22(x1, x2) dx2

(13.2)

Bekannte Beispiele sind die Ebene mit den kartesischen Koordinaten (x1, x2) =

(x, y), 

ds2 = dx2 + dy2

(13.3)

oder mit den Polarkoordinaten (x1, x2) = (ρ, φ), 

ds2 = dρ2 + ρ2 dφ2

(13.4)

und die Kugeloberfläche mit den Winkelkoordinaten (x1, x2) = (θ, φ), 





ds2 = a2 dθ2 + sin2θ dφ2

(13.5)

Es ist klar, dass (13.4) durch eine Koordinatentransformation in die Form (13.3)

gebracht werden kann. Wie die folgende Diskussion zeigen wird, gibt es aber keine

Koordinatentransformation, die (13.5) in die kartesische Form (13.3) bringt. Dies

sind einfache Beispiele für folgende allgemeine Feststellungen:

• Der metrische Tensor bestimmt die Eigenschaften des Raums. Dazu gehört

insbesondere die Krümmung. 
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sionalen Raums aus gegebe-

x2 = 0

nem gij (x1, x2). 

• Die Gestalt des metrischen Tensors ist durch die Eigenschaften des Raums

nicht eindeutig festgelegt. Vielmehr kann sie durch Wahl anderer Koordinaten

im gegebenen Raum verändert werden. 

Wir demonstrieren jetzt, wie die gij in (13.2) die Krümmung des zweidimensio-

nalen Raums bestimmen. Dazu konstruieren wir die zweidimensionale Fläche im

dreidimensionalen Raum in der Umgebung eines herausgegriffenen Punkts [2]. Von

einem Punkt ausgehend, wird die Fläche in kleinen Schritten δx1, δx2 konstruiert. 

Die gij sollen sich bei Koordinatenänderungen der Größe δx1, δx2 nur geringfügig

ändern. Im Folgenden wird willkürlich δx1 = δx2 = 1 gesetzt. 

Wir wählen einen beliebigen Punkt A des dreidimensionalen Raums als Koor-

dinatenursprung x1 = x2 = 0 der Fläche. Bei A löten wir zwei Drähte zusammen, 

die die Koordinatenlinien „x1 = 0“ und „x2 = 0“ darstellen sollen (Abbildung

13.1). Auf dem Draht „x2 = 0“ löten wir im Abstand





δs

= g

g

AB

11(0, 0) δx1 =

11(0, 0)

(13.6)

einen Draht „x1 = 1“ an (Punkt B). Alle Abstände δs sind physikalische Abstände, 

also Drahtlängen. Auf dem Draht „ x1 = 0“ löten wir im Abstand





δs

= g

g

AC

22(0, 0) δx2 =

22(0, 0)

(13.7)

einen Draht „x2 = 1“ an (Punkt C). Die beiden neuen Drähte werden in den Ab-

√

√

ständen

g22(1, 0) und

g11(0, 1) bei D zusammengelötet. Damit stehen alle Sei-

tenlängen des Vierecks ABDC fest. Der Diagonalabstand



δs

= g

AD

11(0, 0) + 2 g12(0, 0) + g22(0, 0)

(13.8)

legt das Viereck als  ebenes  Flächenstück endgültig fest. Analog werden die an BD

und CD angrenzenden Vierecke konstruiert. Legt man nun alle drei Vierecke auf

eine Ebene, so ergibt sich ein bestimmter Winkel beim Punkt D für das fehlende

Viereck. Dieses vierte Viereck ist jedoch seinerseits durch die metrischen Koeffizi-

enten gik festgelegt. Das Einfügen dieses Vierecks bei D ist daher im Allgemeinen
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nur möglich, wenn man die Kanten BD und CD abknickt. Damit verlässt man die

Ebene; die Fläche ist also gekrümmt. Diese Krümmung wird durch die gik festge-

legt. Für die Metrik (13.5) kann man in dieser Weise die gesamte Kugeloberfläche

konstruieren. Dazu beginnt man etwa am Äquator und setzt die durch Längen- und

Breitenkreise begrenzten Trapeze aneinander. 

Wenn man das Wegelement (13.2) um eine bestimmte Stelle herum entwickelt

(hinreichende Differenzierbarkeit setzen wir voraus), dann erhält man in niedrigster

Näherung eine Ebene, die Tangentialebene an diesem Punkt. In der nächsten (qua-

dratischen) Näherung erhält man das Ellipsoid (Hyperboloid, Paraboloid), das sich

an dieser Stelle optimal an die betrachtete Fläche anschmiegt. Die (eventuell noch

weitergeführte) Entwicklung könnte an einem benachbarten Punkt neu aufgenom-

men werden, so dass sukzessive die gesuchte Fläche entsteht. Diese Betrachtung ist

das analytische Pendant zu unserer geometrischen Konstruktion. 

Die (geometrisch oder analytisch) so konstruierte Fläche entwickelt sich ausge-

hend von einem bestimmten Punkt. Wenn die gesuchte Fläche aus mehreren Teilen

besteht, dann führt dieses Verfahren nur zu einer Teilfläche. Ein Beispiel hierfür





ist die  Pseudosphäre, die durch das Wegelement ds2 = a2 dθ2 + sinh2θ dφ2 de-

finiert ist, und die aus zwei getrennten Teilen besteht. Diese Fläche hat an jedem

Punkt die konstante Gaußsche Krümmung K = −1/a2. 

Neben der hier diskutierten Krümmung gibt es noch eine  äußere  Krümmung. 

Dazu betrachten wir ein Blatt Papier, das eben auf einem Tisch liegt. Es stellt ei-

ne ebene Fläche dar; wir können ein kartesisches Koordinatennetz auf das Papier

zeichnen. Verbiegt man nun das Papier (etwa zu einem Zylinder), so ändern sich

die Abstände  innerhalb  der Fläche nicht; die Metrik bleibt also gleich. Eine solche

Verbiegung bezeichnet man als  äußere  Krümmung. Wir betrachten im Folgenden

nur die  innere  Krümmung, die sich aus der Metrik innerhalb der Fläche ergibt. 

Wenn man in (13.2) eine Koordinatentransformation (xi = xi(x1, x2)) ein-

setzt, so erhält man zwar andere Funktionen gik(x), aber keine andere Fläche. Dies

liegt daran, dass die Konstruktion der Fläche ja über physikalische Längen ds (sie-

he (13.6) – (13.8)) erfolgt, die sich bei der Transformation nicht ändern. Bei einer

Koordinatentransformation erhalten lediglich die Punkte derselben Fläche andere

Namen (= Koordinatenwerte). So erhält man (13.4) aus (13.3) durch die Trans-

formation x = ρ cos φ und y = ρ sin φ; beide Formen für ds beschreiben aber

eine ebene Fläche. Auch in (13.5) könnte man andere Koordinaten einführen. Eine

Transformation zu kartesischen Koordinaten ist hier aber nicht möglich. 

Ein Raum ist genau dann nichtgekrümmt (oder eben oder  euklidisch), wenn

kartesische Koordinaten möglich sind:

Kartesische Koordinaten möglich

⇐⇒ Raum nicht gekrümmt

(13.9)

Zur Begründung: Wenn man von kartesischen Koordinaten ausgeht, dann führt die

oben gegebene Konstruktion zu lauter gleichen Quadraten, die in einer Ebene an-

einander gefügt werden können. Wenn man umgekehrt von einer Ebene ausgeht, 

dann kann man gleichabständige Geraden nehmen und sie mit x = 0, x = ±1, 
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x = ±2 und so weiter bezeichnen. Anschließend kann man eine dazu senkrechte

Gerade mit y = 0 bezeichnen, und die hierzu parallelen Geraden mit y = ±1, 

y = ±2 und so weiter. Hierdurch hat man dann kartesische Koordinaten eingeführt. 

Diese Argumentation lässt sich auf höhere Dimensionen übertragen. 

Aus der Aussage (13.9) folgt, dass im gekrümmten Raum keine kartesischen

Koordinaten möglich sind. Dies gilt insbesondere für die durch (13.5) definierte

Kugeloberfläche. Für ein gegebenes Wegelement ds2 = gik(x) xi xk wird die Un-

möglichkeit kartesischer Koordinaten allerdings kaum durch Probieren möglicher

Koordinatentransformationen nachzuweisen sein. Stattdessen werden wir in Teil IV

sehen, wie man die Krümmung des Raums operativ aus gegebenem gik berechnet. 

Für eine Krümmung ist die Koordinatenabhängigkeit des metrischen Tensors

notwendig aber nicht hinreichend:

Raum gekrümmt

⇒ gik(x) ist koordinatenabhängig

(13.10)

Zur Ableitung zeigen wir, dass gik = const. einen ebenen Raum impliziert. Für

gik = const. ist das Wegelement eine quadratische Form mit konstanten Koeffizi-

enten. Eine solche quadratische Form kann bekanntermaßen durch eine Drehung

des Koordinatensystems auf Diagonalform gebracht werden (Hauptachsentransfor-

mation). Eine Skalierung (xi → ci xi) der einzelnen Koordinaten führt dann zu

g

= δ

ik

ik . Damit sind kartesische Koordinaten erreicht; der Raum ist also eukli-

disch. Die Umkehrung von (13.10) gilt nicht: Eine Koordinatenabhängigkeit der

gik könnte ja wie in (13.4) lediglich auf der Wahl von krummlinigen Koordinaten

beruhen. 

Wir haben aus gegebenen metrischen Koeffizienten physikalische Längen be-

rechnet und damit die Fläche (zumindest lokal) konstruiert. Umgekehrt kann man

durch Messung von Längen auf einer gegebenen Fläche nachprüfen, ob die Flä-

che eben ist oder nicht. Vermisst man zum Beispiel Dreiecke auf der Erdoberfläche

(oder einer zweidimensionalen Kugeloberfläche), so stellt man für größere Drei-

ecke eine Abweichung von der Winkelsumme 180o fest. Eine solche Abweichung

ist auch in einem dreidimensionalen Raum möglich. 

Gauß (1777 – 1855) hat die Winkelsumme des Dreiecks Inselsberg-Brocken-

Hohenhagen gemessen und 180o erhalten. Damit verifizierte er experimentell, dass

unser dreidimensionaler Raum auf der Längenskala von etwa 100 km euklidisch

ist. Die primäre Absicht von Gauß dürfte dabei allerdings nicht die Überprüfung

der Euklidizität unseres Raums gewesen sein (wie vielfach berichtet wird), sondern

die Landvermessung im Königreich Hannover. Gauß war sich aber der Möglichkeit

eines nichteuklidischen Raums bewusst. 

Nach dem Äquivalenzprinzip werden die Gravitationsfelder durch koordinaten-

abhängige gμν(x) beschrieben. Wie wir hier gesehen haben, bedeutet dies geo-

metrisch eine Krümmung eines vierdimensionalen Raums (eine Zeit- und drei

Raumdimensionen). Die noch aufzustellenden Feldgleichungen für die gμν(x) be-

schreiben den Zusammenhang zwischen dieser Krümmung und den Quellen des

Gravitationsfelds (also insbesondere den Massen) quantitativ. In diesem Sinn ver-

ursachen Massen eine Krümmung des Raums. 
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Geodätische Linien

Die Bewegungsgleichungen eines Teilchens im Gravitationsfeld gμν(x) lauten

d2xκ

dxμ dxν

= −Γ κ

(13.11)

dτ 2

μν

dτ

dτ

Die hierdurch bestimmten Bahnkurven sind zugleich die  geodätischen Linien  in

dem durch die gμν(x) definierten Riemannschen Raum. Unter geodätischen Linien

versteht man die kürzesten Verbindungen zwischen zwei gegebenen Punkten. Für

zwei Punkte auf der Kugeloberfläche ist die kürzeste Verbindung Teil eines Groß-

kreises. 

Die notwendige Bedingung für eine geodätische Linie zwischen zwei gegebe-

nen Punkten A und B lautet:





B

B

Bedingung für

ds =

gμν dxμ dxν = minimal

(13.12)

geodätische Linie

A

A

Die gesuchte Kurve sei xμ(τ ). Man betrachtet nun kleine Abweichungen δxμ(τ )

hiervon. Damit die Kurven xμ(τ ) + δxμ(τ ) ebenfalls durch A und B gehen, muss

gelten, 

δxμ(A) = δxμ(B) = 0

(13.13)

Dann ist









B

B

B

dxμ dxν

δ

ds = δ

gμν dxμ dxν = δ

dτ

gμν(x)

= 0

(13.14)

A

A

A

dτ

dτ

eine notwendige Bedingung dafür, dass die Weglänge für die Kurve xμ(τ ) minimal

ist. Wir führen die Lagrangefunktion







L ˙x(τ), x(τ) = −mc gμν(x) ˙xμ ˙xν

(13.15)

ein; dabei ist x = (xμ) und ˙xμ = dxμ/dτ . Damit wird (13.14) zum Hamiltonschen

Prinzip:

 B

δ

dτ L( ˙x, x) = 0

(13.16)

A

Die zugehörigen Lagrangegleichungen sind aus der Mechanik bekannt, 

d ∂L

∂L

=

(13.17)

dτ ∂ ˙xκ

∂xκ

In Aufgabe 13.1 wird gezeigt, dass dies gleichbedeutend mit (13.11) ist. Die Bahn-

kurven sind damit extremale Verbindungen zwischen den Punkten A und B. Ob

eine gefundene Kurve minimal oder maximal ist, muss eine genauere Untersuchung

zeigen. 
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Die Einführung der Lagrangefunktion (13.15) stellt einen Zusammenhang zwi-

schen der geometrischen und mechanischen Interpretation von (13.11) her. Der Vor-

faktor der Lagrangefunktion ist so gewählt, dass L ohne Gravitationsfeld in die

bekannte Lagrangefunktion der SRT übergeht ((6.22) mit Aβ = 0). 

Die Lagrangefunktion ist meist ein besonders einfacher und skalarer Ausdruck. 

So ist der Zusatzterm in (6.22) der einfachste Skalar, der die Bahn mit einem äu-

ßeren Vektorfeld Aβ verknüpft. Analog dazu ist (13.15) ein besonders einfacher

Ausdruck, der sich mit einem gegebenen Tensorfeld gμν(x) bilden lässt; auch ohne

die Wurzel in (13.15) ergäbe sich (13.11). 

Wir geben noch eine alternative Begründung dafür, dass (13.11) geodätische

Linien beschreibt. In der Umgebung eines beliebigen Punktes x0 können wir die

Näherung gμν(x) ≈ gμν(x0) = const. verwenden. Nach (13.10) können wir in

dieser Umgebung kartesische Koordinaten ξ α einführen. Wegen gμν(x0) = const. 

verschwinden die Christoffelsymbole und (13.11) wird  lokal  zu

d2ξ α = 0

(13.18)

dτ 2

Diese Gleichung beschreibt eine Gerade. Also ist die durch (13.11) definierte Li-

nie oder Bahn xκ (τ )  lokal gerade  und daher lokal eine kürzeste Verbindung. Aus

der Fortsetzung dieser lokal kürzesten Verbindungen ergeben sich die geodätischen

Linien. 

Zusammenfassend stellen wir fest: Ein Teilchen in dem durch gμν gegebenen

Gravitationsfeld bewegt sich auf einer geodätischen Linie in dem durch diese gμν

definierten Riemannschen Raum. Dies ist eine Geodäte in einem vierdimensionalen

Raum (eine Zeit- und drei Ortskoordinaten), nicht aber im gewöhnlichen dreidimen-

sionalen Raum. Dies kann man sich etwa am Beispiel einer Wurfparabel (Aufgabe

13.3) klar machen. 
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Aufgaben

 13.1 Euler-Lagrange-Gleichung für geodätische Linien

In einem Raum mit der Metrik ds2 = gμν(x) dxμ dxν = c2 dτ 2 werden die Bahn-

kurven xν(τ ) gesucht, für die der Weg von A nach B stationär ist:





B ds

B





δ

= δ

dτ L ˙x(τ ), x(τ ) = 0

A

c

A

mit



L = gμν(x) ˙xμ ˙xν

Dies ist eine notwendige Bedingung für die kürzeste Verbindung von A nach B. 

Stellen Sie die Euler-Lagrange-Gleichungen für dieses Variationsprinzip auf. 

 13.2 Geodätische Linien

Stellen Sie die Differenzialgleichungen für die geodätischen Linien xμ(τ ) auf, und

zwar für

− R3 mit Kugelkoordinaten. 

− R3 mit Zylinderkoordinaten. 





− Kugeloberfläche mit dem Wegelement ds2 = a2 dθ2 + sin2 θ dφ2 . 

Geben Sie jeweils eine spezielle Lösung an. 

 13.3 Krümmung einer Geodäte

Die Bahn eines geworfenen Steins werde durch

x0 = c t , 

x1 = x = v t , 

x2 = y = 0, 

x3 = z = −g t2/2

beschrieben. Berechnen Sie den

• Krümmungsradius R1 der Bahn in der x3-x0-Ebene an der Stelle x3 = 0. 

• Krümmungsradius R2 der Bahn in der x3-x1-Ebene an der Stelle x3 = 0. 

IV Mathematische Grundlagen

der ART

14 Tensoren im Riemannschen Raum

In Teil IV behandeln wir die Tensoranalysis im N-dimensionalen Riemannschen

Raum. In diesem Kapitel definieren wir die Tensoren dieses Raums. 

Durch das Wegelement

N



ds2 =

gik(x1, . . . , xN ) dxi dxk = gik(x) dxidxk

(14.1)

i, k = 1

ist die Metrik eines N-dimensionalen Raums festgelegt. Wir verwenden lateinische

Indizes (i = 1, 2, . . . , N) und die aus Kapitel 3 bekannte Summenkonvention. 

Die xi sind beliebige, im Allgemeinen krummlinige Koordinaten. Die metrischen

Koeffizienten gik(x) sollen differenzierbar sein. Außerdem gelte

gik = gki

(14.2)

Der durch das Wegelement (14.1) definierte Raum heißt  Riemannscher Raum  oder

auch  Riemannsche Mannigfaltigkeit. Die Physiker benutzen bevorzugt den ers-

ten, die Mathematiker den zweiten Begriff. Der Begriff des Riemannschen Raums

umfasst den dreidimensionalen euklidischen Raum, den Minkowskiraum und die

Kugeloberfläche als Spezialfälle. Formal ist eine Mannigfaltigkeit ein topologischer

Raum, der lokal einem Euklidischen Rn gleicht. Wesentlich für die  Riemannsche

Mannigfaltigkeit sind dann die Differenzierbarkeit (etwa die lokale Annäherung ei-

ner Kugeloberfläche durch eine Tangentialebene) und die Existenz eines Skalar-

produkts (also die Definition von Abständen). 

Die vorausgesetzte Differenzierbarkeit impliziert, dass wir ds2 in der Umge-

bung eines Punktes x0 durch eine quadratische Form mit konstanten Koeffizienten

annähern können:

ds2 ≈ gik(x0) dxidxk = δik dξ idξ k

(14.3)
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Für konstante Koeffizienten kann die quadratische Form ds2 durch eine Drehung

des Koordinatensystems auf Diagonalform gebracht werden (Hauptachsentrans-

formation). In der Diagonalform genügt dann eine einfache Skalentransformation

(xi → const. · xi) um kartesische Koordinaten (oder Minkowski-Koordinaten) ξ i

zu erhalten. Damit können wir alle Beziehungen übernehmen, die aus (11.14) ab-

geleitet wurden (insbesondere den Ausdruck für die Christoffelsymbole). Beispiele

für die lokale Annäherung durch einen ebenen Raum sind eine Tangentialebene an

einer Kugeloberfläche oder das Lokale IS eines Satellitenlabors im Gravitationsfeld. 

Die Determinante des metrischen Tensors soll nicht verschwinden:

$$

$

$ g

$

$ 11 g12 . . . g1N $

$ g

$

21

g22

. . . 

g2N $

det (gik) = $

=

· · ·

=

$ . 

$

i1i2...iN g

g

g

0

(14.4)
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$

$

$

g

$

N 1

gN2 . . . gNN

Hierbei ist i... das analog zu (5.19) definierte Levi-Civita-Symbol im N-dimensio-

nalen Raum. Wegen det(gik) = 0 gibt es eine zu (gik) inverse Matrix (gik), 

gip gpk = δk

(14.5)

i

Anstelle der xi in (14.1) können wir N andere Koordinaten xi einführen; dies än-

dert nichts an der Form (14.1). Dazu betrachten wir eine allgemeine Koordinaten-

transformation

x i = xi(x1, . . . , xN )

(14.6)

und deren Umkehrtransformation

xi = xi(x1, . . . , xN )

(14.7)

Durch die Koordinatendifferenziale

∂x i

dx i =

dxk = αi (x) dxk

(14.8)

∂xk

k

und

∂xi

dxi =

dx k = –

αi (x) dx k

(14.9)

∂x k

k

sind koordinatenabhängige Transformationsmatrizen α und –

α gegeben, 

∂x i

∂xi

αi (x) =

–

αi (x) =

(14.10)

k

∂xk

k

∂x k

Aus der Produktregel

∂x i ∂xk

∂x k

= ∂xi

= δi

∂xk ∂x m

∂x k ∂xm

m

(14.11)
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folgt

αi –

αk = –

αi αk = δi

k

m

k

m

m

(14.12)

Wir drücken nun den Abstand ds durch die neuen Koordinaten xi aus:

ds2 = g

– –

ik dxi dxk = gik α ip α km dxpdx m = gpm dxpdx m

(14.13)

Damit ist explizit gezeigt, dass das Wegelement  kovariant (forminvariant) unter der

allgemeinen Koordinatentransformation (14.6) ist; nach der Transformation hat das

Wegelement dieselbe Form wie zuvor. Aus (14.13) lesen wir ab, wie sich der metri-

sche Tensor transformiert:

g

= –αi –αk g

pm

p

m

ik

(14.14)

Mit (14.12) erhalten wir

p

gik = α αm g

i

k

pm

(14.15)

Bei einer Koordinatentransformation erhalten die Punkte des Raums neue Namen

(Koordinatenwerte). Dies ändert auch den metrischen Tensor. Die Abstände (fest-

gelegt durch ds2) zwischen den Punkten bleiben aber ungeändert. Die Metrik des

Raums ändert sich also nicht durch eine Koordinatentransformation. Eine Ebene

bleibt daher eine Ebene, eine Kugeloberfläche bleibt eine Kugeloberfläche. 

Wir vergleichen die bisher diskutierten Beziehungen mit denen des Minkowski-

raums und, soweit anwendbar, mit denen des euklidischen Raums:

1. Der betrachtete metrische Raum wird durch das Wegelement definiert, also

durch

ds2 = δik dxi dxk

= dx2 + dy2 + dz2

(Euklid)

ds2 = ηαβ dxαdxβ

= c2 dt2 − dx2 − dy2 − dz2

(Minkowski)





ds2 = gik(x) dxi dxk z.B. 

= a2 dθ2 + sin2θ dφ2

(Riemann)

(14.16)

2. Es werden diejenigen Transformationen betrachtet, die das Wegelement inva-

riant lassen. Dies sind orthogonale Transformationen im euklidischen Raum, 

Lorentztransformationen im Minkowskiraum und allgemeine Koordinaten-

transformationen im Riemannschen Raum. 

3. Die Transformation der Koordinatendifferenziale lautet

dx α = Λα dxβ (LT)

und

dx i = αi (x) dxk (allgemein). 

β

k

–

Die Matrizen Λ und Λ sind mit α und –

α zu vergleichen. (Wir schreiben

die analogen Beziehungen für die orthogonalen Transformationen jetzt nicht

mehr mit an). 

Die Λ’s sind koordinatenunabhängig; daher ist hier auch die Transformation

zwischen den Koordinaten linear. Dagegen sind die α’s koordinatenabhängig; 

die Transformation hängt von der betrachteten Stelle ab. 
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4. Tensoren werden als indizierte Größen eingeführt, die sich komponenten-

weise wie die Koordinatendifferenziale transformieren. Die Tensoren haben

unten- oder obenstehende (ko- oder kontravariante) Indizes. Die Indizes kön-

nen mit dem metrischen Tensor nach oben oder unten gezogen werden. 

Die Transformationsmatrizen selbst sind keine Tensoren; ihre Indizes können

daher übereinander geschrieben werden. 

5. Die Punkte 1 – 4 weisen auf die formalen Ähnlichkeiten hin. Die Koordina-

tenabhängigkeit der Transformationsmatrix führt aber zu wesentlichen Unter-

schieden bei der Differenziation von Tensorfeldern. 

Die bisherige Diskussion des Riemannschen Raums bezog sich auf die Punkte 1 –

3. In diesem Kapitel definieren wir noch die Tensoren (Punkt 4). In den folgenden

Kapiteln untersuchen wir dann die Differenziation von Tensorfeldern des Riemann-

schen Raums. 

Wir nennen jede Größe Ai , die sich bei Koordinatentransformationen wie dxi

in (14.8) transformiert, 

A i = αi Ak

(14.17)

k

einen  kontravarianten Vektor. Die ausführlichere Bezeichnung wäre „kontravarian-

te Komponenten eines Vektors“; wie früher bezeichnen wir abkürzend die indizierte

Größe selbst als Vektor. Für Vektorfelder Ai(x) soll (14.17) in jedem Punkt gelten:

A i (x) = αi (x) Ak(x)

(14.18)

k

Dabei hängen die Koordinaten x und x des Punktes gemäß (14.7) zusammen. Eine

Größe S(x), die invariant unter Koordinatentransformationen ist, 

S = S

oder

S(x) = S(x)

(14.19)

wird dann als  Skalar  oder  Skalarfeld  bezeichnet. 

Die Umkehrtransformation zu (14.17) erhalten wir mit Hilfe von (14.12):

Ai = –

αi A k

(14.20)

k

Für jeden kontravarianten Vektor Ai definieren wir einen zugehörigen  kovarianten

Vektor durch

Ai = gik Ak

(14.21)

Wie schon im Minkowskiraum hat  kovariant  zum einen die Bedeutung  forminvari-

 ant, zum anderen bezeichnet es die unten stehenden Indizes. Mit (14.5) erhalten wir

die Umkehrung von (14.21):

Ai = gikAk

(14.22)

Wir bestimmen das Transformationsverhalten eines kovarianten Vektors:

p

p

p

A = g Ak = –

α

–

αm g

An = –

α g

A

i

ik

i

k

pm αk

n

i

pm Am = –

αi p

(14.23)
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Entsprechend gilt

Ai = αk A

i

k

(14.24)

Wir fassen zusammen: Kontravariante Vektoren transformieren sich mit αi , kovari-

k

ante mit –

αi . Die Rücktransformation erfolgt mit der jeweils anderen Matrix. 

k

Wir definieren nun allgemein den Begriff des Tensors im Riemannschen Raum:

Ein  Tensor der Stufe r  ist eine r-fach indizierte Größe (mit N r Komponenten), die

sich bezüglich jedes einzelnen Index wie ein Vektor transformiert. Eine nichtindi-

zierte Größe, die sich wie (14.19) transformiert, ist ein Tensor nullter Stufe (oder

eben ein Skalar). Eine einfach indizierte Größe, die sich wie (14.17) transformiert, 

ist ein Tensor erster Stufe (oder ein Vektor). Ein Tensor zweiter Stufe ist dann eine

zweifach indizierte Größe wie T ik, die sich wie

T  ik = αi αk T pm

p

m

(14.25)

transformiert. Für die durch

Tik = gip gkm T pm

(14.26)

definierten kovarianten Komponenten gilt dann

p

T  = –

α

–

αm T

ik

i

k

pm

(14.27)

Man kann auch noch gemischte Komponenten einführen, 

T k

i

= gkp Tip = gip T pk

(14.28)

T i k = gip Tpk = gkp T ip

(14.29)

Die Indizes der gemischten Komponenten dürfen nicht übereinander gesetzt wer-

den, denn im Allgemeinen gilt T i

i

k = Tk . Nur für einen symmetrischen Tensor

sind beide Größen gleich; in diesem Fall kann man auch T i schreiben. 

k

Aus (14.14) sehen wir, dass gik die Definition eines Tensors erfüllt; dies recht-

fertigt seine Bezeichnung als  metrischer Tensor. Die gemischten Komponenten des

metrischen Tensors ergeben sich mit (14.5) zu

gik = gip gpk = δi

(14.30)

k

Wegen der Symmetrie gik = gki können wir hier die Komponenten auch überein-

ander schreiben (gi

i

k = gk = gi ). 

k

Die Kontraktion zweier Indizes (Summation über einen oberen und einen un-

teren Index) wird für einen Tensor Verjüngung genannt. So ergibt die Verjüngung

eines Tensors zweiter Stufe einen Skalar:

p

T  = T  i = –

α αi T m = T m = T

i

(14.31)

i

m

p

m

Üblicherweise wird für den entstehenden Skalar kein neuer Buchstabe eingeführt; 

durch die Indizes ist der Tensor T k

i

ja eindeutig vom Skalar T zu unterscheiden. 
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Für T ik = Ai Bk ergibt die Verjüngung das  Skalarprodukt  zweier Vektoren, 

A B i = g Ak Bi = g

i

ik

mp Am B p = Am B m

(14.32)

Die hier gegebenen Beziehungen lassen sich leicht auf Tensoren höherer Stufe ver-

allgemeinern. Die in Kapitel 5 gegebenen Regeln für Produkte und Summen von

Tensoren (am gleichen Ort) gelten entsprechend. Die Differenziation muss aber

noch gesondert betrachtet werden. Nach diesen Regeln können wir nun Tensor-

gleichungen wie etwa

T ikp = V iAkp

(14.33)

beurteilen: Sind T , V und A Tensoren, so ist eine solche Gleichung kovariant unter

allgemeinen Koordinatentransformationen, so wie die in der SRT behandelten Ten-

sorgleichungen invariant unter Lorentztransformationen sind. Offenbar ist es sinn-

voll, solche Gleichungen zu untersuchen: Eine solche Gleichung hat dieselbe Form

im Lokalen IS und im Koordinatensystem KS mit Gravitationsfeld. Wir brauchen

daher nur eine kovariante Gleichung aufzustellen, die im Lokalen IS die bekann-

te SRT-Form (Gesetz ohne Gravitation) annimmt. Eine solche Gleichung gilt dann

auch in KS, sie beschreibt also das physikalische Gesetz mit Gravitation. 





















































15 Kovariante Ableitung

Im Riemannschen Raum ist die partielle Ableitung eines Tensorfelds im Allgemei-

nen kein Tensorfeld (im Gegensatz zum euklidischen oder Minkowskiraum). Wir

definieren eine verallgemeinerte Differenziation, die sogenannte kovariante Ablei-

tung. Die kovariante Ableitung eines Tensorfelds ergibt dann wieder ein Tensorfeld. 

Für die gesuchte kovariante Ableitung soll gelten:

1. Die kovariante Ableitung eines Riemanntensorfelds ergibt wieder ein Rie-

manntensorfeld einer um eins höheren Stufe. 

2. Für gμν = δμν (oder gμν = ημν) reduziert sich die kovariante Ableitung auf

die einfache partielle Ableitung. 

Wir bestimmen zunächst das Transformationsverhalten der aus (11.18) bekannten

Christoffelsymbole, 





gin

∂gpn

∂gkn

∂gpk

∂xi

∂2ξ q

Γ i =

+

−

=

(15.1)

kp

2

∂xk

∂xp

∂xn

∂ξ q ∂xk ∂xp

Wir können lokal kartesische Koordinaten ξ q einführen (14.3) und damit (11.10)

verwenden. Wir schreiben nun Γ i für die Koordinaten xk an und setzen eine

kp

Transformation zu anderen Koordinaten xm ein:





∂x i

∂2ξ q

∂x i ∂xm

∂

∂ξ q ∂xs

Γ  i

=

=

kp

∂ξ q ∂x k ∂xp

∂xm ∂ξ q ∂x k

∂xs ∂xp





∂x i ∂xm

∂2ξ q

∂xr ∂xs

∂2xs

∂ξ q

=

+

∂xm ∂ξ q

∂xr ∂xs ∂x k ∂xp

∂x k ∂xp ∂xs

∂x i ∂xr ∂xs

∂x i

∂2xm

=

Γ m +

(15.2)

∂xm ∂x k ∂xp

rs

∂xm ∂x k ∂xp

Mit (14.10) erhalten wir

∂ –

αm

Γ  i = αi –

αr –

αs Γ m + αi

k

(15.3)

kp

m

k

p

rs

m ∂xp

Ohne den letzten Term wäre dies das Transformationsverhalten eines Tensors dritter

Stufe. Die Koordinatenabhängigkeit der Transformationsmatrix α führt zum letzten

Term und impliziert, dass die Christoffelsymbole keine Tensoren sind. 
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Wir untersuchen nun das Transformationsverhalten von ∂Ai/∂xk und von

Γ i Ap. Es ist

kp

∂A i

∂





∂Am ∂xr

∂αi

=

αi Am

= αi

+

m Am

∂x k

∂x k

m

m ∂xr ∂xk

∂x k

∂Am

∂αi

= αi –αr

+

m Am

m

k

(15.4)

∂xr

∂x k

∂ –

αm

Γ  i Ap

= αi αp –αr –αs Γ m An + αi

k αp An

kp

m

n

k

p

rs

m ∂xp n

∂ –

αm

=

p

αi –

m α r Γ m

An

k

rn An + αim αp

n

(15.5)

∂x k

Im letzten Schritt wurde

∂ –

αm

∂2xm

∂ –

αm

k

=

=

p

(15.6)

∂xp

∂xp ∂x k

∂x k

benutzt, was aus der Definition von –

α und der Vertauschbarkeit der partiellen Ab-

leitungen folgt. Die Differenziation von (14.12) ergibt

∂ ( –

αmαi )

∂ –

αm

p

m

∂αi

=

p

0 , 

also

αi = − –

αm

m

(15.7)

∂x k

∂x k

m

p ∂xk

p

Wir multiplizieren dies mit αn und verwenden das Ergebnis im zweiten Ausdruck

auf der rechten Seite von (15.5):

∂αi

Γ  i Ap = αi –

αr Γ m An −

m Am

(15.8)

kp

m

k

rn

∂x k

Wir addieren (15.4) und (15.8):





∂A i

∂Am

+ Γ i Ap = αi –αr

+ Γ m An

(15.9)

∂x k

kp

m

k

∂xr

rn

Diese Summe transformiert sich wie ein Tensor zweiter Stufe; sie wird  kovarian-

 te Ableitung  genannt. Wir kürzen die partielle Ableitung durch einen senkrechten

Strich vor dem Index ab, 

∂Ai

Ai|k ≡

(15.10)

∂xk

Für die kovariante Ableitung verwenden wir einen senkrechten Doppelstrich:

Ai ||k ≡ Ai|k + Γ i Ap

Kovariante Ableitung

(15.11)

kp

Gleichung (15.9) ist äquivalent zu

A i

–

||k = αi αm Ap

p

k

||m

(15.12)
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Die kovariante Ableitung transformiert sich also wie ein gemischter Tensor zweiter

Stufe. Analog zeigt man, dass sich

p

Ai||k ≡ Ai|k − Γ A

ik

p

(15.13)

wie ein kovarianter Tensor transformiert. 

Wir definieren noch die kovariante Ableitung für Tensorfelder anderer Stufen. 

Für ein Skalarfeld ergibt die Ableitung von (14.19)

∂S

∂S ∂xk

∂S

=

= –αk

(15.14)

∂x i

∂xk ∂x i

i ∂xk

Diese Größe transformiert sich bereits wie ein kovarianter Vektor. Wir definieren

daher als kovariante Ableitung

∂S

S||i ≡ S|i =

(15.15)

∂xi

Um die kovariante Ableitung eines Tensors zweiter Stufe zu bestimmen, gehen wir

von der Form

T ik = Ai Bk

(15.16)

aus. Dies ist keine Einschränkung der Allgemeinheit; denn ein Tensor zweiter Stu-

fe ist ja gerade dadurch definiert, dass er sich komponentenweise wie ein Vektor

transformiert. Die kovariante Ableitung soll die Kettenregel erfüllen:





T ik||p = Ai Bk || ≡ Ai

p

||p Bk + Ai Bk||p

(15.17)

Da rechts ein Tensor steht, ist die hierdurch definierte Größe T ik||p auch ein Tensor. 

Wir werten dies mit (15.11) aus:

T ik||p = Ai|p Bk + Ai Bk|p + Γ i Am Bk + Γ k Bm Ai

pm

pm

(15.18)

Damit erhalten wir

T ik||p = T ik|p + Γ i T mk + Γ k T im

pm

pm

(15.19)

Unter Beachtung der Vorzeichen in (15.11) und (15.13) folgt entsprechend

Tik||p = Tik|p − Γ m T

T

ip

mk − Γ m

kp

im

(15.20)

T i k||p = T ik|p + Γ i T m

T i

pm

k − Γ m

kp

m

(15.21)

Analog hierzu erhält man die kovarianten Ableitungen höherer Tensoren. 
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Für die jetzt definierte kovariante Ableitung gilt:

1. Die kovariante Ableitung ergibt wieder einen Tensor entsprechender Stufe im

Riemannschen Raum. 

2. Im Minkowskiraum oder im Lokalen Inertialsystem reduziert sich die kova-

riante Ableitung wegen gik = ηik (also Γ i = 0) auf die partielle Ableitung. 

kp

3. Es gelten die üblichen Rechenregeln für die Ableitung, insbesondere die Ket-

tenregel. 

Wir bilden noch die kovariante Ableitung des metrischen Tensors

(15.20) ∂gik

gik||p

=

− Γ m gmk − Γ m gim = 0

(15.22)

∂xp

ip

kp

Wenn man (11.16) für die Terme Γ ·

·· g·· einsetzt, heben sich alle Terme auf. 

Die kovariante Verallgemeinerung des Differenzials dAi = Ai|p dxp ist

DAi ≡ Ai||p dxp

(kovariantes Differenzial)

(15.23)

Nach Konstruktion ist dies wieder ein Vektor, was für dAi = Ai|p dxp im Allge-

meinen nicht gilt. Dieser Sachverhalt wird im nächsten Kapitel eingehender disku-

tiert. 









16 Parallelverschiebung

Wir interpretieren den Zusatzterm in der kovarianten Ableitung geometrisch und

diskutieren seinen Zusammenhang mit der Raumkrümmung anhand von Beispie-

len. Die mathematische Behandlung der Krümmung des Raums erfolgt unabhängig

hiervon in Kapitel 18; das jetzige Kapitel kann daher auch übersprungen werden. 

Das totale Differenzial

dAi = Ai|p dxp = Ai(x + dx) − Ai(x)

(16.1)

eines Vektorfelds Ai (x) ist im Allgemeinen kein Vektor, weil Ai (x +dx) und Ai(x)

sich  verschieden transformieren, nämlich mit α(x + dx) und α(x). Damit die Dif-

ferenz zweier Vektoren wieder einen Vektor ergibt, müssen wir zwei Vektoren am

selben Punkt x betrachten. Hierzu müssen wir zunächst den Vektor Ai(x + dx)

von x + dx nach x  verschieben. Dieses Verschieben muss so geschehen, dass sich

für kartesische Koordinaten kein Beitrag ergibt; denn für kartesische Koordinaten

ist (16.1) bereits ein Vektor. Für ungeänderte kartesische Komponenten ist der ver-

schobene Vektor  parallel  zum nicht verschobenen. Die betrachtete Verschiebung

bedeutet daher geometrisch eine  Parallelverschiebung. Wir bezeichnen:

δAi = Änderung der Ai bei Parallelverschiebung um dx

(16.2)

Damit können wir die infinitesimale Differenz zweier Vektoren  am selben Punkt

bilden:





DAi

= Ai(x + dx), verschoben nach x − Ai(x)

= Ai(x + dx) − δAi − Ai(x) = dAi − δAi

(16.3)

Die Größe δAi muss proportional zu Ak und zur Verschiebung dxp sein. Dies be-

gründet folgenden Ansatz mit zunächst unbekannten Koeffizienten Γ i :

kp

δAi = −Γ i Ak dxp

Parallelverschiebung

(16.4)

kp

Die Koeffizienten Γ i sind so zu bestimmen, dass DAi ein Vektor ist. Nun wissen

kp

wir aus (15.11), dass Ai ||p dxp = dAi + Γ i Ak dxp ein Vektor ist; hierin sind die

kp

Γ i die Christoffelsymbole. Dieser Ausdruck ist von der Form (16.3) mit (16.4). 

kp

Also sind die Koeffizienten Γ i in (16.4) die bereits bekannten Christoffelsymbole. 

kp
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Wir geben noch die entsprechenden kovarianten Formen an:

DAi = Ai||k dxk = dAi − δAi

(16.5)

p

δAi = Γ A

ik

p dxk

(16.6)

Beispiel: Polarkoordinaten

Wir erläutern die Interpretation von δA als Parallelverschiebung an einfachen Bei-

spielen. Wir betrachten zunächst einen zweidimensionalen euklidischen Raum und

verwenden Polarkoordinaten:

x1 = ρ, 

x2 = φ

(16.7)

Das Wegelement ist durch

ds2 = gik dxi dxk = dρ 2 + ρ 2 dφ2

(16.8)

gegeben. Daraus ergeben sich die metrischen Koeffizienten zu









1

0

 

1

0

(gik) =

, 

gik =

(16.9)

0 ρ 2

0 1/ρ 2

Die meisten partiellen Ableitungen der gik verschwinden, 

∂gik

∂g

=

22

0

außer

= 2ρ

(16.10)

∂xp

∂x1

Hieraus bestimmen wir die Christoffelsymbole (15.1). Nur die folgenden Γ i sind

kp

ungleich null:

∂g22

∂g22

Γ 1 = − g11

= −ρ , 

Γ 2 = Γ 2 = g22

= 1

(16.11)

22

2

∂x1

21

12

2

∂x1

ρ

Wir entwickeln den Wegelementvektor nach Basisvektoren ei:

ds = dxi e

ei

i = dxi

(16.12)

Aus

ds2 = ds · ds = (ei · ek) dxi dxk = gik dxi dxk

(16.13)

können wir ablesen, wie das Skalarprodukt der Basisvektoren mit den metrischen

Koeffizienten verknüpft ist:

ei · ek = gik , 

ei · ek = gik

(16.14)

Für orthogonale Koordinaten (wie Kugel- oder Zylinderkoordinaten) werden meist

normierte Basisvektoren eingeführt. Für Polarkoordinaten hängen die normierten

Basisvektoren eρ und eφ gemäß

e

e

2

ρ = e1 = e1, 

eφ =

= ρ e2

(16.15)

ρ

mit den hier verwendeten Basisvektoren zusammen. 
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Abbildung 16.1 Linke Seite: In einem zweidimensionalen ebenen Raum werden Polarko-

ordinaten ρ und φ verwendet. Der Vektor A = ex wird von P nach Q parallel verschoben. 

Obwohl der Vektor konstant ist, ändern sich seine Komponenten, und zwar von A := (1, 0) zu A := (0, −1). Längs eines geschlossenen Wegs (wie etwa dem gezeigten Kreis) führt

eine solche Parallelverschiebung zum ursprünglichen Vektor zurück. Rechte Seite: Als Bei-

spiel für einen gekrümmten zweidimensionalen Raum wird eine Kugeloberfläche betrach-

tet. Der Vektor eφ wird auf Großkreisen (Geodäten) längs des Wegs P → R → Q → P

verschoben und ergibt eθ (Aufgabe 16.2). Bei dieser Parallelverschiebung ist der Winkel zwischen dem Vektor und der Geodäte konstant. Die Änderung eines Vektors bei Parallelverschiebung längs des geschlossenen Wegs ist ein Charakteristikum eines gekrümmten

Raums. 

Wir wollen nun die Parallelverschiebung des konstanten Vektors

A = e

sin φ

x = e1 cos φ − e2

= Ai ei

(16.16)

ρ

untersuchen. Dieser Vektor hat die Komponenten

 

 

sin x2

A1 = cos φ = cos x2 , 

A2 = − sin φ = −

(16.17)

ρ

x1

Die Koordinatenabhängigkeit der Komponenten Ai beruht auf der Wahl von

krummlinigen Koordinaten. Der Vektor A = ex selbst ist dagegen ortsunabhän-

gig. Dieses Beispiel macht klar, dass dAi = Ai|p dxp kein Maß für die Änderung

von A zwischen x und x + dx ist. Speziell für die Verschiebung









dxi = dx1, dx2 = (0, dφ)

(16.18)

erhalten wir













∂Ai

dAi =

dxp

= − sin φ, −cos φ dφ

(16.19)

∂xp

ρ

und













δAi

=

− Γ i Ak dxp = − Γ 1 A2 dφ, −Γ 2 A1 dφ

kp

22

12





=

− sin φ, −cos φ dφ

(16.20)

ρ
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Das kovariante Differenzial verschwindet, 

DAi = dAi − δAi = 0

(16.21)

Dies spiegelt die Konstanz des Vektors A = ex wider. 

Wie in Abbildung 16.1 links skizziert, betrachten wir die Parallelverschiebung

des Vektors A entlang des Viertelkreises

 

dρ = 0

 

xi = (ρ, φ) = (1, 0)

−→

xi = (ρ, φ) = (1, π/2)

(16.22)

Die Änderung des Vektors Ai längs dieses Wegs folgt aus (16.19), 

    π/2

dAi =

dφ (− sin φ, − cos φ) = (−1, −1)

(16.23)

0

Dies bedeutet, dass die Komponenten des konstanten Vektors A = ex sich längs

des Wegs (16.22) ändern:

 

 

Ai = (1, 0)

−→

Ai = (0, −1)

(16.24)

Die Änderung aufgrund der Parallelverschiebung folgt aus (16.20), 

    π/2

δAi =

dφ (− sin φ, − cos φ) = (−1, −1)

(16.25)

0

Für den konstanten Vektor A spiegelt also die Koordinatenabhängigkeit Ai(x) nur

die Änderung der Komponenten bei Parallelverschiebung wider; es ist dAi = δAi

oder DAi = 0. 

Beispiel: Kugeloberfläche

Für eine geodätische Linie xi(s) führen wir den Tangentenvektor

dxi

ui =

(16.26)

ds

ein. Damit können wir (13.11) in der Form

dui

dxp

= −Γ i uk

(16.27)

ds

kp

ds

schreiben. Dies bedeutet

dui = −Γ i uk dxp = δui

(16.28)

kp

und

Dui = 0

(Tangentenvektor ui einer geodätischen Linie)

(16.29)

Kapitel 16 Parallelverschiebung
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Die Änderung der Komponenten ui ergibt sich aus der Änderung durch Parallel-

verschiebung, dui = δui. Also ist der Tangentenvektor zugleich ein längs der geo-

dätischen Linie parallelverschobener Vektor. Für die Parallelverschiebung eines an-

deren Vektors Ai längs einer geodätischen Linie bedeutet dies, dass der Winkel

zwischen ui und Ai konstant bleibt. In einem zweidimensionalen Raum legt dies

die Parallelverschiebung fest. 

Als einfachstes Beispiel betrachten wir die in Abbildung 16.1 links skizzierte

Verschiebung im ebenen zweidimensionalen Raum. Die Geodäte ist hier eine Ge-

rade, die durch P und Q geht. Bei der Parallelverschiebung ist der Winkel zwischen

ex und dieser Geraden konstant. 

Als nichttriviales Beispiel betrachten wir den gekrümmten zweidimensionalen

Raum der Kugeloberfläche, Abbildung 16.1 rechts. Wir wollen den Vektor eφ längs

des Wegs

(θ , φ) = (π/2, 0) → (, 0) → (, π/2) → (π/2, π/2) → (π/2, 0)

(16.30)

parallel verschieben. Alle Wegstücke sollen Teile von Großkreisen sein, also geo-

dätische Linien. Anhand von Abbildung 16.1 sieht man, dass

A = eφ

−→ A = eθ

(Parallelverschiebung)

(16.31)

Dies wird im Detail in Aufgabe 16.2 berechnet. Der Endvektor bildet einen Winkel

π/2 mit dem Ausgangsvektor. Dem entspricht eine Winkelsumme von 3π/2 für das

vom Weg (16.30) eingeschlossene Dreieck. 

Krümmung des Raums

Das Beispiel mit den Polarkoordinaten behandelte einen  euklidischen  oder  nicht-

 gekrümmten  Raum. Mit den hier eingeführten Begriffen kann ein solcher Raum

dadurch definiert werden, dass die Parallelverschiebung längs eines beliebigen ge-

schlossenen Wegs jeden Vektor in sich selbst überführt, also

& 

δAi = 0

(euklidischer Raum)

(16.32)

Der Gegensatz dazu ist ein  gekrümmter Raum, 

& 

i.a. 

δAi = 0

(gekrümmter Raum)

(16.33)

Zur Veranschaulichung diente das Beispiel „Kugeloberfläche“. 

Die spätere Definition der Krümmung (Krümmungstensor) erfolgt ohne Bezug

auf die hier gegebene geometrische Deutung. Die Anschaulichkeit ist in dem zu be-

handelnden vierdimensionalen Raum ohnehin nicht mehr gegeben. Man kann den

Krümmungstensor auch über die hier diskutierte Parallelverschiebung definieren:

Dazu betrachtet man die Änderung δAi eines Vektors längs einer geschlossenen
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Kurve, die eine infinitesimale Fläche df pm umgrenzt. Diese Änderung muss pro-

portional zu dieser Fläche und natürlich zum Vektor selbst sein:

& 

& 

δAi =

Γ k A

Rk

ip

k dxp = − 1

ipm Ak df pm

(16.34)

2

Wenn eine endliche Fläche betrachtet wird (anstelle der infinitesimalen Fläche

df pm), dann ist auf der rechten Seite das Integralzeichen hinzuzufügen. 

Die linke Seite in (16.34) kann eine Differenz von zwei Vektoren am selben Ort

aufgefasst werden, da über eine geschlossene Kurve summiert wird. Damit ist diese

Größe ein Vektor. Der Proportionalitätskoeffizient Rkipm muss dann ein Tensor vier-

ter Stufe sein. Es ist der sogenannte  Krümmungstensor. Für den nichtgekrümmten

Raum folgt aus (16.32) und der Beliebigkeit von A und df in (16.34) Rkipm = 0. 

Man kann zeigen, dass (16.34) mit der Definition der Rkipm in Kapitel 18 überein-

stimmt (siehe etwa Landau-Lifschitz, Band II (1989), § 91). 

Aufgaben

 16.1 Basisvektoren auf Kugeloberfläche

Auf einer Kugeloberfläche werden die Koordinaten (x1, x2) = (θ, φ) verwendet. 

Drücken Sie die Basisvektoren ei und ei durch eθ und eφ aus. Wie hängen ihre Skalarprodukte mit dem metrischen Tensor zusammen? 

 16.2 Parallelverschiebung auf Kugeloberfläche

Berechnen Sie die Parallelverschiebung des Vektors A = eφ längs des Wegs

1

2

3

4

(θ , φ) = (π/2, 0) → (, 0) → (, π/2) → (π/2, π/2) → (π/2, 0)

auf einer Einheitskugel. Dies ist der Weg P → R → Q → P in Abbildung 16.1. 















































17 Verallgemeinerte Vektoroperationen

Wir untersuchen die Eigenschaften der Determinante des metrischen Tensors und

die Verallgemeinerung der Operationen Gradient, Rotation und Divergenz im Rie-

mannschen Raum. 

Determinante des metrischen Tensors

Wie in (14.4) setzen wir voraus, dass die Determinante des metrischen Tensors nicht

verschwindet:

g = det (gik) = i1i2...iN g1i g

· · · g

= 0

(17.1)

1

2i2

N iN

Die Elemente der total antisymmetrischen Größe i1...iN sind wie in (5.19) durch die

Zahlen 0 und ±1 festgelegt. In die Ableitung der Determinante

N

∂g



∂g

=

k i

i1i2...iN g

k

1i g2i · · ·

· · · gNi

(17.2)

∂xl

1

2

∂xl

N

k =1

setzen wir

∂gki

∂g

∂g

k =

km

km

δm =

gmr gr i

(17.3)

∂xl

∂xl

ik

∂xl

k

ein. An die Stelle des in (17.2) herausgefallenen Faktors gki tritt g

. Für r = k

k

r ik

enthält (17.2) dann das Produkt gr i g

, das symmetrisch in i

r

r ik

r und ik ist. Die-

ser Beitrag verschwindet wegen der Antisymmetrie von  bezüglich dieser beiden

Indizes. Daher überlebt nur der Term mit r = k:

∂g

∂g

=

km gmk g

(17.4)

∂xl

∂xl

Das Christoffelsymbol mit einer Kontraktion lässt sich hierdurch ausdrücken:





gkm

∂gmk

∂gml

∂gkl

gkm ∂gmk

Γ k

=

+

−

=

kl

2

∂xl

∂xk

∂xm

2

∂xl

√

√

(17.4)

∂ g

∂ |g|

∂

|g|

∂

|g|

=

1

= 1

= 1

√

= ln

(17.5)

2 g ∂xl

2 |g| ∂xl

|g| ∂xl

∂xl

Die Terme ∂gml/∂xk und −∂gkl/∂xm in der ersten Zeile heben sich auf (Vertau-

schung der Summationsindizes). Der resultierende Ausdruck gilt unabhängig vom

Vorzeichen von g, also insbesondere auch für g < 0 (etwa im Minkowskiraum). 
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Wir bestimmen die Transformationseigenschaft von g = det (gik). Die Bezie-

hung

g = –

αl –

αm g

ik

i

k

lm

(17.6)

lautet in Matrixschreibweise

⎛

⎞

g

⎜ 11 . . . g1N

. 

. 

⎟

G  = –

αT G –

α

mit

G = ⎝ . 

. 

. 

. . 

.. ⎠

(17.7)

gN1 . . . gNN

Hiervon bilden wir die Determinante, 







2

2

∂xi

g = det –

α

g = det

g

(17.8)

∂x k

Wir setzen hierbei det α > 0 voraus; dies bedeutet zum Beispiel den Ausschluss

von Spiegelungen bei orthogonalen Transformationen. Für det α > 0 wird (17.8)

zu





|g| = det –α |g|

(17.9)

Die  Jacobideterminante  det –

α tritt bei der Transformation des Volumenelements

auf:





∂xi





d Nx = dx1 . . . dxN = det

dx 1 · · · dxN = det –

α d Nx

(17.10)

∂x k

Mit (17.9) wird dies zu





|g| d Nx = |g| d Nx

(17.11)

√

Damit ist die Größe

|g| d Nx ein Skalar. Sie ist das unter Koordinatentransforma-

tionen kovariante Volumenelement. Als Beispiel betrachten wir den Übergang von

kartesischen Koordinaten x, y und z (mit g = 1) zu Kugelkoordinaten r, θ und φ

mit dem metrischen Tensor g = diag(1, r2, r2 sin2 θ) und g = r4 sin2 θ. Hierfür

ik

wird (17.11) zu

r2 sin θ dr dθ dφ = dx dy dz

(17.12)

Die total antisymmetrische Größe i1...iN wird durch Zahlenzuweisung definiert. 

Die Zahlenzuweisung gilt unabhängig von den verwendeten Koordinaten, also

 i1... iN = i1... iN . Hieraus folgt die obere Zeile in







'√

(



i1... iN

i1... iN

|g|

i1... iN

√

=

= √

det α

(17.13)

|

√

g|

αi1 · · · αiN j1... jN / |g|

|g|

j1

jN

Die untere Zeile ergibt sich, wenn wir die linke Seite wie einen Tensor behandeln. 

Da dies zum selben Ergebnis führt, gilt

1

√

i1... iN ist ein Tensor

(17.14)

|g|
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Die kovarianten Komponenten der antisymmetrischen Größe i1... iN definieren wir

durch

i

= g

· · · g

j1...jN = g i1...iN

(17.15)

1...iN

i1j1

iN jN

Im Minkowskiraum (mit (xi ) = (ct, x, y, z), gik = diag(1, −1, −1, −1) und g =

−1) bedeutet dies 0123 = −0123. Im dreidimensionalen euklidischen Raum (mit

kartesischen Koordinaten, gik = diag(1, 1, 1) und g = 1) erhalten wir 123 = 123. 

Im dreidimensionalen Unterraum des Minkowskiraums (mit (xi ) = (x, y, z), gik =

diag(−1, −1, −1) und g = −1) gilt dagegen 123 = −123. 

Gradient

Die Vektoroperationen Gradient, Rotation und Divergenz bestehen alle aus ersten

partiellen Ableitungen von Feldern. Wir untersuchen die Modifikationen, die sich

ergeben, wenn diese partiellen Ableitungen durch kovariante Ableitungen ersetzt

werden. 

Die kovariante Ableitung eines Skalars ist identisch mit der partiellen Ableitung. 

Daher können wir den Gradienten durch die Komponenten

∂S

S||k = S|k =

(17.16)

∂xk

definieren. Hierbei ist zu beachten, dass im Allgemeinen S|2 = S|2. Für Polar-

koordinaten (x1, x2) = (ρ, φ) gilt zum Beispiel S|2 = ∂S/∂x2 = ∂S/∂φ und

S|2 = ∂S/∂x2 = ρ −2 ∂S/∂φ. Dies steht im Gegensatz zum üblichen Vorgehen

bei den orthogonalen Koordinaten im euklidischen Raum (etwa Kugel-, Polar- oder

elliptische Koordinaten). Hier führt man meist  normierte  Basisvektoren ein; dann

ist für Polarkoordinaten (grad S)φ = ρ −1 ∂S/∂φ anstelle von S|2 oder S|2. Ent-

sprechende Unterschiede zwischen der Formulierung mit ko- und kontravarianten

Basisvektoren einerseits und normierten Basisvektoren andererseits ergeben sich

auch für die Rotation und die Divergenz. 

Rotation

Aus den kovarianten Ableitungen eines Vektors lässt sich ein antisymmetrischer

Tensor bilden:

p

p

Ai||k − Ak||i = Ai|k − Γ A

A

ik

p − Ak|i + Γki

p = Ai|k − Ak|i

(17.17)

Hierbei heben sich die Terme mit den Christoffelsymbolen gerade auf. 

Speziell im dreidimensionalen Raum ist die Zusammenfassung der nichtver-

schwindenden unabhängigen Komponenten des antisymmetrischen Tensors (17.17)

zu einem 3-Vektor möglich, der dann mit rot A bezeichnet wird. Für kartesische

Koordinaten gilt (rot A)i = iklAl|k. Aus (17.14) ergibt sich dann der zugehörige

Riemannvektor:

1 



(rot A)i = ikl

√

A

= 1

√

ikl A

|

l||k − Ak||l

l|k

(N = 3)

(17.18)

g| 2

|g|
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Divergenz

Mit (17.5) können wir die kovariante Divergenz Ai||i kompakt schreiben:

√





∂

|g|

∂



Ai||i = Ai|i + Γ i Ap = ∂Ai +

1

√

Ap =

1

√

|g| Ai

ip

∂xi

|g| ∂xp

|g| ∂xi

(17.19)

Hieraus und aus



√





∂

|g| Ai



dx1 · · · dxN

=

dfi

|g| Ai

(17.20)

V

∂xi

F (V )

ergibt sich der  Gaußsche Satz  mit dem invarianten Volumenelement (17.11), 









d Nx

|g| Ai||i =

dfi

|g| Ai

(17.21)

V

F (V )

Aufgaben

 17.1 Kovariante Maxwellgleichungen

Werten Sie die kovariante Form der inhomogenen Maxwellgleichung

1

∂Ei

Ei ||i = 4πe

und

√ ikl Bl|k = 4π ji + 1

g

c

c ∂t

für Kugelkoordinaten (x1, x2, x3) = (r, θ, φ) aus. 

18 Krümmungstensor

Das Äquivalenzprinzip führt dazu, dass das Gravitationsfeld durch den metrischen

Tensor beschrieben wird. In Kapitel 13 haben wir plausibel gemacht, dass koordina-

tenabhängige metrische Koeffizienten gik(x) im Allgemeinen eine Krümmung des

Raums bedeuten. In diesem Kapitel wird ein Tensor eingeführt, der die Krümmung

quantitativ beschreibt. Dieser Krümmungstensor wird zur Aufstellung der Feldglei-

chungen der Allgemeinen Relativitätstheorie benötigt. 

Wir rufen uns zunächst einige bereits bekannte Punkte in Erinnerung. Die metri-

schen Koeffizienten gik hängen von

• den Eigenschaften des Riemannschen Raums

• der Wahl der Koordinaten

ab. Ein Beispiel für die Abhängigkeit von der Koordinatenwahl ist der zweidimen-

sionale, euklidische Raum mit dem Wegelement

ds2 = dx2 + dy2 = dρ2 + ρ2 dφ2

(18.1)

Ein Raum ist genau dann euklidisch, wenn es eine Koordinatentransformation gibt, 

die  global  zum metrischen Tensor gik = δik führt. Falls durch eine solche Transfor-

mation gik = ηik erreicht werden kann, handelt es sich um einen Minkowskiraum; 

in beiden Fällen ist der Raum eben. Ein gekrümmter Raum ist dadurch charakteri-

siert, dass es keine solche Transformation zu kartesischen (oder Minkowski-) Ko-

ordinaten gibt. Ein Beispiel für einen gekrümmten Raum ist die zweidimensionale

Kugeloberfläche mit der Metrik

ds2 = a2 dθ2 + a2 sin2θ dφ2

(18.2)

Dabei sind θ und φ die üblichen Winkelkoordinaten und a ist ein konstanter Para-

meter. Ein gekrümmter Raum kann wie in (18.2) endlich sein, oder auch unendlich, 

wie etwa der zweidimensionale Raum eines Hyperboloids. 

Einem gegebenen, koordinatenabhängigen metrischen Tensor gik(x) ist es nicht

ohne weiteres anzusehen, ob eine Transformation zu kartesischen Koordinaten

möglich ist oder nicht. Aus den gik(x) kann man aber den Krümmungstensor be-

rechnen. Genau dann, wenn dieser Tensor verschwindet, ist der Raum eben. 
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Zur Aufstellung des Krümmungstensors gehen wir von der Differenz Ai||k||p −

Ai||p||k aus. In dieser Differenz fallen, wie wir noch im Einzelnen sehen werden, al-

le partiellen Ableitungen des Felds Ai weg; so gilt zum Beispiel Ai|k|p − Ai|p|k = 0

(stetige Differenzierbarkeit von Ai(x) wird vorausgesetzt). Damit bleiben nur Ter-

me übrig, die linear im Vektorfeld Ai sind. Die betrachtete Differenz ist daher von

der Form

Ai||k||p − Ai||p||k = − Rmikp Am

(18.3)

Da die linke Seite ein Tensor und Am ein Vektor ist, ist hierdurch ein Tensor Rmikp

definiert. Wegen

Rmikp = 0

für einen nicht gekrümmten Raum

(18.4)

erhält dieser Tensor den Namen  Krümmungstensor. Wir begründen (18.4): Im ebe-

nen Raum sind kartesische Koordinaten möglich. Hierfür wird die linke Seite von

(18.3) zu Ai|k|p − Ai|p|k = 0. Damit gilt Rmikp = 0. Da Rmikp ein Tensor ist, gilt

dies dann auch für beliebige Koordinaten. In einem gekrümmten Raum verschwin-

det der Tensor Rmikp dagegen nicht. 

Wir werten (18.3) mit Hilfe von

Ai||k = Ai|k − Γ m A

T

T

ik

m , 

Tik||p = Tik|p − Γ m

ip

mk − Γ m

kp

im

(18.5)

aus:

Ai||k||p = Ai||k|p − Γ m A

A

A

A

ip

m||k − Γ m

kp

i||m = Ai|k|p − Γ m

ik|p

m − Γ m

ik

m|p

− Γ m A

A

Γ r A

Γ r A

ip

m|k − Γ m

kp

i|m + Γ m

ip

mk

r + Γ m

kp

im

r

(18.6)

Der 1., (3. + 4.), 5. und 7. Term auf der rechten Seite sind symmetrisch in k und p, 

sie fallen also bei der Differenzbildung in (18.3) fort. Es bleiben nur der 2. und 6. 

Term übrig:





Ai||k||p − Ai||p||k = − Γ m − Γ m − Γ r Γ m + Γ r Γ m A

ik|p

ip|k

ip

rk

ik

rp

m

(18.7)

Damit ist die in (18.3) angenommene Form bestätigt, und zwar mit

∂Γ m

∂Γ m

ip

Rm

ik

ikp =

−

+ Γ r Γ m − Γ r Γ m

(18.8)

∂xp

∂xk

ik

rp

ip

rk

Hieraus folgt sofort (18.4), weil die Christoffelsymbole für kartesische Koordinaten

verschwinden. Mit der linken Seite von (18.7) muss auch die rechte ein Tensor sein. 

Da Am ein Vektor ist, muss Rmikp ein Tensor sein. 

Man kann zeigen (Kapitel 6.2 in [1]), dass Rmikp der  einzige  Tensor ist, der aus

dem metrischen Tensor und seinen ersten und zweiten Ableitungen gebildet werden

kann und der linear in der zweiten Ableitung ist. Man geht dazu an einem Punkt

in ein lokal kartesisches Koordinatensystem (dort ist dann Γ ··· = 0), schreibt das

Transformationsverhalten von ∂Γ ···/∂x· an und bildet diejenige Linearkombination
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dieser Ableitungen, die sich wie ein Tensor transformiert. Dies legt die ersten beiden

Terme in (18.8) fest; die anderen folgen dann aus der Forderung, dass die gesuchte

Größe ein Tensor ist. 

Folgende Kontraktionen von (18.8) sind auch Tensoren: Der sogenannte  Ricci-

 Tensor

Rip = Rmimp = gkmRkimp

(18.9)

und der  Krümmungsskalar

R = Rii = gikRik

(18.10)

Dagegen verschwindet die Kontraktion Ri ikp = gim Rimkp ≡ 0 wegen Rimkp =

−Rmikp. 

Wir drücken die Rmikp = gms Rsikp noch explizit durch die zweiten Ableitungen

des metrischen Tensors aus. Dazu setzen wir die Definition der Christoffelsymbole

in die Ableitungen ∂Γ ···/∂x· in (18.8) ein. Nach einigen Zwischenrechnungen (Auf-

gabe 18.1) erhalten wir:





∂2gmk

∂2gip

∂2gik

∂2gmp

Rmikp = 1

+

−

−

2

∂xi ∂xp

∂xm ∂xk

∂xm ∂xp

∂xi ∂xk





(18.11)

+ grs Γ r Γ s − Γ r Γ s

km

Krümmungstensor

ip

pm

ik

An dieser Form lassen sich folgende Symmetrieeigenschaften ablesen:

Rmikp = Rkpmi

(18.12)

Rmikp = −Rimkp = −Rmipk = Rimpk

(18.13)

Rmikp + Rmpik + Rmkpi = 0

(18.14)

Die Zahl der unabhängigen Komponenten Rmikp ergibt sich aus folgenden Überle-

gungen: Wegen der Antisymmetrie (18.13) kann jeder Doppelindex (mi) oder (kp)

genau M = N(N − 1)/2 unabhängige Werte annehmen. Bezüglich dieser zwei

Doppelindizes ist Rmikp wegen (18.12) eine symmetrische M × M -Matrix mit

M(M + 1)

N (N −

=

1)(N 2 − N + 2)

(18.15)

2

8

Elementen. Damit haben wir (18.12) und (18.13) berücksichtigt. Zur Untersuchung

der Einschränkung aus (18.14) ersetzen wir jeden Term gemäß





Rmikp = 1 Rmikp − Rimkp − Rmipk + Rimpk + Rkpmi − Rkpim − Rpkmi + Rpkim

8

(18.16)

In (18.14) erhalten wir dann 3 · 8 = 4! Terme mit jeweils verschiedener Reihenfolge

der vier Indizes. Da dabei jede Permutation ein Minuszeichen ergibt, ist dies eine

bezüglich der vier Indizes total antisymmetrische Summe. Daher bedeutet (18.14)
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nur dann eine zusätzliche Bedingung für die Ripkm, falls alle vier Indizes verschie-

den sind. Es gibt

⎧

 

⎨

N ! 

N

(N ≥ 4)

=

(N − 4)! 4! 

(18.17)

4

⎩

0

(N < 4)

Möglichkeiten, vier verschiedene Indexwerte aus N möglichen auszuwählen. Für

jede solche Auswahl ergibt (18.14) genau eine einschränkende Bedingung. Daher

ist

 

N (N − 1)(N2 − N + 2)

N

N 2 (N 2 − 1)

cN =

−

=

(18.18)

8

4

12

die Zahl der unabhängigen Komponenten. Für N < 4 verifiziert man den letzten

Ausdruck direkt; für N ≥ 4 setzt man die obere Zeile von (18.17) ein und formt

um. Aus (18.18) folgt insbesondere

c1 = 0 , 

c2 = 1 , 

c3 = 6 , 

c4 = 20

(18.19)

Auf einer Kurve (N = 1) kann die Weglänge als Koordinate x gewählt werden, 

ds2 = dx2. Damit ist g11 = 1 und der Krümmungstensor verschwindet (c1 = 0). 

Die  äußere  Krümmung der Kurve in einem höherdimensionalen Raum spielt dabei

keine Rolle; denn die Abstände auf einer Geraden verändern sich nicht, wenn die

Gerade zu einer Kurve verbogen wird. Wir bezeichnen die hier betrachtete Krüm-

mung, die sich allein aus der Metrik (den gik) ergibt, daher auch als  innere  Krüm-

mung. 

Wir betrachten noch speziell den zweidimensionalen Fall. Die Indizes nehmen

die Werte 1 und 2 an. Wegen (18.13) müssen das vordere und das hintere Indexpaar

verschiedene Werte enthalten. Die einzigen nichtverschwindenden Elemente sind

daher:

R1212 = −R2112 = −R1221 = R2121

(18.20)

Für N = 2 ist der Krümmungstensor also durch eine einzige Größe bestimmt, 

c2 = 1. Er lässt sich in der Form



 R1212

Rmikp = gmk gip − gmp gik

(18.21)

g

schreiben, wobei g = g11 g22 − g21 g12 = det (gik). Man überzeugt sich leicht, dass

(18.21) die Symmetriebedingung (18.20) erfüllt und dass die rechte Seite für m = i

oder k = p verschwindet. Aus (18.21) folgt der Ricci-Tensor

R1212

Rip = gkm Rmikp = gip

(18.22)

g

und der Krümmungsskalar

R = 2 R1212

(18.23)

g
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Als Beispiel betrachten wir die Kugeloberfläche. Wir verwenden die üblichen Win-

kelkoordinaten x1 = θ und x2 = φ. Aus dem Wegelement (18.2) lesen wir den

metrischen Tensor ab:









a2

0

gik =

(18.24)

0

a2 sin2 θ

Die einzige nichtverschwindende Ableitung ist

∂g22 = 2a2 sinθ cosθ

(18.25)

∂x1

Damit sind nur die Christoffelsymbole mit den Indizes (2, 2, 1) ungleich null. Wir

werten (18.11) aus:

∂2g









22

∂2g22

2

R1212 = 1

+ grs Γ r Γ s − Γ r Γ s = 1

− g22 Γ 2

= −a2 sin2 θ

2 ∂x1 ∂x1

11 22

12 12

2 ∂ θ 2

12

(18.26)

Im letzten Schritt wurden ∂2g22/∂ θ 2 = 2a2(cos2 θ − sin2 θ ) und Γ 2 = cot θ ein-

12

gesetzt. Mit g = a4 sin2 θ erhalten wir schließlich

R = 2 R1212 = − 2

(Kugeloberfläche)

(18.27)

g

a2

Die Krümmung einer zweidimensionalen Fläche im Dreidimensionalen kann lokal

durch zwei Hauptkrümmungsradien, ρ1 und ρ2, beschrieben werden. In Aufgabe

18.2 wird gezeigt, wie die  Gaußsche Krümmung  K mit dem Krümmungsskalar R

zusammenhängt:

R

K =

1

= −

(18.28)

ρ1 ρ2

2

Die Krümmungsradien legen die innere und äußere Krümmung der Fläche fest. 

Beispiele sind die Kugeloberfläche mit ρ1 = ρ2 = a und die Ebene mit ρ1 =

ρ2 = ∞. Wird die Ebene zu einem Zylinder verbogen, so bleibt jeweils einer der

beiden Krümmungsradien unendlich; der Krümmungsskalar bleibt also null. Die

Metrik der Fläche wird durch eine solche Verbiegung nicht geändert: Man nehme

etwa ein Blatt Papier und zeichne kartesische Koordinatenlinien darauf. Es ist dann

offensichtlich, dass sich die Metrik innerhalb des zweidimensionalen Raums nicht

ändert, wenn man das Blatt im Dreidimensionalen verbiegt. Die Verbiegung betrifft

nur die äußere Krümmung. 

Die Behauptung der Einleitung, dass für die Kugeloberfläche keine kartesischen

Koordinaten existieren, fassen wir nun etwas allgemeiner:

Ri kpm = 0

←→ kein kartesisches KS

(18.29)

Dies bedeutet: Ein nichtverschwindender Krümmungstensor ist äquivalent zur

Nichtexistenz eines kartesischen KS. Zur Schlussrichtung → zeigt man, dass die

Existenz eines kartesischen KS im Widerspruch zur Voraussetzung Rikpm = 0
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steht: In einem kartesischen KS wäre Ri kpm = 0. Da Rikpm ein Tensor ist, gilt

dies aber dann für beliebige Koordinaten. Zur Schlussrichtung ← zeigt man, dass

für Rikpm = 0 kartesische Koordinaten möglich sind: Ausgehend von den gege-

benen Koordinaten führt man zunächst eine Transformation durch, die an einem

Punkt ein  lokales  kartesisches System ergibt. Dann ist an dieser Stelle Γ ··· = 0. Wegen Ri kpm = 0 gilt außerdem ∂Γ ···/∂x· = 0, so dass das lokale kartesische KS zu

einem globalen fortgesetzt werden kann. 

Aufgaben

 18.1 Umformung des Krümmungstensors

Leiten Sie









∂2gmk

∂2gip

∂2gik

∂2gmp

Rmikp = 1

+

−

−

+grs Γ r Γ s − Γ r Γ s

2

∂xi ∂xp

∂xm ∂xk

∂xm ∂xp

∂xi ∂xk

km

ip

pm

ik

aus

∂Γ m

∂Γ m

ip

Rm

ik

ikp =

−

+ Γ r Γ m − Γ r Γ m

∂xp

∂xk

ik

rp

ip

rk

ab. Zeigen Sie dazu zunächst

∂gms = gksΓ k + gkmΓ k

∂xp

pm

ps

(18.30)

und

∂gsr

∂gms

gms

= −gsr

(18.31)

∂xp

∂xp

 18.2 Gaußsche Krümmung

Berechnen Sie den Zusammenhang zwischen dem Krümmungsskalar R und der

Gaußschen Krümmung K = 1/(ρ1 ρ2) für eine zweidimensionale Fläche. Dazu

kann ohne Einschränkung der Allgemeinheit die Fläche

x2

z =

+ y2

2 ρ1

2 ρ2

mit den Hauptkrümmungsradien ρ1 und ρ2 verwendet werden. Bestimmen Sie die

Metrik ds2 = g11 dx2 + g22 dy2 + 2g12 dx dy innerhalb der Fläche, und berechnen

Sie aus den gik den Krümmungsskalar R. 
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19 Kovarianzprinzip

Ausgehend vom Äquivalenzprinzip stellen wir das Kovarianzprinzip auf. Das Ko-

varianzprinzip ist ein Verfahren, physikalische Gesetze mit Gravitation aus den be-

kannten SRT-Gesetzen abzuleiten. Wir beginnen mit analogen Verfahren im drei-

dimensionalen euklidischen Raum und im Minkowskiraum. 

Für ein elektrisches Feld, das in einem kartesischen Koordinatensystem KS parallel

zur x-Achse ist (E = E e

x x ), sei die Gültigkeit der Gleichung

∂E (r)

x

= 4πe(r)

(19.1)

∂x

vorausgesetzt. Wie sieht dann diese Beziehung bei beliebiger Richtung von E aus? 

Nimmt man die Isotropie des Raumes an, so müssen grundlegende Gesetze so for-

muliert werden, dass sie kovariant unter Drehungen im dreidimensionalen euklidi-

schen Raum sind. Hierzu führt man 3-Tensoren ein, die durch ihre Transformations-

eigenschaften unter orthogonalen Transformationen (Drehungen) definiert sind. Da

e in (19.1) ein 3-Skalar ist, ∂/∂x und Ex aber die 1-Komponenten von 3-Vektoren

sind, lautet die naheliegende Verallgemeinerung von (19.1)

∂i Ei(r) = 4πe(r)

(19.2)

Die Gültigkeit dieser Verallgemeinerung ergibt sich aus folgender Überlegung: Man

betrachtet die Umgebung eines bestimmten Punktes r und wählt dort ein kartesi-

sches KS so, dass das Feld parallel zu ex ist. Die Gleichung (19.2) ändert ihre

Form nicht bei einer orthogonalen Transformation. Daher reduziert sie sich lokal zu

(19.1), ist also nach Voraussetzung gültig. Da der Punkt r beliebig ist und Differen-

zialgleichungen lokale Aussagen sind, gilt dann (19.2) generell. 

Allgemein erhalten wir aus der Isotropieannahme eine Vorschrift zur Aufstel-

lung gültiger Gesetze: Die gesuchte Gleichung muss folgende Bedingungen erfül-

len:

• Kovarianz gegenüber orthogonalen Transformationen. 
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• Gültigkeit in einem speziell orientierten Koordinatensystem. 

In dem einfachen Beispiel (19.2) können wir noch einen Schritt weitergehen und

die Möglichkeit betrachten, statt kartesischer Koordinaten beliebige andere Koordi-

naten (zum Beispiel Kugelkoordinaten) einzuführen. Die Gleichung (19.2) kann in

folgender  koordinatenunabhängiger  Form geschrieben werden:

div E(r) = 4πe(r)

(19.3)

Die Divergenz sei hierfür koordinatenunabhängig definiert, also etwa über den

Gaußschen Satz für ein infinitesimales Volumen. Die Gültigkeit von (19.3) ergibt

sich dann aus:

• Kovarianz unter allgemeinen Koordinatentransformationen. 

• Gültigkeit für spezielle Koordinaten (kartesische Koordinaten in (19.2)). 

Der Struktur nach analoge Betrachtungen haben wir zum Aufstellen der Gesetze

der Speziellen Relativitätstheorie (SRT) benutzt. Die Gleichwertigkeit gedrehter

KS wird zur Gleichwertigkeit verschiedener Inertialsysteme; anstelle der Kovarianz

gegenüber orthogonalen Transformationen verlangen wir die Kovarianz gegenüber

Lorentztransformationen. Die richtigen Gesetze müssen dann die beiden Forderun-

gen erfüllen:

• Kovarianz gegenüber Lorentztransformationen (etwa (4.4)). 

• Gültigkeit in einem speziellen IS (etwa (4.1)). 

In allen betrachteten Fällen wird die Kovarianz (gegenüber orthogonalen Trans-

formationen, allgemeinen Koordinatentransformationen, Lorentztransformationen)

durch die mathematische Form der Gleichungen gewährleistet. Der Grenzfall, für

den die betrachtete allgemeine Gleichung sich auf eine bekannte reduziert, ist da-

bei häufig nur lokal (im Ort oder in der Zeit) zu verwirklichen. Dies genügt für

Differenzialgleichungen, weil sie lokale Aussagen sind. 

Ein analoges Verfahren verwenden wir auch zur Aufstellung von Gesetzen der

Allgemeinen Relativitätstheorie (ART). Als Grenzfall, für den die Gleichungen be-

kannt sind, dient jetzt das Lokale Inertialsystem (etwa ein Satellitenlabor) an der

jeweils betrachteten Stelle. Die Transformation zu dem Koordinatensystem, das wir

tatsächlich benutzen wollen, ist dann eine Transformation zwischen relativ zuein-

ander beschleunigten Bezugssystemen; formal ist es eine der in Kapitel 14 betrach-

teten allgemeinen Koordinatentransformationen. In Teil IV haben wir untersucht, 

wie wir Gleichungen formulieren müssen, damit sie  kovariant (oder auch  allgemein

 kovariant), also forminvariant unter solchen allgemeinen Koordinatentransforma-

tionen sind. Dazu haben wir kovariante Größen (die Riemanntensoren) und kova-

riante Differenzialoperationen eingeführt. Damit folgt aus dem Äquivalenzprinzip

(Kapitel 10) das  Kovarianzprinzip: Die im Gravitationsfeld gültigen Gleichungen

sind durch folgende Bedingungen bestimmt:
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1. Kovarianz unter allgemeinen Koordinatentransformationen. Dies bedeutet, 

dass das Gesetz die Form einer Riemann-Tensorgleichung haben muss. 

2. Gültigkeit im Lokalen Inertialsystem. Dies bedeutet, dass sich beim Einsetzen

von gμν = ημν das entsprechende Gesetz der SRT ergeben muss. 

Ein Bezugssystem mit gμν = ημν kann nur lokal verwirklicht werden, etwa durch

lokale Elimination der Gravitationskräfte im Satellitenlabor. Ähnlich dazu ist die

Reduktion der relativistischen Bewegungsgleichung auf den Newtonschen Grenz-

fall nur (zeitlich) lokal möglich; denn ein momentan mitbewegtes IS gibt es für

einen beschleunigten Massenpunkt nur zu einem bestimmten Zeitpunkt. 

In Kapitel 10 hatten wir aus dem Äquivalenzprinzip folgendes Schema zur Auf-

stellung von relativistischen Gesetzen mit Gravitation erhalten:

SRT-Gesetz

Koordinaten-

Relativistisches Gesetz

-

ohne Gravitation

transformation

mit Gravitation

Man kann das (mühsame) Einsetzen einer allgemeinen Koordinatentransformati-

on in ein SRT-Gesetz folgendermaßen umgehen: Man schreibt das SRT-Gesetz in

allgemein kovarianter Form. Danach ändert es seine Form nicht mehr unter der Ko-

ordinatentransformation. Es stellt damit bereits das gesuchte relativistische Gesetz

mit Gravitation dar. Dieses Verfahren wird Kovarianzprinzip genannt. Das Äqui-

valenzprinzip ist die dem Verfahren zugrunde liegende physikalische Annahme, so

wie es in den obigen Beispielen die Annahme der Isotropie des Raums oder das

Einsteinsche Relativitätsprinzip war. 

Definition von Riemanntensoren

Wir geben zunächst an, wie bekannten Lorentztensoren die entsprechenden Rie-

manntensoren zugeordnet werden. Dies ist der jeweils erste Schritt bei der Anwen-

dung des Kovarianzprinzips. 

In der ART gehen wir von einem vierdimensionalen Riemannschen Raum mit

den Koordinaten xμ aus. An jedem Punkt des Raums gibt es eine Transformation

xμ = xμ(ξ ) zu den Koordinaten ξ α eines Lokalen IS. Im Riemannschen Raum

bezeichnen wir die Indizes mit μ, ν, λ, ..., im lokalen Minkowskiraum dagegen mit

α, β, γ , ...; alle griechischen Indizes laufen über die Werte 0, 1, 2 und 3. 

Die Koordinatentransformation xμ = xμ(ξ ) legt die Beziehung zwischen dem

Lorentzvektor dξ α und dem Riemannvektor dxμ fest:

∂xμ

∂ξ α

dxμ =

dξ α

und

dξ α =

dxμ

(19.4)

∂ξ α

∂xμ

Wenn wir dies in das Wegelement einsetzen, 

∂ξ α ∂ξ β

ds2 = ηαβ dξ α dξ β = ηαβ

dxμ dxν = gμν(x) dxμdxν

(19.5)

∂xμ ∂xν
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erhalten wir den metrischen Tensor

∂ξ α ∂ξ β

gμν(x) = ηαβ

(19.6)

∂xμ ∂xν

Dieses Ergebnis ist aus (11.6) bekannt. Es entspricht der Zuordnung eines Riemann-

tensors gμν zum Lorentztensor ηαβ. Das Wegelement ds ist sowohl ein Lorentz- wie

auch ein Riemannskalar. 

Analog zu (19.4) ordnen wir jedem Lorentzvektor Aα den Riemannvektor Aμ

zu:

∂xμ

Aμ ≡

Aα

Definition eines

(19.7)

∂ξ α

Riemannvektors

Wir zeigen, dass Aμ tatsächlich ein Riemannvektor ist:

∂xμ

∂xμ ∂xν

Aμ =

Aα =

Aα = αμ

∂ξ α

∂xν ∂ξ α

ν Aν

(19.8)

μ

μ

Die Größen αν (und die inversen Größen –

αν ) sind wie in (14.10) definiert. Für

einen kovarianten Vektor gilt

∂ξ α ∂ξ β ∂xν

∂ξ α

Aμ = gμν Aν = ηαβ

Aγ =

Aα

(19.9)

∂xμ ∂xν ∂ξ γ

∂xμ

Riemanntensoren werden analog zu den Vektoren definiert, zum Beispiel

∂xμ ∂xν

∂ξ α ∂ξ β

F μν ≡

F αβ , 

Fμν ≡

Fαβ

(19.10)

∂ξ α ∂ξ β

∂xμ ∂xν

Ein Lorentzskalar (wie etwa ds) ist zugleich ein Riemannskalar. Ein Lorentzskalar-

feld S(ξ ) wird zum Riemann-Skalarfeld S(x), 

S(x0, . . . , x3) ≡ S(ξ 0(x), . . . , ξ 3(x))

(19.11)

Diese Änderung der Argumente gilt entsprechend für (19.10) und (19.7), wenn wir

Tensorfelder betrachten. Da S(x) eine andere Funktion der Argumente ist als S(ξ ), 

müsste eigentlich ein anderer Buchstabe verwendet werden. Wie in der Physik üb-

lich, verzichten wir aber auf eine solche Unterscheidung in der Notation. 

Verschiedene KS (mit den Koordinaten x oder x) sind mit dem Lokalen IS

(mit ξ ) durch eine Koordinatentransformation (ξ(x) oder ξ(x)) verbunden. Daraus

ergibt sich das Transformationsverhalten des Riemann-Skalarfelds (19.11):

S(x) = S(ξ(x)) = S(ξ(x(x))) = S(ξ(x)) = S(x)

(19.12)

Für die jetzt definierten Riemanntensoren gelten die in Teil IV gegebenen Regeln. 

Sie betreffen insbesondere das Hoch- und Herunterziehen von Indizes mit dem me-

trischen Tensor, das Transformationsverhalten, die Bildung neuer Tensoren und die

Differenziation von Tensorfeldern. 
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Bewegung im Gravitationsfeld

Als erste physikalische Anwendung des Kovarianzprinzips betrachten wir die Be-

wegung eines Teilchens im Gravitationsfeld. Im Lokalen IS mit den Minkowski-

koordinaten ξ α gilt

duα

d2ξ α

=

= 0

im Lokalen IS

(19.13)

dτ

dτ 2

wobei dτ = ds/c. Das Lokale IS ist etwa ein frei fallendes Satellitenlabor am Ort

ξ α des Teilchens. Die Gültigkeit von (19.13) wird im Äquivalenzprinzip postuliert; 

sie beruht auf der Äquivalenz von Gravitations- und Beschleunigungskräften. Nach

dem Kovarianzprinzip müssen wir nun eine kovariante Gleichung aufstellen, die

sich für gμν = ημν auf (19.13) reduziert. 

Durch

dξ α

dxμ

uμ ≡ ∂xμ uα = ∂xμ

=

(19.14)

∂ξ α

∂ξ α dτ

dτ

definieren wir den zur Vierergeschwindigkeit uα gehörigen Riemannvektor. Zur

Aufstellung der Bewegungsgleichung müssen wir uμ differenzieren. Das kovari-

ante Differenzial

μ

Duμ = uμ||ν dxν = duμ − δuμ = duμ + Γ uν dxλ

(19.15)

νλ

ist ein Riemannvektor; dies gilt nicht für duμ. Als kovariante Verallgemeinerung

von (19.13) bietet sich

Duμ = 0

(19.16)

dτ

an; ebenfalls üblich ist die Schreibweise Duμ/Dτ = 0. Diese Gleichung erfüllt

das Kovarianzprinzip: Sie ist kovariant und sie reduziert sich für gμν = ημν auf

(19.13). Daher ist (19.16) die richtige Beschreibung der Bewegung im Gravitati-

onsfeld. Ausführlicher lautet diese Gleichung

duμ = − μ

Γ

uν uλ

Bewegung im

(19.17)

dτ

νλ

Gravitationsfeld

In Kapitel 11 haben wir dieses Ergebnis durch explizites Einsetzen einer allgemei-

nen Koordinatentransformation in (19.13) erhalten. Der Vergleich mit Kapitel 11

zeigt, dass das Kovarianzprinzip (zusammen mit der in Teil IV eingeführten Ma-

thematik) das Aufstellen der Gesetze mit Gravitation  wesentlich vereinfacht. Diese

Vereinfachung ist praktisch unerlässlich, wenn wir kompliziertere Gesetze betrach-

ten. 

Bianchi-Identitäten

Folgende kovariante Gleichungen heißen  Bianchi-Identitäten:

Riklm||n + Rikmn||l + Riknl||m = 0

(19.18)
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Wir werden diese Riemanntensorgleichung später benötigen. Wir beweisen sie hier, 

indem wir analog zum Kovarianzprinzip vorgehen. 

Wir wählen einen beliebigen Punkt P mit den Koordinaten x0 = (x0, x1, x2, x3)

0

0

0

0

und entwickeln das Wegelement nach Potenzen von ξ ν = xν − xν, 

0

ds2 = gμν(x0) dξ μ dξ ν + . . . = δμν dξ μ dξ ν + . . . 

(19.19)

Wegen gμν(x0) = const. ist der Raum lokal eben, und es gibt eine Transformation

(ξ ν → ξ ν) zu kartesischen Koordinaten ξ ν. In dem lokalen Koordinatensystem

KS0 (mit den Koordinaten ξ ν) gilt Γ i = 0. Hieraus und aus (18.13) folgt

kl





∂

∂2gil

∂2gkm

∂2gkl

∂2gim

Riklm||n = 1

+

−

−

in KS0

2 ∂ξ n

∂ξ k ∂ξ m

∂ξ i ∂ξ l

∂ξ i ∂ξ m

∂ξ k ∂ξ l

(19.20)

Der 1. und 4. Term ergeben (∂3gil/∂ξ k ∂ξ m ∂ξ n − ∂3gim/∂ξ k ∂ξ n ∂ξ l)/2. In (19.18)

ist hiervon die zyklische Summe bezüglich der Indizes l, m, n zu bilden (Original-

term + (lmn → mnl) + (lmn → nlm)). Von den entstehenden sechs Termen heben

sich dann jeweils zwei auf. Dies gilt ebenso für den 2. und 3. Term in (19.20). Also

sehen wir durch explizites Einsetzen, dass

Riklm||n + Rikmn||l + Riknl||m = 0

in KS0

(19.21)

Hierin können wir eine allgemeine Koordinatentransformation vornehmen. Die re-

sultierende Gleichung ist von derselben Form. Also gilt (19.18) für beliebige Koor-

dinaten in der Umgebung von P. Unsere Argumentation kann nun für jeden Punkt P

des Raumes wiederholt werden, also gilt (19.18) allgemein. 

Zusammenfassung

Wir haben in diesem Kapitel als allgemeines Prinzip zur Aufstellung physikalischer

Gesetze die Bedingungen aufgestellt:

1. Das Gesetz ist kovariant unter bestimmten Transformationen (orthogona-

le Transformationen, Lorentztransformationen, allgemeine Koordinatentrans-

formationen). Dieser Forderung liegt eine physikalische Symmetrieannahme

(Isotropie des Raums, Relativitätsprinzip, Äquivalenzprinzip) zugrunde. 

2. Die Gleichung ist richtig in einem bekannten Grenzfall (etwa im KS mit

bestimmter Orientierung, im momentanen Ruhsystem, im Lokalen IS), der

durch die zugehörige Transformationen mit dem allgemeinen Fall verbunden

ist. 

Diese parallelen Strukturen sind noch einmal in Tabelle 19.1 zusammengefasst. In

einem Punkt unterscheidet sich das Äquivalenzprinzip aber von den beiden anderen

Symmetrieprinzipien: Die Gesetze der SRT sind nicht nur in ihrer Form, sondern
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Tabelle 19.1 Parallelität bei der Ausnutzung von Symmetrien. Die hier betrachteten Symmetrieprinzipien (erste Spalte) sind Annahmen über die Gleichwertigkeit verschiedener Be-

zugssysteme. Die Transformationen (zweite Spalte) zwischen den verschiedenen Bezugs-

systemen ändern nicht die Form (14.16) des Wegelements im jeweiligen Raums. Physikali-

sche Gesetze werden nun so formuliert, dass sie unter diesen Transformationen forminva-

riant (kovariant) sind. Dazu werden Tensoren (dritte Spalte) eingeführt; dies sind indizierte Größen, die sich bezüglich jedes Index wie die Koordinatendifferenziale transformieren. 

Damit ein physikalisches Gesetz gültig ist, muss es kovariant sein und in einem speziellen

Bezugssystem (dem in der vierten Spalte angegebenen Grenzfall) gelten. 

Symmetrieprinzip

Transformation

Tensor

Grenzfall

Isotropie des

Orthogonale

gewöhnliche

KS mit spezieller

Raums

Transformationen

Vektoren, 

Orientierung

3-Tensoren

der Achsen

Relativität

Lorentz-

Lorentz- oder

Momentanes

der Raum-Zeit

transformationen

4-Tensoren

Ruhsystem

Äquivalenz-

Allgemeine

Riemann-

Lokales Inertial-

prinzip

Koordinaten-

tensoren

system

transformationen

auch in ihrer Aussage invariant unter LT. So hängen die einer LT mit v unterzoge-

nen Maxwellgleichungen nicht von v ab (oder bei Drehungen vom Drehwinkel). In

der ART gilt dies nur für die  Form  der Gleichung. So ändert sich zwar die Form

von (19.16) nach einer allgemeinen Koordinatentransformation nicht, auch im neu-

en System KS gilt Duμ/dτ = 0. Die tatsächliche Aussage hängt jedoch von der

vorgenommenen Transformation ab. Die hier betrachteten Bezugssysteme (insbe-

sondere das Lokale IS und ein KS mit gμν) sind relativ zueinander beschleunigt

und damit  physikalisch nicht gleichwertig. Die physikalischen Effekte in verschie-

denen IS sind gleich, nicht aber etwa die im IS und im rotierenden System. Unter

diesem Gesichtspunkt kann der Name ART, der in Analogie zur SRT geprägt wurde, 

kritisiert werden. 

Als operatives Prinzip zur Aufstellung von physikalischen Gesetzen ist das Ko-

varianzprinzip von gleicher Struktur wie das Relativitätsprinzip. Abschließend sei

es noch einmal formuliert:

•  Kovarianzprinzip: Gesetze im Gravitationsfeld gμν(x) sind kovariante Glei-

chungen, die sich ohne Gravitationsfeld (also für gμν = ημν) auf die Gesetze

der SRT reduzieren. 

















20 Gesetze mit Gravitation

Mit Hilfe des Kovarianzprinzips verallgemeinern wir bekannte relativistische Ge-

setze ohne Gravitation zu den entsprechenden Gesetzen mit Gravitation. Wir be-

trachten die in Teil II angegebenen Gesetze der Mechanik, Elektrodynamik und

Hydrodynamik. 

Mechanik

Im letzten Kapitel wurden bereits die relativistischen Bewegungsgleichungen für

ein Teilchen im Gravitationsfeld angegeben. Wir lassen jetzt neben der Gravitation

noch andere Kräfte zu. Außerdem untersuchen wir die Bewegung des Eigendreh-

impulses (Spin) eines Teilchens. 

In einem Inertialsystem gilt die Bewegungsgleichung (4.4) der SRT:

duα

m

= F α

in IS

(20.1)

dτ

Nach dem Äquivalenzprinzip gilt diese Gleichung auch in einem Lokalen Inertial-

system. Die Minkowskikraft F α könnte zum Beispiel die elektromagnetische Kraft

(q/c) F αβ uβ sein. (Sowohl die Kraft (force) wie der elektromagnetische Feldstärke-

tensor werden üblicherweise mit dem Buchstaben F bezeichnet; wegen der unter-

schiedlichen Anzahl der Indizes kann es nicht zu Verwechslungen kommen). Die

Kraft F α enthält keine Gravitationskräfte; denn die verschwinden ja im Lokalen IS. 

Dem Lorentzvektor F α ordnen wir gemäß (19.7) den Riemannvektor F μ zu, 

∂xμ

F μ ≡

F α

(20.2)

∂ξ α

Die kovariante Verallgemeinerung von (20.1) lautet

Duμ

m

= F μ

(20.3)

dτ

In der ausführlicheren Darstellung

duμ

μ

m

= F μ − m Γ uν uλ

Bewegungsgleichung

(20.4)

dτ

νλ

μ

treten auf der rechten Seite explizit die Gravitationskräfte −mΓ uν uλ auf. Diese

νλ

Gleichung ist nach dem Kovarianzprinzip gültig, denn

108
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• sie ist kovariant

• sie reduziert sich für gμν = ημν auf (20.1). 

Die vier Komponenten von uα in (20.1) sind nicht alle unabhängig, vielmehr gilt

ηαβ uα uβ = uα uα = c2

in IS

(20.5)

Diese Gleichung wird nach dem Kovarianzprinzip zu

gμν uμ uν = uμ uμ = c2

Nebenbedingung an

(20.6)

die Geschwindigkeit

Für jede Lösung der Bewegungsgleichungen (20.3) gilt gμν uμ uν = const. (Auf-

gabe 20.1). Es genügt daher, die Anfangsbedingung uμ(τ = 0) so zu wählen, dass

(20.6) erfüllt ist; danach muss (20.6) nicht mehr explizit berücksichtigt werden. 

Aus uμ(τ ) = dxμ/dτ erhält man durch eine Integration die Bahnkurve xμ(τ ). 

Löst man dann x0(τ ) = c t nach τ = τ (t) auf und setzt dies in xi(τ ) ein, so

erhält man die eigentliche Bahnkurve xi (t ). Dabei setzen wir voraus, dass x0 = c t

die Bedeutung einer Zeitkoordinate hat. Der Zusammenhang zwischen t und den

Uhrzeiten in KS mit xμ wurde in Kapitel 12 hergestellt. 

Spinbewegung

Für spätere Anwendungen betrachten wir den Fall, dass das Teilchen einen klas-

sischen Eigendrehimpuls hat, den wir als Spin s = si ei bezeichnen. Wir ordnen

diesem Spinvektor si einen Lorentzvektor sα zu. Dazu gehen wir in das momentan

mitbewegte IS (das momentane Ruhsystem) des betrachteten Teilchens und defi-

nieren dort:









s α = 0, si

in IS

(20.7)

Hieraus ergibt sich durch eine Lorentztransformation der Spinvektor sα in einem

beliebigen IS. Im Ruhsystem ist (u ) = (c, 

α

0) und damit

uα sα = 0

in IS

(20.8)

Da dies ein Lorentzskalar ist, gilt

uα sα = 0

(20.9)

in einem beliebigen IS. 

Wir betrachten zunächst den kräftefreien Fall; es soll kein Drehmoment auf den

Spin und keine Kraft auf das Teilchen wirken. Im Ruhsystem IS gilt





s := s1, s2, s3 = const. 

(kräftefrei)

(20.10)
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Dies bedeutet dsi /dt  = 0 und dsα/dτ = 0. Die Transformation in ein beliebiges

IS ergibt

dsα = 0

(kräftefrei)

(20.11)

dτ

Gemäß (19.7) definieren wir den Riemannvektor sμ ≡ (∂xμ/∂ξ α) sα. Nach dem

Kovarianzprinzip wird (20.11) zu Dsμ/dτ = 0, also zu

dsμ = − μ

Γ

uν sλ

Spinpräzession im

(20.12)

dτ

νλ

Gravitationsfeld

Diese Bewegungsgleichung beschreibt die  Drehung  oder  Präzession  des Spinvektors im Gravitationsfeld. 

Die Bedingung (20.9) wird zu uμ sμ = 0. In Aufgabe 20.1 wird gezeigt, dass

die Lösung von (20.12) den Betrag des Spinvektors erhält (sμ sμ = const.). 

In der Ableitung wurde vorausgesetzt, dass im Lokalen IS keine Kräfte auf

das Teilchen wirken; in (20.12) sind also nur Gravitationskräfte berücksichtigt. Die

Gleichung beschreibt daher die Präzession des Spins eines Teilchens, das im Gravi-

tationsfeld frei fällt. Es könnte sich zum Beispiel um die Präzession einer Kreisel-

achse in einem Erdsatelliten handeln. 

Wenn wir von einem direkten Drehmoment auf den Spin (im momentanen Ruh-

system) absehen, können wir folgende Fälle unterscheiden:

1. Teilchen im Gravitationsfeld, (20.12). 

2. Teilchen in einem anderen Kraftfeld (Thomas-Präzession). 

3. Teilchen im Gravitationsfeld und einem anderen Kraftfeld (Fermi-Transport). 

Wir benötigen in den folgenden Kapiteln nur den ersten Fall. Der Vollständigkeit

halber geben wir aber noch die Bewegungsgleichungen für die anderen Fälle an. 

 Thomas-Präzession

Nach (20.1) gilt für ein Teilchen unter dem Einfluss der Kraft F α, 

duα

m

= F α

(20.13)

dτ

Dabei steht F α zum Beispiel für die Coulombkraft, unter der sich ein klassisches

Elektron mit dem Spin sα bewegt. Die Gleichung (20.13) gilt in einem IS oder in

einem Lokalen IS. Wir führen nun ein relativ zu IS mit konstanter Geschwindigkeit

bewegtes IS ein, in dem das Teilchen momentan ruht. In IS wirke kein Drehmo-

ment auf den Spin, also

ds = 0

in IS

(20.14)

dt
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Dies bedeutet, dass wir nur die Spinänderung studieren, die durch die beschleunigte

Bewegung des Teilchens im Kraftfeld F α hervorgerufen wird. In IS gilt









ds α

ds 0





=

, 0 , 

u α = (c, 0)

(20.15)

dτ

dτ

Die Lorentztransformation ins Bezugssystem IS ergibt uα = Λα c und

0

dsα =

ds 0

ds 0

Λα

= uα

= g(τ) uα

(20.16)

dτ

0

dτ

c

dτ

Dabei ist g(τ ) eine zunächst unbekannte Funktion. Wir multiplizieren (20.16) mit

uα und summieren über α. Daraus folgt g(τ ) = (dsα/dτ ) uα/c2. Wir differenzieren

(20.9) nach τ , 

dsα

duα

uα + sα

= 0

(20.17)

dτ

dτ

Damit erhalten wir g(τ ) = −(duα/dτ ) sα/c2. Wir setzen dieses g(τ ) in (20.16)

ein:

dsα

du

= − 1

β sβ uα

(Thomas-Präzession)

(20.18)

dτ

c2 dτ

Dies ist die Spinpräzession eines beschleunigten (duβ /dτ = 0) Teilchens ohne

Gravitationsfeld; sie wird  Thomas-Präzession  genannt (Aufgabe 20.2). Dabei wur-

de angenommen, dass kein Drehmoment auf das Teilchen (im momentanen Ruh-

system) wirkt. 

Die Thomas-Präzession führt zu einem bekannten Effekt für die Spinbewegung

eines Elektrons im Atom. Bewegt sich das Elektron mit der Geschwindigkeit v, 

so ergibt das Coulombfeld E des Kerns das Magnetfeld B(IS) ≈ −v × E/c im jeweiligen Ruhsystem des Elektrons. Die Wechselwirkung dieses B -Feldes mit dem

magnetischen Moment μ = const. · s bewirkt dann das Drehmoment M = μ × B. 

Die Thomas-Präzession führt in diesem Fall dazu, dass die Spinpräzession aufgrund

dieses Drehmoments halbiert wird. 

 Fermi-Transport

Wir lassen nun neben äußeren Kräften F μ noch Gravitationskräfte zu. Dann gilt

(20.18) im Lokalen Inertialsystem, und aus dem Kovarianzprinzip folgt

Dsν

Duμ

= − 1

sμ uν

(Fermi-Transport)

(20.19)

dτ

c2 dτ

Dies beschreibt die Spinpräzession eines beschleunigten (Duμ/dτ = 0) Teilchens, 

auf das ein Gravitationsfeld wirkt. Diese Präzession wird als  Fermi-Transport  be-

zeichnet. 
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Elektrodynamik

Nach dem Äquivalenzprinzip gelten die Maxwellgleichungen (6.6) und (6.7) im

Lokalen Inertialsystem. Nach dem Kovarianzprinzip werden diese Gleichungen zu

F μν ||μ = 4π j ν und μνλκ Fλκ||ν = 0

(20.20)

c

√

Der nach (17.14) auftretende Faktor 1/ |g| wurde gekürzt. Die Definition der Rie-

manntensoren j ν und F μν erfolgt gemäß (19.7) und (19.10). 

Durch (20.20) sind die Maxwellgleichungen im Gravitationsfeld gegeben. Das

Gravitationsfeld geht über die Γ ’s in die kovarianten Ableitungen ein. Andererseits

geht ein elektromagnetisches Feld auch in die Einsteinschen Feldgleichungen (Ka-

pitel 21) ein, weil es als Energieform Quelle des Gravitationsfelds ist. Daher stellen

(20.20) und die Einsteinschen Feldgleichungen im Prinzip ein gekoppeltes System

für die Felder Aμ(x) und gμν(x) dar. Der Beitrag des elektromagnetischen Feldes

zur Energiedichte kann aber meist gegenüber vorhandenen Massen vernachlässigt

werden. Dann sind die gμν in den Maxwellgleichungen (20.20) vorgegebene äußere

Felder. 

Die gμν hängen vom Gravitationsfeld und von den gewählten Koordinaten ab. 

Daher stellt (20.20) auch die richtigen Maxwellgleichungen für krummlinige Koor-

dinaten dar, zum Beispiel für Kugelkoordinaten im euklidischen Raum (also ohne

Gravitationsfeld). Das gelegentlich mühevolle Umschreiben von Vektorgleichungen

auf spezielle nichtkartesische Koordinaten ist in dieser Form der Maxwellgleichun-

gen allgemein und kompakt gelöst (siehe hierzu auch Aufgabe 17.1). 

Die Maxwellgleichungen im Gravitationsfeld (oder in krummlinigen Koordina-

ten) lassen sich noch vereinfachen. Nach (15.19) gilt

F μν ||μ = F μν|μ + Γ μ F ρν + Γ ν F μρ

μρ

μρ

(20.21)

Der letzte Term verschwindet wegen der Symmetrie der Γ ν

μρ und der Antisymmetrie

der F μρ bezüglich der Summationsindizes μ und ρ. Mit Hilfe von (17.5) erhalten

wir

√

√

∂

|g|

∂( |g| F μν)

F μν ||μ = F μν|μ + Γ μ F ρν = F μν

F ρν =

1

√

μρ

|μ +

1

√|g| ∂xρ

|g|

∂xμ

(20.22)

Damit lauten die inhomogenen Maxwellgleichungen

√

1

∂ ( |g| F μν)

√

= 4π jν

(20.23)

|g|

∂xμ

c

Die homogenen Maxwellgleichungen vereinfachen sich ebenfalls: Wir schreiben

zunächst die kovariante Ableitung gemäß (15.20) an:





ρ

μνλκ Fλκ||ν = μνλκ Fλκ|ν − Γ ρ F

F

κν

λρ − Γ

(20.24)

λν

ρκ
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Die Christoffelsymbole sind symmetrisch in den unteren Indizes, so dass diese Ter-

me wegfallen. Damit sind die homogenen Maxwellgleichungen von derselben Form

wie in der SRT:

μνλκ Fλκ |ν = 0

(20.25)

Wir geben noch die Bewegungsgleichung eines massiven und geladenen Teilchens

(Masse m, Ladung q) im äußeren Feld an. Die kovariante Verallgemeinerung von

(6.12) lautet

Duμ

q

m

=

F μν uν

(20.26)

dτ

c

oder

duμ

μ

m

= −m Γ uν uλ + q F μν uν

(20.27)

dτ

νλ

c

Die elektromagnetischen Kräfte werden durch den Feldstärketensor F μν, die Gra-

μ

vitationskräfte durch die Christoffelsymbole Γ

ausgedrückt. Diese Kräfte ergeben

νλ

sich als Ableitungen der Potenziale gμν und Aμ. 

Die Kontinuitätsgleichung (6.3) wird nach dem Kovarianzprinzip zu

√

∂( |g| j μ)

j μ||μ = 0

oder

= 0

(20.28)

∂xμ

Energie-Impuls-Tensor

Die Grundgesetze der Hydrodynamik können in der Form ∂β T αβ = 0 ausgedrückt

werden, wobei T αβ der Energie-Impuls-Tensor ist. Wir geben die kovariante Ver-

allgemeinerung dieser Gleichung an. 

Dem Energie-Impuls-Tensor (8.1) einer idealen Flüssigkeit wird der Riemann-

tensor





P

T μν =  +

uμ uν − gμνP

Energie-Impuls-Tensor

(20.29)

c2

zugeordnet. Die (Riemann-) Tensoreigenschaft der Größen uμ und gμν wurde be-

reits diskutiert. Der Eigendruck P und die Massendichte  wurden in Kapitel 7 als

Lorentzskalare definiert; ihnen werden gemäß (19.11) Riemann-Skalarfelder zuge-

ordnet. 

In der SRT tragen alle Energieformen außer der Gravitation zum Energie-

Impuls-Tensor T αβ bei, (8.8). Dies gilt dann auch für den zugehörigen Riemann-

tensor

μν

T μν = T

+ T μν + . . . 

(20.30)

(20.29)

em

In einem Inertialsystem (wie auch im Lokalen IS) gilt für den Energie-Impuls-

Tensor T αβ der Erhaltungssatz T αβ|β = 0, (8.9). Nach dem Kovarianzprinzip wird

dies zu

T μν ||ν = 0

(20.31)
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Dies beschreibt zum Beispiel die relativistische Bewegung einer Flüssigkeit im Gra-

vitationsfeld. Das Gravitationsfeld geht über die Γ ’s in die kovariante Ableitung

ein. Andere Kräfte (neben der Gravitation) sind über ihren Beitrag in (20.30) be-

rücksichtigt, siehe (8.6) – (8.8). 

Der durch (8.8) definierte Energie-Impuls-Tensor T αβ ist die relativistische Ver-

allgemeinerung der Energie-Massendichte 

 = T 00/c2. Der zugehörige Riemann-

tensor T μν tritt in der relativistischen Theorie als Quelle des Gravitationsfelds auf. 

Er enthält alle relevanten Energieformen  außer dem Gravitationsfeld selbst. In prak-

tischen Anwendungen reduziert sich T μν meist auf (20.29). 
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Aufgaben

 20.1 Konstanten der Bewegung

Im Gravitationsfeld gelten die Bahn- und Spin-Bewegungsgleichungen

duμ = − μ

dsμ

μ

Γ

uν uλ

und

= −Γ uν sλ

(20.32)

dτ

νλ

dτ

νλ

Zeigen Sie, dass uμ uμ und sμ sμ hierfür Erhaltungsgrößen sind. 

 20.2 Thomas-Präzession

Ein Teilchen bewegt sich mit konstanter Winkelgeschwindigkeit ω auf der Kreis-

bahn

 





xα = c t, R cos(ω t), R sin(ω t), 0

Das Teilchen hat einen Spin sα, auf den kein Drehmoment wirkt. Dann wird die

Spinbewegung durch dsα/dτ = −c−2 (duβ /dτ ) sβ uα beschrieben. Zeigen Sie, 

dass die Lösung dieser Bewegungsgleichung (bei geeigneter Anfangsbedingung)

von der Form

s1 = σ cos (ωTh t) , 

s2 = −σ sin (ωTh t)

(20.33)

ist , wobei ωTh = ω (γ − 1). Leiten Sie dazu zunächst die Beziehung d 3s0/dt3 =

−ω2γ 2 ds0/dt ab, wobei γ −2 = 1 − v2/c2. Vernachlässigen Sie Korrekturen der

Größe v2/c2 in den Amplituden. 













21 Einsteinsche Feldgleichungen

Die Einsteinschen Feldgleichungen können nicht mit Hilfe des Kovarianzprinzips

abgeleitet werden; denn im Lokalen Inertialsystem gibt es keine Feldgleichung, 

deren kovariante Verallgemeinerung zu finden wäre. Die Einsteinschen Feldglei-

chungen können aber weitgehend dadurch festgelegt werden, dass sie kovariant und

möglichst einfach sind und dass sie den Newtonschen Grenzfall enthalten. 

Bedingungen für die Feldgleichungen

Wir formulieren zunächst eine Reihe von Forderungen, die wir an die gesuchten

Feldgleichungen stellen. 

Der Newtonsche Grenzfall (1.5), 

 Φ(r) = 4πG(r)

(21.1)

ist durch Beobachtungen im Sonnensystem gut bestätigt. Er muss sich daher als

Grenzfall aus der aufzustellenden Theorie ergeben. Aus dem nichtrelativistischen

Grenzfall der Bewegungsgleichung hatten wir

g00 ≈ 1 + 2 Φ

(21.2)

c2

erhalten. Der Energie-Impuls-Tensor ist im nichtrelativistischen Grenzfall durch

(8.10) gegeben, 

T 0i

T ij





T 00 ≈  c2

≈ vi  1 , 

= O (v/c)2  1

(21.3)

 c2

c

 c2

Der Newtonsche Grenzfall (21.1) lässt sich daher in der Form

 g00 = 8πG T00

(21.4)

c4

schreiben. Wegen |g00 − 1|  1 ist T00 ≈ T 00. 

Die naheliegende relativistische Verallgemeinerung von (21.4) ist

2gαβ = −8πG Tαβ

(vorläufig)

(21.5)

c4
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Gleichungen ähnlicher Form werden wir später als Grenzfall der Einsteinschen

Gleichungen für  schwache  Gravitationsfelder erhalten. Im Gegensatz zu den ana-

logen Gleichungen der Elektrodynamik ist (21.5) aber nicht gültig. Dies liegt dar-

an, dass  jede  Energieform einen Beitrag zur Masse ergibt, und daher eine Quelle

des Gravitationsfelds darstellt. Es ist klar, dass Gravitationsfelder Energie enthal-

ten; diese wird zum Beispiel in einem Gezeitenkraftwerk nutzbar gemacht. Der

Energiebeitrag des Gravitationsfelds ist aber auf der rechten Seite von (21.5) nicht

enthalten. Man könnte nun versuchen, diesen fehlenden Beitrag hinzuzufügen, 





2

grav

gαβ = −8πG Tαβ + t

(vorläufig)

(21.6)

c4

αβ

Hiervon wäre jetzt zu einer kovarianten Form überzugehen. An dieser Stelle kom-

grav

men wir jedoch erst einmal nicht weiter: Zum einen kennen wir t

nicht; der

αβ

Ausdruck für den Energie-Impuls-Tensor kann erst aus der (noch aufzustellenden)

Feldtheorie abgeleitet werden. Zum anderen würde die kovariante Verallgemeine-

rung von 2gαβ = ηγ δ gαβ|γ |δ wegen gμν||λ = 0, (15.22), kein sinnvolles Resultat

grav

ergeben. Wir umgehen diese beiden Schwierigkeiten, indem wir den Term mit tαβ

auf die linke Seite von (21.6) bringen, und deren kovariante Verallgemeinerung mit

einem zunächst unbekannten Riemanntensor Gμν bezeichnen:

Gμν = 8πG Tμν

(21.7)

c4

grav

In Analogie zur Elektrodynamik erwarten wir in t

Terme, die quadratisch in

αβ

den partiellen Ableitungen (∂gμν/∂xλ) sind. Der Tensor Gμν sollte solche Terme

enthalten. Als kovariante Verallgemeinerung der linken Seite von (21.6) sollte er

außerdem linear in der zweiten Ableitung von gμν sein. Nach dieser Diskussion

stellen wir folgende Forderungen an Gμν auf, die teils notwendig, teils plausibel

sind:

1. Gμν ist ein Riemanntensor. 

2. Gμν wird aus den ersten und zweiten Ableitungen des metrischen Tensors

gμν gebildet. Dabei soll Gμν linear in der zweiten und quadratisch in den

ersten Ableitungen sein. 

3. Für den Energie-Impuls-Tensor gilt die Symmetrie Tμν = Tνμ und der Erhal-

tungssatz T

||ν

μν

= 0. Wegen (21.7) übertragen sich diese Eigenschaften auf

Gμν:

Gμν = Gνμ

(21.8)

G

||ν

μν

= 0

(21.9)

4. Für ein schwaches, stationäres Feld muss sich der Grenzfall (21.4) ergeben, 

also

G00 ≈ g00

(21.10)
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Ableitung der Feldgleichungen

Die Feldgleichungen können aus den aufgestellten Forderungen abgeleitet werden. 

Der Krümmungstensor

ρ

∂Γ

ρ

μλ

∂Γμν

ρ

Rρμλν =

−

+ Γ σ

− Γ σ

(21.11)

∂xν

∂xλ

μλ Γ ρ

σ ν

μν Γσ λ

erfüllt, abgesehen von seinem Rang, die Bedingungen 1 und 2 für Gμν . Dies gilt

dann auch für den Ricci-Tensor

Rμν = Rρμρν = gκρ Rκμρν

(21.12)

und den Krümmungsskalar

R = Rμμ

(21.13)

Aus Rσμρν = Rσνρμ folgt, dass Rμν symmetrisch ist; dies gilt auch für gμν. Damit

erfüllt der Ansatz

Gμν = a Rμν + b R gμν

(21.14)

die Punkte 1 und 2 und (21.8). Die Bedingungen (21.9) und (21.10) legen dann die

Konstanten a und b fest. 

Zur Auswertung von (21.9) gehen wir von den Bianchi-Identitäten (19.18) aus, 

Rρμσν||λ + Rρμνλ||σ + Rρμλσ||ν = Rρμσν||λ − Rρμλν||σ − Rρμσλ||ν = 0 (21.15)

Dabei haben wir (18.13) für die Vertauschung von Indizes verwendet. Hieraus folgt

durch die Kontraktion der Indizes ρ und σ :

Rμν||λ − Rρμλν||ρ − Rμλ||ν = 0

(21.16)

Eine weitere Kontraktion von μ und ν ergibt

R||μ

R

||ν

||λ − 2Rρλ||ρ = 0

oder

Rμν

=

(21.17)

2

Hiermit und mit g

||ν

μν

= 0 schreiben wir die Bedingung (21.9) für (21.14) an:





a

G

||ν

||ν

||ν

μν

= a Rμν + b gμν R + b gμνR||ν =

+ b R||μ = 0

(21.18)

2

Damit muss a = −2b oder R||μ = 0 gelten. Aus R||μ = 0 würde nach (21.7)

T||μ = 0 folgen; dies ist für eine gegebene Massenverteilung in der Regel nicht der

Fall. Also gilt a = −2 b und





Gμν = a Rμν − R gμν

(21.19)

2

Die Konstante a kann durch den Newtonschen Grenzfall festgelegt werden. Dazu

betrachten wir schwache Felder, 

gμν = ημν + hμν

mit |hμν|  1

(21.20)
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und nichtrelativistische Geschwindigkeiten, 

|

(21.7)

Tik |  T00

−→

|Gik |  |G00 |

(21.21)

Wir berechnen zunächst die Spur von Gμν, 

⎧

⎪

⎨ (21.19)

= a (R − 2R) = −aR

gμν Gμν = ⎪

(21.22)

⎩ (21.21)

(21.19)

≈ g00 G00 ≈ a (R00 − R/2)

Der Vergleich der beiden Ergebnisse ergibt R = −2R00 und damit

G00 = a (R00 − g00R/2) ≈ 2a R00

(21.23)

Für schwache Felder fallen die in hμν quadratischen Terme im Krümmungstensor

(21.11) weg, 

ρ

ρ

∂Γμρ

∂Γμν

Rμν = Rρμρν =

−

(|hμν|  1)

(21.24)

∂xν

∂xρ

Für schwache, stationäre Felder erhalten wir daraus

∂Γ i

(11.25)

∂g00

R

00

00 = −

wobei Γ i

= 1

(21.25)

∂xi

00

2 ∂xi

Nun können wir (21.23) mit (21.10) vergleichen:

∂Γ i

! 

G

00

00 = −2 a

= −a g00 = g00

(21.26)

∂xi

Dieser Vergleich ergibt a = −1. Die oben aufgestellten Forderungen werden durch

Einsteinsche

Rμν − R gμν = −8πG Tμν

(21.27)

2

c4

Feldgleichungen

erfüllt. Diese Gleichungen wurden 1915 von Einstein aufgestellt. Sie sind zusam-

men mit den Bewegungsgleichungen (19.17) die gesuchten Grundgleichungen der

ART. Durch Kontraktion folgt aus (21.27)

R

Rμμ −

δμ = −R = −8πG T μμ = −8πG T

(21.28)

2

μ

c4

c4

Hiermit ersetzen wir R in (21.27) durch T . Dies führt zu einer etwas anderen Form:





Einsteinsche

Rμν = −8πG Tμν − T gμν

(21.29)

c4

2

Feldgleichungen
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Modifikationen der Feldgleichungen

Ohne Beweis stellen wir fest, dass die Einsteinschen Feldgleichungen durch die im

Anschluss an (21.7) aufgestellten Forderungen 1 – 4 eindeutig festgelegt sind (Ka-

pitel 6.2 in [1]). Um dies zu zeigen, geht man am betrachteten Punkt in ein Lokales

Inertialsystem mit Γ ··· = 0. Dann ist Gμν allein aus den partiellen Ableitungen

∂Γ ···/∂x· zu bilden. Die Forderung 1 lässt nur eine bestimmte Kombination dieser

Ableitungen zu; dies sind gerade die ersten beiden Terme auf der rechten Seite von

(21.11). Damit ist der Krümmungstensor der einzige Tensor, aus dem ein Ausdruck

gebildet werden kann, der linear in der zweiten Ableitung ist. 

Um zu alternativen Gravitationstheorien zu kommen, muss man also von den

aufgestellten Forderungen abweichen. Eine Möglichkeit ist, in Gμν einen in gμν

linearen Term zuzulassen (abweichend von der Forderung 2). Eine weitergehende

Modifikation ist die Einführung zusätzlicher Felder neben gμν. Im Folgenden dis-

kutieren wir beide Möglichkeiten. 

Kosmologische Konstante

Eine naheliegende Verallgemeinerung der Forderung 2 ist ein Zusatzterm, der linear

in gμν ist. Dann lauten die Feldgleichungen

Rμν − R gμν + Λ gμν = −8πG Tμν

(21.30)

2

c4

Dabei ist Λ ein Riemannskalar. Die oben aufgestellten Bedingungen 1 bis 3 werden

(nach der Verallgemeinerung von Punkt 2) durch (21.30) befriedigt. Die Bedingung

4 (Reduktion auf den Newtonschen Grenzfall) ist aber nicht mehr erfüllt. Da Rμν

zweite Ableitungen nach den Koordinaten enthält, hat Λ die Dimension 1/Länge2. 

Nun funktioniert Newtons Theorie im Sonnensystem bestens. Hierfür muss der Zu-

satzterm also sehr klein sein. Als hinreichende Bedingung können wir zum Beispiel

annehmen, dass die Länge Λ−1/2 größer als der Durchmesser der Milchstraße ist:

1

√

> 105 Lichtjahre

(21.31)

Λ

Wegen dieser Einschränkung werden wir die  kosmologische Konstante Λ erst wie-

der bei der Behandlung der großräumigen Bewegung des Universums betrachten. 

Die aktuellen Weltmodelle favorisieren eine nichtverschwindende kosmologische

Konstante in der Größenordnung Λ−1/2 ∼ 1010 Lj (Kapitel 54). 

Für μ = ν = 0 wird die rechte Seite von (21.30) mit (8.10) zu −(8πG/c2) . 

Wir können den kosmologischen Zusatzterm Λg00 ≈ Λ auf die rechte Seite bringen

und als Beitrag zur Massendichte betrachten. Dies bedeutet die Ersetzung  →

 + Λ, wobei

Λ = c2 Λ

(21.32)

8πG
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Die Konstante Λ entspricht damit einer Energiedichte Λ c2 des Vakuums (des lee-

ren Raums). Der gravitative Einfluss dieser Vakuumenergiedichte wird in den Ka-

piteln 53 und 54 untersucht. 

Alternative Feldtheorien

Die Entwicklung alternativer Feldtheorien geht üblicherweise von einem Ansatz

für die Lagrangedichte aus. Die freien Feldgleichungen der ART folgen aus dem



√

√

Variationsprinzip δ d4x

|g| R = 0; dabei ist |g| d4x das kovariante Volu-

menelement und R der Krümmungsskalar. Die Lagrangedichte Lgrav ∝ R dieses

Variationsprinzips ist offenbar der einfachste Riemannskalar, den man in diesem

Zusammenhang betrachten kann. Die Lagrangedichte Lmat der Materie erhält man, 

wenn man vom SRT-Ausdruck ausgeht und beliebige Koordinaten einführt (effektiv



√

wird ηαβ durch gμν ersetzt). Das Variationsprinzip δ d4x

|g| (Lgrav +Lmat) = 0

ergibt dann die Feldgleichungen der ART. Eine ausführlichere Diskussion dieser

Zusammenhänge findet man etwa im Abschnitt 3.4 von [2]. 

Die Einführung zusätzlicher Felder in der Lagrangedichte L = Lgrav + Lmat

führt zu alternativen, von der ART abweichenden Theorien. Ein Beispiel hierfür

wird im Folgenden Abschnitt gegeben. Dabei liegt es nahe, zusätzliche Felder zu be-

trachten, die ausschließlich in Lgrav eingehen; denn zusätzliche Felder in Lmat ver-

letzen im allgemeinen das mit hoher Genauigkeit (10−12 ) verifizierte Äquivalenz-

prinzip. Aus dem Äquivalenzprinzips folgen ja die Bewegungsgleichungen der ART

und damit die (metrische) Kopplung zwischen Feld und Materie. Im Variations-

prinzip ergibt sich diese Kopplung aus den gμν in Lmat. 

Durch Lgrav wird der Inhalt (gμν und andere Felder), die Selbstwechselwirkung

(Nichtlinearität) und die Dynamik des Gravitationsfelds bestimmt. Konsequenzen

des Einsteinschen Ansatzes Lgrav ∝ R sind mit einer Genauigkeit von etwa 10−3

verifiziert (Kapitel 31), so dass der Spielraum für Modifikationen hier größer ist als

bei der Kopplung zwischen Feld und Materie. 

Nachdem die Einsteinsche Theorie durch alle Experimente bestätigt wird (mit

einer Genauigkeit von 10−12 für das Äquivalenzprinzip und 10−3 für die Dynamik

des Felds), stellt sich die Frage, warum man überhaupt alternative Theorien betrach-

ten sollte. Ein wesentlicher Grund ist, dass nahezu alle Versuche, den gegenwärtigen

Rahmen der Theoretischen Physik zu erweitern (Kaluza-Klein-Theorie, Stringtheo-

rien, supersymmetrische Theorien) neue Felder implizieren, die zur Gravitation bei-

tragen. Diese neuen Felder ändern zum einen die Dynamik des Feldes selbst (also

Lgrav). Meistens ändern sie aber auch die Wechselwirkung zwischen dem Feld und

der Materie, das heißt sie verletzen das Äquivalenzprinzip1. Dabei gibt es Theorien, 

bei denen die theoretisch zu erwartende Verletzung des Äquivalenzprinzips kleiner

als 10−12 ist. 

1T. Damour,  Testing the equivalence principle: why and how? , Class. Quantum Grav. 13 (1996) A33 oder E-Print gr-qc/960680 im Archiv www.arxiv.org. 
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 Brans-Dicke-Theorie

Brans und Dicke führten zusätzlich zu den Feldern gμν ein skalares Feld Ψ ein. Als

motivierende Idee betrachten wir dazu den Zusammenhang

G MK ∼ c2 RK

(21.33)

zwischen der Masse MK und der Ausdehnung RK eines Körpers. Dieser Zusammen-

hang ergibt sich gerade dann, wenn das Gravitationsfeld des Körpers relativistisch

ist, also Φ ∼ GMK/RK ∼ c2. Aufgrund von (21.33) kann man vermuten, dass

die Stärke G der Gravitationswechselwirkung durch die vorhandenen Massen (MK

in Bereichen der Größe R 3 ) des Kosmos bedingt wird. Dieser Gedanke kann als

K

Erweiterung des Machschen Prinzips aufgefasst werden. Wenn die Stärke des Gra-

vitationsfelds tatsächlich durch die Massen des Kosmos hervorgerufen wird, dann

sollte G keine Konstante sein. In der Skalar-Tensor-Theorie wird G durch ein skala-

res, langreichweitiges Feld Ψ ersetzt, das durch die vorhandenen Massen bestimmt

wird. Die einfachste kovariante Feldgleichung für Ψ lautet Ψ |ν ||ν ∝ T = T νν. Für

die kosmischen Massen ergibt dies Ψ/R 2 ∝ M

. Der Vergleich mit (21.33)

K

K/R 3

K

zeigt dann Ψ ∝ 1/G. Man wählt die Konstanten in der Feldgleichung so, dass das

 mittlere  Feld gleich der inversen Gravitationskonstante ist, 

G = 1

(21.34)

Ψ 

Im Sonnensystem ist das durch die kosmischen Massen hervorgerufene Feld Ψ (r, t )

praktisch konstant und kann durch seinen Mittelwert 1/G ersetzt werden. 

Die Skalar-Tensor-Theorie von Brans und Dicke führt zu gekoppelten Feldglei-

chungen für gμν und Ψ . Die Theorie enthält einen dimensionslosen Parameter ω

mit der Bedeutung

 ∞

ART-Grenzfall

ω = Einfluss des Tensorfelds gμν =

(21.35)

Einfluss des Skalarfelds Ψ

O(1)

Ψ -Feld wichtig

Die Brans-Dicke-Theorie legt den Parameter ω numerisch nicht fest; sie enthält

die ART als Grenzfall ω → ∞. Dabei bedeutet ω = O(1), dass die vorgenommene

Modifikation der Einsteinschen Feldgleichungen physikalisch wichtig ist. Nachdem

neuere Experimente den möglichen Parameterbereich auf ω > 104 einschränken, 

erscheint die Brans-Dicke-Theorie heute nicht mehr besonders attraktiv. 
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Aufgaben

 21.1 Umformung der Feldgleichungen

Zeigen Sie, dass die Feldgleichungen

R

Rμν −

gμν + Λ gμν = −8πG Tμν

2

c4

in der folgenden alternativen Form geschrieben werden können:





Rμν − Λ gμν = − 8πG Tμν − T gμν

(21.36)

c4

2



22 Struktur der Feldgleichungen

Wir diskutieren einige formale Eigenschaften der Einsteinschen Feldgleichungen. 

Für schwache Felder wird der Energie-Impuls-Tensor des Gravitationsfelds aufge-

stellt. In diesem Grenzfall können die Feldgleichungen linearisiert werden, und ihre

allgemeine Lösung kann angegeben werden. 

Anzahl der unabhängigen Gleichungen

Die Tensoren Gμν und Tμν sind symmetrisch und haben daher 10 unabhängige

Komponenten. Die Feldgleichungen (21.27) sind also 10 algebraisch unabhängi-

ge Gleichungen für die Größen gμν. Man könnte nun vermuten, dass diese Glei-

chungen ausreichen, um die 10 unabhängigen Komponenten des gesuchten Feldes

gμν(x) zu bestimmen. Dies ist jedoch nicht der Fall, da die 10 Funktionen Gμν den

4 Bedingungen

Gμν ||ν = 0

(22.1)

genügen. Die Gμν wurden im letzten Kapitel ja gerade so bestimmt, dass (22.1) für

beliebige gμν gilt. Wegen (22.1) sind nur 10 − 4 = 6 der Einsteinschen Gleichun-

gen funktional unabhängig. Daher können die Feldgleichungen die 10 Funktionen

gμν nicht vollständig festlegen. Die Unbestimmtheit in der Lösung gμν(x) ist ei-

ne notwendige Folge der Kovarianz der Feldgleichungen; denn aus einer Lösung

gμν(x) ergibt sich durch eine allgemeine Koordinatentransformation xμ → xμ

wiederum eine Lösung gμν(x). Eine Koordinatentransformation entspricht der

Wahl von 4 Funktionen xμ = xμ(x); die Feldgleichungen können und dürfen

daher nur 10 − 4 = 6 Funktionen festlegen. Als triviales Beispiel führen wir an, 

dass die freien Feldgleichungen Rμν = 0 sowohl durch gμν = ημν wie auch durch

(gμν) = diag (1, −1, −(x1)2, −(x1 sin x2)2) gelöst werden (entsprechend karte-

sischen und Kugelkoordinaten im Minkowski-Raum). Diese Freiheit kann genutzt

werden, um die Lösung eines Problems durch die Wahl geeigneter Koordinaten zu

vereinfachen. 

Auch in der Elektrodynamik sind die Potenziale nicht eindeutig durch die Feld-

gleichungen festgelegt. Die Maxwellgleichungen

F αβ |α = 4π j β

(22.2)

c

stellen vier algebraisch unabhängige Gleichungen (β = 0, 1, 2, 3) für die vier un-

bekannten Felder Aα dar. Für beliebige Aα erfüllen die Felder die Bedingung

F αβ |α|β = 0

(22.3)

124
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Daher sind in (22.2) nur 4 − 1 = 3 funktional unabhängige Gleichungen enthalten. 

Die Bedingungen (22.3) und (22.1) entsprechen den jeweiligen Erhaltungssätzen

für die Quellterme der Feldgleichung. 

In der ART wie in der Elektrodynamik gibt es Transformationen in den Po-

tenzialen (gμν und Aα), die die Form der Feldgleichungen nicht ändern (in der

Elektrodynamik sind die Felder F αβ selbst invariant). Dies sind in einem Fall die

allgemeinen Koordinatentransformationen und im anderen Fall die Eichtransforma-

tionen. Diese Freiheit kann dazu ausgenutzt werden, um durch eine geeignete Eich-

bedingung die Feldgleichungen zu entkoppeln. In der Elektrodynamik kann man

die Eichbedingung Aα|α = 0 verlangen. Damit wird (22.2) zu

2Aα = 4π jα

(22.4)

c

also zu  entkoppelten  Feldgleichungen. Analog hierzu werden wir die Freiheit in den

gμν benutzen, um die linearisierten Feldgleichungen zu entkoppeln. 

Möglichkeiten zur Lösung der Feldgleichungen

Da die Feldgleichungen  nichtlinear  sind, gibt es  kein  Standardverfahren zur Lö-

sung dieser Gleichungen bei gegebenen Quellen (im Gegensatz zu den retardierten

Potenzialen der Elektrodynamik). Es gibt jedoch:

1. Exakte Lösungen unter vereinfachenden Annahmen (wie zum Beispiel Iso-

tropie und Zeitunabhängigkeit). 

2. Lösung der linearisierten Feldgleichung für schwache Felder. 

3. Post-Newtonsche Näherungen der Feld- und der Bewegungsgleichungen für

schwache Felder und für langsam bewegte Teilchen. 

In Kapitel 24 stellen wir eine erste exakte, nichttriviale Lösung vor; weitere solche

Lösungen werden später angegeben. Die linearisierten Feldgleichungen und ihre

Lösung werden im letzten Teil dieses Kapitels angegeben. Der Teil VII über Gravi-

tationswellen bezieht sich ausschließlich auf die linearisierten Feldgleichungen. 

Für die in Planeten- oder Doppelsternsystemen auftretenden Geschwindigkeiten

gilt v2/c2 ∼ |Φ|/c2  1. Die Post-Newtonsche Näherung ist eine systematische

Entwicklung der Bewegungs- und Feldgleichungen nach diesen kleinen Größen. 

Dabei werden jeweils alle Terme konsistent bis zu einer bestimmten Ordnung be-

rücksichtigt. Die niedrigste Ordnung ergibt den Newtonschen Grenzfall, die nächste

Ordnung führt zur ersten Post-Newtonschen Näherung. Wir werden dieses Nähe-

rungsschema nicht im Einzelnen verfolgen. Bei den zu berechnenden Effekten im

Sonnensystem werden wir aber – entsprechend der ersten Post-Newtonschen Nähe-

rung – jeweils die führende Korrektur zum Newtonschen Grenzfall angeben. 
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Energie-Impuls-Tensor des Gravitationsfelds

Für den Fall kleiner Abweichungen vom Minkowskitensor

gμν = ημν + hμν

mit

|hμν|  1

(22.5)

können wir Gμν nach Potenzen von hμν entwickeln. Die Terme 1. Ordnung ergeben

eine lineare Wellengleichung. Bei Vernachlässigung der Terme 3. Ordnung ergeben

die Terme 2. Ordnung den Energie-Impuls-Tensor des Gravitationsfelds. 

Wir bezeichnen die Terme verschiedener Ordnung in hμν gemäß

Rμν = R (1) +

+

μν

R (2)

μν

. . . 

(22.6)

(

Natürlich ist R 0)

μν = 0. Aus (18.11), 





Rρμσν = 1 gρσ|μ|ν + gμν|ρ|σ − gμσ|ν|ρ − gρν|σ|μ + O(h2)

(22.7)

2

erhalten wir





R (1) = Rρ (1) = 1 2h

μν

μρν

μν + hρ ρ|μ|ν − hρ μ|ρ|ν − hρ ν|ρ|μ

(22.8)

2

Wegen (22.5) sind die betrachteten Koordinaten Fast-Minkowskikoordinaten, so

dass wir mit

∂μ ∂μ = 2 + O(h)

(22.9)

den d’Alembert-Operator 2 = ∂α ∂α einführen konnten. Der Krümmungsskalar ist

in 1. Ordnung in h durch

(

R (1) = ηλρ R 1)

(22.10)

λρ

gegeben. Wir kommen nun zu den Termen 2. Ordnung in h auf der linken Seite der

Feldgleichungen. Wir fassen diese Terme zu einer Größe tμν zusammen, 





R g

(2)

μν

R (2) −

= 8πG t

μν

μν

(22.11)

2

c4

und bringen sie auf die rechte Seite der Feldgleichungen. Dann lauten die Einstein-

schen Feldgleichungen bei Vernachlässigung der Terme der 3. und höherer Ord-

nung:





R (1) − R (1) η

T

μν

μν = − 8πG

μν + tμν

(22.12)

2

c4

Dies ist eine in hμν lineare Wellengleichung mit den Quelltermen

τμν = Tμν + tμν

(22.13)

Die Interpretation von tμν ergibt sich aus folgender Überlegung: Für Gμν = Rμν −

gμν R/2 gilt Gμν ||ν = 0. Diese Gleichung ist für beliebige Felder erfüllt, und damit

insbesondere auch in 1. Ordnung, also Gμν

(

|| 1)

ν

= 0. Dies ist gleichbedeutend





∂

R (1)

R (1) −

ημν

= 0

(22.14)

∂x

μν

ν

2
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Damit folgt aus (22.12)

∂ τμν = T |ν

|ν

μν

+ tμν = 0

(22.15)

∂xν

Der Erhaltungssatz T

||ν

μν

= 0 enthält den Einfluss des Gravitationsfelds auf die in

Tμν enthaltenen Teile; für (20.29) sind dies die relativistischen Grundgleichungen

der Hydrodynamik im Gravitationsfeld. Im Gegensatz dazu treten in (22.15) die

nichtgravitativen (Tμν) und die gravitativen Anteile (tμν) als Summe auf. 

Für ein abgeschlossenes System ergibt sich aus τ

|ν

μν

= 0 in bekannter Weise

(Kapitel 8), dass der 4-Impuls



Pμ =

d3r τμ0 = const. 

(22.16)

zeitlich konstant ist. Daraus folgt die Interpretation von τμ0 als Impulsdichte und

von τμν als Energie-Impuls-Tensor. Da Tμν alle nichtgravitativen Anteile enthält, ist

tμν aus (22.11) der Energie-Impuls-Tensor des Gravitationsfelds. Wir kennzeichnen

dies durch einen Index ‘grav’:

)





*

c4

R g

(2)





μν

t grav =

−

|

μν

R (2)

hμν|  1

(22.17)

8πG

μν

2

Dieser Ausdruck wird in Kapitel 34 weiter ausgewertet. 

Linearisierte Feldgleichungen

Wir stellen die Einsteinschen Feldgleichungen in erster Ordnung in h auf. Die Lö-

sung der resultierenden  linearisierten Feldgleichungen  kann in der Form der retar-

dierten Potenziale angegeben werden. 

Mit (22.8) werden die Feldgleichungen in erster Ordnung in h zu





2hμν + hρρ|μ|ν − hρμ|ρ|ν − hρν|ρ|μ = −16πG Tμν − T ημν

(22.18)

c4

2

Mit der linken Seite ist auch die rechte von 1. Ordnung in h; daher kann gμν hier

durch ημν ersetzt werden. 

Da die Feldgleichungen kovariant sind, steht es uns frei, eine Koordinatentrans-

formation durchzuführen. Da wir |hμν|  1 voraussetzen, sind dabei aber nur klei-

ne Abweichungen von den Minkowskikoordinaten zugelassen, also Koordinaten-

transformationen

xμ −→ xμ = xμ + μ(x)

(22.19)

mit kleinen μ. Aus

μ

∂x ν

g μν = α αν gλκ = ∂xμ

gλκ

(22.20)

λ

κ

∂xλ ∂xκ
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leiten wir die Transformation der hμν ab. Zunächst ist zu beachten, dass in

gμν = ημν − hμν

(22.21)

verglichen mit gμν = ημν + hμν ein Minuszeichen auftritt. Dies rührt daher, dass

gνκ als Inverses von gκμ definiert ist, also durch die Bedingung gνκ gκμ = δλμ. Man

überprüft leicht, dass (22.21) diese Bedingung in erster Ordnung in h erfüllt. Wir

setzen (22.21) und

∂xμ = μ

δ + ∂μ

(22.22)

∂xλ

λ

∂xλ

in (22.20) ein:



 

 



μ

∂μ

∂ν

ημν − hμν = δ +

δν +

ηλκ − hλκ

(22.23)

λ

∂xλ

κ

∂xκ

Dies ergibt

∂μ

∂ν

hμν = hμν −

−

(22.24)

∂xν

∂xμ

Da dies bereits die erste Ordnung in h ist, können wir Indizes mit g·· ≈ η·· und

g·· ≈ η·· nach unten oder oben ziehen. Damit gilt auch

∂μ

∂ν

h

=

−

μν

hμν −

(Eichtransformation)

(22.25)

∂xν

∂xμ

In Analogie zur Elektrodynamik wird diese Transformation der Potenziale gμν als

 Eichtransformation  bezeichnet. Die Koordinatentransformation (22.19) ändert nicht

die Form der Feldgleichungen (22.18). Die Möglichkeit, vier Funktionen μ(x) frei

zu wählen, erlaubt es, folgende vier Bedingungen an die Potenziale hμν zu stellen:

2 hμν|μ = hμμ|ν

(ν = 0, 1, 2, 3)

(22.26)

Die Bedeutung der hierdurch festgelegten Koordinaten ergibt sich aus den physika-

lischen Abständen ds2 = (ημν + hμν) dxμ dxν. Ebenso wie in der Elektrodynamik

sind physikalische Resultate von der Eichung (also von den benutzten Koordinaten)

unabhängig. 

Wir setzen die Eichbedingungen (22.26) in (22.18) ein und erhalten die  entkop-

 pelten linearisierten Feldgleichungen:





2

Linearisierte

hμν = −16πG Tμν − T ημν

(22.27)

c4

2

Feldgleichungen

Diese Gleichungen haben dieselbe Struktur wie die Feldgleichungen (22.4) der

Elektrodynamik. Die Lösung hat daher die bekannte Form der retardierten Poten-

ziale, 



hμν(r, t) = −4G

d3r Sμν (r, t − |r − r|/c)

(22.28)

c4

|r − r|
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mit

T

Sμν = Tμν −

ημν

(22.29)

2

Die Bedeutung des retardierten Zeitarguments in Sμν ist bekannt: Die Quellterme

bei r beeinflussen das Feld an der Stelle r nur zu einer um |r − r|/c späteren Zeit. Wenn sich die Quellterme an einer Stelle ändern, dann breitet sich die dadurch

hervorgerufene Störung des Felds mit Lichtgeschwindigkeit aus. 

Formal sind auch die avancierten Potenziale Lösungen der linearisierten Feld-

gleichungen; sie verletzen aber die Kausalitätsforderung. 

Quantisierung der Feldgleichungen

Die Allgemeine Relativitätstheorie ist ebenso wie die Elektrodynamik eine klas-

sische Feldtheorie. Für viele Phänomene ist eine solche klassische Theorie auch

ausreichend. Im Elektromagnetismus gibt es aber viele Phänomene (wie den Photo-

effekt, die Plancksche Strahlungsverteilung und den Compton-Effekt), für deren

Beschreibung es notwendig ist, das Feld zu quantisieren. Die quantisierte Theo-

rie ist hier die Quantenelektrodynamik, die – soweit wir wissen – alle Phänomene

korrekt beschreibt. Wie steht es aber mit der ART? 

Es gibt bisher keine vollständige und konsistente quantenmechanische Theo-

rie der Gravitation1. Bei der Quantisierung der Feldgleichungen der ART treten

Schwierigkeiten auf, die mit den nichtphysikalischen Freiheitsgraden in den gμν

und mit der Nichtlinearität der Feldgleichungen zusammenhängen. 

Die Frage der Quantisierung vereinfacht sich, wenn wir die linearisierten Feld-

gleichungen betrachten. In diesem Fall ist die Analogie zur Elektrodynamik beson-

ders eng. Eine elementare Quantisierung besteht in der Annahme, dass eine Welle

aus endlichen Einheiten mit der Energie ¯hω besteht. Die oben aufgezählten Effekte

des Elektromagnetismus kann man in dieser Weise behandeln. Im Rahmen einer

solchen elementaren Quantisierung werden wir in Kapitel 32 die Energie-Impuls-

Beziehung und den Spin von Gravitonen, den Quanten des Gravitationsfelds, behan-

deln. Die Abschätzung der Wahrscheinlichkeit, dass ein Atom ein Graviton emittiert

(Kapitel 36), macht deutlich, warum dieser Quantisierung keine praktische Bedeu-

tung zukommt. 

Wir betrachten nun wieder die nichtlinearen Feldgleichungen der ART und

schätzen ab, unter welchen Bedingungen Quanteneffekte wichtig sein könnten. Ein

Teilchen der Masse M hat die Comptonwellenlänge λC = ¯h/M c. Quanteneffek-

te der Gravitation sind dann wichtig, wenn die absolute Stärke des Gravitations-

potenzials im Bereich λC von der Größe 1 ist, also für GM/(c2 λC) ∼ 1 (oder, alter-

nativ, wenn die Comptonwellenlänge und der Schwarzschildradius von derselben

Größe sind). Die Masse eines Objekts, das diese Bedingung erfüllt, wird Planck-

1M. Perry,  Quantum Gravity, Seite 377–406 in Ref. [8]















130

Teil V Grundgesetze der ART

masse genannt:

 ¯hc

GeV

MP =

≈ 1.2 · 1019

(Planckmasse)

(22.30)

G

c2

Diese Abschätzung lässt sich auch dadurch begründen, dass MP die einzige Masse

ist, die sich aus den Naturkonstanten c, G (relativistische Gravitationstheorie) und

¯h (Quantentheorie) bilden lässt. Die Comptonwellenlänge der Planckmasse ist die

Plancksche Länge, 

 ¯hG

LP =

≈ 1.6 · 10−35 m

(Plancksche Länge)

(22.31)

c3

Auf der Längenskala L < 

∼ LP (oder für elementare Teilchen mit M > 

∼ MP) dürften

Quanteneffekte der Gravitation eine wichtige Rolle spielen. Diese Bereiche liegen

um viele Größenordnungen außerhalb des Bereichs unserer technischen Möglich-

keiten; in existierenden Beschleuniger können Teilchen mit einer maximalen Ener-

gie von etwa 103 GeV erzeugt werden. Quanteneffekte müssten aber bei der (sehr)

spekulativen Behandlung des Zentrums eines Schwarzen Lochs (Kapitel 48) oder

des sehr frühen Universums (Kapitel 55) berücksichtigt werden. 

Zusammenfassend stellen wir fest: Es gibt keine allgemein akzeptierte quanti-

sierte Feldtheorie der Gravitation. Es sind auch keine realen Experimente vorstell-

bar, in der die Quantisierung eine Rolle spielen sollte. Die Frage, wie eine kon-

sistente Quantenfeldtheorie der Gravitation aufgebaut werden kann, ist aber von

grundsätzlichem Interesse für das Gebäude der Theoretischen Physik. 

Aufgaben

 22.1 Eichbedingung für schwache Felder

Für schwache Felder ist T

||ν

|ν

μν

≈ Tμν ≈ 0. Zeigen Sie damit, dass die retardierten

Potenziale



hμν(r, t) = −4G

d3r Sμν (r, t − |r − r|/c)

(22.32)

c4

|r − r|

mit Sμν = Tμν − (T /2) ημν die Eichbedingungen

2 hμν|μ = hμμ|ν

erfüllen. 

 22.2 Gravitationsfeld einer rotierenden Kugel

Bestimmen Sie aus (22.28) die statischen Felder hμν(r) im Außenraum einer ho-

mogenen, gleichförmig rotierenden Kugel (Dichte , Radius R, Frequenz ω, Druck

P ≈ 0). Nehmen Sie nur die Terme erster Ordnung in v/c und ω R/c mit. 

VI Statische Gravitationsfelder

23 Isotrope statische Metrik

Der Teil VI befasst sich mit statischen Gravitationsfeldern. Die betrachteten Felder

sind mit dem Coulombfeld einer geladenen Kugel oder mit dem Magnetfeld einer

rotierenden Kugel zu vergleichen. 

Nach der Ableitung der isotropen statischen Metrik (Kapitel 23 und 24) disku-

tieren und berechnen wir eine Reihe von physikalischen Effekten. Die berechneten

Vorhersagen können im Sonnensystem überprüft werden. 

Standardform

Viele Anwendungen beziehen sich auf das Gravitationsfeld der Erde und der Son-

ne. Sehen wir von der Drehung (mit vi  c) und der geringfügigen Abplattung ab, 

so stellen die Erde oder die Sonne eine  kugelsymmetrische und statische  Massen-

verteilung dar. Hierfür sollte es eine isotrope und statische Lösung gμν(x) der Feld-

gleichungen geben. Wir stellen zunächst die allgemeine Form einer solchen Metrik

auf. Diese Standardform dient dann im nächsten Kapitel als Lösungsansatz für Ein-

steins Feldgleichungen. 

Für r → ∞ geht Newtons Gravitationspotenzial Φ = −GM/r gegen null. 

Asymptotisch sollte die gesuchte Metrik daher zur Minkowskimetrik werden, also





ds2 = c2 dt2 − dr2 − r2 dθ2 + sin2 θ dφ2

(r → ∞)

(23.1)

Hierin sind r, θ und φ Kugelkoordinaten, und t ist die Zeitkoordinate. Im Bereich

des Gravitationsfelds können nun metrische Koeffizienten auftreten, die von denen

in (23.1) abweichen:





ds2 = B(r) c2 dt2 − A(r) dr2 − C(r) r2 dθ2 + sin2 θ dφ2

(23.2)

Wegen der vorausgesetzten Isotropie und Zeitunabhängigkeit können die Koeffi-

zienten nicht von θ , φ oder t abhängen. Andere Differenziale als in (23.1) müs-

sen nicht berücksichtigt werden: Wegen der Isotropie darf der Abstand zwischen

den Punkten (t, r, θ , φ) und (t, r, θ ± dθ, φ) nicht vom Vorzeichen in ±dθ abhän-

gen. Also darf es keine in dθ (oder dφ) linearen Terme geben. Einen möglichen
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Term der Form D(r) dr dt kann man durch Einführung einer neuen Zeitvariablen, 

t → t + ψ(r), eliminieren. 

Die Freiheit der Koordinatenwahl erlaubt die Einführung einer neuen Radius-

variablen in (23.2). Daher können wir C(r) = 1 setzen, also

Standardform: 



(23.3)

ds2 = B(r) c2dt2 − A(r) dr2 − r2 dθ2 + sin2 θ dφ2

Dies ist ein allgemeiner Ansatz für die isotrope und statische Metrik; er wird

 Standardform  genannt. Wegen des Grenzfalls (23.1) gilt

r→∞

r→∞

B(r) −→ 1 , 

A(r) −→ 1

(23.4)

Wir diskutieren die Bedeutung der Koordinaten in der Standardform: Die Freiheit, 

andere Koordinaten zu wählen, haben wir nur für r und t in Anspruch genommen. 

Die Winkelkoordinaten θ und φ haben daher dieselbe Bedeutung wie in (23.1), also

ihre übliche Bedeutung. Praktisch können die Winkel durch die Fixsterne festge-

legt werden; denn der Grenzfall (23.1) entspricht einem Inertialsystem, das wir als

ruhend gegenüber dem Fixsternhimmel annehmen. Wegen (23.4) ist t die Zeit, die

eine im Unendlichen ruhende Uhr anzeigt. Wegen (23.4) ist r asymptotisch die üb-

liche Abstandskoordinate. 

Wegen der vorausgesetzten Isotropie sind alle Punkte auf der Fläche r = const. 

gleichberechtigt (wie die Punkte auf einer Kugeloberfläche). Der Inhalt dieser Flä-

 r

che ist 4πr2; radiale Abstände sind dagegen mit Δr =

2 drA1/2 zu berechnen. 

r1

Für A = 1 ist der dreidimensionalen Unterraums (mit den Koordinaten r, θ, φ) im

Allgemeinen nicht eben. Daher hat die Fläche r = const. auch nicht alle Eigen-

schaften einer Kugeloberfläche im euklidischen Raum. 

Robertson-Entwicklung

Bereits ohne eine Lösung der Feldgleichungen können wir eine Entwicklung der

Metrik (23.3) für schwache Felder außerhalb der Massenverteilung angeben. Das

Feld kann von der Gesamtmasse M des betrachteten Objekts (etwa Erde oder Son-

ne), vom betrachteten Ort r und von den Konstanten G und c abhängen. Da die

Koeffizienten A(r) und B(r) dimensionslos sind, können sie nur von der dimensi-

onslosen Kombination GM/(c2 r) dieser Größen abhängen. Für GM/(c2 r)  1

kann man daher folgende  Robertson-Entwicklung  ansetzen:





GM

GM 2

B(r) = 1 − 2

+ 2 (β − γ )

+ . . . 

c2 r

c2 r

(23.5)

GM

A(r) = 1 + 2γ

+ . . . 

Robertson-Entwicklung

c2 r
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Da die Feldgleichungen den Newtonschen Grenzfall (11.28) enthalten müssen, be-

ginnt die Entwicklung für B(r) mit 1 − 2 GM/(c2 r). Eine (kleine) Abweichung

B(r) = 1 − 2α GM/(c2 r) mit α = 1 ist zwar denkbar; sie wäre aber experimentell

kaum feststellbar, weil die Masse von Himmelskörpern (Erde, Sonne) faktisch nur

über ihr asymptotisches Gravitationsfeld bestimmt wird; eine Abschätzung über die

Größe und Dichte dieser Objekte wäre mit großen Fehlern behaftet. Die Bezeich-

nung des nächsten Koeffizienten in B(r) mit 2 (β − γ ) (etwa anstelle von 2β) hat

historische Gründe1. 

Die Robertson-Entwicklung hat folgenden Sinn: Die Lösung der Bewegungs-

gleichungen im Gravitationsfeld (23.5) ergibt Vorhersagen für physikalische Effek-

te, die von den dimensionslosen Parametern β, γ , . . . abhängen. Für das Gravitati-

onsfeld der Sonne gilt GM/(c2 r) ≤ GM/(c2R) ≈ 2 · 10−6, so dass hier nur die

Terme mit β und γ eine Rolle spielen. Die Auswertung von Experimenten ergibt

dann Werte für diese Parameter, die mit den theoretischen Vorhersagen verglichen

werden können. Für die Allgemeine Relativitätstheorie und die Newtonsche Gravi-

tationstheorie gilt

β = 1, γ = 1

(ART)

(23.6)

β = 0, γ = 0

(Newton)

In Newtons Theorie wird ein dreidimensionaler euklidischer Raum verwendet, also

A(r) = 1 und γ = 0. Aus dem Newtonschen Grenzfall g00 = B(r) ≈ 1 + 2 Φ/c2

folgt dann β = 0. Die ART-Werte erhalten wir im nächsten Kapitel aus der Lösung

der Feldgleichung. 

Die Newtonsche Himmelsmechanik ergibt sich aus β = γ = 0 und dem nicht-

relativistischen Grenzfall (v  c) der Bewegungsgleichung. In einer über Newton

hinausgehenden Korrektur sind die in (23.5) explizit aufgeführten Terme zu berück-

sichtigen. Wegen v2 ∼ GM/r müssen gleichzeitig in den Bewegungsgleichungen

die Terme der Ordnung v2/c2 berücksichtigt werden. Für nichtrelativistische Teil-

chen muss die Entwicklung (23.5) für g00 = B um eine Ordnung weiter geführt

werden als für g11 = A; denn die Terme g00 (u0)2 ∼ g00 c2 und g11 (u1)2 ∼ g11 v2

sind in gleicher Ordnung zu behandeln. 

Christoffelsymbole

Der metrische Tensor der Standardform ist diagonal, 

⎛

⎞

B(r)

0

0

0





⎜ 0

−A(r)

0

0

⎟

g

⎜

⎟

μν

= ⎝ 0

0

−r2

0

⎠

(23.7)

0

0

0

−r2 sin2 θ

1Die Entwicklung wurde ursprünglich für die Isotrope Form (23.19) der Metrik angesetzt. Hier-

für lautet sie H = 1 − 2α x + 2β x2 + ... und J = 1 + 2γ x + ..., wobei x = GM/c2ρ. 
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und









1

gμν = diag

, − 1 , − 1 , −

1

(23.8)

B(r)

A(r)

r2

r2 sin2 θ

Die nichtverschwindenden Christoffelsymbole





gσ ν

∂gμν

∂gλν

∂gμλ

Γ σ =

+

−

λμ

(23.9)

2

∂xλ

∂xμ

∂xν

sind:

Γ 0 = Γ 0 = B , 

Γ 1 = B , 

Γ 1 = A

01

10

2B

00

2A

11

2A

r

r sin2 θ

Γ 2 = Γ 2 = 1 , 

Γ 1 = −

, 

Γ 1 = −

(23.10)

12

21

r

22

A

33

A

Γ 3 = Γ 3 = 1 , 

Γ 3 = Γ 3 = cot θ , 

Γ 2 = − sin θ cos θ

13

31

r

23

32

33

Aus

|g| = r4 A B sin2θ

(23.11)

mit A > 0 und B > 0 erhalten wir noch







√







∂ ln

|g|

2

A

B

Γ ρ

=

=

+

+

, 

μρ

0, 

cot θ , 0

(23.12)

∂xμ

r

2A

2B

Ricci-Tensor

Für den Ricci-Tensor

ρ

ρ

∂Γμρ

∂Γμν

Rμν =

−

+ Γ σ Γ ρ − Γ σ Γ ρ

∂xν

∂xρ

μρ

σ ν

μν

σρ

(23.13)

erhalten wir

ρ

∂Γ

ρ

0ρ

∂Γ

ρ

R

00

00

=

−

+ Γ σ Γ − Γ σ Γ ρ

∂x0

∂xρ

0ρ

σ 0

00

σρ





B

AB

B 2

B

A

B

= −

+

+

−

2 +

+

2A

2A2

2AB

2A

r

2A

2B





B

B

A

B

B

= −

+

+

−

(23.14)

2A

4A

A

B

rA

und





B

B

A

B

A

R11 =

−

+

−

(23.15)

2B

4B

A

B

rA





r

A

B

R22 = −1 −

−

+ 1

(23.16)

2A

A

B

A

R33 = R22 sin2 θ

(23.17)

Rμν = 0 für μ = ν

(23.18)
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Aufgaben

 23.1 Isotrope Form der Metrik

Gehen Sie von der Metrik





ds2 = B(r) c2 dt2 − A(r) dr2 − C(r) r2 dθ2 + sin2 θ dφ2

aus, und setzen Sie A(r) = G(r) + C(r). Führen Sie über



dρ

dr

=

1 + G(r)

ρ

r

C(r)

eine neue Radiuskoordinate ρ ein. Zeigen Sie, dass das Wegelement zu





ds2 = H (ρ) c2 dt2 − J (ρ) dρ2 + ρ2 dθ2 + ρ2 sin2 θ dφ2

(23.19)

wird, wobei H (ρ) = B(r) und J (ρ) = r2 C(r)/ρ2. Dies ist die sogenannte  isotrope

 Form  der Metrik. 







24 Schwarzschildmetrik

Wir bestimmen die Gravitationspotenziale gμν außerhalb einer sphärischen, stati-

schen Massenverteilung. Dazu setzen wir die gμν der Standardform in die freien

Feldgleichungen Rμν = 0 ein. Die Lösung der Feldgleichung ergibt die Schwarz-

schildmetrik. 

Vergleich mit der Elektrodynamik

Wir erläutern unser Vorgehen am Beispiel der Elektrodynamik. Im sphärischen und

statischen Fall ist die 4-Stromdichte von der Form (j α) = (c e(r), 0, 0, 0). Für das

4-Potenzial wird









Aα = Φe(r), 0, 0, 0

(24.1)

angesetzt. Dies entspricht dem Ansatz der Standardform für die gμν. Die Ladungs-

verteilung sei räumlich begrenzt, e = 0 für r > r0. Außerhalb der Ladungsvertei-

lung sind die freien Feldgleichungen (Maxwellgleichungen) zu lösen:

(24.1)

d2(r Φe)

a

F αβ |β = 0

⇒

1

= 0 ⇒ Φe = + b

(24.2)

r

dr2

r

Die Integrationskonstante a wird als Gesamtladung identifiziert; die Konstante b

kann willkürlich gleich null gesetzt werden. Im Folgenden führen wir die hierzu

analogen Schritte für die ART durch. 

Lösung der Einsteinschen Feldgleichungen

Wir gehen von einer statischen, sphärischen und begrenzten Massenverteilung aus, 

 = 0 (r ≤ r0)

(r)

(24.3)

= 0

(r > r0)

Der Druck P (r) innerhalb der Massenverteilung soll ebenfalls von der Form (24.3)

sein. Das mittlere Geschwindigkeitsfeld in der Massenverteilung ist im statischen

Fall gleich (uμ) = (u0, 0, 0, 0) mit u0 = const. Damit ist der Energie-Impuls-

Tensor, also der Quellterm der Feldgleichungen, zeitunabhängig und sphärisch. Da-

her sollte es eine statische und isotrope Lösung geben. Um sie zu finden, gehen wir

von dem Ansatz (23.3) aus, 









gμν = diag B(r), −A(r), −r2, −r2 sin2 θ

(24.4)
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Für eine Lösung  außerhalb  der Massenverteilung muss gelten

Rμν = 0

(r ≥ r0)

(24.5)

Die Quellterme treten hierbei nicht explizit auf. Ihre Eigenschaften (sphärisch, sta-

tisch) sind aber Voraussetzung für den Lösungsansatz (24.4). 

Der Ansatz (24.4) führt zu einer eindeutigen Lösung von (24.5). Von dieser

Lösung können wir durch eine Koordinatentransformation zu einer anderen, physi-

kalisch gleichwertigen Lösung übergehen; dies entspricht einer Eichtransformation

im Fall der Elektrodynamik. Daneben hat (24.5) auch noch physikalisch andere Lö-

sungen (zum Beispiel Wellenlösungen). 

Für den metrischen Tensor (24.4) sind die Rμν durch (23.14) – (23.18) gegeben. 

Danach ist (24.5) für μ = ν trivial erfüllt, und aus R22 = 0 folgt R33 = 0. Daher

reduziert sich (24.5) auf die drei Gleichungen

R00 = 0, 

R11 = 0, 

R22 = 0

(24.6)

Aus





R00

R

B

A

+ 11 = − 1

+

= 0

(24.7)

B

A

rA

B

A

erhalten wir

d ln (AB) = 0

(24.8)

dr

oder

A(r) B(r) = const. 

(24.9)

Aus (23.4) folgt, dass die Konstante gleich 1 ist, also

A(r) =

1

(24.10)

B(r)

Wir setzen dies in R22 aus (23.16) und R11 aus (23.15) ein:

R22 = −1 + r B + B = 0

(24.11)

B

B

rB + 2B

d R22

R11 =

+

=

= 1

= 0

(24.12)

2 B

rB

2 rB

2 rB

dr

Mit (24.11) ist (24.12) automatisch erfüllt. Wir schreiben (24.11) als

d (rB) = 1

(24.13)

dr

und integrieren zu rB = r + const. Wir bezeichnen die Konstante mit −2a. Damit

ist das Gravitationsfeld durch

B(r) = 1 − 2a , 

A(r) =

1

(r ≥ r0)

(24.14)

r

1 − 2a/r
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gegeben. Diese Lösung der freien Einsteinschen Feldgleichungen wurde 1916 von

Schwarzschild gefunden. Das Wegelement der  Schwarzschildmetrik (SM) lautet:

Schwarzschildmetrik:





dr2





(24.15)

ds2 = 1 − 2a c2 dt2 −

− r2 dθ2 + sin2θ dφ2

r

1 − 2a/r

Die Bedeutung der Integrationskonstante a ergibt sich aus dem Newtonschen

Grenzfall (21.2), 

r→∞

g00 = B(r) −→ 1 + 2 Φ = 1 − 2GM = 1 − 2a

(24.16)

c2

c2 r

r

Anstelle von a benutzt man auch oft den  Schwarzschildradius  rS, 

rS = 2a = 2GM

Schwarzschildradius

(24.17)

c2

Diskussion der Schwarzschildmetrik

Wir werden die Schwarzschildmetrik (SM) unter anderem für das Gravitationsfeld

der Sonne verwenden. Der Schwarzschildradius der Sonne ist

r

≈

S, = 2 GM

3 km

(24.18)

c2

Die Sonnenmasse M ≈ 2 · 1030 kg ist experimentell durch das asymptotische

Gravitationsfeld bestimmt. Der Schwarzschildradius ist viel kleiner als der Sonnen-

radius R ≈ 7 · 105 km:

rS, = 2GM ≈ 4 · 10−6

(24.19)

R

c2 R

Da die SM nur im Bereich r ≥ r0 = R gilt, sind die möglichen Abweichungen

von der Minkowskimetrik sehr klein:

rS

r

≤ S (Sonne)

= 4 · 10−6

(24.20)

r

r0

Wie bereits im letzten Kapitel diskutiert, haben die Winkelkoordinaten dieselbe

Bedeutung wie im euklidischen Raum. Die Koordinate t ist die Zeit, die eine im

Unendlichen ruhende Uhr anzeigt; für diese Uhr gilt dτ = ds /c = dt

Uhr

. Die Be-

deutung der r-Koordinate weicht wegen g11 = −1 von der entsprechenden Radius-

koordinate in der Minkowskimetrik ab; wegen (24.20) ist diese Abweichung aber

klein. 
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Asymptotisch geht die SM in die Minkowskimetrik über; daher können wir den

Fixsternhimmel als Bezugsrahmen nehmen. Die in der Metrik berechneten Winkel-

änderungen (etwa für die Lichtablenkung, die Periheldrehung und die Präzession

von Kreiseln) sind beobachtbare Winkeländerungen relativ zum Fixsternhimmel. 

Die Koeffizienten des metrischen Tensors der SM werden bei r = rS singu-

lär. Dies bedeutet aber nicht zwangsläufig eine Singularität des Raums. Beschreibt

man zum Beispiel die Kugeloberfläche mit den üblichen Koordinaten x1 = θ und

x2 = φ, so ist g22 = 1/ sin2 θ am Nordpol singulär, obwohl der Raum dort die

gleichen Eigenschaften wie an jedem anderen Punkt hat. Tatsächlich ist der durch

die SM beschriebene Raum bei r = rS nicht singulär (Kapitel 45). So tritt etwa in

dr/dτ für ein frei fallendes Teilchen keine Besonderheit auf. Der Radius rS ist aber

√

physikalisch ausgezeichnet: Eine bei r ruhende Uhr zeigt die Zeit dτ =

B dt an

(12.3). Daher divergiert dt /dτ für r → rS (dabei ist t die Zeit einer im Unendli-

chen ruhenden Uhr). Dies bedeutet, dass ein Photon, das bei r = rS emittiert wird, 

eine unendlich große Rotverschiebung erleidet. Dies impliziert auch, dass t keine

geeignete Zeitkoordinate für Ereignisse im Bereich r ≤ rS ist. 

Ein Stern mit einem Radius r0 ≤ rS heißt  Schwarzes Loch (Kapitel 48), weil von

seiner Oberfläche keine Photonen nach außen (also in den Bereich r > rS) dringen

können. In den Kapiteln 45 – 47 werden wir die Eigenschaften der SM bei r = rS

noch näher diskutieren. Für die Anwendungen im Sonnensystem ist dieser Bereich

aber wegen (24.20) ohne Bedeutung. 

Die SM hat auch noch eine Singularität bei r = 0, die analog zu derjenigen von

Φe in (24.2) ist. Wenn man mit r0 → 0 den Gültigkeitsbereich r ≥ r0 der Lösung

ausdehnt, so führt dies zu einer Punktmasse bei r = 0. Die Singularität der SM bei

r = 0 entspricht dieser Punktmasse. 

Das Linienelement der SM kann nach Potenzen von rS/r entwickelt werden. 

Der Vergleich mit der Robertson-Entwicklung (23.5) ergibt

β = 1, 

γ = 1

(ART)

(24.21)

Newtons Gravitationstheorie impliziert dagegen β = γ = 0, (23.6). Als Beispiel

für eine abweichende, relativistische Feldtheorie sei die Brans-Dicke-Theorie (siehe

letzter Abschnitt in Kapitel 21) erwähnt, die zu β = 1 und γ = (ω + 1)/(ω + 2)

mit dem weiteren Parameter ω führt. Abweichungen von (24.21) sind also durchaus

denkbar. Die Werte β = γ = 1 sind daher eine zu testende Voraussage der ART. 

 Krümmung des Raums

Nach den Feldgleichungen sind die Rμν nur im Bereich der Quellen ungleich null

(„Krümmung ist proportional zur Massendichte“). In der Schwarzschildmetrik gilt

Rμν = 0 und R = 0, da diese Lösung sich auf den quellfreien Raum bezieht. Der

dreidimensionale Unterraum der Schwarzschildmetrik (mit den Koordinaten r, θ , φ)

ist jedoch gekrümmt. In der Umgebung einer gravitierenden Masse ist die Raum-

krümmung daher null bezogen auf den vierdimensionalen Raum, aber ungleich null

bezogen auf den dreidimensionalen Unterraum (ohne die zeitliche Dimension). 































































25 Bewegung im Zentralfeld

Wir untersuchen die relativistische Verallgemeinerung des klassischen Keplerpro-

blems, also die Bewegung eines Körpers in einem zentralsymmetrischen, statischen

Gravitationsfeld. Die Diskussion schließt die Bewegung von Photonen mit ein. 

Bewegungsgleichungen

Nach (11.9) und (11.12) gilt für die Bahn xκ (λ) eines Teilchens im Gravitationsfeld

d2xκ

dxμ dxν

= −Γ κ

(25.1)

dλ2

μν

dλ

dλ

und











dxμ dxν

ds 2

dτ 2

c2

(m = 0)

gμν

=

= c2

=

(25.2)

dλ

dλ

dλ

dλ

0

(m = 0)

Für ein massives Teilchen verwenden wir λ = τ , für ein masseloses Teilchen muss

wegen dτ = 0 ein anderer Bahnparameter λ gewählt werden. 

Das zentralsymmetrische, statische Gravitationsfeld wird durch die Metrik





ds2 = B(r) c2 dt2 − A(r) dr2 − r2 dθ2 + sin2 θ dφ2

(r ≥ r0)

(25.3)

beschrieben. Für A(r) und B(r) wird später die Schwarzschildlösung oder die Ro-

bertsonentwicklung eingesetzt. Die verwendeten Koordinaten sind









x0, x1, x2, x3 = c t, r, θ, φ

(25.4)

Die Gleichungen (25.1) – (25.4) definieren das relativistische Keplerproblem, das

wir hier lösen wollen. Mit den Christoffelsymbolen aus (23.10) schreiben wir die

einzelnen Komponenten von (25.1) explizit an:

d2x0

B dx0 dr

= −

(25.5)

dλ2

B dλ dλ



2













d2r

B

dx0

A

dr 2

r

dθ 2

r

dφ 2

= −

−

+

+ sin2θ

(25.6)

dλ2

2A

dλ

2A

dλ

A

dλ

A

dλ





d2θ

dr dθ

dφ 2

= − 2

+ sin θ cos θ

(25.7)

dλ2

r dλ dλ

dλ

d2φ = − 2 dr dφ −

dθ dφ

2 cot θ

(25.8)

dλ2

r dλ dλ

dλ dλ
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Gleichung (25.7) kann offenbar durch

θ = π = const. 

(25.9)

2

gelöst werden. Dies ist keine Einschränkung an die Vielfalt der Lösungen: Zu einem

bestimmten Zeitpunkt t0 kann das Koordinatensystem so gedreht werden, dass θ =

π/2 und dθ/dλ = 0; damit liegen der Orts- und Geschwindigkeitsvektor in der

Ebene θ = π/2. Dann folgt aus (25.7) d2θ/dλ2 = 0 und somit θ(λ) ≡ π/2. Damit

liegt die gesamte Bahnkurve in der Äquatorebene. 

Für (25.9) wird (25.8) zu





1 d

dφ

r2

= 0

(25.10)

r2 dλ

dλ

Dies ergibt

dφ

r2

=  = const. 

(25.11)

dλ

Wir können (25.9) und (25.11) auch direkt mit der Isotropie des Problems begrün-

den, wie dies im nichtrelativistischen Keplerproblem üblich ist: Wegen der Isotropie

ist der Drehimpuls  erhalten. Da die Richtung von  konstant ist, kann das Koordinatensystem so gewählt werden, dass ez 
 ; daraus folgt (25.9). Da der Betrag von

 konstant ist, gilt (25.11); die Integrationskonstante  entspricht dem Drehimpuls

pro Masse. 

Wir schreiben (25.5) in der Form





d

dx0

ln

+ ln B = 0

(25.12)

dλ

dλ

und integrieren dies:

dx0

B

= F = const. 

(25.13)

dλ

In der verbleibenden Gleichung (25.6) benutzen wir (25.9), (25.11) und (25.13):





d2r

F 2B

A

dr 2

2

+

+

−

= 0

(25.14)

dλ2

2 A B2

2 A

dλ

A r3

Wir multiplizieren mit 2A (dr/dλ) und erhalten

)  

*

d

dr 2

2

F 2

A

+

−

= 0

(25.15)

dλ

dλ

r2

B

Die Integration liefert





dr 2

2

F 2

A

+

−

= −ε = const. 

(25.16)

dλ

r2

B
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Diese Radialgleichung ist die zentrale Bewegungsgleichung. Die Winkelbewegung

ist durch (25.9) und (25.11) bestimmt, und der Zusammenhang zwischen t und λ

durch (25.13). Damit sind alle Bewegungsgleichungen einmal integriert. 

Eine weitere Integration von (25.16) ergibt r = r(λ). Setzt man diese Funktion

in (25.11) und (25.13) ein, so ergeben deren Integration φ = φ(λ) und t = t (λ). 

Die Elimination von λ ergibt dann r = r(t) und φ = φ(t). Zusammen mit θ = π/2

ist dies die vollständige Lösung. Die auftretenden Integrale sind im Allgemeinen

nicht elementar lösbar. Für die Schwarzschildmetrik wird die Lösung unten näher

diskutiert. 

Wir werten noch (25.2) aus:



2













dxμ dxν

dx0

dr 2

dθ 2

dφ 2

gμν

= B

− A

− r2

− r2 sin2 θ

= ε

dλ

dλ

dλ

dλ

dλ

dλ

(25.17)

Für den letzten Schritt haben wir (25.9), (25.11), (25.13) und (25.16) verwendet. 

Aus (25.17) und (25.2) folgt

 c2

(m = 0)

ε =

(25.18)

0

(m = 0)

Effektiv verbleiben damit in (25.11), (25.13) und (25.16) zwei Integrationskonstan-

ten, F und . In der analogen nichtrelativistischen Behandlung treten die Energie E

und der Drehimpuls  als Integrationskonstanten auf. 

Bahnkurve

Wir bestimmen die Bahn φ = φ(r) in der Bewegungsebene θ = π/2. Zunächst

ergibt (25.16)



dr = F 2/B − 2/r2 − ε

(25.19)

dλ

A

Damit erhalten wir



dφ

dφ dλ



=

=

A

(25.20)

dr

dλ dr

r2

F 2/B − 2/r2 − ε

und somit das unbestimmte Integral





dr

A(r)

φ(r) =



(25.21)

r2

F 2

ε

− 1 −

B(r) 2

r2

2

Dies bestimmt die Bahnkurve φ = φ(r) in der Bewegungsebene. Für ein massives

Teilchen (ε = c2) hängt dies von zwei Integrationskonstanten ab (F und ); für

eine Streuung lassen sich diese Konstanten durch den Stoßparameter und die An-

fangsgeschwindigkeit ausdrücken. Für masselose Teilchen (ε = 0) hängt die Bahn

effektiv nur von einer Integrationskonstanten (F / oder Stoßparameter) ab. 









































Kapitel 25 Bewegung im Zentralfeld

143

6

Veff(r)

Abbildung 25.1 Effektives Potenzial Veff als Funktion

des Abstands r für ein massives Teilchen. Die gezeig-

te Kurve ergibt sich aus dem Zusammenspiel zwischen

Newtons Gravitationspotenzials −GM/r, dem Zentri-

fugalterm (proportional zu + 2/r2) und einem relati-

vistischen Term (proportional zu − 1/r3). Der relativis-

tische Term wird erst bei sehr kleinen Radien r ∼ rS

wichtig. Im Sonnensystem gilt rS  R  rP, wobei rP

der Abstand des Planeten zum Zentrum ist. 

-

r

„Ellipse“

························································································································································································································································································································

···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···

Bewegung in der Schwarzschildmetrik

Wir setzen die Schwarzschildlösung

rS

B(r) =

1

= 1 − 2a = 1 −

(25.22)

A(r)

r

r

und die Abkürzungen

˙

dt

dr

dφ

t =

, 

˙r =

, 

˙φ =

(25.23)

dλ

dλ

dλ

in (25.9), (25.11), (25.13) und (25.16) ein:

π





θ =

, 

c ˙t 1 − 2a

= F, 

r2 ˙

φ = 

(25.24)

2

r

˙r2

a ε

2

a 2

F 2 − ε

−

+

−

=

= const. 

(25.25)

2

r

2 r2

r3

2

Durch θ = π/2 ist die Bahnebene definiert. Die nächste Gleichung bestimmt den

Zusammenhang zwischen der Zeitkoordinate t und dem Bahnparameter λ. Die letz-

te Gleichung in (25.24) lässt sich als Drehimpulssatz interpretieren, und (25.25)

entspricht dem Energiesatz. 

Wir schreiben die Radialgleichung (25.25) in der Form

˙r2 + Veff(r) = const. 

(25.26)

2
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6Veff(r)

·········

············

············

-

r

3 rS/2

Abbildung 25.2 Effektives Potenzial Veff als Funktion

des Abstands r für ein Teilchen mit Ruhmasse null. 

·················································································································································

····

mit dem effektiven Potenzial

⎧

⎪

⎪

⎪

GM

2

GM 2

⎨ −

+

−

(m = 0)

r

2 r2

c2 r3

Veff(r) = ⎪

(25.27)

⎪

⎪

⎩

2

GM 2

−

(m = 0)

2 r2

c2 r3

Dabei haben wir a = GM/c2 eingesetzt. In den Abbildungen 25.1 und 25.2 sind

mögliche effektive Potenziale skizziert. 

Die formale Lösung r = r(λ) von (25.26) ist durch das Integral



dr

λ = ±



(25.28)

2 [const. − Veff(r)]

gegeben. Wegen des relativistischen Terms (∝ 1/r3) in Veff ist dies ein elliptisches

Integral, das nicht durch elementare Funktionen gelöst werden kann. 

Der qualitative Verlauf der Lösungen lässt sich graphisch anhand einer Skizze

von Veff(r) verstehen. Dazu zeichnet man eine horizontale Gerade mit dem Ordi-

natenwert const. aus (25.26) ein (zum Beispiel die gestrichelte Linie in Abbildung

25.1). Der vertikale Abstand zu Veff(r) gibt dann die kinetische Energie ˙r2/2 an. 

Wir diskutieren noch etwas eingehender das effektive Potenzial für m = 0. 

Asymptotisch dominiert das attraktive Newtonsche Gravitationspotenzial −GM/r. 

Für kleiner werdenden Radius kommt dann das Zentrifugalpotenzial 2/2 r2 ins

Spiel und führt – für nicht zu kleine  – zu positiven Werten von Veff. Für noch

kleinere Radien dominiert schließlich der attraktive relativistische Term

GM

−

2

(vc)

∼ − GM v2

(25.29)

r

c2 r2

r

c2
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Das Zusammenspiel der drei Terme mit den Potenzen 1/r, 1/r2 und 1/r3 führt zu

dem in Abbildung 25.1 gezeigten Bild. Die Radialgleichung (25.26) unterscheidet

sich vom nichtrelativistischen Fall einmal durch den Term (25.29), und zum anderen

dadurch, dass ˙r = dr/dτ von dr/dt abweicht. Beide Abweichungen sind von der

Ordnung v2/c2. 

Im Bereich des Minimums gibt es gebundene Lösungen. Die graphische Dis-

kussion der Bewegung zeigt, dass es zwei Umkehrpunkte gibt, zwischen denen die

Lösung oszilliert (Abbildung 25.1). Im nichtrelativistischen Fall ist die zugehörige

Bahnkurve die bekannte Keplerellipse. Wegen der relativistischen Effekte ergeben

sich Abweichungen von der Ellipsenbahn, insbesondere eine Periheldrehung (Ka-

pitel 27). Als Spezialfall ist eine Kreisbewegung mit ˙r = 0 möglich, wenn die

Konstante in (25.26) gleich dem Potenzialwert im Minimum ist. Die entsprechende

Lösung am Maximum ist instabil, da kleine Auslenkungen zu exponentiell wach-

sendem ˙r führen. Wenn die Konstante in (25.26) positiv ist, erhält man eine unge-

bundene Streulösung (Hyperbel im nichtrelativistischen Fall). Wenn die Konstante

größer als das Maximum des Potenzials ist, stürzt das Teilchen ins Zentrum. 

Am Minimum und Maximum von Veff(r) gilt dVeff/dr = 0. Für m = 0 folgt

hieraus

c2

r

r2 − 2

+ 3 = 0

(25.30)

2

rS

Damit diese quadratische Gleichung zwei reelle Lösungen hat, muss 3 c2/2 < 

1/r 2 gelten. Ein Minimum und Maximum wie in Abbildung 25.1 erhält man daher

S

nur, wenn der Drehimpuls  über dem kritischen Wert

√

kr =

3 rS c

(25.31)

liegt. Für  → kr wird die Drehimpulsbarriere immer kleiner, bis Maximum und

Minimum für  = kr zusammenfallen. Für  < kr fällt das Potenzial dann mo-

noton zum Zentrum hin ab; ein von außen kommendes Teilchen fällt auf jeden Fall

(unabhängig von seiner Energie) ins Zentrum. 

Für Photonen sind beide Terme in Veff proportional zu 2, so dass der Verlauf

des effektiven Potenzials (Abbildung 25.2) nicht von  abhängt. Bei

rmax = 3a = 3 rS

(25.32)

2

hat das Potenzial ein Maximum. An dieser Stelle könnten Photonen sich entlang

einer Kreisbahn bewegen, die allerdings instabil ist. Wenn die Konstante in (25.26)

kleiner als Veff(rmax) ist, wird ein von außen kommendes Photon gestreut. Ist sie

größer, dann wird das Photon eingefangen. 

Die Bewegungsgleichung (25.26) kann ohne Schwierigkeit in den Bereich r ≤

rS verfolgt werden. Für r(λ) ist der Radius r = rS (in der Nähe des Maximums in

Abbildung 25.1 gelegen) offenbar nicht ausgezeichnet. Insofern liegt die Vermutung

nahe, dass es sich bei r = rS um eine Singularität der Koordinaten und nicht des

Raums handelt. Die SM selbst ist aber für r < rS nicht anwendbar; so wäre etwa für
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eine ruhende Uhr ds2 = c2 dτ 2 = (1 − rS/r) c2dt2 < 0, also dτ imaginär. Wegen

r ≥ r0 (Gültigkeitsbereich der SM (25.3)) sind diese Fragen für „normale“ Objekte

(mit r0  rS) nicht aktuell; wir werden sie aber bei der Diskussion von Schwarzen

Löchern wieder aufgreifen. 

Aufgaben

 25.1 Satellitenuhr in Schwarzschildmetrik

Ein Erdsatellit befinde sich auf einer Kreisbahn mit dem Radius r. Berechnen Sie

das Verhältnis dτ/dt zwischen der Satellitenuhr τ und der Zeit t einer im Unendli-

chen ruhenden Uhr. Vergleichen Sie dies mit den Ergebnissen von Aufgabe 12.1. 

 25.2 Einfang durch ein Schwarzes Loch

Ein Raumschiff fällt frei auf ein Schwarzes Loch der Masse M zu. Die asymptoti-

√

sche Geschwindigkeit sei v∞ = c/ 2 und der Stoßparameter sei b = 4 rS. Fällt

das Raumschiff ins Zentrum? 

 25.3 Zentraler Fall in Schwarzschildmetrik

Im sphärischen Gravitationsfeld (Schwarzschildmetrik) soll der zentrale Fall eines

massiven Teilchens untersucht werden. Zeigen Sie zunächst





 

dr

c

dr

c

= − √

3 rS −

3 r

1

und

= − √

1 − rS

S − 1

(25.33)

dτ

3

r

dt

2

r

r

Der Fall beginne mit der Geschwindigkeit null bei r(0) = 3 rS. Skizzieren Sie die

Funktion r(τ ). Nach welcher Eigenzeit τ0 erreicht das Teilchen das Zentrum? Lösen

Sie die Bewegungsgleichung für r(t ) bei r ≈ rS. Bestimmen Sie auch r(t) bei

r ≈ rS für ein Photon. 



















26 Lichtablenkung

Lichtstrahlen erfahren im Gravitationsfeld eine Ablenkung. Wir berechnen diese

Ablenkung für Lichtstrahlen, die den Rand der Sonne streifen. Für das Licht von

Sternen kann diese Ablenkung während einer Sonnenfinsternis beobachtet werden; 

für die Radiowellen eines Quasars ist keine Sonnenfinsternis erforderlich. 

Die Bahnkurven r = r(φ) im Gravitationsfeld sind durch (25.21) gegeben, wobei

für Licht ε = 0 zu setzen ist:





r dr

A(r)

φ(r) = φ(ro) +



(26.1)

r 2

r

F 2

o

− 1

B(r) 2

r 2

Als Startpunkt der Integration wählen wir den minimalen Abstand ro und setzen

hier φ(ro) = 0. Von ro bis r = ∞ ändert sich der Winkel um φ(∞). Längs der in

Abbildung 26.1 skizzierten Bahn dreht sich der Radiusvektor um 2 φ(∞). Für eine

Gerade als Bahn wäre dieser Winkel gleich π. Die gesuchte Lichtablenkung Δφ im

Gravitationsfeld ist daher gleich





Δφ = 2 φ(∞) − π

φ(ro) = 0

(26.2)

Wegen A(r) = 1 ist der dreidimensionale Raum nichteuklidisch; insofern ist das

Bild 26.1 mit Vorbehalten zu betrachten. Für große Abstände gilt jedoch A → 1 und

B → 1; damit sind die Lichtstrahlen hier Geraden im euklidischen Raum (wie in

der Abbildung). Relativ zum Fixsternhimmel haben die beiden geraden Teilstücke

etwas unterschiedliche Richtungen (Fixsterne haben in den verwendeten Koordina-

ten feste Winkel). Die Nicht-Euklidizität betrifft die Lichtbahn zwischen den asym-

ptotischen, geraden Teilen; sie wird in (26.1) korrekt berücksichtigt. 

Bei ro ist r(φ) minimal, also





dr

= 0

(26.3)

dφ ro

Der Integrand in (26.1) ist gleich dφ/dr. Aus (26.3) folgt daher

F 2 = B(ro)

(26.4)

2

r 2

o
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···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ·

Δφ

···· ···· ···· ···· ···· ···· ···· ···· ···· ····

················································································································ ···· ···· ···· ···· ···· ·

····························

ro ·······

··

··

··

··

··

··

··

··

··

··

··

··

··

·

r(φ)

··

Lichtstrahl

·

φ ·



*

s ·

············

···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ·

Sonne

···························

···
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··

··

··

··

··

··

··

··

··

······························

Abbildung 26.1 Im Gravitationsfeld der Sonne wird ein Lichtstrahl um den Winkel Δφ

abgelenkt. Bezüglich des minimalen Abstands ro ist die Bahn symmetrisch. Der tatsächliche

Ablenkungswinkel Δφ = 1.75 ist viel kleiner als in der Skizze. Die Skizze darf auch sonst

nicht zu ernst genommen werden, denn im Gravitationsfeld ist der dreidimensionale Raum

nichteuklidisch (im Gegensatz zum Bild). 

Hiermit können wir die Konstante F 2/2 zugunsten von ro eliminieren:

 ∞



dr

A(r)

φ(∞) =



(26.5)

r

r

r2 B(r

o

o) − 1

r 2 B(r)

o

Wir berechnen dieses Integral für die Koeffizienten A(r) und B(r) der Robertson-

Entwicklung, 

2 a

A = 1 + γ

+ . . . 

und

B = 1 − 2a + . . . 

(26.6)

r

r

Wir führen die Rechnung bis zur Ordnung a/r durch. Mit

+



, 

+

, +

, 

r2 B(ro)

r2

r2

−

1

1 ≈

1 + 2a

− 1

− 1 =

− 1

1 −

2 a r

r 2 B(r)

r 2

r

r

r 2

r

o

o

o

o

o (r + ro)

(26.7)

erhalten wir

 ∞





dr

ro

a

a r

φ(∞) =



1 + γ

+

r

r

r

r

o

r2 − r 2

o

o (r + ro)

)





*∞

r

a

r2 − r 2

a

r − r

=

o

o

arccos

+ γ

o

+

(26.8)

r

ro

r

ro

r + ro

ro

Dies ergibt

π

a

a

φ(∞) =

+ γ

+

(26.9)

2

ro

ro

Damit erhalten wir für Δφ aus (26.2):

1 + γ

Δφ = 4a

Lichtablenkung

(26.10)

ro

2







Kapitel 26 Lichtablenkung

149

Für einen Lichtstrahl, der gerade an der Sonne vorbeistreift, gilt

GM

ro ≈ R ≈ 7 · 105 km und a =

≈ 1.5 km

(26.11)

c2

Damit und mit π -

= 180 · 3600 wird (26.10) zu

(Lichtablenkung

Δφ = 1.75 1 + γ

(26.12)

2

an der Sonne)

Die klassische Beobachtungsmethode (erstmals am 29.5.1919) ist die Messung der

Position von Sternen in der Nähe des Sonnenrands während einer Sonnenfinsternis. 

Die Positionen dieser Sterne erscheinen dann um den Winkel (26.12) gegenüber den

anderen Fixsternen verschoben. Eine Sonnenfinsternis ist nötig, damit die Sterne

zu sehen sind. Eine Hauptschwierigkeit bei der Analyse der Experimente ist die

Berücksichtigung der Beugung der Wellen in der Sonnenaura. 

Neuere Messungen benutzen Quasare (eine kurze Beschreibung dieser Objekte

befindet sich am Ende von Kapitel 48). Sofern eine solche quasistellare Radioquelle

geeignet steht, wird sie jedes Jahr einmal von der Sonne verdeckt; eine Sonnen-

finsternis ist dann zur Beobachtung nicht nötig. Mit very long baseline radio inter-

ference (VLBI) Experimenten erhält man mittlerweile die genauesten Werte [9] für

den Parameter γ :

γ = 0.99983 ± 0.00045

(26.13)

Die klassische Beobachtung von Sternen im optischen Bereich führt ebenfalls zu

γ = 1, aber mit einem deutlich größeren Fehler. 

Das experimentelle Resultat (26.13) bestätigt den ART-Wert γ = 1 und schließt

den Newtonschen Wert γN = 0 aus. Der Newtonsche Wert ergibt sich aus der Metrik

mit B = g00 = 1 + 2 Φ/c2 und A = −g11 = 1 (ebener dreidimensionaler Raum). 

Newton würde daher eine halb so große Lichtablenkung vorhersagen (Gleichung

(26.10) mit γ = 0). 

Im Rahmen von Newtons Mechanik könnte man die Lichtablenkung so berech-

nen: Man kürzt die Masse m in der Bewegungsgleichung m ¨r = −m∇Φ. Dann

berechnet man die Ablenkung eines Objekts, das sich mit Lichtgeschwindigkeit be-

wegt. Das Kürzen der Masse (eigentlich gleich null für Photonen) im 2. Axiom wäre

für Newton kein Problem gewesen, da er davon ausging, dass Licht aus Korpuskeln

(unbekannter, aber endlicher Masse) besteht. 

Gravitationslinse

Zur Lichtablenkung gibt es noch den spektakulären Effekt der  Gravitationslinse:

Hierbei werden die Radiowellen eines Quasars an einer Galaxie (zwischen uns und

dem Quasar) abgelenkt. 1979 beobachteten Walsh et al.1 zwei nahe beieinander ste-

hende Quasare (Q0957+561) mit sehr ähnlichem Spektren. Die Übereinstimmung

1D. Walsh et al., Nature 279 (1979) 381
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der beiden Spektren war größer als für irgendein Paar der damals bekannten 1500

Quasare. Nachfolgende Untersuchungen bestätigten, dass es sich nur um zwei Ab-

bilder desselben Quasars handelt. Für einige solcher Quasarzwillinge konnte mitt-

lerweile auch die ablenkende Galaxie nachgewiesen werden (durchschnittliche Ga-

laxien strahlen viel schwächer als Quasare). Wenn das Zentrum des ablenkenden

Gravitationsfelds genau auf der Geraden zwischen Erde und Quasar liegt, entsteht

ein ringförmiges Abbild. Liegt es daneben, so entstehen zwei oder auch mehr ver-

zerrte Abbilder. Einstein selbst hatte bereits 1936 die Möglichkeit der Aufspaltung

des Bilds eines entfernten Sterns durch einen näher gelegenen betrachtet. 

Wir haben hier die Lichtablenkung in statischen Gravitationsfeldern betrach-

tet, und insofern die Bilder von statischen Objekten. Für bewegte Objekte kommen

noch andere relativistische Effekte hinzu. Solche Effekte werden für eine relativis-

tisch bewegte Kugel (ohne Gravitationsfeld) in der nachfolgenden Aufgabe unter-

sucht. 
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Aufgaben

 26.1 Bild einer relativistisch bewegten Kugel

Ein Körper stellt in seinem Ruhsystem IS eine Kugel mit dem Durchmesser D

dar. Der Körper bewegt sich mit der relativistischen Geschwindigkeit v = v ex in einem Inertialsystem IS. Ein IS-Beobachter fotografiert das Objekt. Der Beobachter

ist so weit entfernt (L → ∞), dass die ihn erreichenden Lichtstrahlen parallel zur

y-Achse (Abbildung unten) sind. Welche Gestalt (Kugel? Ellipsoid?) erscheint auf

dem Foto? Welche Teile der Kugel werden abgebildet? 

Hinweise: Damit ein Lichtstrahl in IS in −ey-Richtung läuft, muss er im bewegten

System IS unter einem Aberrationswinkel ϕA relativ zur Richtung −ey = −ey

ausgesandt werden. Nach (14.20) gilt für diesen Winkel:

v/c

! dx

tan ϕ = 

=

A

1 − v2/c2

dy

(26.14)

In IS muss dieser Lichtstrahl also die Steigung dy/dx haben. 

y 6



Ein Äquator der mit v bewegten Kugel er-

v Δt -

scheint wegen der Längenkontraktion in

IS als Ellipse. Für die ruhende Kugel wä-
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dieser Winkel gleich ϕA ist, dann ist A ge-

rade noch sichtbar. Der durch A und B

markierte Großkreis trennt die für den IS-

? 
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? 
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? 

Beobachter sichtbaren und unsichtbaren

x



-

D

(schraffiert) Teile der Kugel voneinander. 

Man berechne die Koordinaten von A und B aus der Ellipsengleichung und aus der

Bedingung, dass die Ellipsentangente den Winkel ϕA relativ zu −ey hat. 

Der Fotoapparat registriert zu einem bestimmten Zeitpunkt t das Licht von A

und B. Wegen der unterschiedlichen Lichtlaufzeiten muss dieses Licht von B zu

einer um Δt späteren Zeit abgesandt werden als von A. In dieser Zeit Δt ist die

linke Ellipse zur Position der rechten gewandert, und B hat sich nach B bewegt. 

Auf dem Foto markieren dann A und B den Durchmesser D des Objekts. 

































27 Periheldrehung

Die Bahnkurve eines Planeten um die Sonne ist in Newtons Theorie eine Ellipse. 

Eine Störung des 1/r-Potenzials (Einfluss anderer Planeten, relativistische Effekte)

führt in der Regel zu einer Abweichung von der geschlossenen Ellipsenbahn. Wenn

diese Abweichung klein ist, kann sie als Drehung der Ellipse beschrieben werden. 

Experimentell wird sie als Winkeländerung des sonnennächsten Bahnpunkts, des

Perihels, beobachtet. Wir berechnen die Periheldrehung, die durch relativistische

Effekte verursacht wird. 

Wir betrachten die Bahnellipse eines Planeten um die Sonne (Abbildung 27.1) oder

eine dazu sehr ähnliche Bahn. Wir bezeichnen den maximalen und den minimalen

Abstand zwischen Planet und Sonne mit

r+ = rmax und r− = rmin

(27.1)

Die Größen beim extremalen Abstand kürzen wir durch

φ± = φ(r±) , 

A± = A(r±) , 

B± = B(r±)

(27.2)

ab. Die relativistische Bahnkurve r = r(φ) folgt aus dem Integral (25.21) mit ε =

c2. Für die Winkeländerung zwischen r− und r+ ergibt dieses Integral









r+

r

dr

A(r)

+ dr

A(r)

φ+ − φ− =



=

(27.3)

r2

r2

K(r)

r−

F 2

c2

− 1 −

r−

B(r) 2

r2

2

Wir betrachten einen Bahndurchlauf, der beim Perihel r−, φ− beginnt und über

r+, φ+ wieder zurück zum Perihel r−, φ− führt. Der Winkel φ ändert sich bei die-

sem Durchlauf um 2(φ+ − φ−). Wenn dies gleich 2π wäre (wie für eine Ellip-

senbahn), dann hätte das Perihel nach einem Umlauf exakt dieselbe Position. Die

Differenz





Δφ = 2 φ+ − φ− − 2π

(27.4)

gibt daher die Winkeländerung des Perihels nach einem Umlauf an. 

Der Integrand in (27.3) ist gleich dφ/dr. Bei r = r± gilt dr/dφ = 0. Daher

muss die mit K(r) abgekürzte Größe bei r± verschwinden, also

F 2

c2

F 2

c2

= 1 +

und

= 1 +

(27.5)

2 B+

r 2

+

2

2 B−

r 2

−

2
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Abbildung 27.1 Im nichtrelativistischen Keplerproblem ist die Planetenbahn eine Ellipse, p/r = 1 +  cos φ. Für die abgebildete Ellipse ist die Exzentrizität  = 1/3, für die

Merkurbahn gilt tatsächlich  ≈ 0.2. Relativistische (und andere) Korrekturen führen zu

einer Drehung dieser Ellipse, die als Periheldrehung bezeichnet wird. 

Die Konstanten F und  können durch r+ und r− ersetzt werden, 

F 2

1/r 2

r 2

=

+ − 1/r 2

− =

− − r 2

+

(27.6)

2

1/B+ − 1/B−

r 2

+ r 2

− (1/B+ − 1/B−)

c2

B

r 2

=

+/r 2

+ − B−/r 2

− =

+/B+ − r 2

−/B−

(27.7)

2

B+ − B−

r 2

+ r 2

− (1/B+ − 1/B−)

Damit wird die Größe K(r) zu









1

1

r 2

− 1

− r 2

− 1

F 2

c2

−

B(r)

B

+

B(r)

B

K(r) =

− 1 −

=

−

+





− 1 (27.8)

B(r) 2

r2

2

1

r2

r 2

+ r 2

−

− 1

B+

B−

Für A(r) und B(r) setzen wir die Robertson-Entwicklung an:

2 a

A(r) = 1 + γ

+ . . . 

(27.9)

r



 a2

B(r) = 1 − 2a + 2 β − γ

+ . . . 

(27.10)

r

r2

1



 a2

= 1 + 2a + 2 2 − β + γ

+ . . . 

(27.11)

B(r)

r

r2

Für die Bewegung von Planeten im Gravitationsfeld gilt v2/c2 ∼ a/r. Die Terme

g00 u0 u0 ∼ B c2 und g11 u1 u1 ∼ A v2 ∼ A c2 a/r treten in gμν uμ uν nebeneinan-

der auf und müssen in gleicher Ordnung in a/r behandelt werden. Daher muss B

um eine Ordnung in a/r weiter entwickelt werden als A. 
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Mit (27.11) wird K(r) aus (27.8) zu einer quadratischen Form in 1/r. Bei r =

r± gilt K+ = K− = 0. Dies legt K(r) bis auf eine Konstante fest:



 



1

1

K(r) = C

− 1

− 1

(27.12)

r−

r

r

r+

Die Konstante C bestimmen wir durch den Vergleich mit (27.8) für r → ∞:









r 2

+ 1 − 1

− r 2 1 − 1

B

−

B

C =

+

−





(27.13)

1

r+ r−

− 1

B+

B−

Mit (27.11) erhalten wir



 



a

a

C = 1 − 2 − β + γ

+

(27.14)

r+

r−

Um C in 1. Ordnung in a/r zu bestimmen, muss 1/B bis zur 2. Ordnung entwickelt

werden. 

Das zu lösende Integral lautet nun



 

, 

r+



 +

dr

a

1

1

−1/2

φ+ − φ− = 1

√

1 + γ

− 1

− 1

(27.15)

C

r−

r2

r

r−

r

r

r+

Hierin substituieren wir









1 = 1 1 + 1 + 1 1 − 1 sinψ

(27.16)

r

2

r+

r−

2

r+

r−

Den Werten r = r+ und r− entsprechen die Werte ψ = π/2 und −π/2. Mit

 





1

dr

1

d

= −

= 1

− 1 cos ψ dψ

(27.17)

r

r2

2

r+

r−





1





− 1 = 1

1 − 1 1 + sinψ

(27.18)

r−

r

2

r−

r+





1





− 1 = 1

1 − 1 1 − sinψ

(27.19)

r

r+

2

r−

r+

wird das Integral zu

 π

+









, 

/2

γ a

1

γ a

1

φ+ − φ− = 1

√

dψ

1 +

+ 1 +

− 1 sin ψ

C

−π/2

2

r+

r−

2

r+

r−

(27.20)

Wir führen den  Parameter  p der Ellipse ein, 

2 = 1 + 1

(27.21)

p

r+

r−
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Die geometrische Bedeutung der Länge p ist in Abbildung 27.1 gezeigt. Die triviale

Integration von (27.20) ergibt

+

, 

+

, +

, 

π

a

a

a

φ+ − φ− = √

1 + γ

= π 1 + (2 − β + γ )

1 + γ

C

p

p

p

+

, 

a

= π 1 + (2 − β + 2γ )

(27.22)

p

Damit erhalten wir die Periheldrehung Δφ pro Umlauf, 

2 − β + 2γ

Δφ = 6πa

Periheldrehung

(27.23)

p

3

Für den sonnennächsten Planeten Merkur gilt

p = 55 · 106 km

(Merkur)

(27.24)

Hiermit, mit a = a ≈ 1.5 km, π -

= 180 · 3600 und den ART-Werten β = γ = 1

erhalten wir

Δφ = 6πa = 0.104

(Merkur pro Umlauf)

(27.25)

p

Für die 415 Sonnenumläufe pro Jahrhundert summiert sich dies auf

Δφ = 43.0

(Merkur pro Jahrhundert)

(27.26)

Für die weiter entfernte Erde beträgt die Periheldrehung dagegen nur 5 in einhun-

dert Jahren. 

Bereits 1882 hatte Newcomb eine Periheldrehung des Merkur von 43  pro Jahr-

hundert gefunden. In einem IS misst man tatsächlich zunächst einen Wert von etwa

575 . Hiervon muss der Anteil abgezogen werden, der durch Störungen durch die

anderen Planeten verursacht wird; dieser (berechnete!) Anteil beträgt 532 . Erst da-

nach erhält man Newcombs 43 , die mit dem ART-Ergebnis zu vergleichen sind. 

Die Auswertung der Beobachtungen führt zu [9]

2 − β + 2γ = 1.000 ± 0.003

(27.27)

3

und unter Verwendung des aus anderen Experimenten bekannten γ -Werts zu

β = 1.00 ± 0.01

(Periheldrehung)

(27.28)

Dies ist in Übereinstimmung mit dem ART-Wert β = 1. Da β ein Koeffizient eines

nichtlinearen Terms in der Robertson-Entwicklung ist, wird hierdurch die  Nicht-

 linearität  von Einsteins Feldgleichungen getestet. 
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In Newtons Theorie verschwindet die Periheldrehung, ΔφN = 0. Dieses Resul-

tat erhält man aber nicht durch Einsetzen von γ = β = 0 in (27.23). Dies liegt

daran, dass (27.23) nicht nur die relativistischen Effekte des Gravitationsfelds ent-

hält, sondern auch die der Bewegungsgleichung. 

Quadrupolmoment der Sonne

Wir diskutieren noch den Einfluss des Massen-Quadrupolmoments der Sonne auf

die Periheldrehung. Das Quadrupolmoment

Q = |Q33 | = 2J2 M R 2



(27.29)

kann durch eine dimensionslose Größe J2  1 ausgedrückt werden. Für ein homo-

genes Rotationsellipsoid gilt J2 = (2/5)(Req −Rpol)/R. Dabei ist Rpol der Radius

parallel zur Drehachse ist, Req ist der Radius in der Äquatorebene, und R ist durch

das Volumen V = 4πR 3

/3 des Ellipsoids bestimmt. 

Der Effekt eines Quadrupolmoments auf das Newtonsche Gravitationspotenzial

lässt sich leicht berechnen (analog zum Quadrupolpotenzial in der Elektrostatik). In

der Äquatorebene erhält man das Gravitationspotenzial

GM

GQ

Φ(r) = −

−

(27.30)

r

4 r3

Der Zusatzterm hat die gleiche Form wie der im relativistischen Potenzial (25.27), 

2

GM

GM 2

Veff −

= −

−

(27.31)

2 r2

r

c2 r3

Mit r ∼ p,  ∼ p v und v2 ∼ GM/p können wir die relative Stärke der beiden

Zusatzterme abschätzen:

G Q

J

J

J

∼

2 R 2

 ∼

2 R 2



= 2R 2

(27.32)

GM 2/c2

p2 v2/c2

p GM/c2

a p

Bis auf den numerischen Faktor erklärt dies den folgenden Ausdruck für die gesam-

te Periheldrehung:





2 − β + 2γ

J2 R 2



Δφ = 6πa

+

(27.33)

p

3

2 a p

Man kann die Sonne als rotierenden Flüssigkeitstropfen ansehen, der durch Gravita-

tion zusammengehalten wird. Wenn der Tropfen gleichförmig rotiert (mit der an der

Sonnenoberfläche sichtbaren Drehfrequenz), dann stellt sich ein hydrodynamisches

Gleichgewicht zwischen den Zentrifugal- und Gravitationskräften ein. Ohne Rota-

tion ist der Gleichgewichtszustand eine Kugel, ansonsten ergibt sich eine von der

Drehfrequenz abhängige Deformation. Eine solche Abschätzung ergibt den Wert
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J2 ∼ 10−7 für die Abplattung der Sonne. Die Beobachtung von Sonnenoszilla-

tionen ermöglicht eine Aussage über die Abhängigkeit der Winkelgeschwindigkeit

vom Radius. Die Analyse1 dieser Beobachtungen ergibt

J2 ≈ (2.18 ± 0.06) · 10−7

(27.34)

Der Korrekturterm in (27.33) ist dann J2 R 2

/(2ap) ≈ 5 · 10−4, also gleich der

Hälfte der in (27.27) angegebenen Standardabweichung. Dieser Term wurde bei

der Auswertung, die zu (27.27) führt, berücksichtigt. 

1F. P. Pijpers,  Helioseismic determination of the solar gravitational quadrupole moment, 

www.arxiv.org astro-ph/9804258



















































28 Radarechoverzögerung

Ein von der Erde ausgesandtes Radarsignal kann von einem anderen Planeten oder

einer Raumsonde reflektiert und bei uns wieder empfangen werden. Passiert der

Radarstrahl dabei das Gravitationsfeld der Sonne, so trifft das Echo bei uns zeitlich

verzögert ein. Diese Änderung der Laufzeit kann experimentell beobachtet werden. 

Das geometrische Schema des Experiments ist in Abbildung 28.1 gezeigt. Wir wol-

len die Laufzeit von Radarstrahlen zwischen der Erde und dem Reflektor berechnen. 

Dazu gehen wir von der Radialgleichung (25.16) mit ε = 0 aus, 





dr 2

2

F 2

A

+

−

= 0

(28.1)

dλ

r2

B

Mit

dr

dr dx0

dr F

= 1

(25.13)

=

1

(28.2)

dλ

c dt dλ

c dt B

erhalten wir

 

A F 2

dr 2 + 1 − F 2 = 0

(28.3)

c2 B2 2

dt

r2

B 2

Beim minimalen Abstand ro von der Sonne ist dr/dt = 0. Daher gilt

F 2

B(r

=

o)

(28.4)

2

r 2

o

Wir setzen dies in (28.3) ein, 

 

A

dr 2

r 2

B

+ o

− 1 = 0

(28.5)

c2 B

dt

r2 B(ro)

Diese Differenzialgleichung wird durch das Integral





+

, 

r

−1/2

A(r)

r 2 B(r)

t (r, r

o

o) = 1

dr

1 −

(28.6)

c

r

B(r)

r 2 B(r

o

o)

gelöst. Dabei ist t (r, ro) die Zeit, die der Radarstrahl von ro bis r benötigt. Die

Zeit t wird durch eine Uhr angezeigt, die in großem Abstand (formal bei r = ∞)

ruht. Der Zusammenhang mit der Zeit einer Uhr auf der Erdoberfläche kann leicht

158





































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































Kapitel 28 Radarechoverzögerung

159
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rR

r



t 

o

-



X

X

X

X

X

t

Erde

Reflektor

Abbildung 28.1 Ein Radarsignal wird von der Erde ausgesandt und von einem Reflektor

(etwa der Venus oder einer Raumsonde) zurückgeworfen. Wenn die Sonne die Bahn des

Radarsignals kreuzt, kommt es zu einer messbaren Verzögerung. Die Krümmung der Bahn

des Radarstrahls ist in dieser schematischen Skizze nicht angedeutet. 

6δt

ms

0.2

0.1

t

-

−200

0

200

Tage

Abbildung 28.2 Verzögerung δt eines Radarechos von der Venus als Funktion der Beob-

achtungszeit t. Dabei ist t = 0 der Zeitpunkt der Konjunktion von Erde-Sonne-Venus, also

der Zeitpunkt, zu dem der Radarstrahl gerade die Sonne streift. 
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hergestellt werden (Aufgabe 12.1). Für die zu beobachtende Verzögerung δt ist der

Unterschied zwischen t und der Erdzeit zu vernachlässigen. 

Mit der Robertson-Entwicklung

2 a

A(r) = 1 + γ

+ . . . , 

B(r) = 1 − 2a + . . . 

(28.7)

r

r

erhalten wir

+



, 

+

, 



r 2 B(r)

r 2

1

r 2

1 − o

= 1 − o 1 + 2a

− 1

= 1 − o

1 −

2 a ro

r2 B(ro)

r2

ro

r

r2

r (r + ro)

(28.8)

Wir setzen (28.7) und (28.8) in (28.6) ein:



+

, 



r

−1/2 

r 2

a ro

a

t (r, r

o

o)

= 1

dr

1 −

1 +

+ (1 + γ )

(28.9)

c r

r 2

r (r + r

r

o

o)











r2 − r 2

a

r − r

a

r +

r2 − r 2

=

o

+

o + (1 + γ )

ln

o

c

c

r + ro

c

ro



Der erste Term

r2 − r 2 /c

o

gibt die Lichtlaufzeit für eine geradlinige Trajektorie

im euklidischen Raum an. Die anderen Terme geben daher die Verzögerung δt an, 

die aufgrund des Gravitationsfelds der Sonne auftritt. Für das in Abbildung 28.1

skizzierte Experiment ist diese Verzögerung gleich





' 



' 

δt = 2 t (rE, ro) + t (rR, ro) −

r 2 − r 2 c −

r 2 − r 2 c

(28.10)

E

o

R

o

Der Faktor 2 tritt auf, weil der Radarstrahl den Weg zunächst hin- und dann zu-

rückläuft. Erhebliche Laufzeitverzögerungen treten nur auf, wenn der Radarstrahl

die Nähe der Sonne passiert, also wenn ro nur einige Sonnenradien groß ist. Aus

rE  R und rR  R folgt rE  ro und rR  ro. Die führenden Beiträge sind

+



, 

4 rE rR

Radarecho-

δt = 4a 1 + 1 + γ ln

(28.11)

c

2

r 2

verzögerung

o

Die Abstände rE und rR sind nur schwach zeitabhängig. Eine starke Zeitabhängig-

keit ergibt sich dagegen in ro(t), wenn der Radarstrahl die Nähe der Sonne passiert. 

Setzt man die bekannten Größen rE, rR und ro(t) in (28.11) ein, so erhält man δt als

Funktion der Zeit. Das Ergebnis ist in Abbildung 28.2 skizziert. 

Die Verzögerung δt wird maximal, wenn der Radarstrahl die Sonne gerade

streift, also für ro, min = R:

+



, 

4 rE rR

δtmax = 4a 1 + 1 + γ ln

≈ 2 · 10−4 s

(28.12)

c

2

R 2
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Für den numerischen Wert wurde rE ∼ rR ∼ 108 km, R ≈ 7 · 105 km, ln (105) ≈

10 und 2 a/c = 10−5 s eingesetzt. 

Die Verzögerung δt kann nicht durch Messung der tatsächlichen und Subtrak-

tion der berechneten Laufzeit ohne Gravitationsfeld bestimmt werden; hierzu kennt

man die Abstände rE und rR nicht genau genug. Beobachtbar ist jedoch die zeit-

liche Veränderung der Laufzeit, wenn der Radarstrahl aufgrund der Bewegung von

Erde und Reflektor über die Sonne fährt. Das Experiment wurde 1964 von Shapiro

vorgeschlagen und einige Jahre später zunächst mit der Venus (Abbildung 28.2)

ausgeführt. Die größte Genauigkeit wird mittlerweile mit der Cassini Raumsonde

erreicht. Der Vergleich der Messdaten mit der theoretischen Vorhersage ergibt [9]

γ = 1.00002 ± 0.00002

(28.13)

in Übereinstimmung mit der ART. 







29 Geodätische Präzession

Gravitationskräfte führen zur Präzession von Kreiseln. Wir untersuchen folgende

Effekte im Gravitationsfeld der Erde:

1. Geodätische Präzession: Dies ist die Präzession eines Kreisels, der im Gra-

vitationsfeld frei fällt. Wir berechnen diesen Effekt für das isotrope Gravita-

tionsfeld der Erde. 

2. Thirring-Lense-Effekt: Dies ist die Präzession eines Kreisels im Gravitations-

feld aufgrund der Rotation der Erde. Diesen kleineren Effekt berechnen wir

im nächsten Kapitel. 

Kreisel oder Gyroskope1 sind starre Körper, die neben einer Schwerpunktbewegung

auch eine Drehbewegung ausführen können; andere Freiheitsgrade bleiben unbe-

rücksichtigt. Die Drehbewegung hat einen Drehimpuls, dem ein Riemannvektor sμ

zugeordnet wird. Wenn außer der Gravitation keine Kräfte wirken, gilt im Lokalen

Inertialsystem dsα/dτ = 0. Nach dem Kovarianzprinzip wird dies zu Dsμ/dτ = 0

oder

dsμ = −Γ μ sκuν

(29.1)

dτ

κν

Diese Bewegungsgleichung für den Spin oder Drehimpuls ist aus Kapitel 20 be-

kannt. Hiermit berechnen wir die geodätische Präzession für einen Kreisel in einem

Erdsatelliten. Als Kreisel könnte auch der sich drehende Satellit als Ganzes dienen. 

Im momentanen Ruhsystem des Satelliten gilt für den Spinvektor (sα) = (0, si), 

wobei s der Drehimpuls des Kreisels ist. 

μ

Für (29.1) müssen die Gravitationskräfte Γκν und die Geschwindigkeit uν des

Satelliten spezifiziert werden. Wir verwenden die Standardform der Metrik mit den

Koordinaten (xμ) = (c t, r, θ, φ) und den metrischen Koeffizienten









gμν = diag B(r), −A(r), −r2, −r2 sin2 θ

(29.2)

Später setzen wir für A(r) und B(r) die Schwarzschildlösung oder die Robertson-

Entwicklung ein. Der Satellit bewege sich auf einer Kreisbahn

π

r = const., 

θ =

, 

φ = ω0 τ

(29.3)

2

1Unter Gyroskop verstehen wir einen hochwertigen Kreisel, der sich auch für Präzessionsmes-

sungen eignet. 
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mit der Geschwindigkeit

 









uμ = dxμ/dτ = u0, 0, 0, u3 , 

u0 = const., 

u3 = ω0 = const. (29.4)

In die Christoffelsymbole (23.10) setzen wir θ = π/2 ein. Danach sind nur noch

folgende Christoffelsymbole ungleich null:

B

A

r

r

Γ 1 =

, 

Γ 1 =

, 

Γ 1 = −

, 

Γ 1 = −

00

2A

11

2A

22

A

33

A

B

Γ 0 = Γ 0 =

, 

Γ 2 = Γ 2 = 1 , 

Γ 3 = Γ 3 = 1

(29.5)

01

10

2B

12

21

r

13

31

r

Wir schreiben (29.1) komponentenweise an, wobei wir u1 = u2 = 0, Γ 0 = 0, 

00

Γ 0 = 0 undsoweiter berücksichtigen:

11

ds0

= −Γ 0 u0 s1

(29.6)

dτ

01

ds1

= −Γ 1 u0 s0 − Γ 1 u3s3

(29.7)

dτ

00

33

ds2

= 0

(29.8)

dτ

ds3

= −Γ 3 u3 s1

(29.9)

dτ

31

Dies ist ein lineares Differenzialgleichungssystem für sμ(τ ). Wegen r = const. und

uμ = const. sind alle Koeffizienten konstant. Aus der dritten Gleichung folgt

s2(τ ) = const. 

(29.10)

Die Spin- oder Drehimpulskomponente senkrecht zur Bahnebene ist also konstant. 

Wir differenzieren (29.7) nach τ und setzen auf der rechten Seite (29.6) und (29.9)

ein:





d2s1

 

 

=

2

2

Γ 1 Γ 0 u0

+ Γ 1 Γ 3 u3

s1 = −ω2 s1

(29.11)

dτ 2

00

01

33

31

In der hierdurch definierten Größe ω2 klammern wir den Faktor (u3)2 = ω 2 aus, 

0

und verwenden (29.5):

+



2

, 

B 2

u0

ω2 = ω 2 −

+ 1

0

(29.12)

4AB

u3

A

Die Geschwindigkeit uμ aus (29.4) löst die Bahngleichung für die Bewegung im

Gravitationsfeld, also insbesondere auch die Gleichung du1/dτ = −Γ 1 uκ uμ

κμ

. 

Hieraus folgt





du1

 

 

 

 

= −

2

2

2

2

Γ 1 u0

− Γ 1 u3 = − 1 B(r) u0 − 2 r u3

= 0 (29.13)

dτ

00

33

2A
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also



2

u0

= 2 r

u3

B

(29.14)

Wir setzen dies in (29.12) ein:

. 



1

r B

ω = ω0

1 −

(29.15)

A

2 B

Mit

B = 1 − 2a , 

A =

1

(Schwarzschildmetrik)

r

1 − 2a/r

(29.16)

2 a

B = 1 − 2a + ..., A = 1 + γ

+ ... (Robertson-Entwicklung)

r

r

wird dies zu

⎧ 

⎪

⎪

⎪

⎨

1 − 3a

(Schwarzschildmetrik)

r

ω = ω0 · ⎪ 

(29.17)

⎪

⎪

⎩



 a

1 − 1 + 2γ

(Robertson-Entwicklung)

r

Das Ergebnis der Schwarzschildmetrik ist exakt. Die Robertson-Entwicklung zeigt, 

welcher metrische Koeffizient in einem Experiment getestet wird. 

Die Anfangsbedingungen s1(0) = S und ˙s1(0) = 0 ergeben

s1(τ ) = S cos(ω τ ), 

s2 = const., 

s3(τ ) = −S ω0 sin(ω τ )

(29.18)

r ω

Der erste Teil folgt aus (29.11), der zweite aus (29.10) und der dritte aus (29.9). Zur

Diskussion dieses Resultats betrachten wir zunächst den konstanten Vektor A =

ex = er cos(ω0 τ) − eφ sin(ω0 τ) längs der Bahn des Satelliten. Wir schreiben die Komponenten von A in Kugelkoordinaten an (dabei ist Aφ = A3/r zu beachten):

A = ex , 

A1 = cos(ω0 τ ) , 

A3 = −1 sin(ω0 τ )

(29.19)

r

Die Zeitabhängigkeit von A1(τ ) und A3(τ ) beruht allein auf der Verwendung von

Kugelkoordinaten und der Bewegung des betrachteten Punkts. Nach der Umlaufzeit

τ0 = 2π/ω0 ergeben sich dieselben Koeffizienten Ai wie für τ = 0. Wegen ω = ω0

gilt dies aber nicht für den Spinvektor (29.18). Für ihn erhalten wir vielmehr nach

einem Umlauf die Phasendifferenz



(1 + 2γ )a

(1 + 2γ )a

Δα = (ω0 − ω)τ0 = 2π − 2π 1 −

≈ π

(29.20)

r

r
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Dies ist auch der Winkel, um den sich der räumliche Spinvektor in der Bahnebene

nach einem Umlauf dreht:

1 + 2γ

Geodätische Präzession

Δα = 3πa

(29.21)

r

3

pro Umlauf

Wir werten dieses Ergebnis für einen erdnahen Satelliten mit r ≈ RE = 6400 km

aus. Für eine Kreisbahn folgt aus ω 2R

= g die Umlaufzeit τ

0

E = GME/R 2

E

0 =

2π(RE/g)1/2; dabei ist g ≈ 10 m/s2 die Erdbeschleunigung und RE der Erdradius. 

Nach einer einjährigen Beobachtungszeit t ergibt sich die Winkeländerung

t

gRE

t

t = 1 a

Δα(t ) = Δα

= 3π

√

= 8

(29.22)

τ0

c2

2π RE/g

Eine genauere Rechnung ergibt 6.6 . Auf die zugehörigen Experimente mit Gyro-

skopen in Satelliten gehen wir im nächsten Kapitel ein. 

De Sitter-Präzession des Mondes

Bezogen auf den gemeinsamen Schwerpunkt hat das System Erde-Mond einen be-

stimmten Bahndrehimpuls . Dieses System kann daher als Gyroskop aufgefasst

werden, das die Sonne umkreist. Der Drehimpuls hat Komponenten senkrecht und

parallel zur Erdbahn,  = ⊥ + 
. Da die Mondbahn um die Erde nur um etwa 5

Grad gegenüber der Erdbahn um die Sonne geneigt ist, ist ⊥ die Hauptkomponen-

te; sie entspricht der Spinkomponente s2 und ist daher konstant. Dagegen zeigt die

kleine Komponente 
 die hier berechnete geodätische Präzession. 

Der Drehimpuls  ist im Wesentlichen der Bahndrehimpuls des Mondes. Die

Präzession von 
 bedeutet, dass sich die Ebene der Mondbahn (die zur Erdbahn

leicht geneigt ist) insgesamt langsam dreht; die Mondbahn präzediert. Diese Kon-

sequenz der Allgemeinen Relativitätstheorie wurde bereits 1916 von de Sitter gese-

hen. 

Wir berechnen den Präzessionswinkel pro Jahrhundert, also nach 100 Umläufen

des Kreisels „Erde-Mond“ um die Sonne:

a

ΔαSitter = 100 · 3π

≈ 2

(pro Jahrhundert)

(29.23)

rES

Dabei haben wir γ = 1, a = 1.5 km für die Sonne und r =

ES

8 Lichtminuten für

den Abstand Erde–Sonne in (29.21) eingesetzt und das Ergebnis mit 100 multipli-

ziert. 

Bereits in der Newtonschen Theorie erhält man eine Präzession der Mondbahn

(vor allem durch das Gravitationsfeld der anderen Planeten). Diese Newtonsche Prä-

zession hat eine Periode von nur 18.6 Jahren und ist damit um etwa einen Faktor 107

größer als der de Sitter-Effekt. Um die de Sitter-Präzession trotzdem nachzuweisen, 

muss die Mondbahn sehr genau vermessen werden. Dies ist mit Hilfe von Lase-

rechos an den Spiegeln möglich, die 1969 von der Apollomission auf dem Mond
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installiert wurden. Die Analyse der Daten erfolgt auf der Grundlage einer Berech-

nung der Erd- und Mondbewegung, die alle anderen relevanten Effekte berücksich-

tigt. Mit einer Genauigkeit von 0.6% [9] bestätigt das Ergebnis der Analyse die

ART-Vorhersage für die de Sitter (also die geodätische) Präzession der Mondbahn. 







30 Thirring-Lense-Effekt

Der Thirring-Lense-Effekt ist die Präzession eines Kreisels im Gravitationsfeld der

Erde aufgrund der Eigenrotation der Erde. 

Das Gravitationsfeld der Schwarzschildmetrik entspricht dem Coulombfeld ei-

ner sphärischen Ladungsverteilung im Außenraum; beide Felder sind statisch und

isotrop. Rotiert eine Ladungsverteilung mit konstanter Winkelgeschwindigkeit ω, 

so erhält man zusätzlich ein statisches Magnetfeld. Die Rotation einer Massenver-

teilung führt zu einem analogen gravitomagnetischen Feld. 

Metrik der rotierenden Erde

Zunächst berechnen wir das metrische Feld der rotierenden Erde. Für dieses schwa-

che Feld (|hμν |  1) genügen die linearisierten Feldgleichungen, 





2hμν = − 16πG Tμν − T ημν

(30.1)

c4

2

Die Koordinaten (xμ) = (c t, xi ) = (c t, x, y, z) sind bis auf Korrekturen der Ord-

nung h Minkowskikoordinaten. 

Im Energie-Impuls-Tensor (20.29) können wir den Druck P   c2 vernach-

lässigen. Da die mit der Rotation der Erde verbundenen Geschwindigkeiten v klein

gegenüber c sind, lassen wir Terme der Ordnung (v/c)2 weg, also









1

vi/c

Tμν ≈  c2

(30.2)

vi/c

0

Die Terme proportional zu vi erzeugen das gravitomagnetische Feld, ebenso wie

Ströme ein Magnetfeld verursachen. Die Massenverteilung der Erde ist näherungs-

weise kugelförmig, 

 0

(r < RE)

(r) = (r) =

(30.3)

0

(r > RE)

Die Winkelgeschwindigkeit der Erde ist

ω = ω e3 , 

ω = 2π

(30.4)

Tag
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Die Erde rotiere als starrer Körper, also mit dem Geschwindigkeitsfeld

v(r) = ω × r oder vi = ikn ωkxn

(30.5)

Man beachte, dass in den (Fast-) Minkowskikoordinaten (xi ) ≈ −(xi) und (vi) ≈

−(vi) gilt. Formal ergibt sich dies für (30.5) aus den Vorzeichen von ikn; wegen

(17.15) ist 123 = −1. 

Damit sind die Tμν und die Quellterme der Feldgleichungen (30.1) zeitunab-

hängig. Es gibt daher stationäre Lösungen, die wir im Folgenden finden wollen. Im

stationären Fall wird der d’Alembert-Operator 2 zu − und (30.1) zu

hμμ(r) = 8πG (r) , 

h0i (r) = 16πG (r) ikn ωkxn

(30.6)

c2

c3

Mit Hilfe von (1/|r − r|) = −4πδ(|r − r|) prüft man leicht nach, dass die Integrale



hμμ = −2G

d3r

(r)

(30.7)

c2

|r − r|



h0i (r) = −4G ikn ωk

d3r (r) x n

(30.8)

c3

|r − r|

die Differenzialgleichungen (30.6) lösen. Dieser Schritt und die folgende Auswer-

tung der Integrale sind aus der Elektrostatik (homogen geladene Kugel) und der

Magnetostatik (homogen geladene, rotierende Kugel) bekannt. Für den Bereich

r ≥ RE verwenden wir die Entwicklung

1



r l

xj x

=

4π

j

Y ∗ ( ˆr) Y

−

+ . . . (r > r)

|r − r|

lm( ˆ

r) = 1

2 l + 1 rl+1 lm

r

r3

l,m

(30.9)

nach Kugelfunktionen oder Potenzen von x . Für die kartesischen Komponenten

j

gilt (xi) = (gik xk) = −xi + O(h). Die Korrektur O(h) wird weggelassen, weil

die rechten Seiten in (30.7) und (30.8) bereits von der ersten Ordnung in h sind. In

(30.7) trägt nur der erste Term von (30.9) bei:



hμμ = − 2G

d3r (r) = − 2GM

(r ≥ RE)

(30.10)

c2 r

c2 r

Wegen  xn ∝ Y1m tragen in (30.8) nur die Terme mit l = 1 bei. Dies ist der zweite

Term auf der rechten Seite von (30.9), also



ikn ωk xj

ikn ωk xn

h0i(r) = 4G

d3r (r ) xn x = −4GMR 2

E

(30.11)

c3

r3

j

5 c3

r3

Dieses Ergebnis gilt für den Bereich r ≥ RE. Für eine sphärische Massenverteilung

(r) konnten wir im Integranden xn x durch −δn r2/3 ersetzen (beachte x = −x

j

j

1

undsoweiter). 
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Wir fassen die Komponenten h

ei

0i zum Vektor h = h0i

zusammen und stellen

die Differenzialgleichung und ihre Lösung noch einmal zusammen:

ω × r

 h(r) = 16πG  ω × r

⇒ h(r) = −4GMR 2E

(30.12)

c3

5 c3

r3

In der Magnetostatik ergibt eine mathematisch äquivalente Rechnung das Vektor-

potenzial A einer homogen geladenen, rotierenden Kugel (mit der Ladung q und

dem Radius R):

ω × r

A(r) = −4π  ω

e

× r

⇒ A(r) = q R2

(30.13)

c

5 c

r3

Wenn man (30.13) als bekannt voraussetzt, dann folgt hieraus unmittelbar der

Schritt vom linken Teil in (30.12) zu rechten. 

Die Ergebnisse (30.10) und (30.11) legen die Metrik der rotierenden Erde fest:









ds2 = 1 − 2GM c2 dt2 − 1 + 2GM dr2 + 2 c h0i dxi dt

(30.14)

c2 r

c2 r

Dabei ist dr 2 = −dxi dxi; das Ergebnis gilt für r ≥ RE. Diese Metrik reduziert

sich in der Ordnung GM/c2r und für ω = 0  nicht  auf die Schwarzschildmetrik; 

denn (30.1) setzt eine andere Koordinatenwahl als die Standardform voraus. 

Drehung des Lokalen Inertialsystems

In Gleichung (9.2) wurde die Rotation eines Koordinatensystems betrachtet. Of-

fenbar sind die h0i in (9.2) von derselben Struktur wie diejenigen in (30.11). Für

r = RE kann man aus diesem Vergleich ablesen, dass (30.14) ein Koordinatensys-

tem beschreibt, das relativ zu einem IS mit einer Winkelgeschwindigkeit der Größe

(rs/RE)ω ∼ 10−9ω rotiert. Diese Überlegung wird im Folgenden quantifiziert. 

Wir betrachten ein Gyroskop, also einen qualitativ hochwertigen Kreisel, der

sich auch für Präzessionsmessungen eignet. Für den Spinvektor sμ des frei fallenden

Gyroskops gilt die Bewegungsgleichung



dsμ

(Terme mit h

= −

ii )

+ (Terme mit h0i)

Γ μ sκ uν =

(30.15)

dτ

κν

Geodätische P. 

+ Thirring-Lense-P. 

Die Christoffelsymbole sind für die Metrik (30.14) zu berechnen. Die rechte Seite

setzt sich dann aus der geodätischen Präzession (Terme mit hii , Kapitel 29) und der

Thirring-Lense-Präzession (Terme mit h0i ) zusammen. In der linearen Näherung

(linear in h) treten beide Terme additiv auf und können unabhängig voneinander

berechnet werden. Im Folgenden beschränken wir uns auf den h0i -Beitrag. 

In der nullten Ordnung in h und v/c gilt

(uμ) ≈ (uα) ≈ (c, 0) , 

(sμ) ≈ (sα) ≈ (0, si ) , 

dτ ≈ dt

(30.16)
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Die Thirring-Lense-Präzession ergibt sich bereits in dieser nullten Ordnung. Wenn

man über diese nullte Ordnung hinausginge, dann erhielte man Korrekturen der

Ordnung v/c. Solche Korrekturen sind aber ohne besonderes Interesse, weil schon

die mit (30.16) berechnete Thirring-Lense-Präzession ein kleiner Effekt ist (ver-

glichen mit der geodätischen Präzession). 

Wir setzen (30.16) in (30.15) ein:

dsi = −c Γ i sj

(30.17)

dt

0j

Für zeitunabhängige hμν gilt in erster Ordnung





ηik

∂h





0k

∂h0j

Γ i =

−

= 1 ∂

i − ∂i h

(30.18)

0j

j h0

0j

2

∂xj

∂xk

2

Wegen (uμ) ≈ (c, 0) treten die Terme der geodätischen Präzession, die wir hier

sowieso weglassen wollen, in (30.17) gar nicht erst auf. 

An dieser Stelle gehen wir zu kartesischen Komponenten in ihrer üblichen Form

über, also zu (s

i

x , sy , sz) = (si ) = (−si ) und (hx , hy , hz) = (h0 ) = (− h0i ). Wir

werten (30.17) für die Komponente ds1/dt = dsx/dt explizit aus:













ds

1

x

c

∂h

∂h

c

∂h

∂h

c

∂h

∂h

= −

0

−

0j

x

y

x

z

sj = −

−

sy −

−

sz

dt

2

∂xj

∂x1

2

∂y

∂x

2

∂z

∂x

(30.19)

Mit dem Vektorfeld

c

Ω(r) = − rot h(r)

(30.20)

2

wird (30.19) zu dsx/dt = Ωy sz − Ωz sy. Zusammen mit den anderen Komponenten

erhalten wir damit

ds = Ω × s

Thirring-Lense-Präzession

(30.21)

dt

Dies bedeutet eine  Präzession  des Spins oder der Kreiselachse mit der Winkel-

geschwindigkeit Ω. 

Das Vektorpotenzial aus (30.13) ergibt das magnetische Feld B = rot A(r) eines magnetischen Dipols. Die ganz analoge Rechnung führt von dem Feld h aus

(30.12) zur Winkelgeschwindigkeit

Ω

3 (ω · r) r − ω r2

Winkelgeschwindig-

(r) = 2 GMR 2

E

(30.22)

5 c2

r5

keit des Lokalen IS

Die Präzession der Kreiselachse mit Ω wird durch die  Rotation  der Erde mit der Winkelgeschwindigkeit ω verursacht. Diese Präzession ist gleichbedeutend mit einer  Drehung des Lokalen IS, denn in dem Lokalen IS am Ort des Kreisels gilt
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s = const. Asymptotisch geht (30.14) in die Minkowskimetrik über, in der Fixster-

ne konstante Winkelkoordinaten haben. Die Drehung des Lokalen Inertialsystems

(oder der Kreiselachse) ist daher als Drehung relativ zum Fixsternhimmel beobacht-

bar. Die physikalische Bedeutung der Drehfrequenz Ω ist also:

• Das Lokale IS dreht sich mit Ω gegenüber dem Fixsternhimmel. 

Dies bedeutet, dass die Drehung der Erde das Lokale IS ein wenig mitzieht. Die geo-

dätische Präzession aus Kapitel 29 wird dagegen durch die Bewegung des Satelliten

verursacht. Ein mit einem Satelliten verbundenes Lokales IS dreht sich gegenüber

dem Fixsternhimmel zum einen aufgrund der Satellitenbewegung im isotropen Feld

(geodätische Präzession), und zum anderen aufgrund der Drehbewegung der Erde

(nichtisotropes Feld, Thirring-Lense-Effekt). 

Wenn wir r = RE in (30.22) einsetzen und numerische Faktoren weglassen, 

erhalten wir die Größenordnung des Thirring-Lense-Effekts:

GMER 2 ω

gRE

Ω ∼

E

=

ω ≈ 10−9 ω

(30.23)

c2

R 3

c2

E

An dieser Stelle erinnern wir an die Diskussion von Newtons Eimerversuchs in Ka-

pitel 9. Nach dem Machprinzip müsste die Krümmung der Wasseroberfläche im

rotierenden Eimer abnehmen, wenn die Eimerwände nur hinreichend dick sind. Die

jetzige Rechnung beschreibt diesen Effekt quantitativ. Der Eimerversuch (mit der

Erde als Eimer, etwa ein mit Wasser gefülltes Loch am Nordpol) eignet sich aller-

dings nicht zur Überprüfung des Resultats, denn der Effekt ist zu klein. 

Wir geben Ω noch speziell für den Nordpol und den Äquator an:

 2

am Nordpol

Ω = 2GM ω ·

(30.24)

5 c2RE

−1

am Äquator

Am Nordpol zieht die rotierende Masse das Lokale IS mit. Am Äquator ergibt die

Bewegung der benachbarten Massen den entgegengesetzten Drehsinn. Wir berech-

nen konkret, um welchen Winkel Δφ = Ω · 1a sich ein Foucaultsches Pendel am

Nordpol während eines Jahres gegenüber dem Fixsternhimmel dreht:

Δφ = Ω · 1a = 4GM 2π · 365 ≈ 0.2

(Thirring-Lense-Präzession

(30.25)

5 c2R

während eines Jahres)

E

Thirring und Lense berechneten 1918 diese Präzession. 1960 übertrug L. Schiff die-

se Rechnung auf freie Kreisel in Satelliten. Solche Kreisel unterliegen der geodä-

tischen  und  der Thirring-Lense-Präzession (hier auch Schiff-Effekt genannt). Da-

bei kann man die (etwa um einen Faktor 40) größere geodätische Präzession aus-

schließen, indem man den Drehimpuls s senkrecht zur Bahnebene des Satelliten

wählt. Auf einer Äquatorroute wäre dann allerdings s 
 ω 
 Ω, und der Thirring-

Lense-Effekt würde auch verschwinden. Daher wählt man eine Polroute. Hierfür
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kompensieren sich nach (30.24) die Dreheffekte teilweise; die Rechnung ergibt den

mittleren Wert von 0.041  pro Jahr anstelle von (30.25). 

Unter dem Namen  Gravity Probe B (oder  Stanford Gyroscope Experiment) wur-

de ein solches Experiment über Jahrzehnte hin vorbereitet und schließlich in den

Jahren 2004 und 2005 durchgeführt. Bei der Auswertung der Daten zeigten sich

leider unerwartet große systematische Fehler (etwa einhundertmal größer als er-

wartet). Da die Orientierung der Satelliten während des Experiments aber genau

verfolgt und aufgezeichnet worden war, konnten diese Fehler durch aufwändige

Analysen der Daten teilweise wieder herausgerechnet werden. Nach Abschluss der

Analysen im Jahr 2011 ergab daraus eine Bestätigung des theoretisch erwarteten

Thirring-Lense-Effekts (oder auch Schiff-Effekts) mit einer Genauigkeit1 von etwa

20%. Nach der ursprünglichen Planung sollte die zu erreichende Genauigkeit bei

etwa 1% liegen. 

Die durch die Rotation der Erde hervorgerufenen Felder h0i haben auch einen

(kleinen) Einfluss auf die Bahn von Satelliten. In neueren Analysen der Bahnen

der Satelliten LAGEOS und LAGEOS II wurde der theoretisch erwartete Effekt mit

einer Genauigkeit von etwa 10% [9] bestätigt. 

Gravitomagnetische Kräfte

Die Ableitung zeigte die formale Analogie zwischen h = h ei

0i

und dem Vektor-

potenzial A, und zwischen der Drehfrequenz Ω des Lokalen IS und dem Magnetfeld

B. Diese Analogie gilt auch für die Kräfte auf bewegte Teilchen. Dazu betrachten

wir die Bewegungsgleichung

duμ = −Γ μ uκuν

(30.26)

dτ

κν

eines Teilchens in der Metrik (30.14). Wir vernachlässigen wieder Terme der Ord-

nung O(v2/c2), nehmen aber die Terme O(v/c) mit. Mit

 





dτ ≈ dt , 

uν ≈ c, vi

(30.27)

wird (30.26) zu

dvi





= −Γ i c2 − 2 c Γ i vj + O v2/c2

(30.28)

dt

00

0j

Der erste Term auf der rechten Seite ergibt −Φ|i mit Newtons Gravitationspoten-

zial Φ; dies entspricht dem in Kapitel 11 behandelten Newtonschen Grenzfall. In

(30.17) – (30.21) wurde −c Γ i sj = (Ω × s)i gezeigt. Diese Ableitung benutzte

0j

keine spezielle Eigenschaft von sj und gilt daher auch für −c Γ i vj = (Ω × v)i. 

0j

Hiermit wird (30.28) zu

dv = −gradΦ(r) + 2Ω(r) × v

Bewegungsgleichung mit

(30.29)

dt

gravitomagnetischer Kraft

1Für weitere Informationen sei auf die homepage http://einstein.stanford.edu/ von Gravity Probe B verwiesen. 
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Die rechte Seite ist mit der Lorentzkraft F = q (E + v × B/c)

L

zu vergleichen. 

Dies erklärt die Bezeichnung  gravitomagnetisch  für den zweiten Term auf der rech-

ten Seite. Die Form der magnetischen und gravitomagnetischen Kräfte ist gleich

derjenigen von Corioliskräften, also den zur Drehfrequenz proportionalen Kräften

im rotierenden Bezugssystem. Die Drehung der Ebene des Foucaultschen Pendels

am Nordpol mit Ω wird durch die „Corioliskraft“ 2 Ω × v auf die Pendelmasse hervorgerufen. 

Man kann das auch noch etwas anders betrachten: In einem KS, das sich relativ

zum Inertialssystem (IS) mit der Winkelgeschwindigkeit Ω dreht, tritt die bekannte

Corioliskraft F Coriolis = −2 Ω × v auf. Sie kompensiert in KS gerade die gravitomagnetische Kraft. Daher ist die Pendelebene in KS konstant; also dreht sich die

Pendelebene in IS mit Ω. 

Wir berechnen noch das Gravitationsfeld einer mit konstanter Geschwindigkeit

v bewegten Masse; dies entspricht dem elektromagnetischen Feld einer bewegten

Ladung in der Elektrodynamik. Wir gehen zunächst in ein Ruhsystem KS des Teil-

chens (Koordinaten xμ). Der Energie-Impuls-Tensor ist von der Form (30.2) mit

vi = 0. Die linearisierten Feldgleichungen können wie zu Beginn dieses Kapitels

gelöst werden und ergeben

μ=ν

h

= −2GM , 

h

=

μμ

0

(|hμν )|  1)

(30.30)

c2 r

μν

Da hμν ein Riemanntensor ist, gilt in einem anderen Koordinatensystem KS (Koor-

dinaten xμ), 

hμν = ακ αλ h

μ

ν

κλ

(30.31)

μ

Dabei ist α = (αν ) die Transformationsmatrix von KS zu KS. Die Transformation

zu dem System KS, in dem sich das Teilchen mit v bewegt, ist bis auf Terme der

Ordnung h eine Lorentztransformation; denn die verwendeten Koordinaten sind bis

auf Terme der Ordnung h Minkowskikoordinaten. Diese Lorentztransformation ist









1

vi/c





Λμ = Λ(−v) =

+ O v2/c2

ν

(30.32)

vi/c

1

Mit ακ = Λκ + O(h)

μ

μ

erhalten wir aus (30.31)







hκκ = h + O

κκ

v2/c2

hκλ = Λμ Λν h

⇒

κ

λ

μν





(30.33)

h0i = 2 (vi/c) h + O v2/c2

00





Bei Vernachlässigung der Terme O v2/c2 folgt hieraus

v

h = − 4GM

(gravitomagnetisches Feld

(30.34)

c c2 r

einer bewegten Masse)

Wenn die Geschwindigkeit des Teilchens nicht konstant ist, treten Retardierungs-

effekte auf; es kommt wie in der Elektrodynamik zur Abstrahlung von Wellen. Für

eine oszillierende Massenverteilung wird diese Abstrahlung in Teil VII berechnet. 
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Im Zweikörperproblem (etwa im System Sonne–Planet) treten auch gravitoma-

gnetische Felder der Art (30.34) auf. Relativ zu Newtons Gravitationspotenzial ist

das vom Körper 1 hervorgerufene Feld h von der Größe O(v1/c), die Wirkung auf

den Körper 2 gibt einen weiteren Faktor O(v2/c). Damit gilt für die Größenordnung

der gravitomagnetischen Kräfte

Kgravitomagn ∼ v1 v2 KNewton

(30.35)

c2

In der Himmelsmechanik sind die relativistischen Bewegungsgleichungen und die

Metrik konsistent mit einer bestimmten Genauigkeit zu behandeln. Eine solche sys-

tematische Entwicklung bis zu einer bestimmten Ordnung wird  Post-Newtonsche

 Näherung  genannt. Wir diskutieren für einige Fälle (Doppelsternsystem, Sonne–

Planet und Erde–Satellit), ob die gravitomagnetischen Kräfte in niedrigster Post-

Newtonscher Näherung zu berücksichtigen sind. 

In einem Doppelsternsystem mit m1 ≈ m2 gilt v1 ∼ v2 und v1 v2/c2 = O(a/r). 

Dann ist die gravitomagnetische Kraft von der Ordnung a2/r2 und muss bei der

Berechnung der Periheldrehung (die hier Periastrondrehung heißt) berücksichtigt

werden. Die Beobachtungsdaten2 des Systems PSR 1913+16 ergeben einen expe-

rimentellen Wert für die Periastrondrehung (etwa 4.2o pro Jahr). Der berechnete

Wert stimmt mit dem experimentellen nur dann überein, wenn die gravitomagne-

tischen Kräfte berücksichtigt werden. In diesem Sinn wurden die gravitomagneti-

schen Kräfte im System PSR 1913+16 indirekt nachgewiesen. 

Im System Sonne-Planet oder Erde-Satellit gilt m1  m2. Wenn der gemein-

same Schwerpunkt im gewählten Bezugssystem ruht, dann ist die Geschwindig-

keit des großen Partners klein, v1 = O(v2 m2/m1). Hieraus folgt dann v1v2/c2 ∼

(a/r) m2/m1  a/r. Relativ zur ersten über Newton hinausgehenden Korrektur ist

die gravitomagnetische Kraft also von der Größe m2/m1  1. Daher durften wir

die gravitomagnetischen Kräfte bei der Berechnung der Periheldrehung des Merkur

(Kapitel 27) außer acht lassen. 

Im System Erde-Satellit oder Erde–Mond sind die gravitomagnetischen Kräfte

wegen m1  m2 ebenfalls vernachlässigbar, wenn wir vom Schwerpunktsystem

(Erde–Mond) mit v1 ≈ 0 ausgehen. Die Erde ist allerdings nur näherungsweise ein

Inertialsystem (wegen der Bahnbewegung um die Sonne). In einer genaueren Be-

handlung muss man von einem IS ausgehen, in dem die Sonne ruht. Dann ist v1

nicht mehr vernachlässigbar klein; das gravitomagnetische Feld der bewegten Erde

führt vielmehr zu merklichen Effekten in der Satellitenbewegung. In dem Maß, in

dem die Erde näherungsweise als IS angesehen werden kann, wird dieses gravito-

magnetische Feld aber durch andere Terme kompensiert. 

2J. H. Taylor and J. M. Weisberg, Astrophysical J. 345 (1989) 434. Dieser  Hulse-Taylor-Pulsar wird in neuerer Nomenklatur auch mit PSR B1913+1916 oder als PSR J1915+1606 bezeichnet. 
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Aufgaben

 30.1 Gravitomagnetische Kräfte für Merkur

Die Eigendrehung der Sonne ergibt neben dem Newtonschen Gravitationspotenzial

Φ ein gravitomagnetisches Feld Ω. In führender Näherung ergibt sich daraus für

Planeten die Bewegungsgleichung

dv = −gradΦ(r) + 2Ω(r) × v

dt

Schätzen Sie das Verhältnis |Ω × v|/|grad Φ| der Kräfte für den Merkur ab. 

Merkur: Bahnradius r ≈ 58 · 106 km, Umlauffrequenz ω = 2π/(88 Tage). 

Sonne: Radius ist R ≈ 0.7 · 106 km, Drehfrequenz ω = 2π/(25 Tage). 

31 Tests der ART

In Teil VI wurde eine Reihe überprüfbarer Vorhersagen der Allgemeinen Relativi-

tätstheorie (ART) vorgestellt. Wir nehmen dies zum Anlass für eine Zusammenstel-

lung der wichtigsten experimentellen Tests der ART. 

Folgende Aussagen und Effekte bieten sich zur experimentellen Überprüfung an:

1. Äquivalenzprinzip

2. Gravitationsrotverschiebung

3. Lichtablenkung

4. Periheldrehung

5. Radarechoverzögerung

6. Präzession von Kreiseln

7. Gravitationswellen. 

Die Punkte 2 – 4 werden als die drei klassischen Tests der ART bezeichnet. Für die

experimentellen Ergebnisse beziehen wir uns vornehmlich auf den Übersichtsartikel

von Will [9] und die darin zitierten Arbeiten. 

Äquivalenzprinzip

Das Äquivalenzprinzip (Kapitel 10) ist die logische Voraussetzung der ART, nicht

aber eine Vorhersage der ART. Die experimentelle Überprüfung des Äquivalenz-

prinzips kann auf vielfache Art und Weise erfolgen. Die Aussage „Alle Körper fal-

len gleich schnell“ bedeutet, dass das Verhältnis mt/ms (träge zu schwerer Masse)

unabhängig vom Material ist. Die Gleichheit von mt/ms für verschiedene Materia-

lien wurde mit einer relativen Genauigkeit von bis zu 4 · 10−13 verifiziert. 

 Nordtvedt-Effekt

Die Gleichheit von träger und schwerer Masse impliziert, dass alle möglichen Ener-

giebeiträge ΔE (etwa die der elektromagnetischen oder der starken Wechselwir-

kung) denselben Beitrag ΔE/c2 zu mt und zu ms liefern. Nach der ART gilt dies

auch für den Beitrag der Gravitationswechselwirkung selbst. Nordtvedt fand her-

aus, dass dies in alternativen Gravitationstheorien (wie der von Brans und Dicke)

nicht der Fall ist. 
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Um die Frage zu testen, ob die Gravitationsenergie gleichermaßen zu mt und

zu ms beiträgt, muss man große Körper betrachten (wie zum Beispiel die Erde und

den Mond); denn nur dann ist der Beitrag der Gravitationsbindungsenergie ΔEgrav

hinreichend groß. Das Verhältnis Gravitationsenergie zu Masse ist für die Erde 25

mal größer als für den Mond. Wenn nun ΔEgrav unterschiedlich zu mt und zu ms

beiträgt, dann würden Erde und Mond im Feld der Sonne „unterschiedlich schnell

fallen“. Dieser Effekt würde zu Abweichungen in der Mondbahn von der Größe

eines Meters führen. Die Mondbahn kann auf etwa 3 cm genau vermessen werden; 

dazu wird Laserlicht an Spiegeln reflektiert, die 1969 von der Apollomission auf

dem Mond installiert wurden. 

Die genaue Analyse der Mondbahndaten führt zu der Aussage, dass die relativen

Beschleunigungen von Erde und Mond (im Feld der Sonne) mit einer Genauigkeit

von 10−3 übereinstimmen. Im Rahmen dieser Genauigkeit kann man also sagen:

Die Gravitationsenergie trägt in gleicher Weise wie alle anderen Wechselwirkungen

zur Masse bei. 

 Gravitationsrotverschiebung

Für Licht, das im statischen Gravitationsfeld von A nach B läuft, ergibt sich die

√

Frequenzänderung νA/νB =

g00(rB)/g00(rA) (Kapitel 12). Aus dem Äquiva-

lenzprinzip folgt die Bewegungsgleichung (11.9) und der Newtonsche Grenzfall

g00 = 1 + 2Φ/c2. Für schwache Felder gilt daher

ν





A

Φ(r

=

B) − Φ(r A)

1 +

Φ  c2

(31.1)

νB

c2

In dieser Näherung folgt die Gravitationsrotverschiebung aus dem Äquivalenzprin-

zip; sie hängt daher nicht von den Feldgleichungen der ART ab. Die Experimente

bestätigen die theoretische Vorhersage:

⎧

⎪

⎨ 0.06

Sonnenlicht

Δνexp = 1 ± 0.01

Mößbauereffekt

(31.2)

Δνtheor

⎪

⎩ 2 · 10−4 Wasserstoffmaser

Robertson-Entwicklung

Zur Diskussion der Tests 3 – 6 verwenden wir die Robertson-Entwicklung (23.5), 





GM

GM 2

GM

B(r) = 1 − 2

+ 2 (β − γ )

+ ... , A(r) = 1 + 2γ

+ ... (31.3)

c2 r

c2 r

c2 r

Diese metrischen Koeffizienten beschreiben ein statisches und sphärisches Gravita-

tionsfeld, etwa das der Sonne oder der Erde. Die ART und die Newtonsche Theorie

führen zu unterschiedlichen Vorhersagen für γ und β, 

γ = β = 1 (Einstein), 

γ = β = 0 (Newton)

(31.4)
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Daneben sind auch noch andere Gravitationstheorien möglich. Als Beispiel sei die

Brans-Dicke-Theorie (Kapitel 21) erwähnt, die zu β = 1 und γ = (ω + 1)/(ω + 2)

mit einem zusätzlichen Parameter ω führt. 

Die Messungen der Effekte 3 – 6 ergeben experimentelle Werte für die Koeffizi-

enten γ und β. 

Lichtablenkung

Im Gravitationsfeld der Sonne wird Licht um den Winkel

1 + γ

Δφ = 4a

(31.5)

ro

2

abgelenkt; dabei ist a = GM/c2, und ro ≈ R ist der minimale Abstand von der

Sonne. Die Messungen (Quasare, VLBI) ergeben

γ = 0.99983 ± 0.00045

(31.6)

Periheldrehung

Die Bahnellipse eines Planeten dreht sich pro Umlauf um den Winkel

2 − β + 2γ

Δφ = 6πa

(31.7)

p

3

Dabei ist a = GM/c2 und p der Parameter der Bahnellipse. 

Unter Berücksichtigung des aus anderen Experimenten bekannten γ -Werts

(31.6) ergibt die Analyse der Periheldrehung des Merkur

β = 1.00 ± 0.01

(31.8)

Radarechoverzögerung

Ein Radarstrahl von der Erde zur Venus und zurück wird im Gravitationsfeld der

Sonne um die Zeit

+



 , 

4 rE rR

δtmax = 4a

1 + 1 + γ ln

(31.9)

c

2

R 2



verzögert, wenn er gerade an der Sonne vorbeistreift. Dabei ist a = GM/c2, rE

der Abstand Sonne-Erde und rR der Abstand Sonne-Reflektor. Die Messung der

Radarreflexion an der Cassini Raumsonde ergibt

γ = 1.00002 ± 0.00002

(31.10)
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Präzession von Kreiseln

Das Gravity Probe B Experiment (auch Stanford-Gyroscope-Experiment genannt)

bestätigt nach derzeitigem Stand1 die theoretische Vorhersage für den Thirring-

Lense-Präzession (also für das gravitomagnetische Feld der rotierenden Erde) mit

einer Genauigkeit von etwa 10%. 

Gravitomagnetische Effekte

Die Analyse von astronomischen Bahndaten (Satelliten, Monde, Planeten, Doppel-

sternsysteme) erfolgt in Post-Newtonscher Näherung. Das heißt, dass in konsisten-

ter Weise alle Terme bis zu einer bestimmten Ordnung in a/r und v/c mitgenom-

men werden. Dies schließt insbesondere die Berücksichtigung der gravitomagneti-

schen Kräfte (Kapitel 30) mit ein. Der Einfluss des gravitomagnetischen Felds der

Erde wurde in Satellitenbahnen mit einer Genauigkeit von etwa 5 bis % gesehen. 

Um die Bahndaten – insbesondere die Periastrondrehung – des Doppelstern-

systems PSR 1913+16 zu erklären, müssen gravitomagnetische Kräfte berücksich-

tigt werden. Die beobachtete Bahnbewegung bestätigt die Vorhersagen der ART. 

Mondbahn

Wie bereits im Abschnitt über den Nordtvedt-Effekt erwähnt, wurde die Mondbahn

sehr genau vermessen. In der Analyse müssen alle relevanten Faktoren (die Parame-

ter β, γ , . . . , die geodätische Präzession, die gravitomagnetischen Kräfte) gleich-

zeitig und mit der erforderlichen Genauigkeit berücksichtigt werden. Für γ − 1 und

β − 1 ergibt diese Analyse obere Grenzen der Größe 10−3. 

Starke Felder

Wir haben uns in Teil VI vorwiegend auf Experimente im Sonnensystem bezogen, 

also auf schwache Gravitationsfelder (Φ/c2 ≈ 10−6 für die Sonne). Durch Beob-

achtungen und die Analyse von Doppelsternsystemen wie PSR 1913+16 wurde die

Theorie auch für den Fall starker Felder (Φ/c2 ≈ 0.2) getestet. 

Das Doppelsternsystem PSR 1913+16 wurde 1974 von Hulse und Taylor ent-

deckt, die für die Entdeckung und die nachfolgende Auswertung 1993 den Nobel-

preis erhielten (das System wird auch Hulse-Taylor-Pulsar genannt). Mittlerweile

gibt es einen ganzen Zoo [9] von binären Systemen, in denen einer der Partner ein

Pulsar ist. Von herausragenden Interesse ist dabei das 2003 entdeckte System2

PSR J0737–3039

Dieses System besteht aus zwei Pulsaren. Das System hat eine sehr kurze Umlauf-

zeit (etwa 0.1 d), und damit relativ hohe Umlaufgeschwindigkeiten und Beschleuni-

1Für den aktuellen Stand siehe http://einstein.stanford.edu/

2M. Kramer et al., arXiv:astro-ph0609417v1
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gungen. Daraus ergibt sich die Möglichkeit, die ART mit noch größerer Genauigkeit

als bisher zu testen. 

Gravitationswellen

Beschleunigte Massen strahlen Gravitationswellen ab (Teil VII). Die auf der Er-

de eintreffenden Gravitationswellen konnten bisher noch nicht direkt nachgewie-

sen werden. Es gibt aber einen indirekten Nachweis von Gravitationsstrahlung, und

zwar über die beobachtete Abbremsung des Doppelsternsystems PSR 1913+16 (Ka-

pitel 36) und anderer binärer Sternsysteme. Diese Beobachtungen bestätigen die

Vorhersagen der ART mit einer Genauigkeit von 1%. 

Zusammenfassung

Alle experimentellen Ergebnisse bestätigen im Rahmen der Messgenauigkeit die

Voraussetzung und die Vorhersagen der ART. Man kann dies so formulieren, dass

das Einsteins Äquivalenzprinzip zumindest zu 99, 999 999 999 9% richtig ist, und

Einsteins Feldtheorie zumindest zu 99, 9%. 







VII Gravitationswellen

32 Ebene Wellen

Für schwache Felder ( |hμν | = |gμν − ημν|  1) reduzieren sich Einsteins Feld-

gleichungen auf die linearisierten Feldgleichungen (22.27), 





2hμν = −16πG Tμν − T ημν

(32.1)

c4

2

Im quellfreien Raum ( Tμν = 0) erhalten wir hieraus 2hμν = 0. Die einfachsten

Lösungen dieser Gleichungen sind die ebenen Wellen, die hier abgeleitet und unter-

sucht werden. Die folgenden Kapitel behandeln die Erzeugung und den möglichen

Nachweis von Gravitationswellen. 

Elektromagnetische Wellen

Für die Wellenlösungen sind die Analogien zur Elektrodynamik besonders eng. Wir

beginnen daher mit einem Rückblick auf elektromagnetische Wellen. Die physika-

lischen Felder F αβ = Aβ|α − Aα|β ändern sich nicht bei der Eichtransformation

Aα −→ Aα = Aα + ∂αχ

(32.2)

Dies ermöglicht die Wahl einer Eichbedingung für die Potenziale Aα, 

Aα|α = 0

(32.3)

Diese Bedingung ist gerade so gewählt, dass die Maxwellgleichungen F βα|β =

(4π/c) j α zu

2Aα = 4π jα

(32.4)

c

entkoppeln. Diese Gleichungen haben dieselbe Struktur wie (32.1). Eine partikuläre

Lösung kann in der Form der retardierten Potenziale angegeben werden. 

Wegen (32.3) sind nur drei der vier Felder in (32.4) voneinander unabhän-

gig. Speziell für freie Felder (j α = 0) lassen (32.3) und (32.4) eine  zusätzliche

Eichtransformation (32.2) zu, und zwar mit einem χ , das selbst Lösung der Wellen-

gleichung ist. Diese Eichfreiheit ermöglicht die Festlegung A0 = 0. Damit lauten

die Wellengleichungen

2Aα = 0 , 

A0 = 0 , 

Ai |i = 0

(32.5)
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Danach gibt es nur  zwei unabhängige Felder. Der Ansatz









Aα = eα exp −ikβ xβ + c.c. = eα exp i(k · r − ω t) + c.c. 

(32.6)

mit (kβ ) = (ω/c, k) und (xβ) = (c t, r) löst die Wellengleichung 2Aα = 0, falls kβ kβ = 0

oder

ω2 = c2 k2

(32.7)

Dabei ist k = |k|. Die ebene Welle (32.6) ist reell, weil wir das komplex Konjugier-

te (c.c.) addiert haben. Die Zusatzbedingungen in (32.5) schränken diesen Vektor

durch

 

eα = (0, e), 

e · k = 0

(32.8)

ein. Der Polarisationsvektor eα bestimmt die Amplitude der Welle und die Rich-

tung des Felds. Im engeren Sinn wird die Bezeichnung  Polarisationsvektor  für den

Einheitsvektor e/|e| verwendet. 

Wenn wir speziell die x3-Achse des Koordinatensystems in k-Richtung wählen, 

dann sind die beiden unabhängigen Felder die 1- und die 2-Komponente:

 









Aα = 0, e1, e2, 0 exp ik(x3 − c t) + c.c. 

(32.9)

Damit sind zwei lineare Polarisationen der Welle möglich, die durch e1 = A, e2 = 0

und e1 = 0, e2 = A gekennzeichnet werden können. Der Vektor A (und damit

auch der elektrische Feldvektor E) steht senkrecht zum Wellenvektor k; damit gibt es zwei unabhängige (Polarisations-) Richtungen. Folgende Linearkombinationen

ergeben zirkular polarisierte Wellen:









Aα

= A (0, 1, ±i, 0) exp ik(x3 − ct)

(32.10)

zirk

Diese Lösung transformiert sich bei Drehung des Koordinatensystems um die x3-

Achse um den Winkel φ gemäß

Drehung

Aα

−→

exp(∓iφ) Aα

(32.11)

zirk

zirk

In der quantisierten Theorie wird Aα zur Wellenfunktion der Feldquanten (Photo-

nen). Das Ergebnis (32.11) bedeutet daher, dass Photonen den Spin ± ¯h in Richtung

ihres Impulses ¯hk haben. 

Welle und Teilchen

Die Quantisierung spielt bei Gravitationswellen im Gegensatz zu elektromagneti-

schen Wellen praktisch keine Rolle. Die Gründe hierfür wurden am Ende von Ka-

pitel 22 angesprochen; konkret zeigen sie sich bei der Abschätzung der möglichen

Gravitationsstrahlung eine Atoms (Kapitel 36). Zur Einordnung gegenüber anderen

Teilen der Physik skizzieren wir trotzdem kurz den Zusammenhang zwischen Welle
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und Teilchen, also zwischen Wellengleichung und Energie-Impuls-Beziehung, und

zwischen Polarisation und Spin. 

Die Feldquanten des elektromagnetischen Felds werden Photonen genannt, die

des Gravitationsfelds Gravitonen. Aus der jeweiligen Wellengleichung folgt, dass

Photonen und Gravitonen keine Ruhmasse haben: Für Photonen wird die Wellen-

gleichung 2Aα = 0 zu kβkβ = 0. Durch Einsetzen von E = ¯hω = ¯hck0 und

p = ¯hk erhält man hieraus E2 = c2p2. Wenn wir dies mit der allgemeinen Energie-Impuls-Beziehung (4.12), E2 = m2 c4 + c2p2 vergleichen, erhalten wir

m = 0

(Photonen, Gravitonen)

(32.12)

Die Wellengleichung 2hμν = 0 führt entsprechend zu kμkμ = 0 und damit auch

für Gravitonen zu m = 0. 

Der Polarisation der klassischen Wellen entspricht die Spineinstellung der Feld-

quanten. Der Betrag des Spins ist eine Eigenschaft der Teilchen (Photon oder Gra-

viton); variabel ist nur die Richtung des Spins. 

Der relativistische Spinvektor eines massiven Teilchens wird durch die Festle-

gung (sα) = (0, s) im momentanen Ruhsystem IS definiert. Für ein isoliertes

Teilchen ist die Hamiltonfunktion (oder der Hamiltonoperator) drehinvariant. We-

gen dieser Drehsymmetrie gilt s = const. 

Für masselose Teilchen existiert kein Ruhsystem. Der Impulsvektor k zeichnet

eine Richtung aus. Für ein isoliertes Teilchen gilt Drehsymmetrie bezüglich der k-

Achse. Dann ist die Spinprojektion s · k/k eine Erhaltungsgröße. 

Die Spinprojektion des Teilchens entspricht der Polarisation der Welle. Dabei

korrespondiert s 
 ±k mit der zirkularen Polarisation, also mit (32.10) im elektro-

magnetischen Fall. Die Felder für die anderen Polarisationen können durch geeigne-

te Eichtransformationen eliminiert werden; sie sind physikalisch ohne Bedeutung. 

Masselose Teilchen mit |s| = 0 können daher nur die beiden Spineinstellungen

s 
 ±k einnehmen. In der klassischen Feldtheorie (Elektrodynamik oder ART) gibt

es dementsprechend nur jeweils zwei unabhängige Felder, und zwar unabhängig

von der ursprünglichen Anzahl der Felder (vier Aα oder zehn hμν). Der Zusam-

menhang mit dem Spin wird am Transformationsverhalten einer polarisierten Welle

unter Drehungen deutlich ((32.11) und Abschnitt „Helizität“ unten). 

Gravitationswellen

In Analogie zur Elektrodynamik untersuchen wir jetzt ebene Gravitationswellen. 

Die Koordinatentransformation

xμ → xμ = xμ + μ(x)

(32.13)

führt zu der Eichtransformation (22.25) der Potenziale:

∂μ

hμν → h = h

− ∂ν = h

μν

μν −

μν − μ|ν − ν|μ

(32.14)

∂xν

∂xμ
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Ebenso wie (32.2) ist diese Transformation ohne Einfluss auf physikalische Größen. 

Da die linearisierten Gleichungen nur für schwache Felder gelten, sind in (32.13)

nur kleine Änderungen der Koordinaten zugelassen. Formal heißt das

|hμν|  1 und |μ|ν |  1

(32.15)

Im Folgenden wird jeweils nur die führende Ordnung in h und  mitgenommen. 

Der Übergang zwischen ko- und kontravarianten Komponenten erfolgt daher mit

ημν, und eine kovariante Ableitung kann durch die partielle ersetzt werden. 

In (32.13) können wir vier Funktionen μ frei wählen. Diese Freiheit ermöglicht

es, die vier Eichbedingungen

2 hμν|μ = hμμ|ν

(32.16)

zu verlangen. Diese Bedingungen führen zur Entkopplung der linearisierten Feld-

gleichungen (Kapitel 22) und damit zu (32.1). Sie erfüllen also denselben Zweck

wie (32.3). 

Wegen der Symmetrie hμν = hνμ sind nur 10 der 16 Komponenten hμν von-

einander unabhängig. Die vier Bedingungen (32.16) reduzieren dies auf sechs un-

abhängige Komponenten. Für die freien Gleichungen

2hμν = 0

(32.17)

sind vier  zusätzliche  Transformationen (32.14) möglich, sofern μ die Wellenglei-

chung 2μ = 0 erfüllt. Dies reduziert die Zahl der unabhängigen Komponenten

auf schließlich zwei. Wir führen im Folgenden die Reduktion von 10 auf 2 Felder

explizit vor. Zunächst schreiben wir die Lösung von (32.17) in Form ebener Wellen

an:





hμν = eμν exp − i kλ xλ + c.c. 

(32.18)

Dabei muss

ω2

ηλκ kλ kκ = kλ kλ = 0

oder

k 2 =

= k2

0

(32.19)

c2

gelten, wobei k = |k|. Die Amplituden eμν der Welle werden  Polarisationstensor

genannt. Wir setzen (32.18) in die Eichbedingungen (32.16) ein:

2 kμ ημρ eρν = kν ημρ eρμ

(32.20)

Zusammen mit den hμν ist der Polarisationstensor symmetrisch, 

eμν = eνμ

(32.21)

Der Einfachheit halber betrachten wir wieder eine Welle in x3-Richtung:





hμν = eμν exp ik (x3 − c t) + c.c. 

(32.22)
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Die Komponenten kμ des Wellenvektors sind dann

ω

k1 = k2 = 0, 

k0 = −k3 = k =

(32.23)

c

Damit werden die Bedingungen (32.20) für ν = 0, 1, 2, 3 zu

e00 + e30 = (e00 − e11 − e22 − e33)/2

(32.24)

e01 + e31 = 0

(32.25)

e02 + e32 = 0

(32.26)

e03 + e33 = −(e00 − e11 − e22 − e33)/2

(32.27)

Unter Berücksichtigung der Symmetrie eμν = eνμ und dieser vier Bedingungen

kann der Polarisationstensor eμν durch sechs Komponenten festgelegt werden:

Unabhängige Komponenten:

e00, e11, e33, e12, e13, e23

(32.28)

Diese sechs Komponenten bestimmen alle anderen Komponenten, insbesondere

e33 + e00

e01 = −e31, 

e02 = −e32, 

e03 = −

, 

e22 = −e11

(32.29)

2

Wir betrachten nun die  zusätzlichen  Eichtransformationen, die für Wellenlösungen

möglich sind. Dies sind Transformationen (32.13) mit Funktionen μ(x), die Lö-

sung der freien Wellengleichung sind:





μ(x) = δμ exp − ikλ xλ + c.c. 

(32.30)

Wir schreiben die Eichbedingung (32.16) für hμν aus (32.14) an:









2 hμ

|μ

ν|μ − 2 μ|ν + ν

| = hμ

μ

(32.31)

μ

μ|ν −

|μ + μ|μ |ν

Die Zusatzterme mit μ

|

|

μ

ν|μ heben sich auf, und ν

|μ verschwindet, weil ν Lösung

der Wellengleichung ist. Eine zusätzliche Eichtransformation mit μ aus (32.30)

(mit vier beliebigen Amplituden δμ) ist also möglich, ohne die erste Eichbedingung

(32.16) zu verletzen. 

Wir wählen kλ in (32.30) gleich dem Wellenvektor einer gegebenen Wellenlö-

sung hμν . Aus (32.14) und (32.30) erhalten wir dann eine neue Lösung hμν, in der

alle Terme denselben Exponentialfaktor exp(−ikλ xλ) haben. Damit werden nur die

Amplituden transformiert, eμν → eμν. Aus (32.14) erhalten wir für die neuen Am-

plituden

e

=

μν

eμν + ikμ δν + ikν δμ

(32.32)

Mit (32.23) ergibt dies für die unabhängigen 6 Amplituden:

e

= e

11

11

(32.33)

e

= e

12

12

(32.34)

e

= e

13

13 − i k δ1

(32.35)

e

= e

23

23 − i k δ2

(32.36)

e

= e

33

33 − 2 i k δ3

(32.37)

e

= e

00

00 + 2 i k δ0

(32.38)
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Die neue Lösung mit eμν ist physikalisch äquivalent zur alten mit eμν, da wir nur

eine Koordinatentransformation vorgenommen haben. In der neuen Lösung können

wir durch geeignete Wahl der δμ die Amplituden e , e , e und e zu null ma-

13

23

33

00

chen. Daher sind nur die Polarisationen physikalisch relevant, die den Amplituden

e und e entsprechen. Für die allgemeine Form der ebenen Welle genügt es daher, 

12

11

diese beiden Amplituden zu berücksichtigen:

⎛

⎞

0

0

0

0





⎜ 0 e

⎟





h

⎜

11

e12

0 ⎟

μν

= ⎝

i k(x3 − c t) + c.c. 

(32.39)

0 e

⎠ exp

12

−e11 0

0

0

0

0

Dabei haben wir den Strich wieder weggelassen. Diese ebene Welle ist mit (32.9)

zu vergleichen. 

Helizität

Wir untersuchen das Verhalten der Welle (32.39) bei Drehung um die x3-Achse, also

um die Richtung des Wellenvektors k. Da wir nahezu eine Minkowskimetrik benut-

zen, können wir die Drehung im Rahmen einer allgemeinen Lorentztransformation

beschreiben. Für eine Drehung um den Winkel ϕ lautet die Transformationsmatrix

⎛

⎞

1

0

0

0

 –  ⎜

⎟

μ

0

cos ϕ

sin ϕ

0

Λ

= ⎜

⎟

ν

⎝ 0 − sin ϕ cos ϕ 0 ⎠

(32.40)

0

0

0

1

Der Polarisationstensor transformiert sich gemäß

ρ – σ

e

= –

Λ Λ e

μν

μ

ν

ρσ

(32.41)

Wir gehen jetzt für einen Augenblick auf den Stand von (32.28) mit den sechs Am-

plituden e00, e11, e33, e12, e13 und e23 zurück. Zu ihnen äquivalent sind folgende

sechs Amplituden:

e00, 

e33, 

f± = e13 ± ie23, 

e± = e11 ± ie12

(32.42)

Aus (32.41) folgt das Transformationsverhalten dieser Amplituden:

e = e

= e

00

00 , 

e33

33 , 

f ± = exp(±iϕ) f± , e± = exp(±2iϕ) e± (32.43)

Das Transformationsverhalten einer ebenen Welle gemäß

Ψ  = exp(iH ϕ) Ψ

(32.44)

bei Drehung um den Wellenvektor k bezeichnet man als  Helizität  H . 
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In einer quantisierten Theorie wird hμν zur Wellenfunktion der Gravitonen. 

Dann bedeutet das Transformationsverhalten (32.44) einen Drehimpuls der Gra-

vitonen mit der Projektion H ¯h auf die Impulsrichtung. (Man kann dies etwa mit

Schrödingers Wellenfunktion vergleichen, die bei Drehsymmetrie um die x3-Achse

proportional zu exp(i mϕ) ist, wobei m ¯h die Projektion des Bahndrehimpulses auf

die x3-Achse ist.) Die in (32.43) auftretenden Werte H = 0, ±1, ±2 zeigen, dass

die Gravitonen Teilchen mit Spin 2 sind. 

Wie wir oben gesehen haben, können wir die Beiträge mit e00, e33, e13 und e23

durch eine geeignete Koordinatenwahl eliminieren. Diese Beiträge sind damit phy-

sikalisch nicht relevant. Nach (32.42) und (32.44) sind dies gerade die Helizitäten

H = 0 und H = ±1, oder im Teilchenbild die Drehimpulsprojektionen 0 und ± ¯h. 

Die Stärke dieser Anteile kann willkürlich durch Koordinatentransformationen ge-

ändert werden; insbesondere kann sie zu null gemacht werden. Dagegen bezeichnet

H = ±2 eine physikalische Polarisation der Welle, oder einen physikalischen Zu-

stand eines Gravitons. Im Teilchenbild bedeutet dies, dass der Spinvektor parallel

oder antiparallel zum Impuls ist. 



























33 Teilchen im Feld der Welle

Eine elektromagnetische Welle übt Kräfte auf geladene Teilchen aus. Analog da-

zu übt eine Gravitationswelle Kräfte auf massive Teilchen aus. Wir berechnen die

Auslenkungen von freien Teilchen im Feld einer Gravitationswelle. 

Wir gehen von einer ebenen Welle der Form

⎛

⎞

0

0

0

0





⎜ 0 e

⎟





h

⎜

11

e12

0 ⎟

μν (x3, t )

= ⎝

i k (x3 − c t) + c.c. 

(33.1)

0 e

⎠ exp

12

−e11 0

0

0

0

0

aus. Die Bedeutung der verwendeten Koordinaten folgt aus





ds2 = ημν + hμν(x3, t) dxμ dxν

(33.2)

Die Bahnen xσ (τ ) von Teilchen im Feld der Welle genügen der Bewegungsglei-

chung

d2xσ

dxμ dxν

= −Γ σ

(33.3)

dτ 2

μν

dτ

dτ

Die Christoffelsymbole Γ σ

μν sind mit den hμν aus (33.1) zu berechnen. Außer den

Gravitationskräften wirken keine weiteren Kräfte auf die Teilchen; wir stellen uns

etwa Staubteilchen im Feld der Welle vor. Die Gleichungen (33.1) – (33.3) definie-

ren das hier zu behandelnde Problem. 

Aus





∂hνλ

∂hμλ

∂hμν

Γ σ = ησλ

+

−

+ O(h2)

μν

(33.4)

2

∂xμ

∂xν

∂xλ

und (33.1) folgt





∂h0i

∂h0i

∂h00

Γ i = −1

+

−

= 0

(33.5)

00

2

∂x0

∂x0

∂xi

Als Anfangsbedingung wählen wir ˙xi(0) = (dxi/dτ )τ =0 = 0. Daraus folgt





d2xi

= −

(33.5)

Γ i

˙xμ(0) ˙xν(0) = −Γ i ˙x0(0) ˙x0(0) = 0

(33.6)

dτ 2

μν

00

τ = 0

Da die Beschleunigung in den verwendeten Koordinaten verschwindet, ist die Ge-

schwindigkeit auch im nächsten Augenblick gleich null. Damit ist

dxi = 0, also xi(τ) = const. 

(33.7)

dτ

188





Kapitel 33 Teilchen im Feld der Welle

189

6x2

·

· ·

· ·· ··

·· s ··

··

s

··

··

··

·

··

·

··

·

s··

·

··

·

··

·

··

·

··

·

·

s··

··

·

··

sP

···

L

··
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······
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·····

Wahl der Koordinaten bedingt, dass ein Teil-
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s

·

chen P im Feld der Welle konstante Koordi-

··· ···

natenwerte x1 und x2 hat. Der physikalische
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P
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Abstand des Teilchens vom Zentrum oszilliert

· ···· ··s

·· ···· ··· ··· ··· ··· ··· ···············

jedoch (Abbildung 33.2). 

eine Lösung von (33.3). In den benutzten Koordinaten können Teilchen im Feld

der Welle also durch  konstante räumliche Koordinaten  beschrieben werden. Dies

bedeutet aber nicht, dass diese Teilchen ruhen. Vielmehr ändern sich ihre Relativ-

abstände aufgrund der Zeitabhängigkeit des metrischen Tensors in (33.2). 

Wir betrachten Teilchen, die auf einem Kreis in der x1-x2-Ebene angeordnet

sind, Abbildung 33.1. Wir schreiben (33.2) in der Form ds2 = c2 dt2 −dl2 −(dx3)2

mit dem Wegelement 



dl 2 = δmn − hmn(t) dxm dxn

(m, n = 1, 2)

(33.8)

der x1-x2-Ebene. Hierbei ist hmn(t) = hmn(x3 = 0, t), also









e11

e12

hmn(t) =

exp(−i ω t) + c.c. 

(33.9)

e12 −e11

Mit (33.8) berechnen wir den physikalischen Abstand ρ eines herausgegriffenen

Teilchens P vom Zentrum. Die Koordinatenwerte x1 und x2 des Teilchens sind nach

P

P

(33.7) konstant. In (33.8) können wir anstelle von dxm unmittelbar die endlichen

Koordinaten xm von P einsetzen, weil die metrischen Koeffizienten h

P

μν nicht von

diesen Koordinaten x1 und x2 abhängen:





ρ2 = δmn − hmn(t) xm xn

(m, n = 1, 2)

(33.10)

P

P

Die Position eines Teilchens P kann durch den Winkel ϕ (Abbildung 33.1) festgelegt

werden, 

x1 = L cos ϕ , 

x2 = L sin ϕ

(33.11)

P

P

Wir werten (33.10) mit (33.9) und (33.11) aus:

 



1 − 2 h cos(2ϕ) cos(ω t)

(e11 = h, e12 = 0)

ρ2 = L2 ·





(33.12)

1 − 2 h sin(2ϕ) cos(ω t)

(e12 = h, e11 = 0)

Hierbei haben wir nach den beiden möglichen linearen Polarisationen unterschieden

und die Amplitude der Welle mit h bezeichnet. Die physikalischen Auslenkungen
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Abbildung 33.2 Auslenkung von Teilchen auf einem Kreis (Abbildung 33.1) im Feld ei-

ner linear polarisierten, ebenen Gravitationswelle. Im Gegensatz zu den konstanten Koor-

dinatenwerten x1 und x2 bezeichnen x und y die physikalische Lage relativ zum Zentrum. 

Realistische Auslenkungen sind sehr klein, zum Beispiel |ρ − L|/L ∼ 10−20 für die Strah-

lung des Doppelsternsystems i Boo, (37.3). Insofern ist die Darstellung  sehr  schematisch. 

sind in Abbildung 33.2 skizziert. Dabei wurden die Projektionen des physikalischen

Abstands ρ mit x und y bezeichnet. Der herausgegriffene Punkt P hat die x-y-

Koordinaten

xP = ρ cos ϕ , 

yP = ρ sin ϕ

(33.13)

Die physikalische Auslenkung der Probeteilchen ergibt eine Ellipse mit sehr klei-

ner Exzentrizität. An der Winkelabhängigkeit der Auslenkung kann die Polarisation

der Welle abgelesen werden. Die zwei unabhängigen Polarisationsrichtungen bilden

miteinander einen Winkel von π/4; für elektromagnetische Wellen ist dieser Winkel

π/2. Ebenso wie in der Elektrodynamik lassen sich zirkular (oder elliptisch) polari-

sierte Wellen bilden, bei denen sich die Achsen der Deformationsellipse mit der Zeit

drehen. Eine zirkular polarisierte Gravitationswelle ergibt sich für die Amplituden

e11 = −e22 = h und e12 = e21 = ±ih. 

Die in Abbildung 33.2 gezeigten Auslenkungen bedeuten ein oszillierendes

Quadrupolmoment der Massenverteilung; die Gravitationswelle regt also Quadru-

polschwingungen an. Umgekehrt sollten dann Massenverteilungen mit oszillieren-

dem Quadrupolmoment (zum Beispiel ein Wasserstoffatom im 1d-Zustand oder ein

Doppelsternsystem) Gravitationswellen ausstrahlen. 
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Aufgaben

 33.1 Elliptische Auslenkung im Feld der Welle

Eine Gravitationswelle mit der Polarisation e11 = h und e12 = 0 verschiebt freie

Massen auf einem Kreis (Abstand L vom Zentrum) zum Abstand ρ, 





ρ2 = L2 1 − 2 h cos(2ϕ) cos(ω t)

Zeigen Sie, dass die Kurve ρ = ρ(ϕ) für h  1 eine Ellipse darstellt. Wie lautet der

Zusammenhang zwischen der Exzentrizität  der Ellipse und der Wellenamplitude

h? 

































34 Energie und Impuls der Welle

Wir bestimmen den Energie-Impuls-Tensor einer Gravitationswelle. Für das Ver-

ständnis der weiteren Kapitel ist die folgende Kurzfassung ausreichend, bei der

Faktoren der Ordnung 1 vernachlässigt werden. 

Kurzfassung

Die Feldgleichungen lauten

R

Rμν −

gμν = −8πG Tμν

(34.1)

2

c4

Der Krümmungstensor Rμν enthält zweite Ableitungen ∂2g··/∂x· ∂x· und Quadrate

(∂g··/∂x·)(∂g··/∂x·) der ersten Ableitung des metrischen Tensors. Für schwache

Felder kann die linke Seite von (34.1) nach Potenzen von hμν entwickelt werden

(Kapitel 22), 

∂h·· ∂h··

Rμν − R gμν = 1 2hμν + (lineare Terme in h) +

+ . . . 

(34.2)

2

2



!" 

#

∂x· ∂x·

= R (1) − R (1) η

μν

μν /2

Bei Vernachlässigung der Terme O(h2) führt dies (nach spezieller Koordinaten-

wahl) zu den linearisierten Feldgleichungen (32.1). Die hier untersuchten ebenen

Wellen sind homogene Lösungen dieser Gleichungen. Wir nehmen jetzt die qua-

dratischen Terme O(h2) mit und bringen sie in (34.1) auf die rechte Seite:





R (1)

c4

∂h·· ∂h··

R (1) −

μν

ημν = − 8πG Tμν +

(34.3)

2

c4

8πG ∂x· ∂x·



!" 

#

= grav

tμν

Die Größe tμν ist quadratisch in den Gravitationsfeldern und tritt additiv zum

Energie-Impuls-Tensor Tμν hinzu, der alle nichtgravitativen Anteile enthält. Daher

grav

ist tμν der Energie-Impuls-Tensor des Gravitationsfelds. 

Für eine ebene Welle der Form (33.1) gilt

∂h·· ∝ hkλ

(34.4)

∂xλ
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wobei h die Amplitude der Welle ist (etwa e11 = h und e12 = 0). Aus (34.3) und

(34.4) folgt (bis auf einen numerischen Faktor)

c4

t grav =

k

μν

μ kν h2

(34.5)

8πG

Für eine linear polarisierte Welle ist dieses Ergebnis exakt. 

Für einen allgemeinen Energie-Impuls-Tensor Tμν lautet die Energieerhaltung

∂μ T

ei

0μ = 0. In Fast-Minkowskikoordinaten wird dies zu ∂t T00 + div (c T0i

) =

0. Diese Kontinuitätsgleichung bedeutet, dass T00 die Energiedichte und c T0i die

Energiestromdichte ist. Als Beispiel sei an den elektromagnetischen Fall mit der

Energiedichte T em = (E2 + B2)/8π und Energiestromdichte (Poynting-Vektor)

00

S = c T em ei = c E × B/4π erinnert. 

0i

Eine Welle in x3-Richtung hat den Wellenvektor (kμ) = (ω/c, 0, 0, ω/c). Die

grav

Energiestromdichte ΦGW = c t

= (c5/8πG)k

03

0 k3 h2 dieser Gravitationswelle

(GW) ist dann

c3

ΦGW =

Energie

=

ω2 h2

(34.6)

Zeit · Fläche

8πG

Dies ist die Energie, die pro Zeit und Fläche in Richtung des Wellenvektors k trans-

portiert wird. 

Vollständige Ableitung

Wir berücksichtigen nun alle numerischen Faktoren. In

gμν = ημν + hμν

( |hμν|  1)

(34.7)

sei hμν die Wellenlösung

hμν = eμν exp (−ikλ xλ) + c.c. 

(34.8)

Diese Welle ist Lösung der freien Feldgleichungen in 1. Ordnung in h, also

R (1) =

μν

0

(34.9)

Die Terme 2. Ordnung in der Feldgleichung werden zu den Quelltermen auf die

rechte Seite gebracht. Dort können sie als Energie-Impuls-Tensor (22.17) des Gra-

vitationsfelds identifiziert werden:

)



 *

c4

g

(2)

μν R

t grav =

R (2) −

μν

(34.10)

8πG

μν

2

Mit (34.7), R (0)

μν = 0, R (1)

μν = 0 und R = gρσ Rρσ wird diese Größe zu





c4

t grav =

− η

+ η

− h

μν

2 R (2)

μν ηρσ R (2)

μν hρσ R (1)

μν ηρσ R (1)

16 πG

μν

ρσ

ρσ

ρσ





=

c4

2 R (2) − ημν ηρσ R (2)

(34.11)

16 πG

μν

σρ
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Dabei haben wir die kontravariante Form

gμν = ημν − hμν

(34.12)

μ

von (34.7) verwendet, die aus gμνgνκ = δκ folgt. Der Ricci-Tensor



(2)

R (2) = gλνR

= ηλνR (2) − hλνR (1)

μκ

λμνκ

(34.13)

λμνκ

λμνκ

wird aus dem Krümmungstensor (18.11)





∂2gλν

∂2gμκ

∂2gμν

∂2gλκ

Rλμνκ = 1

+

−

−

2

∂xμ ∂xκ

∂xλ ∂xν

∂xλ ∂xκ

∂xμ ∂xν





+

η

η

gησ Γ Γ σ − Γ Γ σ

(34.14)

νλ

μκ

κλ

μν

(

berechnet. Die erste Zeile ergibt mit g

1)

·· = η·· + h·· nur Beiträge zu R···· . Die zweite

Zeile ergibt dagegen Beiträge zu R (2)

···· und zu höherer Ordnung. Für R (2)

···· genügt es, 

die Christoffelsymbole in 1. Ordnung zu berechnen:

+

, 

∂hσ μ

∂hμν

Γ σ (1) = 1

+ ∂hσ ν −

μν

(34.15)

2

∂xν

∂xμ

∂xσ

Damit erhalten wir für (34.13):





hλν

∂2hλν

∂2hμκ

∂2hμν

∂2hλκ

R (2) = −

+

−

−

μκ

2

∂xμ ∂xκ

∂xλ ∂xν

∂xλ ∂xκ

∂xμ ∂xν

+

, +

, 

∂hν

∂hν

∂hν

∂hσ

∂hσ

∂h

+ 1

σ +

σ −

ν

μ +

κ − μκ

4

∂xν

∂xν

∂xσ

∂xκ

∂xμ

∂xσ

+

, +

, 

∂h

∂h

∂h

∂hσ

∂hσ λ

∂hλ

− 1

σ κ + σλ − λκ

μ +

−

μ

(34.16)

4

∂xλ

∂xκ

∂xσ

∂xλ

∂xμ

∂xσ

Wegen der Eichbedingung (32.16), 2 hν σ |ν = hνν|σ , verschwindet die erste Klam-

mer in der zweiten Zeile. Die anderen Terme sind quadratisch in h und von der

Form



 



e·· exp(−ikλ xλ) + c.c. 

e·· exp(−ikλ xλ) + c.c. 

Dabei treten oszillierende Terme mit exp(±2ikλ xλ) auf, aber auch koordinaten-

unabhängige Terme. Die oszillierenden Terme fallen bei einer zeitlichen Mittelung

weg, so dass

/

 

0

1

2

e

∗

·· exp(−ikλ xλ) + c.c. 

e·· exp(−ikλ xλ) + c.c. = 2 Re e·· e··

(34.17)

Die eckigen Klammern kennzeichnen die Zeitmittelung, und „Re“ steht für die

Realteilbildung. Für die Welle (34.8) ergeben die Ableitungen

∂

( . . . ) = −i kλ ( . . . )

(34.18)

∂xλ
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Damit wird (34.16) zu

3

4

5

 6

R (2)

=

eλν ∗  k

μκ

Re

μ kκ eλν + kλ kν eμκ − kλ kκ eμν − kμ kν eλκ

(34.19)

5 



 6

−

1

∗ 

Re

k

kλ eσ μ + kμ eσλ − kσ eλμ

2

λ eσ κ + kκ eσ λ − kσ eλκ

Dies lässt sich mit (32.20), 

2 kμ eμν = kν eλλ

(34.20)

weiter vereinfachen. So ist beispielsweise



∗

$

$

eλν ∗ k

$

$2

κ kλ eμν = 1 kν

eλλ

kκ eμν = 1 kμ kκ eλλ

(34.21)

2

4

Unter Beachtung von kλ kλ = 0 wird (34.19) dann zu

3

4





k

$

$

μ kκ

R (2) =

$

$2

μκ

eλν ∗ eλν − 1 eλλ

(34.22)

2

2

Damit lautet das Endresultat für den Energie-Impuls-Tensor (34.11):





c4

$

$

t grav =

k

eλκ ∗ e

$eλ $2

μν

μ kν

λκ − 1

λ

(34.23)

16 πG

2

Für die Welle (32.39) gilt eλλ = 0 und





c4

$ $

$ $

t grav =

k

$e $2 + $e $2

μν

μ kν

11

12

(34.24)

8πG

Für eine linear polarisierte Welle (zum Beispiel e11 = h und e12 = 0) erhält man

hieraus (34.5). 



















35 Quadrupolstrahlung

So wie eine oszillierende Ladungsverteilung elektromagnetische Wellen aussendet, 

so strahlt eine oszillierende Massenverteilung Gravitationswellen ab. Wir berechnen

die Leistung, die eine oszillierende Massenverteilung abstrahlt. 

Kurzfassung

Wir bestimmen die abgestrahlte Leistung über die Analogie zur Elektrodynamik, 

wobei wir Faktoren der Ordnung 1 vernachlässigen. Für eine erste Orientierung

reicht diese Kurzfassung aus. 

Eine oszillierende Ladungsverteilung (Frequenz ω) mit einem nichtverschwin-

denden Dipolmoment p strahlt die Leistung ( = Energie/Zeit)

ω4

P =

p2

(35.1)

3 c3

ab. Das Dipolmoment ist von der Größe p ∼ q , wobei q und  die charakte-

ristische Ladung und Ausdehnung der oszillierenden Verteilung angeben. Für eine

elektrische Quadrupolstrahlung muss der Faktor exp(i kr) = 1 + ikr ± ... im re-

tardierten Potenzial um eine Potenz von k r = ω r/c weiterentwickelt werden. Dies

führt zur Ersetzung p → Qe ∼ q 2 und zu einem Faktor ω/c. Die Strahlungsleis-

tung eines elektrischen Quadrupols Qe ist daher

ω6

P = O(1)

Q 2

c5

e

(35.2)

Für eine Massenverteilung gibt es im Schwerpunktsystem nur ein Quadrupolmo-

ment Q ∼ M 2 und kein Dipolmoment. Im gewählten Maßsystem entsprechen

sich q2 und GM2. Daher wird (35.2) für eine oszillierende Massenverteilung zu

ω6

P = O(1)

G Q2

(35.3)

c5

Der exakte Ausdruck lautet:

 3

 $

$

$



$ 3



$$2

Strahlungsleistung

P = 2 G ω6

$Qij $2 − 1 $

Qii $

einer oszillierenden

(35.4)

5 c5

3

i,j =1

i =1

Massenverteilung



Dabei ist Qij = d3r xi xj  das Quadrupolmoment der Massenverteilung in kar-

tesischen Koordinaten. Im Folgenden wird das Resultat (35.4) und die Winkelver-

teilung dP /dΩ der Strahlung abgeleitet. 
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Elektromagnetische Strahlung

Wir erinnern zunächst an die Ableitung der Dipolstrahlung in der Elektrodynamik. 

Die Stromdichte einer periodischen, räumlich begrenzten Ladungsverteilung

 = 0

(r ≤ r0)

jα(r, t) = jα(r) exp(−iω t) + c.c. 

(35.5)

= 0

(r > r0)

wird in das Integral für die retardierten Potenziale eingesetzt:



Aα(r, t) = 1

d3r jα(r, t − |r − r|/c)

c

|r − r|



= 1

exp(i k |r − r|)

exp(−iω t)

d3r jα(r)

+ c.c. 

c

|r − r|

= Aα(r) exp(−iωt) + c.c. 

(35.6)

Die Frequenz ω der Ladungsverteilung ist auch die Frequenz der Potenziale und der

elektromagnetischen Felder. Für ω/c wurde die Wellenzahl

ω

k =

= 2π

(35.7)

c

λ

eingeführt. Die Wellenlänge λ der emittierten Strahlung wird ebenfalls durch die

Frequenz ω festgelegt. 

Für das Feld in großem Abstand (r  r0) entwickeln wir:

r · r





|r − r| = r −

± . . . = r 1 + O(r/r)

(35.8)

r





exp(i k |r − r|) = exp(ik r) exp(−ik · r) 1 + O(r/r)

(35.9)

Dabei wurde der Vektor

r

k = k

= k er

(35.10)

r

eingeführt. Mit dieser Entwicklung wird Aα(r) in (35.6) zu



Aα(r) ≈ exp(ik r)

d3r jα(r) exp(−ik · r)

(r  r0)

(35.11)

c r

Für viele Systeme (zum Beispiel für Atome) ist die Wellenlänge viel größer als die

Ausdehnung der oszillierenden Ladungsverteilung (35.5):

λ  r0 oder v  c

(35.12)

Diese Bedingung ist gleichbedeutend damit, dass die in der Ladungsverteilung auf-

tretenden maximalen Geschwindigkeiten v ∼ ω r0 nichtrelativistisch sind. Sie er-

laubt folgende  Langwellennäherung  in den räumlichen Komponenten An des Vek-

torpotenzials:



An(r) ≈ exp(ik r)

d3r jn(r) exp(−ik · r)

(35.13)

c r









= exp(ikr)

d3r jn(r) 1 − ik · r + . . . 

≈ exp(ikr)

d3r jn(r)

c r

c r
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Das verbleibende Integral wird durch das Dipolmoment p der Ladungsverteilung

ausgedrückt:







d3r jn(r) = −

d3r xn divj = −i ω

d3r xn e(r) = −i ω pn

(35.14)

Dabei haben wir divj (r ) = i ω e(r) benutzt, was aus der Kontinuitätsgleichung für die oszillierenden Größen (35.5) folgt. 

Wenn man in der Entwicklung in (35.13) den nächsten Term proportional zu

k · r ∼ (ω/c) r mitnimmt, so erhält man anstelle des Dipolmoments (∼ q ) das Quadrupolmoment (∼ q 2) begleitet von einem Faktor ω/c. Dies führt zu (35.2)

anstelle von (35.1). 

Aus den An können die Felder E und B berechnet werden:

B = rot A und E = (i/k) rot B

(r > r0)

(35.15)

Die zweite Gleichung folgt aus den Maxwellgleichungen für periodische Felder im

quellfreien Raum. Die Felder bestimmen den Energiestrom (Energie pro Zeit) durch

das Flächenelement r2 dΩ, 

xi

c





dP = c T em df i = c T em

r2 dΩ =

r2 dΩ e

E × B

(35.16)

0i

0i

r ·

r

4π

Die Ableitungen in (35.15) wirken auf r−1 exp(i k r). Die Differenziation der Ex-

ponentialfunktion ergibt einen zusätzlichen Faktor k, die des Vorfaktors ergibt da-

gegen den Zusatzfaktor 1/r. Unter der Annahme eines hinreichend weit entfernten

Beobachtungspunkts, 

r  λ

(35.17)

können die auf den Vorfaktor 1/r wirkenden Ableitungen weggelassen werden. Bei-

de Felder, E und B, sind dann proportional zu p (ω2/c2)/r. Wenn alle Komponen-

ten von p dieselbe Phase haben, erhält man aus (35.16) das bekannte Ergebnis1

dP

ω4

=

|p|2 sin2θ

(35.18)

dΩ

2πc3

Dabei ist θ der Winkel zwischen dem Dipolmoment p der Ladungsverteilung und

der Beobachtungsrichtung k. Die gesamte abgestrahlte Leistung beträgt

P = 4ω4 |p|2

(35.19)

3 c3





1Der auch übliche Ansatz jα(r, t) = Re jα(r) exp[−iωt] unterscheidet sich von (35.5) durch einen Faktor 2 in den Amplituden. Für diesen Ansatz sind die rechten Seiten von (35.18) und (35.19) durch 4 zu teilen. Damit wird (35.19) zu (35.1). 
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Gravitationsstrahlung

Die Berechnung der Gravitationsstrahlung erfolgt analog zur Elektrodynamik. Sie

ist aber insgesamt aufwändiger, weil die Quellterme Tμν Tensoren zweiter Stufe

sind. Wir gliedern die Berechnung in folgende Schritte:

1. Asymptotische Felder aus gegebenen Tμν. 

2. Reduktion auf die räumlichen Komponenten Tij . 

3. Langwellennäherung. 

Im Gegensatz zur Elektrodynamik gibt es keine Dipolstrahlung. Für eine oszillie-

rende Massenverteilung (r , t ) = (r) exp(−i ω t) + c.c. ist das Dipolmoment



p = d3r r (r) = M Rc.m. 

(35.20)

gleich der Masse M mal der Schwerpunktkoordinate Rc.m. der Verteilung. Als IS

kann man das Schwerpunktsystem mit Rc.m. = 0 wählen; denn das abgeschlossene

System bewegt sich gleichförmig. (Falls das System nicht abgeschlossen ist, gibt es

weitere oszillierende Massen, die für die Abstrahlung zu berücksichtigen sind). Im

Schwerpunktsystem gibt es dann wegen p = 0 keine Strahlung. 

In der Elektrodynamik kann das Dipolmoment p im Allgemeinen nicht durch

die Wahl des Bezugssystems zum Verschwinden gebracht werden. Dies liegt daran, 

dass e positiv und negativ sein kann. Speziell für zwei Punktladungen +q und

−q ist p = q r12, wobei r12 der Verbindungsvektor ist. Dieses Dipolmoment ist unabhängig vom gewählten Inertialsystem. 

Asymptotische Felder

Wir übernehmen, soweit möglich, die Bezeichnungen der Elektrodynamik. Wir ge-

hen von einer periodischen, räumlich begrenzten Massenverteilung aus:

 = 0

(r ≤ r0)

Tμν(r, t) = Tμν(r) exp(−i ω t) + c.c. 

(35.21)

= 0

(r > r0)

Die retardierten Potenziale sind durch (22.28) gegeben, 



exp(i k |r − r|)

hμν(r, t) = −4G exp(−i ω t)

d3r Sμν(r)

+ c.c. (35.22)

c4

|r − r|

wobei Sμν = Tμν − ημν T /2. Unter der Annahme

r0  λ  r

(35.23)

berechnen wir hieraus die Leistung der Gravitationsstrahlung. 
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Für große Abstände entwickeln wir wie in (35.8) – (35.11) und erhalten



exp[i(k r − ω t)]

hμν(r, t) ≈ −4G

d3r Sμν(r) exp(−ik · r) + c.c. 

c4

r

= −4G exp(−ikλ xλ) Sμν(k) + c.c. 

c4

r

= eμν(r, ω) exp(−ikλ xλ) + c.c. 

(r  r0)

(35.24)

Die Exponentialfunktion exp[i(k r − ω t)] wurde als exp(−i kλ xλ) geschrieben, 

wobei

 





ω

r

kλ =

, k , 

k = k

= k er

(35.25)

c

r

Das Integral in (35.24) ist die Fouriertransformierte von Sμν , 



Sμν(k) =

d3r Sμν(r) exp(−ik · r)

(35.26)

Damit sind die in (35.24) eingeführten Amplituden eμν der Welle durch





T (k)

eμν(r, ω) = − 4G Sμν(k) = − 4G Tμν(k) −

ημν

(35.27)

c4 r

c4 r

2

gegeben. Diese Amplituden sind proportional zu 1/r und hängen über k = kr/r

von r und von k = ω/c ab. Die Abkürzung Sμν für Tμν − ημν T /2 werden wir im

Folgenden nicht mehr verwenden. 

Analog zu (35.16) ist der durch das Flächenelement r2 dΩ gehende Energie-

strom dP gleich

grav

grav xi

dP = c t

df i = c t

r2 dΩ

(35.28)

0i

0i

r

Mit dem Energie-Impuls-Tensor (34.23) des Gravitationsfelds wird dies zu





dP

c4

k

$

$

=

i xi

c

k

$

$2

0

r2 eλν∗eλν − 1 eλλ

(35.29)

dΩ

16 πG

r

2

In Kapitel 34 waren die Amplituden eμν Konstanten, während hier eμν(r, ω) ∝ 1/r

gilt. Der Energie-Impuls-Tensor (34.3) enthält partielle Ableitungen der hμν . Für

konstante Amplituden ergeben diese Ableitungen jeweils Faktoren kμ ∼ 1/λ. Für

eμν ∝ 1/r ergeben sie weitere Terme mit einem Faktor 1/r. Für einen weit entfern-

ten Beobachtungspunkt, r  λ, können wir die zusätzlichen Terme vernachlässi-

gen. 

In (35.29) setzen wir k0 = ω/c, ki xi/r = k · r/r = ω/c und (35.27) ein. Dies

ergibt





dP

G ω2

$

$

=

T μν (k)∗ T

$

$2

μν (k) − 1 T (k)

(35.30)

dΩ

πc5

2

Damit ist die Leistung der Gravitationsstrahlung durch die Fouriertransformierten

Tμν(k) der Quellverteilung ausgedrückt. 
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Reduktion auf die räumlichen Komponenten

Mit Hilfe der Kontinuitätsgleichung drücken wir dP /dΩ allein durch die räum-

lichen Komponenten T ij aus. 

Die Quellverteilung (35.21) kann in der Form







T μν (r, t ) =

1

d3k T μν (k) exp i (k · r − ω t) + c.c. 

2π 

= 1

d3k T μν (k) exp(−ikλ xλ) + c.c. 

(35.31)

2π

geschrieben werden. Der Erhaltungssatz T μν||ν = 0 wird für schwache Felder zu

T μν |ν = 0. Für (35.31) bedeutet dies

kν T μν(k) = 0

(35.32)

und speziell für μ = 0 und μ = i, 

k0 T 00(k) = −kj T 0j (k) und k0 T i0(k) = −kj T ij (k)

(35.33)

Durch

ˆ

ki

ki =

(35.34)

k0

sind die Komponenten eines Einheitsvektors im dreidimensionalen Raum gegeben. 

Damit schreiben wir (35.33) als

T i0 = T 0i = − ˆk

ˆ

j T ij

und

T 00 = ˆki kj T ij

(35.35)

Hiermit können wir alle nicht rein räumlichen Komponenten in (35.30) eliminieren. 

Im Einzelnen erhalten wir





T μν ∗ Tμν = ημρ ηνσ T μν ∗ T ρσ = T 00∗ T 00 − 2

T 0i ∗ T 0i +

T ij ∗ T ij

i

i, j

= ˆk ˆ ˆ ˆ

î kj kl km T ij ∗ T lm − 2 ˆ

kj km δil T ij ∗ T lm + δil δjm T ij ∗ T lm(35.36)



T λ

ˆ

λ

= ηλρ T ρλ = T 00 −

T ii = ˆkj ki T ij − δij T ij

(35.37)

i

$$ $

T λ $2

ˆ ˆ ˆ

ˆ ˆ

ˆ ˆ

λ

= ˆki kj kl km T ij ∗ T lm − δij kl km T ij ∗ T lm − δlm ki kj T ij ∗ T lm

+ δij δlm T ij ∗ T lm

(35.38)

Wir setzen diese Ausdrücke in (35.30) ein:

dP

G ω2

=

Λij,lm T ij ∗(k) T lm(k)

(35.39)

dΩ

πc5
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Dabei ist

Λ

ˆ ˆ

ˆ îj,lm(θ , φ)

= δil δjm − 1 δij δlm − 2 δil kj km + 1 δij kl km

2

2

+ 1 δ ˆ ˆ

ˆ ˆ ˆ ˆ

lm ki kj + 1 ki kj kl km

(35.40)

2

2

eine Funktion der Winkel θ und φ des Vektors ˆk = k/k. 

Langwellennäherung

Wegen λ  r0 können wir schreiben:









T ij (k) =

d3r T ij (r) exp(−ik · r) =

d3r T ij (r) 1 − ik · r + . . . 



ω2

≈

d3r T ij (r) = −

Qij

(35.41)

2

Hierbei ist Qij eine Abkürzung für das Integral. Aus der Energieerhaltung T μν |ν =

0 folgt für μ = i und μ = 0:

∂j T ij (r, t) = −∂0 T i0(r, t) und ∂i T 0i(r, t) = −∂0 T 00(r, t) (35.42)

Daraus ergibt sich

ω2

∂i ∂j T ij (r, t) = ∂ 2 T 00(r, t) = −

T 00(r, t )

(35.43)

0

c2

In dieser Relation kürzen wir den Faktor exp(−i ω t):

ω2

∂i ∂j T ij (r) = −

T 00(r)

(35.44)

c2

Wir verwenden dies in (35.41):









Qij

= − 2

d3r T ij (r) = − 1

d3r xi xj

∂k ∂l T lk(r)

ω2

ω2





= 1

d3r xi xj T 00(r) =

d3r xi xj (r)

(35.45)

c2

Nach Voraussetzung gilt λ  r0 (oder v  c) und damit T 00 ≈  c2; dies wurde im

letzten Schritt verwendet. Die Größe Qij ist der  Quadrupoltensor  des räumlichen

Anteils der Massenverteilung. Aus (35.39) mit (35.41) folgt

dP

G ω6

=

Λij,lm Qij ∗ Qlm

(35.46)

dΩ

4πc5
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Typisch für die Quadrupolstrahlung ist die ω6-Abhängigkeit im Gegensatz zur ω4-

Abhängigkeit der Dipolstrahlung. In der Auswertung können die Abweichungen

von der euklidischen Metrik vernachlässigt werden. Dann entfällt auch die Unter-

scheidung zwischen ko- und kontravarianten Komponenten, es gilt zum Beispiel

Qij = Qij . 

Die Winkelabhängigkeit der Abstrahlung ist in den Λij,lm(θ, φ) enthalten. Nach

(35.40) sind diese Größen durch den Einheitsvektor ˆk bestimmt, der von der Mas-

senverteilung zum Beobachtungspunkt zeigt. Die Richtung des Einheitsvektors ˆ

k

kann durch die Winkel ausgedrückt werden, die er mit kartesischen Koordinaten-

achsen bildet:

 ˆ  







ki = ˆkx, ˆky, ˆkz = sin θ cos φ, sin θ sin φ, cos θ

(35.47)

Als Beispiel betrachten wir eine zylindersymmetrische Quadrupolverteilung im

Hauptachsensystem, (Qij ) = diag (Q1, Q1, Q3). Hierfür hängt die Abstrahlung

nicht von φ ab; denn in (35.46) treten nur Kombinationen wie ˆk 2 + ˆk 2

x

y oder ˆ

k 2

z auf. 

In (35.40) kommt maximal die vierte Potenz von Komponenten von ˆ

ki vor. Dies

entspricht der für Quadrupolstrahlung typischen Winkelabhängigkeit

dP = a1 cos4θ + a2 cos2θ + a3

(35.48)

dΩ

Die Koeffizienten ai sind proportional zu ω6 und zu Quadraten der Qii . 

Um die gesamte abgestrahlte Leistung zu erhalten, müssen wir (35.46) über alle

Winkel integrieren. Mit (35.47) erhalten wir



dΩ ˆ

k î kj = 4π δij

(35.49)

3







dΩ ˆ

k ˆ ˆ î kj kl km = 4π

δij δlm + δil δjm + δim δjl

(35.50)

15

Die Integration über (35.40) ergibt







dΩΛij,lm = 2π 11 δil δjm − 4 δij δlm + δimδjl

(35.51)

15

Hiermit können wir (35.46) über die Winkel integrieren:



 3

$ 3

$ 

dP

 $

$

$ 

$2

P =

dΩ

= 2 G ω6

$Qij $2 − 1 $

Qii $

(35.52)

dΩ

5 c5

3

i,j =1

i =1

Dies ist die gesamte abgestrahlte Leistung. Wie in der einleitenden Kurzfassung

dargestellt, ist die Form dieses Ergebnisses in Analogie zur Elektrodynamik leicht

zu verstehen. 























36 Quellen der Gravitationsstrahlung

Als mögliche Quellen von Gravitationsstrahlung untersuchen wir folgende Syste-

me: Wasserstoffatom, allgemeiner Rotator, rotierender Balken im Labor, Doppel-

sternsystem, Pulsar und Supernova1. 

Wasserstoffatom

In einem halbklassischen Bild des Wasserstoffatoms umkreist ein Elektron (Masse

me, Ladung −e) das Proton (Masse mp  me, Ladung +e). Das Kräftegleichge-

wicht me v2/aB = e2/a 2 und die Drehimpulsbedingung

B

¯h = mev aB legen den

Bohrschen Radius aB = ¯h2/me e2 und die Geschwindigkeit v = e2/¯h fest. Wir

führen noch die atomare Frequenz ωat = v/aB und die atomare Energieeinheit

e2

Eat = ¯hωat =

= α2 mec2

(36.1)

aB

ein. Hierbei ist α = e2/¯hc ≈ 1/137 die Feinstrukturkonstante. Die Energieab-

stände der Zustände sind von der Größenordnung Eat. Mit Pem aus (35.1) und dem

Dipolmoment p ∼ e aB schätzen wir die Zeit τem ab, nach der durch elektrische Di-

polstrahlung der Übergang zu einem niedrigeren Niveau (etwa zum Grundzustand)

erfolgt:

Eat

e2

c3

α−3

τem ∼

∼

=

∼ 10−10 s

(36.2)

Pem

aB ω 4

ω

at e2 a 2

B

at

Diese klassische Abschätzung für die Lebensdauer von angeregten Atomzuständen

ergibt bis auf numerische Faktoren das richtige Ergebnis. (Im sichtbaren Bereich ist

¯hω ∼ Eat/10; zusammen mit anderen numerischen Faktoren führt dies zu τem ∼

10−8 s). Verglichen mit der Umlaufzeit 2π/ωat ∼ 10−16 s erfolgt die Abstrahlung

langsam, und zwar innerhalb von etwa α−3 ≈ 106 Umläufen. 

Wir führen die analoge Abschätzung für den Zerfall von angeregten Atomzu-

ständen durch Gravitationsstrahlung durch. Mit PGW aus (35.3) und mit dem Qua-

drupolmoment Q ∼ me a2 erhalten wir als Lebensdauer

Eat

e2

c5

e2

α−5

τgrav ∼

∼

=

= 1034 s

(36.3)

PGW

aB ω 6

G m 2 ω

at G m 2 a 4

e

B

e

at

1Für einen weiterführenden Übersichtsartikel sei auf J. A. Lobo,  Sources of Gravitational Waves, Seite 203 –222 in [8], verwiesen. 
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Hierbei ist Gm 2/e2 ∼

e

10−39 das Stärkeverhältnis zwischen der Gravitationswech-

selwirkung und der elektromagnetischen Wechselwirkung. Unsere grobe Abschät-

zung ergibt

τgrav

e2

∼ 1

∼ 1044

Verzweigungsverhältnis

(36.4)

τ

Photon zu Graviton

em

α2 G m 2

e

Dies bedeutet, dass auf 1044 ausgesandte Photonen nur ein einziges Graviton

kommt. Daher ist ein Nachweis eines Zerfalls durch Emission eines Gravitons prak-

tisch ausgeschlossen. 

Die (nichtrelativistische) quantenmechanische Beschreibung des Elektrons er-

folgt durch die Schrödingersche Wellenfunktion ψ. Im elektromagnetischen Fall

ist dann das Dipolmoment in (35.1) durch die entsprechenden Matrixelemente zu

ersetzen, etwa durch



pi = −e

d3r ψ ∗ x

1s

i ψ2p

(36.5)

für den Übergang vom 2p- zum 1s-Zustand. Für einen Zerfall durch Emission eines

Gravitons muss das Matrixelement des Quadrupoloperators ungleich null sein, dies

ist etwa für den Übergang 3d → 1s der Fall. In der Abstrahlungsformel ist dann das

Matrixelement



Qij = me

d3r ψ ∗ x

1s

i xj ψ3d

(36.6)

einzusetzen. Abgesehen von numerischen Faktoren führt auch dies zu (36.3). 

Rotator

Wir berechnen die Gravitationsstrahlung eines rotierenden starren Körpers. Dazu

betrachten wir zunächst ein körperfestes Koordinatensystem KS mit den Koordi-

naten xn. In KS ist die Massendichte (r) zeitunabhängig. Wir wählen KS so, 

dass der (nicht spurfreie) Quadrupoltensor Θ diagonal ist:

ij

⎛

⎞





 



I1

0

0

Θ = Θ

=

d3r x x (r)

= ⎝

⎠

ij

i

j

0

I2

0

(36.7)

0

0

I3

Der Körper rotiere mit der Winkelgeschwindigkeit Ω um die raumfeste x -Achse. 

3

Die orthogonale Transformation zu einem Inertialsystem (IS) mit den Koordinaten

xn kann in der Form

xn = αm(t) x

n

m

(36.8)

mit

⎛

⎞





cos Ω t

− sin Ω t 0

α(t ) = αm = ⎝

⎠

n

sin Ω t

cos Ω t

0

(36.9)

0

0

1
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geschrieben werden; die x3- und x -Achse fallen zusammen. Wir bestimmen den

3

Quadrupoltensor Θij in IS:





 



Θij (t) =

d3r xi xj (r, t) =

d3r  αn x

αm x

(r )

i

n

i

m





=

α(t ) Θ α(t )T

(36.10)

ij

Bei der Transformation verhalten sich das Volumenelement und die Massendichte

wie Skalare, also d3r = d3r und (r, t) = (r). Mit (36.7) und (36.9) werten wir (36.10) komponentenweise aus:

I1 + I2

I1 − I2

Θ11(t) =

+

cos(2 Ω t )

(36.11)

2

2

I1 − I2

Θ12(t) =

sin(2 Ω t )

(36.12)

2

I1 + I2

I1 − I2

Θ22(t) =

−

cos(2 Ω t )

(36.13)

2

2

Θ33(t) = I3, 

Θ13(t) = Θ23(t) = 0

(36.14)

Dies ist von der Form





Θij (t) = const. + Qij exp(−2 iΩt) + c.c. 

(36.15)

mit

⎛

⎞





1

i

0

Q

⎝

⎠

ij

= I1 − I2

i

−1 0

(36.16)

4

0

0

0

Der konstante Anteil in (36.15) trägt nicht zur Abstrahlung bei und kann daher hier

ignoriert werden. Die Qij sind die Amplituden einer oszillierenden Quadrupol-

verteilung, die durch die Rotation entsteht; damit sind die Qij die in (35.52) zu

verwendenden Quadrupolmomente. Die Frequenz der oszillierenden Massenvertei-

lung ist ω = 2Ω; der Faktor 2 kommt daher, dass die Ausgangssituation bereits

nach einer halben Umdrehung wieder erreicht wird. 

In der weiteren Behandlung verwenden wir das Trägheitsmoment I bezüglich

der Drehachse und die Elliptizität  des Körpers:

I1 − I2

I = I1 + I2 , 

 =

(36.17)

I1 + I2

Damit ist der Vorfaktor in (36.16) gleich I /4. Wir setzen (36.16) und ω = 2Ω in

(35.4) ein:

P = 32 G Ω6 2 I 2

Strahlungsleistung einer

(36.18)

5 c5

rotierenden Massenverteilung
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Rotierender Balken

Zur Erzeugung von Gravitationsstrahlung im Labor betrachten wir einen rotieren-

den Balken mit der Masse M und der Länge L. Der Balken rotiere mit der Drehfre-

quenz Ω um eine Achse, die durch den Mittelpunkt des Balkens geht und senkrecht

zu ihm steht. Ein Versuchsaufbau wäre etwa für

M = 5 · 105 kg = 500 t, 

L = 20 m, 

Ω = 30 s−1

(36.19)

möglich. Die Grenzen für Ω sind durch die Zerreißfestigkeit des Materials gegeben. 

Für einen Balken gilt

I ≈ I1 = ML2 , 

I2 ≈ 0, 

 ≈ 1

(36.20)

12

Dies setzen wir in (36.18) ein und erhalten

P ≈ 2.4 · 10−29 W

(36.21)

In der Energiebilanz des rotierenden Balkens ist dieser Strahlungsverlust offensicht-

lich nicht zu messen. Die neben dem Balken auftretende Energiestromdichte

W

ΦGW ∼ P ≈ 6 · 10−32

(Balken)

(36.22)

L2

m2

liegt weit unterhalb jeder Nachweisgrenze (Kapitel 37). 

Doppelsternsystem

In einem Doppelsternsystem bewegen sich zwei Sterne (mit den Massen M1 und

M2) auf Keplerellipsen. Als Spezialfall sind Kreisbahnen möglich. Hierfür ist der

Abstand r zwischen den beiden Sternen konstant und das System kann als starrer

Rotator mit

I ≈ I1 = M1 M2 r2 , 

I2 ≈ 0, 

 ≈ 1

(36.23)

M1 + M2

behandelt werden. Die Kreisbahn ist durch das Gleichgewicht von Gravitations- und

Zentrifugalkraft bestimmt:

M1 M2

M1 M2

M1 + M2

Ω2 r = G

, 

also

Ω2 = G

(36.24)

M1 + M2

r2

r3

Wir setzen diese Bahnfrequenz Ω und (36.23) in (36.18) ein:

M 2 M 2 (M1 + M2)

P = 32 G4

1

2

(36.25)

5 c5

r5
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Diese Abstrahlung bedeutet einen Energieverlust. Dadurch verringert sich der Ab-

stand r laufend, bis die Sterne nach der  Spiralzeit  tspir ineinanderstürzen. Wir be-

rechnen die Zeit tspir. Im Keplerproblem ist die Gesamtenergie E des Systems gleich

der halben potenziellen Energie, also

M1 M2

E = −G

(36.26)

2 r

Durch die Abstrahlung (36.25) wird diese Energie langsam kleiner, dE = −P dt. 

Daraus erhalten wir

dE

GM1M2 dr

M 2 M 2 (M1 + M2)

P = −

= −

= 32 G4

1

2

(36.27)

dt

2 r2

dt

5 c5

r5

Wir substituieren x(t ) = (r(t)/r(0))4 und erhalten die Differenzialgleichung

dx

M

= − 256 G3

1 M2 (M1 + M2) = − 1

(36.28)

dt

5 c5

r(0)4

tspir

Die Lösung ist x = 1 − t/tspir oder



1/4

r(t ) = r(0)

1 − t

(36.29)

tspir

Für zwei Sterne mit gleicher Masse (M1 = M2 = M) ist die Spiralzeit gleich



3

c2 r(0)

r(0)

tspir = 5

(36.30)

512

GM

c

Als Beispiel setzen wir M = M und r(0) = 10R ein. Mit den bekannten Werten

für die Stärke des Gravitationspotenzials an der Sonnenoberfläche (GM/c2R ≈

2 · 10−6) und dem Sonnenradius (R/c ≈ 2.3 s) erhalten wir dann tspir ∼ 1012 a, 

also ein Vielfaches des Weltalters. 

PSR 1913+16

Das Doppelsternsystem PSR 1913+16 ist etwa 21 000 Lichtjahre von uns entfernt

und besteht aus einem Pulsar (Masse M1) und einem nicht sichtbaren Begleiter

(M2), der ebenfalls ein Neutronenstern sein dürfte. Die Signale des beteiligten Pul-

sars wurden über viele Jahre hinweg aufgezeichnet und genau untersucht2. Aus der

Beobachtung der Phasenverschiebung der sehr regelmäßigen Signale des Pulsars

2J. H. Taylor and J. M. Weisberg, Astrophysical J. 345 (1989) 434 und viele weitere Arbeiten

dieser Autoren. Für die Entdeckung (1974) und nachfolgende Analyse dieses Doppelsternsystems

erhielten R. A. Hulse und J. H. Taylor 1993 den Nobelpreis. Dieser  Hulse-Taylor-Pulsar  wird in neuerer Nomenklatur auch mit PSR B1913+1916 oder als PSR J1915+1606 bezeichnet. 
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(mit der Periode τ ≈ 0.06 s) lassen sich die Bahndaten ableiten [9], insbesondere

die Bahnperiode T = 2π/Ω und die Massen, 

T

≈ 7.75 h

PSR 1913+16 :

M1 ≈ 1.442 M

(36.31)

M2 ≈ 1.386 M

Die Bahn von PSR 1913+16 ist stark elliptisch. Da wir eine Kreisbahn angenommen

haben, können wir hier nur Größenordnungen abschätzen. Aus (36.31) und (36.24)

folgt der heutige Abstand r der beiden Sterne. Wir setzen diesen Abstand als r(0)

in (36.30) ein und erhalten

tspir ∼ 109 a

(36.32)

Das Kepler-Gesetz T 2 ∝ r3 impliziert 2 dT /T = 3 dr/r. Aus (36.30) folgt

(dr/dt )0 = −(1/4) r(0)/tspir. Damit erhalten wir

dT

T dr

T

= 3

= − 3

≈ −10−12

(36.33)

dt

2 r dt

8 tspir

Über die Phasenverschiebung der Pulse kann diese Änderung der Bahnperiode ex-

perimentell bestimmt werden. Die Messungen [9] ergeben folgende Verringerung

der Bahnperiode:

dT = −(2.4184 ± 0.0009) · 10−12

(PSR 1913+16)

(36.34)

dt

Unsere Abschätzung (36.33) erklärt die Größenordnung des Effekts. Die sorgfäl-

tige Analyse der experimentellen Befunde ergibt, dass die beobachtete Abnahme

mit einer relativen Genauigkeit von 0.2 % mit der theoretisch berechneten überein-

stimmt [9]. Die Diskussion anderer denkbarer Effekte führt zu dem Schluss, dass

Gravitationsstrahlung die einzige plausible Erklärung für die Abnahme der Bahn-

periode ist. Diese Experimente werden daher als indirekter Nachweis von Gravita-

tionsstrahlung angesehen. 

i Boo

Für das Doppelsternsystem i Boo sind der Abstand3 D, die Periode T und die Mas-

sen M1 und M2 bekannt:

M1 = 1.35 M

i Boo :

D = 12 pc, 

T = 0.268 d, 

(36.35)

M2 = 0.68 M

Dieses System ist günstig, da es relativ nah ist und eine kleine Bahnperiode hat. Aus

(36.25, 36.24) und (36.35) folgt die von i Boo emittierte Strahlungsleistung, 

P ≈ 3.2 · 1023 W

(36.36)

3Astronomische Entfernungen werden in Lichtjahren (Lj) oder Parsec (pc) angegeben. Es gilt

1 pc ≈ 3.26 Lj. 
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Für einen direkten Nachweis von Gravitationswellen kommt es auf die bei uns ein-

fallende Energiestromdichte ΦGW an:

P

W

ΦGW =

≈ 1.8 · 10−13

(i Boo)

(36.37)

4πD2

m2

Kollabierender Doppelstern

Nach (36.25) ist P ∝ 1/r5. Besonders hohe Strahlungsleistung erhalten wir daher

von einem Doppelstern mit kleinem r. Der kleinstmögliche Bahnabstand ist r =

R1 + R2, wobei R1 und R2 die Sternradien sind. Folgende Parameter

M1 = M2 = M , 

r = 30 km , 

D = 103 pc

(36.38)

mögen für ein System aus zwei Neutronensternen (mit Radien R1, R2 von etwa 5 bis

10 km) stehen. Der angenommene Abstand D ist klein gegenüber dem Durchmesser

3 · 104 pc der Milchstraße; das Doppelsternsystem müsste sich in der Nachbarschaft

unseres Sonnensystems befinden. 

Aus (36.24) folgt die Bahnperiode und aus (36.28) die Spiralzeit:

T ≈ 2 ms , 

tspir ≈ 8 ms

(36.39)

Im Gegensatz zu PSR 1913+16 oder i Boo ist die Spiralzeit hier kaum größer als

die Bahnperiode T . Damit ist die Quelle allenfalls quasiperiodisch, das Sternsys-

tem steht am Beginn des Kollapses. Die Bewegung ist bereits relativistisch und die

auftretenden Gravitationsfelder sind stark. Damit sind eine Reihe von Annahmen, 

die in unsere Rechnungen eingingen (periodische nichtrelativistische Bewegung im

Newtonschen Feld, Quadrupolformel für die Abstrahlung) nicht gerechtfertigt. Das

Ergebnis kann also nur als Abschätzung der Größenordnung gelten. 

Wir werten (36.25) für (36.38) aus:

P ≈ 1047 W

(36.40)

Die Energiestromdichte, die auf der Erde ankommt, ist

P

W

(kollabierender

ΦGW =

≈ 107

(36.41)

4πD2

m2

Doppelstern)

Diese hohe Energiestromdichte (man vergleiche sie etwa mit den 103 W/m2 der

Sonneneinstrahlung) besteht allerdings nur für kurze Zeit. Die gemachten Annah-

men für diesen Doppelstern sind optimistisch aber nicht abwegig. 

Pulsar

Bei den 1967 entdeckten Pulsaren kann die Verlangsamung ihrer Eigendrehung ge-

nau gemessen werden. Pulsare sind Neutronensterne (Kapitel 43) mit einer Masse
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M ∼ M und einem Radius von etwa 5 bis 10 km. Wir untersuchen, ob die be-

obachtete Abbremsung der Eigenrotation mit Energieverlusten durch Gravitations-

strahlung erklärt werden kann. 

Im Zentrum des Krebsnebels liegt der Pulsar NPO 0532, der sehr genau unter-

sucht wurde. Seine Periode ist

τ = 2π = 0.033 s

(NPO 0532)

(36.42)

Ω

Abgesehen von gelegentlichen diskontinuierlichen Änderungen infolge von Stern-

beben vergrößert sich diese Periode stetig mit

˙τ = dτ = − 2π ˙

Ω = 4.2 · 10−13

(NPO 0532)

(36.43)

dt

Ω2

Der Neutronenstern NPO 0532 hat eine Masse M ∼ 1.4 M und einen berechneten

Radius von etwa 10 km. Der genaue Radius und die Dichteverteilung hängen von

der angenommenen Zustandsgleichung ab. Modellrechnungen ergeben Werte für

das Trägheitsmoment I im Bereich

3 · 1037 kg m2 ≤ I ≤ 3 · 1038 kg m2

(36.44)

Wir versuchen nun, den Verlust an Rotationsenergie durch die abgestrahlte Gravi-

tationsenergie zu erklären:





d

d

I Ω2

? 

Erot =

= I Ω ˙

Ω = −P (36.18) = − 32 G Ω6 2I 2

(36.45)

dt

dt

2

5 c5

Für einen mittleren Wert für I aus (36.44), Ω aus (36.42) und ˙

Ω aus (36.43) erhalten

wir hieraus

 ≈ 6 · 10−4

(36.46)

Es ist eher unwahrscheinlich, dass das extrem starke Gravitationsfeld eine Elliptizi-

tät dieser Größe zulässt. Im Anfangsstadium eines Neutronensterns (etwa im ersten

Jahr nach seiner Bildung) sind dagegen größere Deformationen und eine entspre-

chende Abstrahlung von Gravitationswellen wahrscheinlich. 

Eine alternative Erklärung für den Energieverlust ist die magnetische Dipol-

strahlung, 

d

? 

Erot = I Ω ˙

Ω = −Pem = −2 μ2 Ω4

(36.47)

dt

3 c3

Dabei ist μ das magnetische Dipolmoment senkrecht zur Rotationsachse. Damit

sich hieraus die beobachtete Abbremsung (36.43) ergibt, müsste das magnetische

Moment gleich

μ = 2.5 · 1024 Gauß m3

(36.48)

sein. Andere Beobachtungen (Elektronenübergänge zwischen Landauniveaus) las-

sen auf Magnetfelder der Stärke B ∼ 1012 Gauß schließen. Mit dem Sternradius

R ≈ 104 m ergeben sich für μ ∼ B R3 Werte der Größe (36.48). 
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Ein Weg zur Unterscheidung dieser beiden Möglichkeiten wäre die Messung

von ¨

T . Für (36.45) und (36.47) gilt

 6 Gravitationsstrahlung

Ω ˙

Ω = const. · Ωn

mit n =

(36.49)

4

magnet. Dipolstrahlung

Wenn wir dies nach der Zeit ableiten, erhalten wir

Ω ¨

Ω + ˙

Ω2 = const. · n Ωn−1 ˙

Ω = n ˙

Ω2

(36.50)

oder

Ω ¨

Ω

T ¨

T

˙

= n − 1 = 2 −

(36.51)

Ω2

˙T 2

Daraus folgt



T ¨

T

−3

Gravitationsstrahlung

˙ =

(36.52)

T 2

−1

magnet. Dipolstrahlung

Wenn man die Änderung ¨

T der Verlangsamung ˙

T misst, kann man zwischen den

beiden Abbremsungsmechanismen unterscheiden. Zur Zeit reichen die Daten je-

doch nicht aus, um ¨

T zuverlässig genug zu bestimmen. 

Falls die Abbremsung dieses Pulsars im Wesentlichen durch Gravitationsstrah-

lung verursacht wird (eher unwahrscheinlich), ergibt sich bei der Entfernung

D = 2000 pc

(36.53)

die Energiestromdichte

P

W

ΦGW =

≈ 4 · 10−10

(NPO 0532)

(36.54)

4πD2

m2

Supernova

Eine Supernova wird durch den Gravitationskollaps eines Sterns eingeleitet (Kapitel

47). Der Krebsnebel mit dem Pulsar NPO 0532 im Zentrum ist das Überbleibsel der

berühmten Supernovaexplosion aus dem Jahre 1054. 

Über die Vorgänge, die bei und nach einer Supernovaexplosion ablaufen, gibt

es nur Modellvorstellungen: Nach dem sehr schnellen Kollaps (Zeitdauer etwa

2 · 10−3 s) könnte sich ein zunächst stark deformierter Neutronenstern bilden. Die-

ser vibriert und rotiert während einer Abklingzeit von 0.1 s mit einer Periode von

T ∼ 10−3 s. Insgesamt rechnet man mit einem Gravitationsstrahlungspuls der Dau-

er Δt ∼ 0.1 s. Für den Mittelwert ν und die Breite Δν der Frequenzverteilung

dieses Strahlungspulses sollte dann

ν ∼ Δν ∼ 103 Hz

(36.55)
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gelten. Die in Form von Gravitationswellen frei werdende Energie ΔEGW dürfte

maximal bei einigen Prozent Sonnenmasse liegen; Modellabschätzungen liegen in

einem weiten Bereich:

ΔEGW ∼ 10−6 . . . 10−2 M c2

(36.56)

Innerhalb unserer Galaxie, der Milchstraße, rechnet man lediglich mit etwa einer

Supernova in 20 Jahren. Eine brauchbare Beobachtungsrate erhält man dagegen für

den nahe gelegenen Virgo-Galaxienhaufen mit 2500 Galaxien. Die Abstände sind

 2 · 107pc (Virgohaufen)

D =

(36.57)

2 · 104 pc

(Zentrum der Milchstraße)

Geht man von der optimistischen oberen Grenze ΔEGW = 10−2 M c2 aus, so

ergibt sich während der kurzen Zeitspanne Δt ∼ 0.1 s bei uns der einfallende Fluss

⎧

⎪

⎪

W

(Supernova im

⎨ 4 · 10−3

ΔE

Virgohaufen)

GW

m2

ΦGW ∼

∼

(36.58)

4πD2 Δt

⎪

⎪

⎩

W

(Supernova in

4 · 103 m2

der Milchstraße)
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Aufgaben

 36.1 Änderung der Bahn eines Doppelsterns durch Abstrahlung

Zwei Massen (M1 ≈ M2 ≈ M) umrunden sich unter Einfluss ihrer gegenseiti-

gen Gravitation auf einer Kreisbahn. Berechnen Sie den relativen Energieverlust

ΔE/|E| pro Umlauf, und zwar als Funktion

− des Abstands r. 

− der Bahngeschwindigkeit v

 36.2 Bahngeschwindigkeit von PSR 1913 +  16

Eine Voraussetzung der Quadrupol-Abstrahlungsformel ist v  c für die Ge-

schwindigkeiten der beteiligten Massen. Ist diese Voraussetzung für das Doppel-

sternsystems PSR 1913 + 16 erfüllt? 

 36.3 Gravitationsabstrahlung der Erde

Die Bahnbewegung der Erde um die Sonne führt zur Abstrahlung von Gravitations-

wellen. Geben Sie die Strahlungsleistung P in Watt an. 

Abstand Sonne–Erde: r = 8 Lichtminuten

Umlauffrequenz: Ω = 2π/(365 Tage)

Masse der Erde: ME ≈ 6 · 1024 kg. 

 36.4 Amplitude der Gravitationswelle eines Doppelsterns

Zwei Sterne (mit den Massen M1 = M2 = M) umkreisen sich im Relativabstand

r = const.. Der Doppelstern hat die Entfernung D von der Erde. Zeigen Sie, dass

die auf der Erde einfallende Welle die Amplitude

r 2

h =

1

√

S

(36.59)

5 D r

hat. Dabei ist rS = 2GM/c2. 













37 Nachweis von Gravitationsstrahlung

Wir diskutieren zwei Detektortypen zum Nachweis von Gravitationsstrahlung1:

1. Interferometrischer Detektor: Freie Teilchen erfahren im Feld einer Gravi-

tationswelle Abstandsänderungen, die proportional zur Amplitude der Welle

sind. Wir diskutieren die Möglichkeit, diese Längenänderungen mit einem

Laser-Interferometer zu messen. 

2. Resonanter Detektor: Die Kräfte einer Gravitationswelle bewirken oszil-

lierende, quadrupolförmige Auslenkungen. In einem Festkörper sollte eine

Gravitationswelle daher Quadrupolschwingungen anregen. Im Resonanzfall

könnten bereits sehr kleine Kräfte nachweisbare Schwingungen anregen. 

Längenänderung

Zwei frei fallende Teilchen ändern im Feld einer Gravitationswelle mit der Ampli-

tude h ihren physikalischen Abstand L um ΔL, 

ΔL = h cos(ωt)

(37.1)

L

Dies folgt aus (33.12) mit ΔL = ρ − L, e11 = h, e12 = 0 und ϕ = π/2. Durch

(37.1) ist die messbare relative Längenänderung ΔL/L mit der Amplitude h der

Gravitationswelle verknüpft. Die Längenänderung erfolgt senkrecht zur Einfalls-

richtung der Welle. 

In einem interferometrischen Detektor ist L der Lichtweg eines Laserstrahls. 

Die Aussage (37.1) gilt für freie Teilchen. Die Auslenkung gebundener Teilchen

ist ebenfalls proportional zur Amplitude h der Welle. Es tritt aber ein zusätzlicher

Faktor auf, der für einen resonanten Detektoren zu einer wesentlichen Verstärkung

des Signals führen kann. 

Wir lösen die Beziehung (34.6) für die Energiestromdichte ΦGW nach der Wel-

lenamplitude h auf: 





8πG Φ

1/2

GW

ΦGW

T

h =

= 1.4 · 10−18

(37.2)

c3 ω2

W/m2

s

1Für Übersichtsartikel sei auf N. A. Robertson,  Detection of Gravitational Waves, Seite 223–

238 in [8], und auf F. Ricci and A. Brillet,  A Review of Gravitational Wave Detectors, Annu. 

Rev. Nucl. Part. Sci. 47 (1997) 111, verwiesen. Unter www.geo600.org/links/GWlinks/ findet man die Adressen der Kollaborationen auf diesem Gebiet. 
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Hierbei wurden ω = 2π/T und die numerischen Werte für G und c eingesetzt. Für

die im letzten Kapitel angegebenen Energiestromdichten ΦGW und Schwingungs-

perioden T erhalten wir:

⎧

⎪

⎪ 10−34

Balken (36.22)

⎪

⎪

⎪

⎪

⎨ 10−20

Doppelstern i Boo (36.37)

10−17

Kollabierender Doppelstern (36.41)

h ≈ ⎪

(37.3)

⎪

⎪ 10−24

Pulsar NPO 0532 (36.54)

⎪

⎪

⎪

⎩ 10−22

Supernova/Virgohaufen (36.58)

10−19

Supernova/Milchstraße (36.58)

Trotz teilweise beträchtlicher Energiestromdichten (wie 107 W/m2 für den kolla-

bierenden Doppelstern) sind die durch Gravitationswellen verursachten Längen-

änderungen extrem klein. 

Den letzten drei Zeilen (37.3) liegt eine optimistische Abschätzung der Ener-

giestromdichte zugrunde; die Werte für die Amplituden könnten auch ein oder zwei

Zehnerpotenzen kleiner sein. Beim kollabierenden Doppelstern wird die angegebe-

ne Energiestromdichte nur während einer kurzen Zeitspanne von etwa 0.1 s erreicht; 

dies gilt auch für die Supernova. Der Doppelstern i Boo ist dagegen eine kontinu-

ierliche Quelle mit bekannten Parametern; die Amplitude und Frequenz der Gravi-

tationsstrahlung können hier zuverlässig angegeben werden. Doppelsternsysteme, 

die nicht allzu weit vom Kollaps entfernt sind, dürften die aussichtsreichsten Kan-

didaten für den direkten Nachweis von Gravitationsstrahlung sein. 

Interferometrischer Detektor

Mehrere Arbeitsgruppen versuchen Gravitationswellen über die  Interferenz von La-

 serlicht, das zwischen zwei Spiegeln hin- und herläuft, nachzuweisen. Dazu wer-

den zwei Massen (etwa 1000 kg) mit Spiegeln im Abstand L als Pendel aufgehängt. 

Da die Pendelfrequenz ω0 viel kleiner ist als die Frequenz ω der Welle, bewegen

sich die Massen wie freie Teilchen. Die senkrecht zu L einfallende Welle induziert

physikalische Abstandsänderungen ΔL. Dies führt zu einer Phasenverschiebung

Δφ = 2πΔL/λγ für Laserlicht, das die Strecke zwischen den Spiegeln zurücklegt; 

dabei ist λγ die Wellenlänge des Lichts. Die Messgenauigkeit kann durch N -faches

Durchlaufen der Strecke L und durch eine hohe Laserleistung I erhöht werden. 

Die Zeit zwischen minimaler und maximaler Auslenkung ΔL aus (37.1) ist

δt = π/ω. Während dieser Zeitspanne durchquere das Licht N-mal die Strecke

zwischen den Spiegeln; ein längerer Lichtweg ist nicht sinnvoll, da die zu messende

Auslenkung dann wieder kleiner wird. Daher ist

c

N L = c δt = π

(maximaler Lichtweg)

(37.4)

ω

die maximal sinnvolle Lichtlaufstrecke. Die Strecke N L ändert sich unter dem Ein-



































Kapitel 37 Nachweis von Gravitationsstrahlung

217

fluss einer Gravitationswelle um N ΔL. Dies entspricht einer Phasendifferenz

N ΔL

ωγ

(Phasendifferenz durch

Δφ

=

= π

h

GW

2π

(37.5)

λ

die Gravitationswelle)

γ

ω

Die Phase φ und Anzahl Nγ der Photonen im Laserpuls sind komplementäre quan-

tenmechanische Variable; es gilt Δφqm ΔNγ ≥ 1/2. Für einen kohärenten Zustand

gelten Δφqm ΔNγ = 1/2 und ΔNγ ≈ Nγ 1/2, also

(quantenmechanische

Δφqm =

1

≈

1



(37.6)

2 ΔN

Phasenunschärfe)

γ

2

Nγ 

Während der maximalen Lichtlaufzeit δt = π/ω produziert der Laser (Leistung

Pγ ) Licht mit der Gesamtenergie Pγ δt. Die relevante Anzahl der Photonen (mit der

Energie ¯hωγ ) ist daher

πP



γ

1

Nγ  ≈

(37.7)

ω

¯hωγ

Für einen experimentellen Nachweis muss das Signal größer als die Unschärfe sein, 

Δφ

≥ Δφ

GW

qm

(37.8)

Hierin setzen wir (37.5) – (37.7) ein und lösen nach h auf:

. 1 ¯hω ω

Nachweisgrenze eines

h ≥

= hmin

(37.9)

4π3 P

Laser-Interferometers

γ /ω ωγ

Als Beispiel setzen wir

ω

Pγ = 10 W , ¯hωγ = 3 eV ≈ 5 · 10−19 J , ν =

= 103 s−1

(37.10)

2π

ein und erhalten

hmin ≈ 2 · 10−21

(37.11)

Dies ist die Nachweisgrenze eines idealen Detektors mit den hier gewählten Abmes-

sungen. Wir haben dabei allerdings weder die Effizienzrate des Photonnachweises

(etwa 50%) noch die Verluste bei den Reflexionen berücksichtigt. Der maximale

Lichtlaufweg (37.4) ist N L = c/(2ν), also 150 km für ν = 103 s−1. Bei einem

Spiegelabstand von L = 1 km bedeutet diese 150 Reflexionen. 

Die nach (37.3) möglichen Längenänderungen L h sind um viele Größenord-

nungen kleiner als die Wellenlänge λγ des Laserlichts. Das Interferenzexperiment

ist nur möglich, weil sehr viele Photonen (Nγ  ∼ 3 · 1016) kohärent schwingen. 

Es gibt mehrere Versuchsaufbauten2, von denen erwartet werden kann, dass sie

in den kommenden Jahren die regelmäßige Beobachtung von Gravitationsstrahlung

aufnehmen werden; dabei sind maximale Sensitivitäten bis zu hmin ∼ 10−22 anvi-

siert [9]. 

2Unter www.geo600.org/links/GWlinks/ findet man die Adressen der Kollaborationen. 
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Abbildung 37.1 Als Antenne für Gravitationsstrahlung werden vier harmonisch gebunde-

ne Massen m in der x-y-Ebene betrachtet. Ihr Gleichgewichtsabstand vom Zentrum sei L. 

Eine in z-Richtung einfallende Gravitationswelle regt erzwungene Schwingungen an. 

Resonanter Detektor

Etwa ab 1960 hat Weber eine sehr empfindliche Apparatur zum Nachweis von Gra-

vitationswellen aufgebaut; seit 1970 wurden hiermit Messungen vorgenommen. Der

eigentliche Detektor war ein Aluminiumzylinder der Größe L (Länge, Durchmes-

ser), der Masse m, der Eigenfrequenz ω0 (Grundschwingung) und der Dämpfung

γ , der bei Zimmertemperatur T betrieben wurde:

L ≈ 1 m, m ≈ 103 kg, ω0 ≈ 104 s−1, γ ≈ 0.15 s−1, T ≈ 300 K (37.12)

Eine einfallende Gravitationswelle kann Eigenschwingungen des Zylinders anre-

gen. Diese Schwingungen werden in Wechselstrom umgewandelt, verstärkt und re-

gistriert. Wir wollen abschätzen, welche einfallenden Energiestromdichten ein sol-

cher Weber-Detektor im Resonanzfall nachweisen kann. Als Modell betrachten wir

vier harmonisch gebundene Massen (Abbildung 37.1), die durch eine einfallende

Gravitationswelle zu Schwingungen angeregt werden. 

Für eine Welle mit der Polarisation e11 = h, e12 = 0 gibt (33.12) den physika-

lischen Abstand ρ freier Teilchen zum Zentrum an:





ρ = L 1 − h cos(2ϕ) cos(ω t)

(37.13)

Die physikalische Auslenkung ξfrei einer Masse bei (x, y) = (L, 0) ist dann

1

2

ξfrei = ρ − L = −L h cos(ω t) = Re − L h exp(iω t)

(37.14)

Die anderen Massen in Abbildung 37.1 werden um den gleichen Betrag und mit

der aus (37.13) folgenden Phase ausgelenkt. Die Auslenkung entspricht einer Kraft

FGW, die die Welle auf das Teilchen ausübt:

1

2

FGW = m ¨ξfrei = Re mL h ω2 exp(i ω t)

(37.15)
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Die Kraft FGW ist durch die Eigenschaften der Welle (also die Metrik) und die Mas-

se m des Teilchens festgelegt. Sie hängt nicht davon ab, ob das Teilchen frei oder

gebunden ist. Daher können wir FGW in die Bewegungsgleichung für die elastisch

gebundene Masse einsetzen:





m

¨ξ + γ ˙ξ + ω 2 ξ = F

0

GW

(37.16)

Hierbei ist ξ die Auslenkung einer der harmonisch gebundenen Massen in Abbil-

dung 37.1. Die Differenzialgleichung (37.16) ist die aus der Mechanik bekannte

Bewegungsgleichung eines gedämpften, harmonischen Oszillators. Durch die Kraft

FGW wird eine erzwungene Schwingung mit



(

L h ω2 exp(i ω t )

ξ = Re

(37.17)

ω 2 − ω2 + iγ ω

0

angeregt. Wir vergleichen dies mit der Auslenkung freier Teilchen:

$

$

$

$

$

$

$

$ ξ $

$

ω2

$

$

$

$

$

ξ

$ ≈

frei

$ ω 2 − ω2 + iγ ω $

(37.18)

0

Für ω0 = γ = 0 ist das Verhältnis gleich 1; dieser Grenzfall ergibt sich auch für

hinreichend hohe Frequenzen (ω  ω0). Für ω  ω0 ist die Auslenkung kleiner

als für freie Teilchen, ξ  ξfrei. Dagegen ergibt sich im Resonanzfall ω = ω0 ein

Verstärkungsfaktor ω0/γ :

$$

$

ω $

$

$

$

0

ξ(ω

$

$

$

$

$

0)

≈

ξfrei  ξfrei

(37.19)

γ

Für (37.12) beträgt der Verstärkungsfaktor etwa fünf Größenordnungen. Hierzu

muss die Antenne aber auf einen Sender mit fester Frequenz (etwa einen Pul-

sar) abgestimmt sein. Der Detektor ist dann nur in dem schmalen Frequenzbereich

ω = ω0 ± γ sensitiv. 

Damit eine erzwungene Schwingung des Zylinders nachgewiesen werden kann, 

muss sie stärker als das thermische Rauschen sein. Die Grundschwingung des Zy-

linders ist schwach an die sehr vielen (etwa 1029) anderen Moden gekoppelt. Dies

führt zu einer Brownschen Bewegung der Amplitude ξ . Wir bezeichnen diesen

fluktuierenden Anteil mit ξflukt. Das Vorzeichen dieser Fluktuationen ist zufällig; 

im Mittel gilt ξflukt = 0. Für den Zeitraum δt = π/(2ω0) einer erzwunge-

nen Auslenkung von ξ = 0 nach ξ = ξmax können wir die Fluktuationen durch

eine Diffusionsgleichung beschreiben. Für die Breite Δξ der Fluktuationen gilt

dann (Δξ )2 = 2D δt. Die Diffusionskonstante D kann über die Einsteinrelation

γ D = kBT /m durch die Dämpfungskonstante γ ausgedrückt werden:



2

π kBT

Δξ

= 2D δt =

(37.20)

m γ ω0
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Für T = 0 würden die Fluktuationen verschwinden. Wir mitteln die Fluktuationen

nun über nosz Schwingungsperioden. Nach dem Gesetz der großen Zahl gilt dann

für die relative Breite ξ 2  der Fluktuationen:

flukt

/

0

(Δξ )2

ω0 τ

ξ 2

≈

, 

n

(37.21)

flukt

osz =

nosz

2π

Für einen Nachweis muss das Signal größer als die Fluktuation sein:

$$

$

/

0

ξ(ω

$2

0)

≥ ξ 2

(37.22)

flukt

Hierin setzen wir ξ(ω0) ∝ h aus (37.19, 37.14) ein:

. πkBT γ 2π

Nachweisgrenze eines

h ≥

= hmin(τ)

(37.23)

m ω 2 L2 ω ω

resonanten Detektors

0

0

0 τ

Der Einfluss der thermischen Fluktuationen kann durch eine lange Messzeit τ ver-

ringert werden. Für (37.12) und eine Messzeit τ von vier Monaten erhalten wir

hmin ≈ 10−22

(τ = 4 Monate)

(37.24)

Dies ist die Nachweisgrenze eines idealen Detektors für eine monochromatische

Quelle. Für reale Detektoren sind noch andere Effekte zu berücksichtigen (zum

Beispiel die Kopplung an den Sensor, der die Schwingungen des Zylinders abtastet). 

Detektoren der hier diskutierten Art reagieren auch auf nichtmonochromatische

Quellen. In diesem Fall ist hmin aber deutlich größer, weil das thermische Rauschen

nicht wie in (37.21) durch eine lange Beobachtungszeit unterdrückt werden kann. 

Webers ursprünglicher Detektor erreichte hmin ≈ 10−15. Ein Netzwerk neuerer

resonanter Detektoren3 ist seit vielen Jahren in Betrieb [9]. Diese Detektoren ar-

beiten mit Empfindlichkeiten bis zu hmin ∼ 10−19. Damit sind sie deutlich weniger

empfindlich als die im Aufbau befindlichen interferometrischen Detektoren; im Ge-

gensatz zu ihnen sind die resonanten Detektoren in relativ engen Frequenzbändern

(im Bereich von hundert bis tausend Hertz) sensitiv. In der Planung sind Detektoren, 

die bei einer Temperatur von 50 mK zu hmin = 10−20 führen. 

Als bekannte Strahlungsquelle mit der fester Frequenz ω0 = 104 s−1 kommt nur

ein Pulsar in Frage. Die hierfür erwarteten Amplituden h sind um viele Größenord-

nungen kleiner als die Nachweisgrenze (hmin = 10−15) des ursprünglichen Weber-

Detektors. Weber registrierte 1975 zwar Signale; andere Arbeitsgruppen konnten

seine Ergebnisse aber nicht bestätigen. 

Die spezielle Geometrie eines Detektors kann die numerischen Faktoren in

(37.23) verändern, aber nicht die Abhängigkeit von den anderen Größen. Bei Ab-

stimmung auf einen Pulsar ist ω0 vorgegeben. Damit liegt weitgehend die Größe (m

3Unter www.geo600.org/links/GWlinks/ findet man die Adressen der Kollaborationen. 
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und L) des Detektors fest, denn ω0 sollte seine Grundschwingung sein. Die Fakto-

ren, die wesentlich verändert werden können, sind dagegen die Temperatur T und

die Dämpfung γ . Von ihnen hängt hmin gemäß



hmin ∝

γ T

(37.25)

ab. Mit einem tiefgekühlten (T = 3 · 10−3 K) Resonator aus Quarz (γ ≈ 10−6 s−1)

wäre im Prinzip eine Erniedrigung von hmin um etwa fünf Größenordnungen gegen-

über einem Detektor mit (37.12) möglich. Die Verwirklichung von solchen Werten

stellt eine große technische Herausforderung dar. 

Für die zukünftige Detektoren müssen die Zylinderschwingungen quantenme-

chanisch behandelt werden (im Gegensatz zu der hier gegebenen klassischen Be-

handlung). Wir berechnen die Amplitude hqm, für die die induzierte Schwingungs-

energie m ω 2 L2 h2 mit dem Energiequant

0

¯hω0 vergleichbar ist:

. ¯hω0

hqm ≈

≈ 3 · 10−21

(37.26)

m ω 2L2

0

Der numerische Wert gilt für (37.12). Er ist unabhängig von den Größen T und γ , 

die nach (37.25) für die Empfindlichkeit entscheidend sind. Bei einer Steigerung

der Empfindlichkeit kommt man daher zwangsläufig in den Bereich, in dem die

Zylinderschwingung quantenmechanisch behandelt werden muss. 
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Aufgaben

 37.1 Abstandsänderung Erde–Mond durch Gravitationswelle

Um welche Länge ändert sich der Abstand Mond–Erde unter dem Einfluss der Gra-

vitationsstrahlung des Doppelsternsystems i Boo? Wie groß ist die Wellenlänge der

Gravitationsstrahlung im Vergleich zum Abstand Mond–Erde? 

 37.2 Wirkungsquerschnitt eines Gravitationswellendetektors

Es wird der Gravitationswellendetektor von Abbildung 37.1 betrachtet. Berechnen

Sie die von dieser Anordnung absorbierte zeitgemittelte Leistung Pabsorb(h, ω) für

eine Gravitationswelle mit der Amplitude h und der Frequenz ω. Bestimmen Sie

daraus den  Wirkungsquerschnitt σ eines solchen Weber-Detektors, 

Pabsorb(h, ω)

σ (ω) =

(37.27)

ΦGW(h, ω)

Vergleichen Sie den Resonanzwirkungsquerschnitt σ (ω0) mit dem geometrischen

Wirkungsquerschnitt σgeom. 

VIII Statische Sternmodelle

Vorbemerkung zu Teil VIII – X

Die Gravitation ist die zentrale Wechselwirkung für die Statik und Dynamik der

Sterne und des Kosmos. Für die Allgemeine Relativitätstheorie sind bestimmte

Sterntypen mit starkem Gravitationsfeld und der Kosmos insgesamt von besonde-

rem Interesse. Die Teile VIII – X geben eine Einführung in diesen Anwendungsbe-

reich der Gravitationstheorie. 

Astrophysik und Kosmologie haben durch drei herausragende Entdeckungen in den

sechziger Jahren starken Auftrieb erhalten:

1.  Quasare: Diesen quasistellaren Radioquellen konnten zu Beginn der sech-

ziger Jahre optisch sichtbaren Objekten zugeordnet werden. 1963 erklärte

Maarten Schmidt ihre Emissionslinien durch eine große kosmologische Rot-

verschiebung. Die daraus abgeleiteten Entfernungen dieser Objekte implizie-

ren sehr große Strahlungsleistungen. Ein mögliches Modell für Quasare sind

große Schwarze Löcher (Kapitel 48) im Zentrum von Galaxien. 

2.  Kosmische Hintergrundstrahlung: Diese Strahlung wurde 1965 von Penzias

und Wilson entdeckt. Diese theoretisch vorhergesagte Hintergrundstrahlung

stammt aus der Frühzeit unseres Universums (Kapitel 55). Es handelt sich um

eine Plancksche Strahlungsverteilung mit der Temperatur T ≈ 2.7 K. 

3.  Pulsare: Diese Sterne wurden 1967 von Hewish und Burnell entdeckt. Ihre

Interpretation als Neutronensterne (Kapitel 43), die bereits in den dreißiger

Jahren konzipiert wurden, gilt als gesichert. Damit sind es Sterne mit einem

Radius von nur etwa drei Schwarzschildradien. 

Die zweite Entdeckung befreite die Kosmologie von ihrem Ruf einer rein spe-

kulativen Disziplin. Das durch diese Entdeckungen verstärkte Interesse an Astro-

physik und Kosmologie trug zu weiteren experimentellen und theoretischen Fort-

schritten bei; darüberhinaus ermöglichen Quasare und Pulsare zahlreiche neue

Beobachtungen. In diesem Zusammenhang haben wir bereits die Gravitationslin-

se (Quasarzwillinge, Kapitel 26) und die Gravitationsstrahlung des Doppelstern-

systems PSR 1913+16 (Kapitel 36) kennengelernt. Theoretisch wichtige Erkennt-

nisse betreffen insbesondere Schwarze Löcher und die Frühzeit des Universums. 
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Viele der neuen theoretischen Entwicklungen gehen über den hier gesetzten Rah-

men hinaus, teilweise liegen sie auch außerhalb der Allgemeinen Relativitätstheo-

rie als klassischer Feldtheorie (wie etwa Quanteneffekte). Die Teile VIII, IX und

X konzentrieren sich auf die klassischen Ergebnisse, zu denen die ART für Ster-

ne und für den Kosmos führt. Für Sterne sind dies insbesondere die relativistische

Gleichung für den Gravitationsdruck und die Beschreibung des Kollapses zu einem

Schwarzen Loch. Für den Kosmos sind es die Weltmodelle und das kosmologische

Standardmodell. 

In den neunziger Jahren führten neue Experimente zu wesentlichen Fortschritten

in unserer Kenntnis über den Kosmos:

1. Die Analyse von Supernovae vom Typ Ia mit neuen großen Teleskopen, 

insbesondere dem  Hubble-Space-Teleskop, legt die kosmischen Entfernun-

gen zuverlässiger fest, als dies zuvor möglich war. Diese Ergebnisse lassen

darauf schließen, dass die Expansionsgeschwindigkeit des heutigen Univer-

sums zunimmt. Für diese Entdeckung erhielten S. Perlmutter, B. P. Schmidt

und A. G. Riess 2011 den Nobelpreis. 

2. Die Ballon-Experimente  Boomerang  und  Maxima-1  können die Anisotropi-

en der kosmischen Hintergrundstrahlung sehr genau bestimmen. Die Analyse

dieser Daten lässt auf eine verschwindende oder sehr kleine Krümmung des

kosmischen Raums schließen. Für ihre Forschungen auf diesem Gebiet er-

hielten J. C. Mather und G. F. Smoot 2006 den Nobelpreis. 

Im Teil X wird die großräumige Bewegung der Massen des Universums auf der

Grundlage von Einsteins Feldgleichungen diskutiert. Die angeführten Experimente

präzisieren unser Bild vom heutigen Zustand des Universums (Kapitel 54). 

Der jetzt folgende Teil VIII über statische Sternmodelle setzt Kenntnisse über

Thermodynamik und Quantenmechanik voraus. Die Kapitel 41 – 43, die Sterne mit

nichtrelativistischem Gravitationsfeld eingehender behandeln, können auch über-

sprungen werden; der Überblick von Kapitel 38 genügt für die späteren Kapitel. In

diesem Fall sollte aber der kurze Abschnitt über Pulsare am Ende von Kapitel 43

gelesen werden. 

38 Sterngleichgewicht

Unter einem Stern verstehen wir eine große Ansammlung von Materie, die durch

ihre eigene Gravitation zusammengehalten wird. Die Gravitation tendiert dazu, den

Stern immer weiter zu komprimieren. Ein Gleichgewicht ergibt sich, wenn der

Druck der Materie dem Gravitationsdruck die Waage hält:

Pgrav = Pmat

Sterngleichgewicht

(38.1)

Wir bestimmen den Gravitationsdruck einer gegebenen Massenverteilung und

geben den Materiedruck für einige gängige Sterntypen (Sonne, Weißer Zwerg, 

Neutronenstern) an. Wir schätzen die Größe dieser Sterne ab und geben die Grenz-

masse für den Weißen Zwerg an. 

Als erste Anwendung von (38.1) betrachten wir die Situation an der Erdoberfläche:

Die Gravitation führt hier zu einem Druck Pgrav ≈ 1 bar, der durch das Gewicht der

Luft über uns verursacht wird. Dieser Druck komprimiert die Luft soweit, dass der

Gasdruck Pmat ≈  kBT /m gleich Pgrav ist. Für den Gasdruck haben wir hier das

ideale Gasgesetz verwendet. 

Die Bedingung (38.1) gilt für alle Objekte, die durch ihre eigene Gravitation

zusammengehalten werden, also auch für Planeten. Sterne im engeren Sinn sind

Objekte, die mindestens etwa Sonnenmasse haben, M > 

∼ M. Eine solche Masse ist

erforderlich, damit es im Laufe der Entwicklung des Sterns zum nuklearen Brennen

kommt. 

Die im Folgenden betrachteten  Sterngleichgewichte  können qualitativ als län-

gerwährende Phasen oder Endstadien einer  Sternentwicklung  verstanden werden:

Ein Stern kann aus einer Gaswolke aus Wasserstoffatomen entstehen, die sich unter

dem Einfluss der Gravitation zusammenzieht. Beim Zusammenziehen wird Gravi-

tationsenergie frei, so dass der Stern sich aufheizt. Wenn die Masse hinreichend

groß ist, steigen im Inneren des Sterns der Druck und Temperatur so hoch, dass

die Kernfusion zündet. Dabei entsteht ein Sterngleichgewicht wie das der Sonne, in

dem der Materiedruck der kinetische Gasdruck des heißen Plasmas ist. Die Fusion

führt zu Helium und eventuell über weitere Fusionszyklen zu schwereren Kernen. 

Ein möglicher Gleichgewichtszustand nach der Phase des nuklearen Brennens ist

der eines Weißen Zwergs, in dem Pmat der Fermidruck der Elektronen ist. Eine an-

dere Möglichkeit ist ein Neutronenstern, in dem der Fermidruck der Neutronen dem

Gravitationsdruck die Waage hält. 

In diesem Kapitel behandeln wir die Sterngleichgewichte der Sonne, des Wei-

ßen Zwergs und des Neutronensterns nichtrelativistisch und vernachlässigen dabei
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Faktoren der Größe 1. Die Größe der relativistischen Korrekturen wird jeweils abge-

schätzt. Eine genauere Behandlung der Weißen Zwerge und Neutronensterne erfolgt

in den Kapiteln 42 und 43. 

Druckverteilung

Wir bezeichnen den Druck, der im Sterngleichgewicht gilt, durchweg mit P , 

P = Pgrav = Pmat

(38.2)

Im Allgemeinen hängt dieser Druck P (r, t ) vom Ort und von der Zeit ab. Wir be-

rechnen die Druckverteilung P (r) für eine  statische  und  sphärische  Massenverteilung im nichtrelativistischen Fall. 

Wir gehen von der Eulergleichung (7.2) aus. Im statischen Fall verschwindet

das Geschwindigkeitsfeld, v(r, t ) ≡ 0. Damit wird (7.2) zu ∇P = f0. Die Gravitationskraft auf ein Massenelement dm ist dF = −dm ∇Φ, wobei Φ das Newton-

sche Gravitationspotenzial ist. Mit  = dm/dV erhalten wir dann die Kraftdichte

f =

0

dF /dV = − ∇Φ, also

∇P (r) = − ∇Φ(r)

(38.3)

Wegen der Kugelsymmetrie gilt P = P (r) und Φ = Φ(r), so dass

dP

dΦ

= −

(38.4)

dr

dr

Wenn wir die Newtonsche Feldgleichung

d

dΦ

Φ = 1

r2

= 4πG

(38.5)

r2 dr

dr

einmal integrieren, erhalten wir



dΦ

r

GM(r)

= 4πG

dr r 2 (r) =

(38.6)

dr

r2

0

r2

Damit wird (38.4) zu

dP

GM(r)

= −

(r)

(38.7)

dr

r2

Dabei bezeichnet

 r

M(r) = 4π

dr r 2 (r)

(38.8)

0

die Masse, die sich im Bereich r ≤ r befindet. In Abbildung 38.1 ist eine etwas

andere Ableitung der Relation (38.7) skizziert. 
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Abbildung 38.1 Auf das schattier-

te Massenelement dm =  r2 dr dΩ
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wirkt zum einen die Gravitationskraft

Zentrum

dF = −(GM/r2) dm er. Zum an-

deren führt der Druckgradient zu der

Kraft dF  = −dP r2 dΩ er . Für ein

Gleichgewicht muss dF + dF  = 0

sein. Hieraus folgt (38.7). 
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Gleichung (38.7) bestimmt den Druck, der bei gegebener Massenverteilung auf-

grund der Gravitationskraft herrscht (also Pgrav). Um zu einem bestimmten Stern-

modell zu kommen, müssen wir noch eine Annahme über die  Zustandsgleichung

P = P () machen, zum Beispiel P = const. oder P =  kBT /m; dies wäre dann

Pmat. Wegen (38.2) verwenden wir sowohl in (38.7) wie in der Zustandsgleichung

das Symbol P für den Druck. 

Für eine erste Auswertung von (38.7) nehmen wir inkompressible Materie an, 

also

(r) = 0 = const. 

(r ≤ R)

(38.9)

Dabei bezeichnet R den Sternrand1. Aus (38.7) mit (38.9) folgt

dP

= − 4π G 2 r

(38.10)

dr

3

0

P (r) = P0 − 2π G  2 r2

(38.11)

3

0

Dabei ist P0 = P (0) der Druck im Zentrum des Sterns. Am Sternrand verschwin-

det der Gravitationsdruck, P (R) = 0, weil sich im Bereich r > R keine Materie

befindet. Aus P (R) = 0 folgt

rS

P0 = 2π G 2 R 2 = 0 c2

(38.12)

3

0

4R

wobei rS = 2GM/c2 der Schwarzschildradius ist. Diese Ergebnis ist in Abbildung

38.2 skizziert. 

Zur Abschätzung von Größenordnungen verwenden wir (38.12) auch für nicht-

konstante Dichten:

rS

P

∼

(Sterngleichgewicht)

(38.13)

4R

 c2

1In den Teilen VIII und IX steht das Symbol R immer für den Radius eines Sterns und nicht für den Krümmungsskalar. 
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6(r)

6P (r)

0

P0 ··················································

-

····

-

R

r

R

r

Abbildung 38.2 Eine konstante Massendichte (r) = 0 (links) ergibt die rechts gezeigte Druckverteilung. 

Dabei ist  eine mittlere Dichte und P ein mittlerer Druck. Auf der rechten Seite

können wir je nach Sterntyp eine Zustandsgleichung P = P () einsetzen. Dann

erhalten wir den Zusammenhang zwischen der Masse und dem Radius des Sterns. 

Das Verhältnis rS/R ist auch das Maß für die Stärke der relativistischen Effekte. 

Sonne

Wir betrachten die Sonne als Beispiel für „normale“ Sterne. In einem solchen Stern

hält der kinetische Druck der Temperaturbewegung der Gravitation die Waage. Die-

sen Druck setzen wir in der Form des idealen Gasgesetzes an, 

 kBT

P =

(38.14)

m

Hierbei ist T die Temperatur, kB die Boltzmannkonstante und m die Masse der

Gasteilchen. Aus (38.13) mit (38.14) folgt

rS

P

k

∼

= BT

(38.15)

4R

 c2

mc2

Die Sonne besteht vorwiegend aus Wasserstoff mit Atomkernmassen

mc2 ≈ 1 GeV

(38.16)

Die Temperatur im Inneren der Sonne ist durch die ablaufenden Kernreaktionen

bestimmt:

kBT ∼ keV

(38.17)

Bei dieser Temperatur sind die Wasserstoffatome weitgehend ionisiert. Nach dem

idealen Gasgesetz liefern dann die Elektronen und Protonen den gleichen Beitrag

zum Druck P = NkBT /V , denn die Teilchendichte N/V ist für beide gleich. Da-

gegen ist der Beitrag der Elektronen zur Massendichte  zu vernachlässigen, so dass

in (38.15) die Protonmasse einzusetzen ist. Aus (38.15) – (38.17) erhalten wir dann

rS

k

∼ BT ∼ 10−6

(normale Sterne)

(38.18)

4R

mc2
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Dies gibt die absolute Stärke des Gravitationsfelds an der Oberfläche des Sterns an. 

Für M = M ist rs, = 3 km. Dann folgt aus (38.18) der Sternradius, 

R ≈ 2.5 · 105 rS = 750 000 km

(38.19)

Dies ist etwa gleich dem tatsächlichen Radius R ≈ 700 000 km der Sonne. Wegen

rS  R sind relativistische Effekte der Gravitation für die Entwicklung eines Sterns

in diesem Stadium nicht wichtig. 

Weißer Zwerg

In einem Stern vom Typ Sonne wird zunächst Wasserstoff zu Helium verbrannt. 

Wenn Druck und Temperatur im Sterninneren es zulassen (dies hängt von der Stern-

masse ab), können sich weitere Fusionszyklen anschließen, etwa von Helium zu

Kohlenstoff. (Darüberhinausgehende Fusionszyklen treten nur in deutlich größeren

Sternen auf, die dann aber nicht als Weiße Zwerge enden). Nach Beendigung der

Fusionsprozesse kühlt sich der Stern durch Abstrahlung ab. Bei niedrigen Tempe-

raturen (im Folgenden betrachten wir der Einfachheit halber T ≈ 0) könnte man

neutrale Atome (zum Beispiel Helium- oder Kohlenstoffatome) erwarten. Tatsäch-

lich halten die Atomhüllen aber der Gravitation nicht stand (wie dies etwa bei der

Erde der Fall ist); sie werden vielmehr durch den Gravitationsdruck zerquetscht. 

Es entsteht ein Elektronengas, dessen  Fermidruck  der Gravitation entgegenwirkt. 

Dabei bilden die Atomkerne eine positive Hintergrundladung, so dass elektrische

Kräfte keine wesentliche Rolle spielen. Der Sterntyp, bei dem dieser Elektronen-

druck dem Gravitationsdruck die Waage hält, heißt  Weißer Zwerg. Wir diskutieren

dieses Gleichgewicht für einen Stern aus Helium hier in sehr elementarer Weise; 

eine genauere Behandlung erfolgt in Kapitel 42. 

Elektronen sind Fermiteilchen (halbzahliger Spin) und unterliegen daher dem

 Pauliprinzip: Ein bestimmter Zustand kann maximal durch ein Elektron besetzt

werden. Für einen Stern mit dem Volumen V und N Elektronen bedeutet dies, dass

jedem Elektron effektiv nur ein Volumen V /N zur Verfügung steht. Die Begren-

zung auf ein solches Volumen führt nach der Unschärferelation zu dem mittleren

Elektronenimpuls

p ∼

¯h

(38.20)

(V /N )1/3

Diese Impulse ergeben einen kinetischen Druck, so wie die Temperaturbewegung

zum Druck (38.14) führt. Der kinetische Druck aufgrund von (38.20) besteht aber

auch bei T ≈ 0; er beruht darauf, dass wir Fermiteilchen betrachten. Es ist dieser

Fermidruck, der in einem Weißen Zwerg der Gravitation die Waage hält. 

Wir bestimmen das Sterngleichgewicht aus der Bedingung minimaler Energie; 

dies ist äquivalent zum Druckgleichgewicht (38.1). Die Energie eines Elektrons mit

dem Impuls p ist ε = (m 2c 4 + c2p2)1/2

e

. Wir unterscheiden zwischen dem relati-
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vistischen und dem nichtrelativistischen Fall:

⎧

⎪

⎨

p2

me c2 +

+ . . . 

(p  me c)

ε ≈ ⎪

2 me

(38.21)

⎩

c p + . . . 

(p  me c)

Die Ruhenergie me c2 hängt nicht vom Sternradius ab und spielt daher im Folgenden

keine Rolle. Die kinetische Energie der Fermibewegung der N Elektronen ist dann:

⎧

⎪

⎪

⎪

p2

⎨ N

∼ N5/3 ¯h2/me

(p  me c)

2 m

R 2

E

e

mat ≈ ⎪

(38.22)

⎪

⎪

⎩

N 4/3 ¯hc

N c p ∼

(p  mec)

R

Dabei haben wir (38.20) benutzt, den Sternradius R = (3V /4π)1/3 eingeführt und

numerische Faktoren weggelassen. Wir bezeichnen diese Energie mit dem Index

„mat“, weil sie für den Materiedruck Pmat verantwortlich ist. 

Nach (38.22) wächst die kinetische Energie Emat der Elektronen mit abnehmen-

dem Radius; sie wirkt daher einer Kontraktion des Sterns entgegen. Die potenzielle

Gravitationsenergie Egrav ist bis auf einen Faktor der Ordnung 1 durch

GM2

Egrav ≈ −

(38.23)

R

gegeben. Die Gravitation versucht, den Stern zu kontrahieren. 

Auf jedes der N Elektronen kommen etwa zwei Nukleonen mit der Masse mn. 

Daher ist die Masse M des Sterns

M ≈ 2Nmn

(38.24)

Eine notwendige Bedingung für ein stabiles Sterngleichgewicht ist, dass die Energie

E(R) des Sterns als Funktion des Radius R ein Minimum hat:

E(R) = Egrav(R) + Emat(R) = minimal

(38.25)

Zur Diskussion dieser Bedingung unterscheiden wir zwischen nichtrelativistischem

und relativistischem Grenzfall für die Elektronenbewegung:

1. Die Elektronenimpulse seien nichtrelativistisch. Dann ergeben das attraktive

Egrav ∝ −1/R und das repulsive Emat ∝ +1/R 2 ein Minimum, wie in Ab-

bildung 38.3 dargestellt. Das resultierende Gleichgewicht ist dasjenige eines

 Weißen Zwergs. 

2. Mit zunehmender Masse M verschiebt sich das Minimum in Abbildung 38.3

zu kleineren Sternradien R ; für hinreichend massive Sterne werden daher die

Elektronenimpulse (38.20) zwangsläufig relativistisch. (Umgekehrt gilt, dass
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Abbildung 38.3 Abhängigkeit der Energie

E = Emat + Egrav eines Weißen Zwergs mit

nichtrelativistischen Elektronen vom Stern-

radius R. 

für kleinere Massen die nichtrelativistische Näherung gerechtfertigt ist). Für

p  me c steht dem attraktiven Egrav ≈ −GM2/R nur noch das repulsive

Emat ≈ N4/3 ¯hc/R gegenüber. Damit es nicht zu einem Kollaps kommt, muss

die Repulsion überwiegen, also





¯hc 3/2

N 4/3 ¯hc > GM2

oder

M < mn

(38.26)

G m 2

n

Zur Auswertung haben wir N mit Hilfe von (38.24) eliminiert und wieder

numerische Faktoren vernachlässigt. Das Ergebnis bedeutet, dass ein Stern-

gleichgewicht für einen Weißen Zwerg nur unterhalb der Grenzmasse





¯hc 3/2

Chandrasekhar-

MC = mn

≈ 1.8 M

(38.27)

G m 2

Grenzmasse

n

möglich ist; andernfalls kann der Fermidruck die Kontraktion nicht aufhal-

ten. Die Masse MC ist die berühmte  Chandrasekhar-Grenzmasse 2. Dabei ist

¯hc/Gm2 ∼

n

1040 das Verhältnis zwischen der Stärke der starken Wechsel-

wirkung und der Gravitationswechselwirkung. Es ist bemerkenswert, dass die

Sternmasse MC durch Naturkonstanten der Mikrophysik ( ¯h, mn) und die Gra-

vitationskonstante G bestimmt wird. Wenn man alle numerischen Faktoren

berücksichtigt, erhält man MC ≈ 1.2 . . . 1.3 M (Kapitel 42). 

Weiße Zwerge haben eine Masse von der Größe der Sonnenmasse, 

M ∼ M

(Weißer Zwerg)

(38.28)

2S. Chandrasekhar präsentierte diese Anwendung der Quantenstatistik und der Speziellen Re-

lativitätstheorie im Jahr 1930. Es dauerte aber mehr als zwei Jahrzehnte, bis sich seine Erkenntnis durchsetzte. 1983 erhielt er (im Alter von 73 Jahren) den Nobelpreis für diese Arbeit. 
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In Sternen mit kleinerer Masse kommt es nicht zur Zündung der Fusion; sie können

sich daher nicht zu einem Weißen Zwerg aus Helium oder Kohlenstoff entwickeln. 

Sterne mit größerer Masse sind, wie wir eben gesehen haben, als Weiße Zwerge

nicht stabil. Da (38.28) in der Nähe der Grenzmasse (38.27) liegt, sind die Impulse

der Elektronen an der Grenze zum relativistischen Bereich, also p ∼ me c. Hieraus

können wir das Volumen pro Elektron abschätzen, 

 

V 1/3 (38.20)

∼

¯h ∼ ¯h = 4 · 10−13 m

(p ∼ me c)

(38.29)

N

p

me c

Der mittlere Abstand zweier Elektronen ist also etwa gleich der Comptonwellen-

länge ¯h/me c des Elektrons. Pro Elektron gibt es zwei Nukleonen. Daraus erhalten

wir die Massendichte c, die für einen Weißen Zwerg charakteristisch ist:

N

mn

kg

c ≈ 2mn

∼

= 3 · 1010

(Weißer Zwerg)

(38.30)

V

( ¯h/me c)3

m3

Die Berücksichtigung numerischer Faktoren ergibt den niedrigeren Wert c ≈ 2 ·

109 kg/m3 (Kapitel 42). Die Dichte in einem Weißen Zwerg ist damit von der Größe

einer Tonne pro Kubikzentimeter. 

Wir schätzen noch die Stärke der relativistischen Effekte ab. Nach (38.13)

benötigen wir hierzu das Verhältnis P / c2. Für den Druck gilt P ∼ Emat/V . 

Die Elektronenimpulse liegen im relativistischen Bereich, also p ∼ me c und

Emat ∼ Nme c2. Mit  ∼ c ∼ (N/V ) mn erhalten wir

rS

P

m

∼

∼ e ≈ 1

(Weißer Zwerg)

(38.31)

R

 c2

mn

2 000

Die absolute Stärke des Gravitationsfelds ist damit klein gegenüber 1. Unbeschadet

von der möglicherweise schon relativistischen Fermibewegung der Elektronen kann

daher das Gravitationsfeld in guter Näherung nichtrelativistisch behandelt werden. 

Ein Weißer Zwerg mit Sonnenmasse hat dann den (Zwerg-) Radius

R ∼ 2 000 rS = 6 000 km ≈ 10−2 R

(38.32)

Weiße Zwerge können eine ähnliche Temperatur wie die der Sonnenoberfläche ha-

ben und damit „weiß“ erscheinen. Wegen R ≈ 10−2 R strahlen sie dann aber nur

10−4-mal soviel Licht wie die Sonne ab. 

Neutronenstern

Wir betrachten einen Stern mit M > MC, zum Beispiel M ∼ 10 M, in dem

am Ende des Fusionsbrennens der thermische Druck absinkt. Dann kommt es durch

Kontraktion zu relativistischen Elektronenimpulsen. Übersteigt die kinetische Ener-

gie (m 2 c 4 + c2p2)1/2 − m

e

e c2 der Elektronen einen Wert von etwa 1.5 me c2, so ist

die Reaktion

p + e− → n + νe

(38.33)
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energetisch begünstigt. Da es gleich viele Elektronen und Protonen gibt, ist eine

vollständige Umwandlung in Neutronen möglich. Wir betrachten daher den Gleich-

gewichtszustand eines Sterns aus Neutronen. 

In einfachster Näherung behandeln wir die Neutronen als ideales Fermigas, so

wie wir es für die Elektronen im Weißen Zwerg getan haben. Das Sterngleichge-

wicht ergibt sich jetzt aus der Balance zwischen dem Fermidruck der Neutronen

und dem Gravitationsdruck. Die Ergebnisse sind von der gleichen Form wie für den

Weißen Zwerg, lediglich die Elektronmasse me ist überall durch die Nukleon- oder

Neutronmasse mn zu ersetzen. Damit wird die charakteristische Dichte (38.30) zu

mn

kg

c ∼

∼ 1020

(Neutronenstern)

(38.34)

( ¯h/mn c)3

m3

Unter Berücksichtigung der numerischen Faktoren ergibt sich der niedrigere Wert

c ≈ 6 · 1018 kg/m3 (Kapitel 43). Diese Dichte entspricht derjenigen von Atom-

kernen. Wir können uns den Neutronenstern als einen großen, elektrisch neutralen

Atomkern vorstellen. 

Aus denselben Gründen wie beim Weißen Zwerg ergibt sich wieder eine Grenz-

masse MC. Diese  Oppenheimer-Volkoff-Grenzmasse  ist von der gleichen Größen-

ordnung wie die Chandrasekhar-Grenzmasse, weil (38.27) nicht von der Elektron-

masse abhängt. Wir sind von einem massiven Stern, etwa mit M ∼ 10 M, ausge-

gangen. Der Zusammenbruch des Fermidrucks durch (38.33) führt dann zu einem

dramatischen Gravitationskollaps, bei dem schließlich große Massenanteile explo-

sionsartig abgestoßen werden (Supernova, Kapitel 47). Dabei kann ein Neutronen-

stern mit M < MC im Zentrum des Kollapses zurückbleiben. Im Zentrum der be-

rühmten Supernova aus dem Jahr 1054 wird ein solcher Neutronenstern beobachtet. 

Die zu (38.31) analoge Abschätzung ergibt

rS

P

∼

∼ 1

(Neutronenstern)

(38.35)

R

 c2

Ein Neutronenstern mit M ∼ M hat tatsächlich einen Radius von etwa 10 km, so

dass rS/R ≈ 0.3 gilt. Neutronensterne werden als  Pulsare  beobachtet. Sie werden

in Kapitel 43 eingehender behandelt. 

Quarkstern

Ein Weißer Zwerg entsteht, wenn aufgrund des hohen Drucks die Atome eines

Sterns zerquetscht werden (zu einer Suppe aus Elektronen und Atomkernen). Ana-

log dazu könnten die Neutronen eines Neutronensterns zu einer „Quarksuppe“ zer-

quetscht werden. Der resultierende  Quarkstern  wäre dann etwas kompakter als ein

Neutronenstern, er hätte einen Durchmesser von vielleicht 8 anstelle von 12 Kilo-

metern. 

In einer vereinfachten Beschreibung wird man wieder davon ausgehen, dass der

Fermidruck der Quarks dem Gravitationsdruck die Waage hält. Zwei Neutronen
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können nicht denselben Platz einnehmen, wenn sie denselben Spin (etwa spin up)

haben; dieses Pauliprinzip führt zum Fermidruck. Zwei Quarks können nicht den-

selben Platz einnehmen, wenn sie in Spin, Art (up, down, strange, . . . ) und Farbe

übereinstimmen. Die Farbe ist ein zusätzlicher Freiheitsgrad, der drei Werte anneh-

men kann, die man (willkürlich) als rot, grün und blau bezeichnet. Die zusätzlichen

Freiheitsgrade (Art und Farbe) können zu einer dichteren Packung führen. 

Über die Möglichkeit von Quarksternen wurde schon in den 1980er Jahren spe-

kuliert. Im Frühjahr 2002 gab es erste Berichte über Beobachtungen, die die Exis-

tenz von Quarksternen nahelegen. 

Zusammenfassung

Für die näher diskutierten Sterne (Sonne, Weißer Zwerg, Neutronenstern) haben

wir jeweils ein  ideales Gasmodell  verwendet. Dies war zunächst das ideale Gas aus

Atomen oder Ionen und dann das ideale Fermigas für Elektronen oder Neutronen. 

Dabei bedeutet  ideal  die Nichtberücksichtigung der Wechselwirkung zwischen den

Teilchen. Dies erlaubt eine erste, besonders einfache Beschreibung der Sterngleich-

gewichte. 

Wir haben hier lediglich  Gleichgewichte  betrachtet. Diese können nur Anhalts-

punkte für die zeitabhängige Sternentwicklung geben. Wir fassen die gängigen Vor-

stellungen zur Sterndynamik kurz zusammen: Ein Stern mit M < 

∼ 0.1 M kommt

nicht zum nuklearen Brennen. Sterne mit M ∼ 0.1 M erwärmen sich aufgrund der

Kontraktion und leuchten schwach; der Planet Jupiter gehört in diese Kategorie der

 Braunen Zwerge. Sterne mit M > 

∼ M durchlaufen einen oder mehr Fusionszyklen. 

Sterne mit M ∼ M enden danach als Weiße Zwerge. Sterne mit deutlich grö-

ßerer Masse erleiden am Ende des Fusionsbrennens einen Gravitationskollaps. Für

M > 

∼ 10 M erwartet man einen im Zentrum zurückbleibenden Neutronenstern, für

M > 

∼ 40 M und mehr ein Schwarzes Loch (Kapitel 48). 

Wir werden in den folgenden Kapiteln die Einsteinschen Feldgleichungen für

eine isotrope, statische Massenverteilung lösen. Dies ergibt die innere Schwarz-

schildmetrik und die relativistische Verallgemeinerung der Gleichung (38.7). Da-

nach berechnen wir die hier nur größenordnungsmäßig abgeschätzten Sterngleich-

gewichte genauer. In Teil IX behandeln wir dann unter vereinfachenden Annahmen

den Gravitationskollaps von Sternen. 
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Aufgaben

 38.1 Druck im Zentrum der Erde

Berechnen Sie das Druckprofil P (r) im Inneren der Erde. Betrachten Sie dazu die

Erde als inkompressible Flüssigkeit mit der Dichte 0. Geben Sie den Druck P0 im

Zentrum der Erde an. 

Mittlere Dichte der Erde: 0 ≈ 5.5 · 103 kg/m3, Radius RE ≈ 6.4 · 103 km. 

Erdbeschleunigung g = GME/R 2 ≈ 10 m/s2. 

E





39 Innere Schwarzschildmetrik

Wir bestimmen die Lösung der Einsteinschen Feldgleichungen im Inneren eines

sphärischen, statischen Sterns. 

In Kapitel 23 wurde gezeigt, dass





ds2 = B(r) c2dt2 − A(r) dr2 − r2 dθ2 + sin2 θ dφ2

(39.1)

ein möglicher Ansatz für die Metrik im statischen, sphärischen Fall ist. In Kapitel

24 haben wir mit diesem Ansatz die freien Feldgleichungen Rμν = 0 gelöst; dies

führte zur Schwarzschildmetrik. In diesem Kapitel lösen wir mit demselben Ansatz

die Feldgleichungen





Rμν = −8πG Tμν − T gμν

(39.2)

c 4

2

Dabei sollen die Tμν die Massenverteilung eines sphärischen und statischen Sterns

beschreiben. Die Lösung heißt  innere Schwarzschildmetrik. 

Als Materie des Sterns betrachten wir eine ideale Flüssigkeit, die durch den

Druck P , die Massendichte  und das Geschwindigkeitsfeld uμ(x) beschrieben

wird. Der Energie-Impuls-Tensor ist durch (20.29) gegeben, 





Tμν =  + P /c2 uμ uν − P gμν

(39.3)

Die Feldgleichungen (39.2) implizieren

T μν ||ν = 0

(39.4)

Dies sind die relativistische Euler- und Kontinuitätsgleichung für eine Flüssigkeit

in einem Gravitationsfeld. Ob wir diese Gleichungen neben (39.2) zur Lösung ver-

wenden, ist eine Frage der Zweckmäßigkeit. 

Es sei angemerkt, dass die Eulergleichung zwar in den Feldgleichungen der

ART, nicht aber in Newtons Feldgleichung

 Φ = 4πG

(39.5)

enthalten ist. Im Newtonschen Grenzfall ist daher die Eulergleichung hinzuzufügen. 

Für ein statisches und sphärisches Problem gilt v = 0 und die Eulergleichung (7.2)

wird zu

∇P (r) = − ∇Φ

(39.6)

Aus (39.5) und (39.6) folgt der Zusammenhang (38.7) zwischen der Dichte und

dem Druck. 
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Wir verwenden jetzt die Voraussetzungen  statisch  und  sphärisch  für den

Energie-Impuls-Tensor (39.3). Im sphärischen System können P (r) und (r) nur

von der Radialkoordinate r abhängen. Im statischen Zustand müssen die räumli-

chen Komponenten der Geschwindigkeit verschwinden:

ui (x) = 0

(39.7)

Aus (20.6) folgt dann

 2

c2 = gμν uμuν = g00 u0

(39.8)

also

√

u0 = c

√

und

u0 = c

B

(39.9)

B

Mit (39.7) und (39.9) können wir (39.3) auswerten:









Tμν = diag  c2B, P A, P r2, P r2 sin2 θ

(39.10)

Aus (39.1) folgt









1

gμν = diag

, − 1 , − 1 , −

1

(39.11)

B

A

r2

r2 sin2 θ

Damit wird die Spur des Energie-Impuls-Tensors zu

T = T λλ = gμνTμν =  c2 − 3P

(39.12)

Auf der rechten Seite der Feldgleichungen setzen wir jetzt (39.10) und (39.12) ein. 

Die Rμν der linken Seite haben wir bereits in (23.14) – (23.18) berechnet. Danach

sind die Feldgleichungen für μ = ν trivial erfüllt; ferner unterscheiden sich die

Gleichungen für (μ, ν) = (3, 3) und (μ, ν) = (2, 2) nur durch einen Faktor. Damit

sind die folgenden drei Gleichungen zu lösen:









A

R00 = − B + B

+ B − B = −4πG c2 + 3P B

(39.13)

2A

4A

A

B

rA

c 4









A

R11 = B − B

+ B − A = −4πG c2 − P A

(39.14)

2B

4B

A

B

rA

c 4









A

R22 = −1 − r

− B + 1 = −4πG c2 − P r2

(39.15)

2A

A

B

A

c 4

Hieraus erhalten wir

R00

R

R

+ 11 + 22 = − A − 1 + 1 = −8πG 

(39.16)

2B

2A

r2

rA2

r2

r2A

c2

Eine Multiplikation mit r2 führt zu

d

r

= 1 − 8πG  r2

(39.17)

dr A(r)

c2
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Diesen Ausdruck integrieren wir von null bis r. Dabei verwenden wir (r/A)r =0 =

0, denn A aus (39.1) muss für eine kontinuierliche Massenverteilung bei r = 0

endlich sein. Das Ergebnis lautet

+

,−1

A(r) = 1 − 2GM(r)

(39.18)

c2 r

wobei

 r

M(r) = 4π

dr r 2 (r)

(39.19)

0

Die Feldgleichungen implizieren T μν ||ν = 0. Mit Hilfe von (17.5) schreiben wir





μ

∂

μ

T μν ||ν = T μν|ν + Γ ν T λμ + Γ T λν =

1

√

|g| T μν + Γ T λν = 0

νλ

νλ

|g| ∂xν

νλ

(39.20)

Wir setzen μ = 1 und T μν aus (39.3) ein:













T 1ν ||ν =

1

√

|g| ( + P /c2)u1uν

+ Γ 1  + P /c2 uνuλ − P g1ν

|g|

|

νλ

ν

||ν









=

c2

Γ 1

 + P

u0u0 − P

 + P

+ P  = 0

(39.21)

00

|ν g1ν = B

c2

2A

c2

B

A

Für den Term P gμν in T μν haben wir die kovariante Ableitung direkt angeschrie-

ben (ohne (30.20) zu benutzen); dies ergibt den letzten Term in der ersten Zeile. Für

die zweite Zeile haben wir zunächst (uμ) = (u0, 0, 0, 0), P||ν = P|ν und g1ν||ν = 0

verwendet. Im letzten Schritt wurden dann noch (39.9) und

g11 ∂g00

B

Γ 1 = −

=

00

(39.22)

2

∂x1

2A

eingesetzt. Damit wird (39.21) zu

B = − 2P

(39.23)

B

 c2 + P

Für B ≈ 1 + 2Φ/c2 und P   c2 reduziert sich dies auf (39.6). 

Aus (39.16) und (39.18) erhalten wir

A

−

= 2GM − 8πG r

(39.24)

A2

c2 r2

c2

Wir setzen dies, (39.23) und (39.18) in (39.15) ein und erhalten

Oppenheimer-Volkoff-Gleichung:

+

, +

, +

,−

dP

GM 

P

1

(39.25)

= −

1 +

1 + 4πr3P

1 − 2GM

dr

r2

 c2

Mc2

c2 r
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Diese Gleichung wurde in den dreißiger Jahren von Tolman, Oppenheimer und

Volkoff aufgestellt und untersucht; sie wird auch Tolman-Oppenheimer-Volkoff-

Gleichung genannt. Im nichtrelativistischen Fall gilt P / c2  1, GM/r c2  1

und rS/R  1; dann fallen die eckigen Klammern weg und wir erhalten wieder

(38.7). Die Oppenheimer-Volkoff-Gleichung ist die relativistische Gleichung für

den Gravitationsdruck. 

Wir bestimmen die Funktion B(r), indem wir (39.25) in (39.23) einsetzen:

+

, +

,−

B

1

= 2G M + 4πr3P

1 − 2GM

(39.26)

B

c2 r2

c2

c2 r

Dann ist ln B(r) gleich dem Integral über die rechte Seite. Als Integralgrenzen

nehmen wir r und ∞. Mit B(∞) = 1 folgt



 ∞

7

dr M(r) + 4πr3P (r)/c2

B(r) = exp −2G

(39.27)

c2

r

r 2

1 − 2GM(r)/(c2 r)

Wir überprüfen noch, dass diese Lösung außerhalb der Massenverteilung in die be-

kannte (äußere) Schwarzschildlösung übergeht. Die Massenverteilung sei auf einen

Bereich innerhalb von R beschränkt, so dass

r > R :

 = P = 0 und M(r) = M(R) = M

(39.28)

Damit wird (39.27) zu



 ∞

+

,−

dr

1 7

B(r) = exp

− 2G

M

1 − 2GM

(r > R)

(39.29)

c2

r

r 2

c2 r

Die Substitution x = 1 − 2GM/c2 r ergibt

 

7

x dx

B(r) = exp

= 1 − 2GM

(r > R)

(39.30)

1

x

c2 r

Für A(r) folgt aus (39.18)

+

,−1

A(r) = 1 − 2GM

(r > R)

(39.31)

c2 r

Für r ≥ R reduziert sich die Lösung (39.18), (39.27) also auf die äußere Schwarz-

schildmetrik. Bei der Ableitung in Kapitel 24 war M eine unbekannte Integrations-

konstante, deren physikalische Bedeutung sich aus dem Vergleich mit dem New-

tonschen Grenzfall ergab. Hier ist M dagegen als Integral über die Massendichte 

definiert, (39.19). 
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Sterngleichgewicht

Die Oppenheimer-Volkoff-Gleichung ist als Differenzialgleichung für den relativis-

tischen Gravitationsdruck von der Form



P (r) = P P (r), (r), M(r)

(Gravitationsdruck)

(39.32)

Dabei ist nach (39.19)

M(r) = 4π r2(r)

(Definition von M)

(39.33)

Mit (39.32) und (39.33) haben wir zwei Differenzialgleichungen für die drei Felder

P ,  und M. Zur Bestimmung aller Felder benötigen wir daher noch eine weitere

Beziehung. Dies ist die  Zustandsgleichung, die den inneren Druck der Materie als

Funktion der Massendichte angibt, 





P (r) = P (r)

(Materiedruck)

(39.34)

Nun bilden (39.32) – (39.34) ein System von drei Gleichungen für die drei unbe-

kannten Felder P ,  und M. Indem wir den Gravitationsdruck Pgrav, (39.32), und

den inneren Druck Pmat der Materie, (39.34), beide mit P bezeichnen, setzen wir

implizit das Gleichgewicht P = Pgrav = Pmat voraus. 

Im Folgenden benutzen wir nur Zustandsgleichungen der einfachen Form

P = K γ

(Polytrope Zustandsgleichung)

(39.35)

Dabei sind K und γ Konstanten. Beispiele für eine solche Abhängigkeit sind der

Fermidruck eines entarteten Fermigases im nichtrelativistischen oder im relativisti-

schen Fall. 

Im Allgemeinen kann die Temperatur T eines Sterns nicht vernachlässigt wer-

den. Dann hängt die (thermische) Zustandsgleichung P (r) = P ((r), T (r)) vom

Temperaturfeld T (r) ab, und wir benötigen eine weitere Beziehung zwischen den

Feldern. Dies kann die kalorische Zustandsgleichung E = E((r), T (r)) sein, die

die Energie E mit der Massendichte und der Temperatur verbindet. 

Das Gleichungssystem (39.32) – (39.34) bestimmt in der betrachteten Vereinfa-

chung das Sterngleichgewicht in der relativistischen Theorie. Hieraus lassen sich

(r) und P (r), und mit (39.18) und (39.27) auch A(r) und B(r) berechnen. Die

Metrik (39.1) mit diesem A und B ist die  innere Schwarzschildmetrik. 
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Aufgaben

 39.1 Verhältnis Umfang zu Radius für Erdbahn

Die Bahn der Erde um die Sonne sei eine Kreisbahn mit dem Radius r. Das Gravi-

tationsfeld der Sonne (Radius R, Schwarzschildradius rS) werde durch die innere

und äußere Schwarzschildmetrik beschrieben; die Dichte der Sonne sei homogen. 

Berechnen Sie das Verhältnis von Umfang zu Durchmesser der Erdbahn. 























40 Relativistische Sterne

Unter relativistischen Sternen verstehen wir Sterne, deren Gravitationsfeld so stark

ist, dass die relativistischen Effekte wichtig sind. Für den Fall inkompressibler Ma-

terie lösen wir die Oppenheimer-Volkoff-Gleichung und bestimmen die Koeffizi-

enten der inneren Schwarzschildmetrik. Wir untersuchen die Stabilität gegenüber

einem Gravitationskollaps, die Rotverschiebung und den Massendefekt von relati-

vistischen Sternen. 

Wir betrachten einen sphärischen Stern mit der homogenen Massendichte 0, 

 0

(r ≤ R)

(r) =

(40.1)

0

(r > R)

Diese Annahme bedeutet, dass die Dichte unabhängig vom Druck ist, also dass die

Materie inkompressibel ist. Dies entspricht dem Grenzfall γ → ∞ in der polytro-

pen Zustandsgleichung (39.35). 

Wir berechnen M aus (39.19):

⎧

⎪

⎪ 4π

r3

⎨

0 r3 = M

(r ≤ R)

M

3

R 3

(r) = ⎪

(40.2)

⎪

⎩ 4π 0 R3 = M

(r ≥ R)

3

Die Masse M legt die Metrik und das Gravitationsfeld asymptotisch fest; daher wird

M auch als  gravitierende Masse  oder einfach als Masse des Sterns bezeichnet. 

Wir setzen (40.1) und (40.2) in die Oppenheimer-Volkoff-Gleichung ein. Im

Bereich r ≤ R erhalten wir

+

,−1

P 

= −4πG r 1 − 8πG0 r2

(40.3)

(P + 0 c2)(P + 0 c2/3)

c 4

3 c2



Wir führen den dimensionslosen Radius x =

8πG0 /3c2 r ein:

−20 c2 dP

x dx

=

(40.4)

(P + 0 c2)(3P + 0 c2)

1 − x2

Die Integration dieser Gleichung ergibt









P + 0 c2

ln

= −1 ln 1 − x2 + const. 

(40.5)

3P + 0 c2

2
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6P (r)

Abbildung 40.1 Der relativistische Druckver-

lauf P (r) bei konstanter Massendichte für die

Fälle R = 3 rS und R = 2 rS. Die Koordinaten

········
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Als Integrationsgrenzen setzen wir r und den Sternrand R mit P (R) = 0 ein, 

+

,1/2

P (r) + 0 c2 = 1 − 8πG0R2/3c2

(r ≤ R)

(40.6)

3P (r) + 0 c2

1 − 8πG0 r2/3c2

Mit 4πG0 R 3/3c2 = GM/c2 = rS/2 führen wir den Schwarzschildradius ein

und lösen nach P (r) auf:





rS r2

rS

1 −

− 1 −

R 3

R

P (r) = 0 c2





(r ≤ R)

(40.7)

r

r

3

S

S r 2

1 −

− 1 −

R

R 3

Für r ≥ R gilt P (r) = 0. Der Druck P (r) ist in Abbildung 40.1 für R = 3 rS und

R = 2 rS gezeigt und mit dem nichtrelativistischen Grenzfall verglichen. 

Wir geben noch A(r) und B(r) an. Aus (39.18) und (40.2) folgt

⎧

⎪ +

, 

⎪

−1

⎪

⎨ 1 − rS r2

(r ≤ R)

R 3

A(r) = ⎪

(40.8)

⎪

⎪ 



⎩

−1

1 − rS

(r ≥ R)

r

Aus (39.27), (40.2) und (40.7) folgt

⎧

⎪ + 



, 

⎪

2

⎨ 1

r

r

3

S

S r 2

1 −

− 1 −

(r ≤ R)

B(r) =

4

R

R 3

⎪

(40.9)

⎪

⎩

1 − rS

(r ≥ R)

r
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Stabilität

Wenn der Sternradius R sich dem Schwarzschildradius nähert, nehmen die relati-

vistischen Effekte zu (Abbildung 40.1). Aus (40.7) folgt



r

1 −

S

1 − R

P0 = P (0) = 0 c2



Zentraldruck

(40.10)

r

3

S

1 −

− 1

R

Im Zentrum des Sterns ist der Gravitationsdruck maximal. Dieser Zentraldruck P0

divergiert für einen hinreichend massiven und kompakten Stern:

R → (9/8) r

P

S

0

···········································

∞

(40.11)

Wenn der Gravitationsdruck im Zentrum divergiert, dann ist hier kein Gleichge-

wicht möglich. Dann gilt für jede reale Materie P0 = Pgrav(0) > Pmat, und der

Stern kollabiert. Ein Sterngleichgewicht ist daher nur für

9

R > 

rS

Stabilitätsbedingung

(40.12)

8

möglich. Diese Stabilitätsbedingung bedeutet bei gegebenem Sternradius R eine

Massenobergrenze, oder bei gegebener Masse M eine untere Grenze für den Radius. 

Man kann zeigen (Kapitel 11.6 in [1]), dass der numerische Faktor in (40.12) nicht

von der speziellen Zustandsgleichung abhängt. Sofern (40.12) erfüllt ist, sind die

metrischen Koeffizienten (40.8) und (40.9) nirgends singulär. 

Im nichtrelativistischen Fall und für inkompressible Materie ist der maximale

Druck P0 immer endlich, (38.12). Eine Instabilität kann sich aber auch hier ergeben, 

und zwar durch eine zu große Kompressibilität der Materie. Dies führt zum Beispiel

für Weiße Zwerge zu einer Massenobergrenze. 

Die Instabilität für R → (9/8) rS ist dagegen von grundsätzlicher Natur. Sie

wird nicht durch eine zu hohe Kompressibilität der Materie verursacht, sondern

durch die relativistischen Effekte in der Oppenheimer-Volkoff-Gleichung. Für hohe

Drücke (P ≥  c2) führt (39.25) zu dP /dr ∝ −P 2 und damit zu einem selbst-

verstärkenden Anstieg des Drucks zum Zentrum hin. Die resultierende Divergenz

(40.11) ist unabhängig von der Art der Materie, aus der der Stern gebildet wird. 

Die Feldgleichungen der ART haben damit zu dem Ergebnis geführt, dass für

R → (9/8) rS der zentrale Gravitationsdruck eines Sterns divergiert. Die Folge ist, 

dass ein solcher Stern einen  Gravitationskollaps  erleidet. Der Kollaps selbst ist ein dynamischer Vorgang und erfordert daher eine zeitabhängige Metrik. In Kapitel 47

werden wir einen Kollaps unter sehr vereinfachten Bedingungen untersuchen. 
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Rotverschiebung

Wir bestimmen die Rotverschiebung für Licht, das von der Oberfläche des Sterns

ausgesandt wird. Nach (12.9) ist die Rotverschiebung gleich



νA

g00(rB)

z =

− 1 =

− 1

(40.13)

νB

g00(rA)

Dabei ist A der Ort der Emission, also die Sternoberfläche r = R. Dort gilt nach

(40.9) g00(rA) = B(R) = 1 − rs/R. Das Licht werde an einer Stelle B mit

g00(rB) = 1 empfangen; dies gilt in unendlicher Entfernung vom Stern oder auch

näherungsweise auf der Erde. Damit ist die Rotverschiebung des Sternlichts gleich

Rotverschiebung

z =

1



− 1

(40.14)

1 − r

von Sternlicht

S/R

Wegen (40.12) ist der Wert der Rotverschiebung auf

z < 2

(Sternlicht)

(40.15)

beschränkt. Größere Rotverschiebungen könnten für Strahlung aus dem Inneren ei-

nes hinreichend transparenten Sterns auftreten, oder für die Strahlung aus dem Be-

reich r > 

∼ rS eines kollabierten Sterns (also eines Schwarzen Lochs). Die größten

beobachteten Rotverschiebungen (bis z < 

∼ 5) stammen von Quasaren; sie beruhen

jedoch auf der kosmologische Rotverschiebung (Kapitel 51) und nicht wie hier auf

der Gravitationsrotverschiebung. 

Massendefekt

Die nach außen wirksame, gravitierende Masse M ist durch (40.2) gegeben, 

 ∞

(40.1)

M = 4π

dr r 2 (r)

= 4π R30

(40.16)

0

3

Wir wollen dies mit der Summe der einzelnen Massenbestandteile, der konstituie-

renden Masse Mk, vergleichen:





(40.1)

Mk =

Δmi =

dV 

= V 0

(40.17)

i

In der Metrik (39.1) ist V = (4π/3)R3, so dass Mk = M. Außer der Gravitation

gebe es keine langreichweitigen Wechselwirkungen. In Δmi und damit in Mk sind

dann die Energiebeiträge aller Wechselwirkungen außer der Gravitation enthalten. 

In der gravitierenden (physikalischen) Masse muss zusätzlich der Energiebeitrag
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−Egrav der Gravitation enthalten sein. Damit ist Mk − M der Massendefekt der

Sterns aufgrund der Gravitation:

ΔM = Mk − M = −Egrav/c2 > 0

(40.18)

Wir berechnen das Volumen V des Sterns in der Schwarzschildmetrik mit (40.8):









R

π

2π



V

=

dV =

dr

dθ

dφ

|g11 g22 g33| =

r ≤ R

0

0

0





R

r2 dr

X

dx x2

= 4π



= 4πR 3

√

(40.19)

S

0

1 − r2 rS/R3

0

1 − x2

Hier haben wir den Radius

 R

RS = R

(40.20)

rS

und die dimensionslosen Größen





r

r2 r

R

rS

x =

=

S

und

X =

=

(40.21)

RS

R 3

RS

R

eingeführt. Damit wird das Volumen V zu







V = 2πR 3 arcsin X − X 1 − X2

= 4π R 3 F (X)

(40.22)

S

3

Wir geben die Funktion F (X) speziell für kleine X und an der Stabilitätsgrenze

√

X =

8/9 an:







⎧





⎪

R

2

3 arcsin X − X 1 − X2

⎨ 1 + 3

(X  1)

F (X) =

=

10

RS

(40.23)

2X3

⎪

⎩







1.64

X =

8/9

Der Massendefekt (40.18) ist nun









ΔM = Mk − M = 0

V − 4πR 3

= M F (X) − 1

(40.24)

3

Im Newtonschen Grenzfall (X  1) wird dies zu





3

R 2

GM 2

ΔM c2 = Mc2

= 3

= −Egrav

(40.25)

10

RS

5

R

Eine analoge Form erhält man in der Elektrostatik für eine homogen geladene Ku-

gel. An der Stabilitätsgrenze ist der Massendefekt mit der Masse selbst vergleichbar:

ΔM = 0.64 für R = 9 rS

(40.26)

M

8























41 Newtonsche Sterne

Newtonsche Sterne sind Sterne, deren Gravitationsfeld so schwach ist, dass sie

durch den Newtonschen Grenzfall beschrieben werden können. Wir diskutieren die

Lösungen dieses Grenzfalls für eine polytrope Zustandsgleichung. Die Ergebnisse

werden in den Kapiteln 42 und 43 auf Weiße Zwerge und Neutronensterne ange-

wendet. 

Die Bedingungen für den nichtrelativistischen Grenzfall der Oppenheimer-Volkoff-

Gleichung sind:

P



4πr3P

2 GM

1 , 

 1, 

 1

(41.1)

 c2

Mc2

c2 r

Unter diesen Bedingungen reduziert sich (39.25) auf (38.7). Wir lösen (38.7) nach

M auf und differenzieren nach r. Mit M = 4πr2 erhalten wir





d

r2 dP

= −4πG r2

(41.2)

dr

 dr

Hierin setzen wir die polytrope Zustandsgleichung

P = K γ

(41.3)

ein:





d

d

γ K

r2  γ −2

= −4πG r2

(41.4)

dr

dr

Wir suchen Lösungen dieser Differenzialgleichung, die bei r = 0 endlich sind:

(0) = 0 < ∞

(41.5)

Aus (41.4) folgt dann für r → 0





d

d

r2

∝ r2 und (r) ∝ r

(41.6)

dr

dr

Somit ist

(0) = 0

(41.7)

Wir führen den dimensionslosen Radius x, 

+

, 

4πG(γ − 1) 1/2

1−γ /2

x =



r

(41.8)

Kγ

0
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Abbildung 41.1 Die Lane-Emden-Funktion Θ(x) zum Index n = 1/(γ − 1) bestimmt

die Abhängigkeit der Dichte  ∝ Θn vom Radius r ∝ x. Die erste Nullstelle (Schnittpunkt

des Graphen mit der x-Achse) ergibt den Sternradius R. Gezeigt sind die Fälle γ = ∞

(inkompressibler Stern), γ = 5/3 (kleiner Weißer Zwerg), γ = 4/3 (großer Weißer Zwerg, 

Grenze zur Instabilität) und γ = 6/5 (Grenzfall ohne Nullstelle, gestrichelt eingezeichnet). 

und die dimensionslose Funktion Θ(x), 

 

 γ − 1

Θ(x) =

(41.9)

0

ein. Damit wird (41.4) zu





1 d

dΘ

x2

+ Θn = 0 , 

n =

1

(41.10)

x2 dx

dx

γ − 1

Die Randbedingungen

Θ(0) = 1, 

Θ(0) = 0

(41.11)

legen die Lösung dieser Differenzialgleichung eindeutig fest. Die Lösungsfunktion

Θ(x) ist die sogenannte  Lane-Emden-Funktion  zum Index n. Für x  1 lautet die

Entwicklung der Lane-Emden-Funktion

n

Θ(x) = 1 − 1 x2 +

x4 − 8n2 − 5n x6 ± . . . 

(41.12)

6

120

15 120

Es gibt die folgenden analytischen Lösungen:

Θ = 1 − x2/6

für n = 0, γ = ∞

Θ = sin(x)/x

für n = 1, γ = 2

(41.13)

'

Θ = 1

1 + x2/3

für n = 5, γ = 6/5

In Abbildung 41.1 sind die Lane-Emden-Funktionen für den ersten und den letzten

Fall und für die dazwischen liegenden Werte γ = 5/3 und γ = 4/3 dargestellt. 
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Für n < 5 oder γ > 6/5 hat die Lane-Emden-Funktion eine oder mehrere

Nullstellen. An der ersten Nullstelle, Θ(x1) = 0, wird die Dichte null. Diese Stelle

definiert den Sternradius:

+

, 

Kγ

1/2

γ /2−1

R =



x1

(41.14)

4πG(γ − 1)

0

Die Masse (40.16) des Sterns ergibt sich zu

+

, 



3/2

x1

(3γ −4)/2

Kγ

M = 4π

dx x2 Θn

(41.15)

0

4πG(γ − 1)

0

Mit Hilfe der Differenzialgleichung (41.10) können wir den Integranden als (x2 Θ)

schreiben und damit die Integration ausführen:

 R

+

,3/2

$

$

(3γ −4)/2

Kγ

M = 4π

dr r2 (r) = 4π

x 2 $Θ(x

$ (41.16)

0

1

1)

0

4πG(γ − 1)

Für eine bestimmte Zustandsgleichung haben K und γ (und damit auch x1 und

Θ(x1)) feste Werte. Daher sind der Radius R und die Masse M eindeutige Funk-

tionen der zentralen Dichte 0:

(3γ −4)/2

M

= const. · 

(41.17)

0

γ /2−1

R

= const. · 

(41.18)

0

Für Weiße Zwerge und Neutronensterne werden wir die Exponenten γ = 5/3 und

γ = 4/3 erhalten; ein Stern aus inkompressibler Materie wird durch γ = ∞ be-

schrieben. Für diese Fälle sind die Funktionen Θ(x) in Abbildung 41.1 gezeigt. Bis

auf die Skalierung ist Θ(x) gleich der Massendichte (r). 

Stabilität

Wir haben bisher nicht untersucht, ob die hier gefundenen Gleichgewichtslösungen

stabil oder instabil sind. Im Prinzip müsste man dazu alle möglichen Auslenkungen

von einer Gleichgewichtslösung weg betrachten und nachweisen, dass es für jede

Auslenkung eine Rückstellkraft gibt. Wir geben hier ein sehr vereinfachtes Argu-

ment dafür, dass der Wert γ = 4/3 die Grenze zwischen Stabilität und Instabilität

darstellt. 

Die diskutierten Lösungen lassen sich durch einen Längenparameter charakteri-

sieren; hierfür bietet sich der Sternradius R an. Eine der möglichen Auslenkungen

aus der Gleichgewichtslösung besteht in der Skalierung aller Längen um den glei-

chen Faktor. Für die betrachtete Lösung bedeutet das die Variation δR = R−R0 des

Sternradius; dabei ist R0 der Gleichgewichtswert. Wir bestimmen die Abhängigkeit
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der Gravitationsenergie Egrav und der inneren Energie Emat von R. Bis auf Faktoren

der Ordnung 1 gilt

GM2

Egrav ≈ −

und

Emat ≈ P V = Kγ V ∝

1

(41.19)

R

R 3(γ −1)

Daraus folgt die Form

C1

C2

E(R) = Egrav + Emat = −

+

(41.20)

R

R 3(γ −1)

für die Gesamtenergie E mit den positiven Konstanten C1 und C2. Die Energie E

besteht also aus einem attraktiven 1/R - und einem repulsiven 1/R 3(γ −1) -Anteil. 

Diese Funktion von R lässt sich leicht diskutieren, ähnlich wie in Abbildung 38.3. 

Offensichtlich existiert ein Minimum nur für γ > 4/3. Für den Grenzwert γ = 4/3

selbst ist eine detaillierte Untersuchung nötig. Daher erhalten wir als notwendige

Bedingung für Stabilität:

γ ≥ 4

(Stabilitätsbedingung)

(41.21)

3

Diese Bedingung ist aber nicht hinreichend, da wir nur  eine  mögliche Auslenkung

aus der Gleichgewichtslage betrachtet haben. 

Beim Weißen Zwerg und beim Neutronenstern ergibt sich für nichtrelativis-

tische Teilchen γ = 5/3, im relativistischen Grenzfall dagegen γ = 4/3. Für

γ = 4/3 muss der repulsive Anteil größer als der attraktive sein, also C2 > C1

in (41.20). Diese Bedingung führt zu einer Massenobergrenze. 









42 Weißer Zwerg

Das ideale Fermigas aus Elektronen führt zu einem Modell des Sterngleichgewichts

„Weißer Zwerg“. Hierbei hält der kinetische Druck des entarteten Fermigases dem

Gravitationsdruck die Waage. 

Hat ein Stern den für die Kernfusion zur Verfügung stehenden Brennstoff ver-

braucht, so kühlt er durch Abstrahlung ab. Dann kann der thermische Druck den

Gravitationskräften nicht mehr die Waage halten. Die einsetzende Kontraktion führt

bei hinreichend massiven Sternen zur Zerquetschung der Atomhüllen. (Bei kleine-

ren Objekten, wie etwa Planeten, können die Atomhüllen dem Gravitationsdruck

standhalten). Es entsteht eine „Suppe“ aus Elektronen und Atomkernen, die im Mit-

tel (über einige Teilchenabstände gemittelt) elektrisch neutral ist; die elektromagne-

tischen Kräfte spielen daher keine Rolle für das Sterngleichgewicht. Die Elektronen

können dann in erster Näherung als  ideales Fermigas  behandelt werden, also unter

Vernachlässigung der Wechselwirkungen. Den Elektronen steht das Sternvolumen

V zur Verfügung, in dem sie die niedrigsten Niveaus besetzen. Der kinetische Druck

dieser Elektronen wächst mit abnehmendem Volumen. Dadurch kann sich ein neu-

es Gleichgewicht ergeben. Dieses Gleichgewicht ist das Modell für Sterne vom Typ

 Weißer Zwerg. 

Wir betrachten ein Fermigas aus Elektronen bei T = 0; dies wird  entartetes  Fer-

migas genannt. Das Volumen V und die Anzahl N der Elektronen seien gegeben. 

In dem Phasenraum mit dem Volumenelement d3r d3p gibt es genau einen Orts-

zustand pro Volumen (2π ¯h)3. Dieser Zustand kann mit 2 Elektronen (spin up und

down) besetzt werden. Für T = 0 besetzen die Elektronen die untersten Zustände, 

also alle Zustände mit |p| ≤ p . Wir berechnen die Anzahl der Zustände unterhalb

F

des  Fermiimpulses  p :

F







4π

N =

1

d3r

d3p

1 =

2 V

p 3

(42.1)

(2π ¯h)3

F

V

p ≤ p

(2π ¯h)3 3

F

spin

Dies muss gleich der Anzahl N der vorhandenen Elektronen sein. Daraus ergibt sich

der Zusammenhang zwischen dem Fermiimpuls p und der Teilchendichte n

F

e =

N /V der Elektronen:



1/3

p =

3π2 n

(42.2)

F

¯h

e

Die Einteilchenzustände mit dem Impuls p haben die Energie



ε(p) =

m 2 c4 + p2 c2

e

(42.3)
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Dabei ist p = |p| und me ist die Elektronmasse. Die Energie des Elektronengases

ist



 p



F

Emat = 2

ε(p) =

2 V

dp 4πp2

m 2 c4 + p2 c2

(2π ¯h)3

e

p ≤ p

0

F



m 4c5

x



F

m 4 c5

=

e

V

dx x2

1 + x2 =

e

V f (x )

(42.4)

π2 ¯

F

h3

0

π2 ¯h3

Im letzten Ausdruck haben wir die dimensionslosen Impulse

p

p

x =

, 

x =

F

(42.5)

m

F

e c

me c

und die Funktion

⎧





1



⎪

⎪

x 3 1 + 3 x 2 + . . . 

(x  1)

x



⎨

F

F

F

F

3

10

f (x ) =

dx x2

1 + x2 =

(42.6)

F

⎪





0

⎪

⎩ 1 x 4 1 + 1 + . . . 

(x  1)

4

F

F

x 2

F

eingeführt. Der Druck P folgt aus der thermodynamischen Relation dE = T dS −

P dV . Für das entartete ideale Fermigas gilt T = 0 und E = Emat, so dass







c5

x 3

P = P

F

2

mat = − ∂Emat = m 4

e

1 + x

− f (x )

(42.7)

∂V

π2 ¯

F

F

h3

3

Im letzten Schritt wurde

dxF = − xF

(42.8)

dV

3 V

verwendet, was aus (42.2) in der Form x ∝ V −1/3 folgt. Der resultierende Druck

F

(42.7) ist der Fermidruck des entarteten Fermigases. 

Über (42.7) und (42.2) ist P mit der Elektronendichte ne verknüpft. Wir stellen

noch die Verbindung mit der Massendichte

 = σ ne mn

(42.9)

her. Hier ist mn die Nukleonmasse und σ die mittlere Zahl der Nukleonen pro Elek-

tron; der Beitrag der Elektronen zur Massendichte kann vernachlässigt werden. Für

einen Weißen Zwerg aus Helium oder Kohlenstoff gilt

A

σ =

= 2

(Helium, Kohlenstoff)

(42.10)

Z

Energetisch sind Fusionszyklen bis 56Fe (mit σ ≈ 2.15) möglich, denn dies ist der

Kern mit der größten Bindungsenergie ist. Tatsächlich treten solche weitergehen-

den Fusionen nur in wesentlich größeren Sternen auf, die dann aber nicht als Weiße
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Zwerge enden (wegen der unten zu diskutierenden Massenobergrenze). Typischer-

weise bestehen Weiße Zwerge im Endstadium aus Helium und/oder Kohlenstoff. 

Wenn es zum Heliumbrennen gekommen ist, dann könnte der entstehende Weiße

Zwerg aus einem Kohlenstoffkern (eventuell mit Sauerstoffbeimengungen) und aus

einer Heliumhülle (mit Wasserstoffresten) bestehen. 

Aus (42.2), (42.5) und (42.9) folgt



1/3

p

3 π2

x =

F

= ¯h

(42.11)

F

me c

me c

σ mn

Typische Werte für Weiße Zwerge liegen bei x ∼ 1; dies wird unten noch begrün-

F

det. Für x = 1 erhalten wir die charakteristische Dichte 

F

c, 

σ m





n

3

c =

me c

(42.12)

3π2 ¯h3

Wegen x ∝ 1/3 gilt   

 1, und   

1. Aus (42.7), 

F

c für xF

c für xF

(42.6) und (42.11) erhalten wir

⎧

⎫

⎨ 1

5 ⎬



m 4 c5

xF

K1 5/3

(  c)

P =

e

15

=

(42.13)

π2 ¯h3 ⎩ 1

⎭

x 4

K2 4/3

(  c)

12

F

wobei



5/3



4/3

3π2

3π2

K1 =

¯h2

und

K2 =

¯hc

(42.14)

15 π2 me

σ mn

12 π2

σ mn

Jeder der beiden Grenzfälle führt also zu einer polytropen Zustandsgleichung. Wir

verwenden (41.14) und (41.16) und setzen für das jeweilige γ die bekannten nu-

merischen Werte für x1 und Θ(x1) ein. Damit erhalten wir die Abhängigkeit der

Masse und des Radius von der zentralen Dichte 0:

⎧

⎪

 

⎪

1/2

⎪ 2.79 

⎨

0

M

(0  c)

σ 2



M =

c

⎪

(42.15)

⎪

⎪

⎩ 5.87 M = MC

(0  c)

σ 2

und

⎧

⎪

 

⎪

1/6

⎪

⎪ 2.00 c

⎨

104 km

(0  c)

σ

0

R = ⎪

(42.16)

⎪

 

⎪

1/3

⎪ 5.33 

⎩

c

104 km

(0  c)

σ

0

Als Funktion von 0 erfolgt der Übergang zwischen den beiden Grenzfällen mono-

ton, Abbildung 42.1. 
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M

6

MC ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ····

M

Abbildung 42.1 Masse M eines

·····················································································

···

-

Weißen Zwergs als Funktion der

····

c

0

zentralen Dichte 0. 

Die Massenobergrenze MC für Weiße Zwerge wurde 1930 von Stoner und un-

abhängig davon von dem 19-jährigen Chandrasekhar abgeleitet; sie wird heute als

 Chandrasekhar-Grenzmasse  bezeichnet. Für einen Weißen Zwerg aus Helium oder

Kohlenstoff erhalten wir aus (42.15)

MC = 1.47 M

(42.17)

Für M → MC gilt 0  c und damit γ = 4/3 in der polytropen Zustandsglei-

chung (42.13). Nach (41.21) kennzeichnet dieser Wert die Grenze zur Instabilität. 

Für M → MC geht 0 → ∞ und damit auch P0 → ∞; dies führt schließlich

zur Instabilität. Tatsächlich setzt bereits vor Erreichen der Grenzmasse MC die Re-

aktion p + e− → n + νe ein. Damit ist der Zusammenbruch des Fermidrucks der

Elektronen verbunden; der Stern kollabiert. 

In einem Doppelsternsystem könnte ein Weißer Zwerg Masse ansaugen und sich

so MC nähern. Der Kollaps des Sterns kann dann als Supernova beobachtet werden. 

Eine Masse M ∼ M ist charakteristisch für einen Weißen Zwerg, denn bei

deutlich kleinerer Masse kommt der Stern nicht zum Fusionsbrennen, und deutlich

höhere Massen sind durch die berechnete Obergrenze ausgeschlossen. Daher ist c

– wie oben behauptet – die  charakteristische  Dichte für einen Weißen Zwerg. Sie

beträgt etwa zwei Tonnen pro Kubikzentimeter, 

σ mn

kg

Massendichte

c =

(me c)3 ≈ 2 · 109

(42.18)

3π2 ¯h3

m3

Weißer Zwerg

Der Weiße Zwerg mit M ∼ M hat nach (42.16) einen Radius R ≈ 104 km. Die

absolute Stärke der relativistischen Effekte ist daher gleich

2 |Φ|

r

= 2GM = s, ≈ 3 · 10−4

Gravitationsfeld

(42.19)

c2

R c2

R

Weißer Zwerg

Dies rechtfertigt die Anwendung des nichtrelativistischen Grenzfalls der Oppen-

heimer-Volkoff-Gleichung. 
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Empirisch sind Weiße Zwerge seit langem bekannt. Mit Hilfe des Planckschen

Strahlungsgesetzes kann man von der spektralen Verteilung des Lichts auf die Ober-

flächentemperatur des beobachteten Sterns schließen. Das Spektrum von Weißen

Zwergen kann als weiß oder blauweiß charakterisiert werden. Damit ist seine Ober-

flächentemperatur vergleichbar mit der der Sonne (T ≈ 6000 K) oder höher1. 

Weiße Zwerge haben nun trotz etwa gleicher Oberflächentemperatur nur einen klei-

nen Bruchteil der absoluten Helligkeit der Sonne. Nach dem Stefan-Boltzmann-

Gesetz ist die absolute Strahlungsleistung (Luminosität) L proportional zur abstrah-

lenden Fläche und zur vierten Potenz der Temperatur, 

L = const. · R 2 T 4

(42.20)

Wir lösen diese Beziehung nach R auf und beziehen alle Größen auf diejenigen der

Sonne, 







T

2 

1/2



L

R =

R

(42.21)

T

L

Der Radius R eines Sterns kann also über die Messung der absoluten Luminosität

L und der Temperatur T (aus der Frequenzverteilung) bestimmt werden. Für einen

bestimmten Weißen Zwerg könnte man zum Beispiel L = 10−4 L und T = T

messen; daraus folgt dann R = 10−2 R ≈ 104 km. Das hier vorgestellte Modell

kann solche Radien erklären. Die Bezeichnung „weiß“ entspricht der Frequenzver-

teilung des Sternlichts, die Bezeichnung „Zwerg“ der Größe. 

Für das untersuchte Sterngleichgewicht ist die endliche Temperatur ohne Be-

deutung; denn ihr Beitrag zum Druck ist vernachlässigbar klein. Ohne Einfluss von

außen (zum Beispiel Materieeinfang) wird sich ein Weißer Zwerg durch elektroma-

gnetische Abstrahlung immer weiter abkühlen und so schließlich zu einem Schwar-

zen (also nichtsichtbaren) Zwerg. 

Der Weiße (oder Schwarze) Zwerg ist ein mögliches Endstadium unserer Son-

ne. Die Entwicklung eines Sterns (wie der Sonne) zum Weißen Zwerg ist aber nicht

so einfach, wie man nach dem ersten Absatz dieses Kapitels vermuten könnte. Die

von Astrophysikern angegebene Entwicklung sei kurz skizziert: Nach Beendigung

des Wasserstoffbrennens im Zentralbereich des Sterns setzt sich das Wasserstoff-

brennen zunächst in einer Hülle um diesen Bereich fort. Dies führt zu einer Erhit-

zung und einer Expansion der im Wesentlichen aus Wasserstoff bestehenden Hülle. 

Hierdurch entsteht ein  Roter Riese; der zentrale Bereich ist dann von außen nicht

sichtbar. Die Hülle ist schließlich soweit vom Kern entfernt, dass sie nach außen

wegwandert und der Kern (nun wieder sichtbar) übrig bleibt. Die Abstoßung der

Hülle geschieht in einem relativ kurzen Zeitraum von etwa 2 · 104 Jahren. (Die Pha-

se des Wasserstoffbrennens dauert dagegen je nach Sternmasse 106 bis 1011 Jahre.)

Der verbleibende Kern bildet den Weißen Zwerg; er besteht meist vorwiegend aus

Sauerstoff und Kohlenstoff. 

1Dies steht nicht im Widerspruch zur oben gemachten Annahme T ≈ 0 für das entartete Elektro-

nengas. Für das Fermigas bedeutet diese Annahme kBT  ε

∼

F . Für  ∼ c Dichte gilt εF

me c2, 

also ε ∼

F

0.5 MeV gegenüber kBT ∼ eV. 



43 Neutronenstern. Pulsar

Für Sterne mit M ≥ MC kann die nach Ablauf der Fusionsvorgänge einsetzen-

de Gravitationskontraktion nicht durch den Fermidruck der Elektronen aufgehalten

werden. In diesem Fall kommt es zu einem Gravitationskollaps, in dessen Zen-

trum möglicherweise ein Neutronenstern übrig bleibt. Wir betrachten den Gleichge-

wichtszustand eines solchen Neutronensterns. Neutronensterne werden als Pulsare

beobachtet. 

Die Möglichkeit eines Sterns aus Neutronen wurde von Landau unmittelbar nach

der Entdeckung des Neutrons (1932) gesehen. Die quantitative Behandlung geht

auf Oppenheimer und Volkoff (1939) zurück, die auch die Massenobergrenze be-

rechneten. 

Beim β-Zerfall, n → p + e− + νe, wird die Energie ΔE = (mn − mp − me)c2

frei. Übersteigt nun in hochkomprimierter Materie die Fermienergie der Elektronen

den Wert ΔE ≈ 1.5 me c2, so ist für die Teilchen an der Fermikante die umgekehrte

Reaktion

p + e− → n + νe

(43.1)

energetisch begünstigt. Die Fermienergie der Elektronen steigt mit der Dichte an, 

(42.2). Wegen der elektrischen Neutralität des Sterns gibt es jeweils ein Elektron

pro Proton. Bei hinreichend hoher Dichte führt der Prozess (43.1) daher zur Um-

wandlung der Protonen in Neutronen. Dadurch kann ein Stern entstehen, der im

Wesentlichen aus Neutronen besteht, eben ein  Neutronenstern. 

Die Entstehung eines solchen Neutronensterns stellt man sich etwa so vor: In

einem massereichen Stern (M  M) gehe das Fusionsbrennen zu Ende (weil der

Brennstoff aufgebraucht ist). Mit dem Ende der Energieproduktion sinkt die Tempe-

ratur und damit der thermische Druck. Dann ist der Fermidruck der Elektronen (der

auch bei T = 0 besteht) der dominierende Anteil in Pmat. Wegen der großen Masse

kann der Fermidruck aber dem Gravitationsdruck nicht standhalten; der Stern wird

zunehmend komprimiert. Bei ansteigender Dichte setzt schließlich im Sterninneren

die Reaktion (43.1) ein. Dadurch bricht der Fermidruck zusammen und der Stern

kollabiert. Der Gravitationskollaps ist ein dramatischer, dynamischer Vorgang, des-

sen Modellierung kompliziert ist. Für einen Stern mit M > 

∼ 10 M erwartet man, 

dass im Zentrum des Kollapses ein Neutronenstern übrig bleibt. Wir beschränken

uns auf die Berechnung des Gleichgewichtszustands dieses Neutronensterns in ei-

nem einfachen Modell. 
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Im Neutronenstern kann ein Gleichgewicht dadurch erreicht werden, dass der

Fermidruck der Neutronen der Gravitation die Waage hält. Vernachlässigen wir

in sehr grober Näherung die starke Wechselwirkung zwischen den Neutronen, so

können wir ein zum Weißen Zwerg analoges Sternmodell aufstellen. Dabei gibt es

folgende Unterschiede zum Modell des Weißen Zwergs:

1. Die Massendichte  ist diejenige des betrachteten Fermigases selbst (und

nicht nur proportional dazu). 

2. Wenn das Fermigas relativistisch ist, dann gilt das auch für das Gravitations-

feld. 

Für den Neutronenstern ist in den Formeln des vorigen Kapitels die Elektron-

masse me durch die Neutronmasse mn zu ersetzen; außerdem gilt σ = 1 anstelle

von (42.10). Damit wird die charakteristische Dichte c aus (42.12) zu

m 4 c3



n

c =

(43.2)

3π2 ¯h3

Der Zusammenhang (42.1) zwischen Teilchenzahl N und Fermiimpuls ist unverän-

dert. Die Energie des Neutronengases ergibt sich analog zu (42.4):

 p



F

m 4 c5

E

n

mat =

2 V

dp 4πp2

m 2 c4 + p2 c2 =

V f (x )

(43.3)

(2π ¯h)3

n

F

0

π2 ¯h3

Dabei ist x = p /m

F

F

nc und f (x) die in (42.6) definierte Funktion. Die Massen-

dichte des Sterns ergibt sich aus der Energiedichte der Neutronen:

Emat

 =

= 3 c f (x )

(43.4)

c2 V

F

Für die Grenzfälle x  1 und x  1 erhalten wir wie im vorigen Kapitel eine po-

F

F

lytrope Zustandsgleichung P = −dEmat/dV = K γ mit γ = 5/3 oder γ = 4/3. 

Die Übernahme der Ergebnisse aus Kapitel 41 für nichtrelativistische Sterne ist für

Neutronensterne aber nur für 0  c gerechtfertigt; andernfalls sind die relativis-

tischen Effekte nicht klein. Für 0  c hat die polytrope Zustandsgleichung die

Koeffizienten



5/3

3π2

γ = 5 , 

K =

¯h2

(43.5)

3

15 π2 mn

mn

Mit diesem γ und K folgt aus (41.16) und (41.14):

 



1/2

0

M

= 2.7

M

(0  c)

(43.6)

c

 



1/6

c

R

= 11

km

(0  c)

(43.7)

0
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Für 0  c ergibt sich wie beim Weißen Zwerg eine Massenobergrenze MC, die

 Oppenheimer-Volkoff-Grenzmasse  genannt wird. Die Größenordnung dieser Grenz-

masse ergibt sich aus (43.6) mit 0 ∼ c. In einer genaueren Berechnung von MC

sind folgende Aspekte zu berücksichtigen:

1. Die relativistischen Korrekturen der Oppenheimer-Volkoff-Gleichung. Nach

Kapitel 40 tendieren die relativistischen Effekte dazu, den Druckanstieg zum

Zentrum hin zu verstärken. Sie machen den Stern also instabiler und ernied-

rigen daher MC. 

2. Die starke Wechselwirkung mit ihrem abstoßenden hard-core zwischen den

Neutronen. Aufgrund der starken Wechselwirkung ist die Kompressibilität

von Kernmaterie etwa zehnmal kleiner als die des idealen Fermigases. Dieser

Effekt tendiert dazu, die Grenzmasse MC zu erhöhen. 

Verschiedene Modellrechnungen ergeben Grenzmassen im Bereich

1.5 M ≤ MC ≤ 3 M

(43.8)

Wir werten die charakteristische Dichte (43.2) numerisch aus:

m 4 c3

kg

Massendichte



n

c =

≈ 6 · 1018

(43.9)

3π2 ¯h3

m3

Neutronenstern

Dies entspricht der Dichte von Atomkernen. 

Aus (43.7) und  ∼ c erhalten wir R ∼ 10 km für den Radius eines Neutronen-

sterns. Die relativistischen Effekte sind für einen Neutronenstern mit M = M und

R ∼ 10 km von der Größe

2 GM ≈ rs, ∼

Gravitationsfeld

0.3

(43.10)

R c2

R

Neutronenstern

Pulsare

1967 wurden Radioquellen entdeckt1, die Strahlung periodisch in Form von Pulsen

aussenden und daher den Namen  Pulsar  erhielten. Die sehr konstanten Frequen-

zen werden als Rotationsfrequenzen von Sternen gedeutet, die durch die Drehim-

pulserhaltung bei der Kontraktion so hoch wurden. Die beobachteten Frequenzen

(∼ 1 s−1 . . . 10−2 s−1) passen zu Sternradien R ∼ 10 km. In Doppelsternsystemen

kann ferner die Masse eines Pulsars bestimmt werden; dabei wurden Massen im

Bereich M ≈ 1.3 . . . 1.5 M gefunden. Bei solchen Massen und solchen Radien

erscheint die Interpretation als Neutronenstern zwingend. Diese Deutung erlaubt

1A. Hewish et al.,  Observation of a Rapidly Pulsating Radio Source, Nature 217 (1968) 709. 

Hewish erhielt 1974 für diese Entdeckung den Nobelpreis. 
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auch eine zwanglose Erklärung weiterer Beobachtungen. Es besteht daher heute un-

ter den Experten kaum Zweifel, dass es sich bei den Pulsaren um Neutronensterne

handelt. 

Die Häufigkeit der Hauptreihensterne nimmt mit der Masse ab (etwa proportio-

nal zu M−2.35 ). Daher würde man eigentlich erwarten, dass es vor allem Neutronen-

sterne mit kleinerer Masse gibt; denn im oben vorgestellten statischen Modell sind

alle Massen unterhalb MC gleichberechtigt. Experimentell findet man aber nur

Neutronensterne im Bereich M ≈ 1.3 . . . 1.5 M. Ein Erklärungsversuch dafür, 

dass kleinere Massen offenbar nicht vorkommen, muss daher in der dynamischen

Entwicklung2 des Sterns gesucht werden. 

Die pulsförmige Strahlung wird mit einem starken Magnetfeld erklärt, dessen

Hauptachse nicht mit der Drehimpulsachse des Sterns zusammenfällt. Geladene

Teilchen bewegen sich bevorzugt entlang der magnetischen Feldlinien. Dabei wer-

den sie durch das starke Gravitationsfeld beschleunigt. Sie treffen dann mit hoher

Geschwindigkeit am magnetischen Pol auf und werden abgebremst. Dadurch ent-

steht elektromagnetische Strahlung, die bevorzugt in einen Kegel um die Magnet-

feldachse herum abgestrahlt wird. Dieser Strahlungskegel dreht sich mit der Rota-

tionsfrequenz des Sterns um die Drehachse und führt zu den beobachteten Pulsen. 

Das skizzierte Modell ist konsistent mit den Beobachtungen. Insbesondere kann

das starke Magnetfeld an den Polen durch Elektronenübergänge zwischen Landau-

Niveaus nachgewiesen und in seiner Stärke bestimmt werden. Landau-Niveaus sind

die quantisierten Elektronenzustände in einem starken Magnetfeld. 

Nicht jeder Neutronenstern muss als Pulsar in Erscheinung treten oder über-

haupt ein Pulsar sein: Zum einen könnte der Strahlungskegel die Erde nicht über-

streichen; zum anderen mag es Neutronensterne ohne (oder mit einem schwachen)

Magnetfeld geben. 

Folgende Effekte können zu einer Änderung der an sich relativ konstanten Puls-

frequenz führen:

1. Kleine diskontinuierliche Änderungen werden beobachtet und durch Stern-

beben erklärt. Ein Sternbeben kann eine (kleine) Änderung des Trägheits-

moments des Pulsars verursachen und damit einen entsprechenden Sprung in

der Drehfrequenz. 

2. Die mit der Drehachse nicht zusammenfallende Magnetfeldachse führt zur

Abstrahlung elektromagnetischer Wellen, eine eventuelle Verletzung der Ro-

tationssymmetrie der Massenverteilung zur Abstrahlung von Gravitations-

wellen (siehe auch Kapitel 36). Diese Effekte verursachen eine kontinuier-

liche, allmähliche Abbremsung der Drehung. Dadurch sollten ältere Pulsare

langsamer werden. 

3. In einem Doppelsternsystem könnte das Gravitationsfeld des Neutronensterns

Materie vom Partner absaugen. Dann sammelt sich abgesaugtes Plasma in ei-

ner Akkretionsscheibe (in der Bahnebene des Doppelsternsystems) mit einer

2G. E. Brown, Phys. Blätter 53 (1997) 671
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bevorzugten Rotationsrichtung an. Beim endgültigen Einfang überträgt das

Plasma seinen Drehimpuls auf den Neutronenstern und kann so sukzessive

die Drehfrequenz des Pulsars erhöhen. Dies ist eine Erklärung für extrem

schnelle Pulsare; es wurden Pulsare mit Perioden bis herunter zu etwa 10−3 s

beobachtet. 

Pulsare mit ihrer eingebauten präzisen Uhr sind ein wichtiges Hilfsmittel der

Astronomie und Astrophysik. So lässt sich etwa für ein Doppelsternsystem aus

der Variation und Stärke der Dopplerverschiebung recht direkt und sehr genau die

Bahnperiode und die Bahngeschwindigkeit erschließen. (Das gleiche Prinzip gilt

natürlich auch für die Dopplerverschiebung bekannter Spektrallinien im Licht eines

sichtbaren Sterns). Hierzu sei an das in Kapitel 36 betrachtete System PSR 1913+16

erinnert, dessen Bahndaten mit erstaunlicher Genauigkeit bestimmt werden können. 

An der Stelle einer im Jahr 1054 von chinesischen Astronomen registrierten

Supernova befindet sich heute der Crab-Nebel. Der im Zentrum des Crab-Nebels

beobachtete Pulsar stützt den vermuteten Zusammenhang zwischen einer Super-

nova und der Entstehung eines Neutronensterns. 
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44 Isotrope zeitabhängige Metrik

und Birkhoff-Theorem

Die innere und äußere Schwarzschildmetrik aus Kapitel 39 gilt für den isotropen

und statischen Fall. Im Gegensatz dazu lassen wir jetzt eine Zeitabhängigkeit zu. 

Die Lösung hierfür wird zunächst für den quellfreien Raum angegeben, in Kapitel

47 dann auch im Bereich einer homogenen Dichteverteilung. 

Die Verallgemeinerung der Standardform (23.3) auf den zeitabhängigen Fall ergibt





ds2 = B(r, t) c2 dt2 − A(r, t) dr2 − r2 dθ2 + sin2 θ dφ2

(44.1)

Die Argumente, die zur Standardform (23.3) führen, lassen sich auf den zeitabhän-

gigen Fall übertragen: Die Isotropie verbietet Terme, die linear in dθ oder dφ sind. 

Ein Term mit dr dt kann durch Einführung einer neuen Zeitkoordinate eliminiert

werden. Der Koeffizient r2 bei den Winkeldifferenzialen entspricht einer bestimm-

ten Wahl der Radiuskoordinate. Die Zeitabhängigkeit führt also lediglich dazu, dass

t als Argument in den metrischen Koeffizienten A und B auftritt. 

Für (44.1) ist der metrische Tensor diagonal:









gμν = diag B(r, t), −A(r, t), −r2, −r2 sin2 θ

(44.2)

Die kontravarianten Komponenten sind gμν = (gμν)−1. Wir bestimmen zunächst

die Christoffelsymbole





gσ ν

∂gμν

∂gλν

∂gμλ

Γ σ =

+

−

λμ

(44.3)

2

∂xλ

∂xμ

∂xν

Gegenüber Kapitel 23 treten dabei jetzt zusätzliche Zeitableitungen auf. Die nicht
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verschwindenden Komponenten sind:

˙B

Γ 0 =

, 

Γ 0 = Γ 0 = B , 

Γ 1 = B

00

2B

01

10

2B

00

2A

˙

A

˙

A

Γ 1 = Γ 1 =

, 

Γ 0 =

, 

Γ 1 = A

01

10

2A

11

2B

11

2A

(44.4)

r

Γ 2 = Γ 2 = 1 , 

Γ 1 = − , 

Γ 3 = Γ 3 = 1

12

21

r

22

A

13

31

r

r sin2 θ

Γ 1 = −

, 

Γ 3 = Γ 3 = cot θ , 

Γ 2 = − sin θ cos θ

33

A

23

32

33

Dabei bezeichnet ein Punkt die Zeitableitung ∂/∂(c t ). Für den Ricci-Tensor

ρ

ρ

μρ

μν

Rμν = ∂Γ

− ∂Γ + Γ σ Γ ρ − Γ σ Γ ρ

∂xν

∂xρ

μρ

σ ν

μν

σρ

(44.5)

erhalten wir:

¨
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A
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B

B

A

B
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R00 =

−

+
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+
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−

(44.6)
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(44.7)

2B

4B

A

B

2B

4B

A

B

rA





A

B

R22 = −1 − r

−

+ 1

(44.8)

2A

A

B

A

R33 = R22 sin2 θ

(44.9)

˙

A

R01 = R10 = −

(44.10)

A r

Rμν = 0

für alle anderen Komponenten

(44.11)

Wir setzen den Ricci-Tensor in die  freien  Feldgleichungen

Rμν = 0

(44.12)

ein. Aus R10 = − ˙

A/(A r) = 0 folgt

∂A(r, t ) = 0, also A(r,t) = A(r)

(44.13)

∂t

Aus R00/B + R11/A = 0 folgt wie in (24.7) – (24.9) AB = 1, also B(r, t) =

1/A(r). Damit fallen  alle  Zeitableitungen in den Rμν weg und wir erhalten die

bekannte Schwarzschildlösung

rS

A(r) =

1

und

B(r) = 1 −

(44.14)

1 − rS/r

r
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Der Vergleich mit dem Newtonschen Grenzfall bestimmt die Integrationskonstante

zu

rS = 2a = 2GM

(44.15)

c2

Dabei ist M die Gesamtmasse der kugelsymmetrischen Quellverteilung. Die Lö-

sung (44.14) gilt wegen (44.12) nur außerhalb dieser Verteilung. 

Die hier gefundene Lösung bedeutet, dass im Außenraum bereits aus der Iso-

tropie die Zeitunabhängigkeit des Gravitationsfelds folgt. Diese Aussage wird als

 Birkhoff-Theorem  bezeichnet:

BIRKHOFF-THEOREM:

Ein sphärisches Gravitationsfeld im leeren Raum ist statisch. 

Die entsprechende Aussage der Elektrodynamik ist wohlbekannt: Eine sphärische

Ladungsverteilung erscheint nach außen wie eine Punktladung bei r = 0. Dies

folgt am einfachsten aus dem Gaußschen Gesetz. Die sphärische Ladungsvertei-

lung selbst darf zeitabhängig sein; es könnte sich zum Beispiel um einen Atom-

kern handeln, der Monopolschwingungen ausführt. Höhere Multipolschwingungen

würden dagegen die Isotropie verletzen und sind daher nicht zugelassen; nur sol-

che Schwingungen führen zur Abstrahlung von Wellen. Die zugelassenen radialen

Ströme müssen die Kontinuitätsgleichung erfüllen, die ja in den Feldgleichungen

enthalten ist. Dies bedeutet, dass Q = const. für die Gesamtladung gilt. 

Analog hierzu könnte die Massenverteilung, die zu (44.14) führt, radiale Be-

wegungen (etwa Monopolschwingungen oder einen radialen Kollaps) ausführen. 

Dabei ist die Gesamtmasse M konstant. 

Machsches Prinzip

Wir haben das Ergebnis (44.14) hier zunächst auf das Feld  außerhalb  einer Mas-

senverteilung bezogen. Wir können es aber auch anwenden auf den  leeren Raum

 innerhalb einer sphärischen Massenverteilung; denn für (44.14) müssen wir ja nur

Isotropie und Rμν = 0 voraussetzen. In diesem Fall ist in der Lösung rS = 0 zu set-

zen, da es keine Masse im Zentrum gibt. Dann erhalten wir die Minkowskimetrik

in Kugelkoordinaten, oder nach einer trivialen Koordinatentransformation:

ds2 = ημν dxμdxν

Metrik im leeren Raum innerhalb

(44.16)

einer sphärischen Massenverteilung

In dieser scheinbar trivialen Form hat das Birkhoff-Theorem folgende wichtige An-

wendung: Von uns aus gesehen (wie auch von anderen typischen Fixsternen aus)

erscheint die Massen- und Geschwindigkeitsverteilung im Universum im Mittel iso-

trop (Teil X, Kosmologie). Wir vernachlässigen nun zunächst die Massen in unse-

rer Umgebung. In dieser leeren Umgebung gilt dann (44.16), das heißt gμν = ημν

ist eine Lösung der Feldgleichungen. Diese Lösung ist nicht trivial, weil entfern-

te, bewegte Massen zugelassen sind, insbesondere die Massen des expandierenden
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Kosmos. Mit dieser Lösung haben wir ein Inertialsystem gefunden. Relativ zu die-

sem IS mit konstanter Geschwindigkeit bewegte Systeme sind ebenfalls IS; relativ

dazu rotierende oder sonstwie beschleunigte Systeme sind dagegen keine IS, weil

die Transformation zu ihnen die Form des Wegelements ändert. Das so erhaltene IS

ist ein lokales Bezugssystem, für das die Massen in einer begrenzten Umgebung (in

einer ersten Annäherung) vernachlässigt wurden. Die Metrik des Kosmos (Teil X)

erlaubt in der Tat auch nur Lokale IS. 

In dem hier zunächst betrachteten leeren Raum mit dem IS lassen wir nun lo-

kale Massen zu (Sonne mit Planeten, Milchstraße). Ausgehend von gμν = ημν

können diese Massen störungstheoretisch berücksichtigt werden; über die lineari-

sierten Feldgleichungen führen sie zu kleinen Abweichungen von der Minkowski-

metrik. Diese Überlegungen stellen auch eine nachträgliche Rechtfertigung unserer

Rechnungen im Sonnensystem dar. Hierbei haben wir die Massen des Universums

ignoriert und sind einfach davon ausgegangen, dass die Metrik asymptotisch zur

Minkowskimetrik wird. 

Zusammenfassend stellen wir fest:

•  Ein Inertialsystem ist durch ein Bezugssystem gegeben, von dem aus die Mas-

 senverteilung des Universums im Großen und im Mittel isotrop erscheint. 

Entscheidende Voraussetzung ist dabei die Isotropie; dies schließt insbesondere re-

lativ zum Fixsternhimmel rotierende Bezugssysteme aus. 

Unter Machprinzip wird verstanden, dass die Massen im Universum die Inertial-

systeme festlegen. Die jetzt gefundene Aussage kann als Bestätigung des Mach-

prinzips betrachtet werden. 

Mach (1838 – 1916) selbst würde sich durch den hier gefundenen Zusammen-

hang zwischen Massen des Kosmos und den Inertialsystemen vermutlich nicht be-

stätigt sehen; er akzeptierte nicht einmal die Spezielle Relativitätstheorie. Der Ter-

minus  Machsches Prinzip  wurde 1918 von Einstein geprägt. Er verstand darun-

ter, dass eine gegebene Quellverteilung über die Feldgleichungen die Metrik (und

damit die Lokalen IS) festlegt. Ein solcher Zusammenhang kann allerdings nicht

eindeutig hergestellt werden. So gibt es im leeren Raum neben gμν = ημν noch

physikalisch andere Lösungen, zum Beispiel Wellenlösungen. Diese Mehrdeutig-

keit existiert auch in der Elektrodynamik; in der ART kommen noch die Probleme

durch die Nichtlinearität der Feldgleichungen hinzu. 

Angesichts der Entstehungsgeschichte des Begriffs „Machsches Prinzip“ ist es

nicht verwunderlich, dass es in der Literatur unterschiedliche Formulierungen gibt1. 

Die hier diskutierte Beziehung zwischen den Massen des Kosmos und den (Loka-

len) Inertialsystemen unterscheidet insbesondere zwischen rotierenden und nicht-

rotierenden Bezugssystemen. Daher sei an Machs Bemerkung zu Newtons Eimer-

versuch (Abschnitt  Inertialsysteme  in Kapitel 9) und den Thirring-Lense-Effekt

(Kapitel 30) erinnert. 

1H. Bondi and J. Samuel listen in  The Thirring-Lense-Effect and Mach’s Principle, E-Print gr-qc/9607009 im Archiv www.arxiv.org, zehn verschiedene Versionen des Machschen Prinzips auf. 







45 Schwarzschildradius

Wir diskutieren die physikalische Bedeutung der Fläche r = rS in der Schwarz-

schildmetrik









rS

dr2

ds2 = 1 −

c2 dt 2 −

− r2 dθ2 + sin2 θ dφ2

(45.1)

r

1 − rS/r

Damit bereiten wir die Einführung von Koordinaten vor, die für die Beschreibung

des Bereichs innerhalb des Schwarzschildradius rS geeignet sind (Kapitel 46). Der

Kollaps zu einem Stern mit einem Radius R ≤ rS und das entstehende Schwarze

Loch werden in den Kapiteln 47 bis 49 behandelt. Die Diskussion der Bedeutung

des Schwarzschildradius wird dort fortgesetzt. 

Mit den Pulsaren existieren Sterne, deren Radius R mit dem Schwarzschildradius

rS vergleichbar ist (R ∼ 3 rS für M ∼ M). Es gibt keinen Mechanismus, der

für M  M die Kontraktion zu kleineren Radien verhindert; denn nach (40.11)

divergiert der Gravitationsdruck für R → (9/8) rS, so dass der Stern kollabieren

muss. Im zentralsymmetrischen Fall gilt nach dem Birkhoff-Theorem außerhalb des

kollabierenden Sterns die Schwarzschildmetrik. Im Gegensatz zu normalen Sternen

mit R  rS stellt sich daher jetzt die Frage der Bedeutung des Schwarzschildradius

in der Metrik (45.1). 

Der metrische Tensor hängt von der Wahl der Koordinaten ab. Eine bestimmte

Wahl verändert nicht die Struktur des Raums (wie etwa die Krümmung), kann aber

sehr wohl zu singulären metrischen Koeffizienten führen. Als Beispiel für „patho-

logische“ Koordinaten betrachten wir das zweidimensionale Wegelement

ds2 = 1 dX2 + Y dY 2

(45.2)

X3

Hier könnte man ein singuläres Verhalten der Raumeigenschaften bei X = Y = 0

vermuten. Tatsächlich haben wir in (45.1) aber nur „pathologische“ Koordinaten

gewählt. Die Transformation X = 4/x2 und Y = (3y/2)2/3 führt nämlich zu

ds2 = dx2 + dy2

(45.3)

Daher ist (45.2) die Metrik eines zweidimensionalen euklidischen Raums. 

Ein weiteres Beispiel sind die Koordinaten x1 = θ und x2 = φ für die Kugelo-

berfläche. Hier wird der metrische Koeffizient g22 = 1/ sin2θ an den Polen singulär. 
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Auch dies ist eine reine Koordinatensingularität; denn die Raumstruktur an den Po-

len ist mit der an allen anderen Punkten auf der Kugeloberfläche identisch. 

Wir betrachten nun die Schwarzschildmetrik (SM) mit dem Wegelement (45.1). 

Die Determinante des metrischen Tensors ist

g = det (gμν) = −r4 sin2 θ

(45.4)

Aus den Komponenten des Krümmungstensors Rμνκλ kann man folgende skalare

Größe bilden:

r 2

R

S

μνκλ Rμνκλ = 12

(45.5)

r 6

Der Krümmungsskalar ist für diese Betrachtung nicht geeignet, weil die SM die

freien Feldgleichungen Rμν = 0 löst und weil daher Rνν = 0 gilt. Die Ergebnisse

(45.4) und (45.5) bedeuten, dass die Raumeigenschaften bei r = 0, nicht aber beim

Schwarzschildradius singulär sind. 

Für r → 0 divergiert die skalare Größe (45.5). Diese Singularität kann nicht

durch eine Koordinatentransformation beseitigt werden, denn Rμνκλ Rμνκλ ist ein

Riemannskalar. Der Raum ist daher bei r = 0 singulär. Diese Singularität wird

durch eine Punktmasse bei r = 0 hervorgerufen, die wir allerdings nicht explizit

als Quellterm angeschrieben haben. Tatsächlich lösen die metrischen Koeffizienten

aus (45.1) die Feldgleichungen Rμν = 0 nur für r = 0. Verlangt man dagegen

Rμν = 0 auch bei r = 0, so folgt rS = 0. Diese Situation ist ähnlich wie in der

Elektrodynamik: Die Lösung der Laplacegleichung Φe = 0 in Kugelkoordinaten

führt zum Potenzial Φe = C1/r + C2 mit zwei Konstanten C1 und C2. Tatsächlich

löst dieses Φe mit C1 = 0 die Laplacegleichung nur für r = 0. Im Folgenden

betrachten wir die Singularität bei r = 0 nicht mehr. 

Die Ergebnisse (45.4) und (45.5) bedeuten, dass der Raum bei r = rS nicht

singulär ist. Um dies explizit zu zeigen, führt man andere Koordinaten ein, die den

Bereich r ∼ rS überdecken und nichtsinguläre metrische Koeffizienten ergeben

(Kapitel 46). Dies kann mit der Situation am Nordpol verglichen werden: In einer

Umgebung von θ = 0 kann man ein lokales kartesisches KS einführen und damit

zeigen, dass die Singularität des metrischen Koeffizienten g22 = 1/ sin2θ nur auf

der Wahl der Koordinaten θ und φ beruht. 

So wie im Beispiel des Nordpols beruht die Singularität bei r = rS auf der spe-

ziellen Wahl der Koordinaten; es handelt sich um eine Koordinatensingularität. Die

Situation für r ∼ rS ist aber in einem wesentlichen Punkt anders als im Beispiel der

Kugeloberfläche: Während der Nordpol dieselben Eigenschaften wie jeder andere

Punkt der Kugeloberfläche hat, ist die Fläche r = rS  physikalisch  ausgezeichnet. 

Diese physikalische Bedeutung des Schwarzschildradius wird im Folgenden unter-

sucht. 

Wir betrachten die Bewegungsgleichung eines Teilchens im Gravitationsfeld

(45.1). Die radiale Geschwindigkeit ˙r = dr/dτ eines frei fallenden Massenpunkts

(Ruhmasse m) genügt dem Energiesatz

˙r2/2 + Veff(r) = C

(45.6)
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mit C = const. (Kapitel 25). Wir betrachten ein Teilchen, das von r0 radial zum

Zentrum fällt. Dann verschwindet sein Drehimpuls , und das effektive Potenzial

(25.27) wird zu Veff = −GM/r. Wir berechnen die Eigenzeit τ1, in der das frei

fallende Teilchen von r(0) = r0 bis rS kommt, 





rS

dτ

rS

dr

τ1 =

dr

= −



(45.7)

r

dr

0

r0

2 (C + GM/r)

Dabei ist C ≥ −GM/r0; wenn das Teilchen bei r0 ruht, gilt C = −GM/r0. In

Aufgabe 25.3 wurden die Rechnungen speziell für r0 = 3rS durchgeführt. Wir

berechnen noch die Eigenzeit τ2, die ein frei fallendes Teilchen von r(0) = r0 bis

zum Zentrum braucht, 





0

dτ

0

dr

τ2 =

dr

= −



(45.8)

r

dr

0

r0

2 (C + GM/r)

Beide Integrale sind endlich; das Teilchen erreicht sowohl den Schwarzschildradius

wie das Zentrum in endlicher Eigenzeit. Auf dem Weg von r0 bis zum Zentrum tritt

der Schwarzschildradius nicht besonders in Erscheinung. In Kapitel 48 diskutieren

wir die Frage, ob Astronauten in einem Raumschiff die Fläche r = rS unbeschadet

durchqueren können. 

Aus (25.13) mit λ = τ und B = 1 − rS/r folgt

c dt

F

=

(45.9)

dτ

1 − rS/r

Die Integrationskonstante F hängt von den Anfangsbedingungen ab. Gemessen in

der SM-Zeit t braucht das Teilchen unendlich lange, um bis zum Schwarzschild-

radius zu kommen:





rS

rS

F dr

t1 =

dt = −



= ∞

(45.10)

r0

r0

c

2 (C + GM/r) (1 − rS/r )

Die SM-Zeit t ist die Uhrzeit eines in großer Entfernung ruhenden Beobachters. Für

ihn erfolgt die Annäherung r → rS in unendlich langer Zeit; für den mitfallenden

Beobachter passiert dies dagegen in der endlichen Zeit τ1. 

Das fallende Teilchen möge Signale an den weit entfernten Beobachter senden. 

Die Signale erreichen den Beobachter mit der Rotverschiebung

r→r

z =

1



− 1

S

−→ ∞

(45.11)

1 − rS/r

Dadurch wird das Teilchen für den Beobachter nach sehr kurzer Zeit unbeobacht-

bar (wie wir in Kapitel 48 noch näher diskutieren werden). Der unendlichen Rotver-

schiebung entspricht eine unendliche SM-Zeit Δt , die ein Photon (ds = 0) benötigt, 

um von rS nach r0 zu kommen:





 



r0

r0

dt

r0

dr

Δt =

dt =

dr

= 1

= ∞

(45.12)

r

dr

c

1 − r

S

rS

ds = 0

rS

S/r
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Die Ergebnisse (45.10) – (45.12) bedeuten, dass die Koordinate t offenbar nicht

geeignet ist, Ereignisse im Bereich r ≤ rS zu bezeichnen (dies liegt an g00 < 0). 

Da der frei fallende Beobachter in endlicher Eigenzeit das Zentrum erreicht, gibt es

aber Ereignisse im Bereich r ≤ rS. 

Wir fassen zusammen:

1. Die Fläche r = rS ist physikalisch ausgezeichnet. Für den außenstehenden

Beobachter nähert sich ein frei fallendes Teilchen asymptotisch (t → ∞)

dem Radius rS. Außerdem kann dieser Beobachter keine Information aus dem

Bereich r ≤ rS erhalten. Für ihn ist die Fläche r = rS ein Horizont, über den

er nicht hinaussehen kann. 

2. Für den mitbewegten Beobachter zeigt die Stelle rS keine Besonderheit; die

Raumstruktur ist dort nicht singulär. Der mitbewegte Beobachter erlebt Er-

eignisse im Bereich r ≤ rS; es gibt also solche Ereignisse. 

3. Die Koordinaten der SM sind nicht geeignet, Ereignisse im Bereich r ≤ rS

zu benennen. Da diese Ereignisse für den außenstehenden Physiker nicht be-

obachtbar sind, könnte man auch auf ihre Betrachtung verzichten. 

Die Regularität des Raums bei rS impliziert, dass dort Lokale IS möglich sind. 

Die physikalische Auszeichnung von rS zeigt sich dann bei der Verbindung der

Lokalen IS: Ein Lokales IS innerhalb von rS kann kausal nicht mit dem asympto-

tischen IS verbunden werden. Eine vergleichbare Situation wird uns noch einmal

bei der Raumstruktur des Universums begegnen; dort kann das Lokale IS unserer

Milchstraße nicht mit dem Lokalen IS von Galaxien jenseits des Welthorizonts ver-

bunden werden. 

Die vorgeführten Rechnungen implizieren, dass die  mitbewegten Koordinaten

eines frei fallenden Beobachters zur Beschreibung des Bereichs r ≤ rS geeig-

net sind. Solche Koordinaten führen wir im nächsten Kapitel ein. Außerhalb des

Sternradius werden wir wie bisher die SM verwenden. Der Kollaps des Sterns wird

dann mit Hilfe dieser beiden Metriken beschrieben, die am Sternrand miteinander

verknüpft werden. Es ist auch möglich, Koordinaten einzuführen, die den gesam-

ten Raum überdecken. Solche Koordinaten wurden 1960 von Kruskal eingeführt

( Kruskal-Metrik). 

Aufgaben

 45.1 Zentraler Fall in Schwarzschildmetrik

Sollten Sie Aufgabe 25.3 noch nicht gelöst haben, dann tun Sie das bitte jetzt. 



















46 Isotrope zeitabhängige Metrik

in Gaußkoordinaten

Für den isotropen und zeitabhängigen Fall führen wir sogenannte Gaußkoordinaten

ein, mit denen auch Ereignisse innerhalb des Schwarzschildradius bezeichnet wer-

den können. Aus dem metrischen Tensor berechnen wir die Christoffelsymbole und

den Ricci-Tensor. Die Gaußkoordinaten sind geeignet, den zentralen Gravitations-

kollaps eines Sterns zu beschreiben (Kapitel 47). 

Wir gehen von der Form (23.2) aus, wobei wir eine Zeitabhängigkeit der metri-

schen Koeffizienten zulassen:





ds2 = B(r, t) c2 dt2 − A(r, t) dr2 − C(r, t) r2 dθ2 + sin2 θ dφ2

(46.1)

Die Winkelkoordinaten haben ihre übliche Bedeutung. Wegen der Isotropie kann

es keine Terme geben, die linear in dθ oder dφ sind. Die noch möglichen Koor-

dinatentransformationen (t = f1(r, t) und r = f2(r, t)) enthalten zwei nicht

festgelegte Funktionen. Eine dieser freien Funktionen dient dazu, einen möglichen

Term mit dr dt zu eliminieren; einen solchen Term haben wir von vornherein nicht

mit angeschrieben. Die andere Funktion kann so gewählt werden, dass der Koeffizi-

ent g00 zu 1 wird. Nach einer Umbenennung der Koeffizienten (und ohne die neuen

Koordinaten mit einem Strich zu kennzeichnen) erhalten wir so

Isotrope Metrik in Gaußkoordinaten:





(46.2)

ds2 = c2dt2 − U (r, t) dr2 − V (r, t) dθ2 + sin2 θ dφ2

Man kann die Freiheit in der Koordinatenwahl auch dazu benutzen, um in (46.1)

C(r, t ) = 1 zu erreichen. Insofern ist (46.2) eine Alternative zu (44.1), wobei die

Koordinaten (außer den Winkelkoordinaten) natürlich unterschiedliche Bedeutun-

gen haben. Die Koordinaten xμ = (ct, r, θ, φ) in (46.2) heißen  Gaußsche Normal-

 koordinaten. 

Der metrische Tensor









gμν = diag 1, −U (r, t), −V (r, t), −V (r, t) sin2 θ

(46.3)

ist diagonal. Daher gilt gμν = 1/gμν. Wir berechnen





gλρ

∂gρ0

∂g0ρ

∂g00

∂gρ0

Γ λ =

+

−

= gλρ

= 0

(46.4)

00

2

∂x0

∂x0

∂xρ

∂x0
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Wegen Γ λ = 0 ist (uμ) = (c, 0, 0, 0) eine Lösung der Bewegungsgleichungen:

00

 





duλ

uμ = c, 0, 0, 0

löst

= −Γ λ uμuν

(46.5)

dτ

μν

Aus ui = dxi/dτ = 0 folgt xi = const. Damit ist xi = const. die Bahn eines frei

fallenden Teilchens. Wegen

 

ds

dτ =

= dt

(46.6)

c

xi =const. 

ist t die Eigenzeit einer Uhr mit den Koordinaten xi = const. 

Die Gaußkoordinaten können als  mitbewegte Koordinaten  bezeichnet werden. 

Dazu stellen wir uns einen isotropen Stern aus N Steinen oder Staubkörnern vor, 

die wir mit ν = 1, 2, ..., N durchzählen. Der Stern stelle eine lose Anhäufung dieser

Steine dar, so dass die einzelnen Steine frei fallen können. Wir ordnen den Steinen

bestimmte Koordinaten (xi ) = (r

ν

ν , θν , φν ) zu; die r -Werte sollen mit dem Abstand

vom Zentrum anwachsen, sie können aber später noch skaliert werden. Mit jedem

Stein sei eine Uhr verbunden. Anfangs mögen alle Steine ruhen und die Uhren seien

auf t = 0 gestellt. Nunmehr (für t > 0) beginnen die Steine im Gravitationsfeld zu

fallen. Die Bahnen der einzelnen Steine sind dann xi =

ν

const. (denn dies erfüllt die

Anfangsbedingungen und die Bewegungsgleichung), und die zugehörigen Uhren

zeigen die Zeit tν an. Ein Ereignis im Bereich des Sterns erhält nun die Koordinaten

t = tμ und xi = xiμ, wobei μ den Stein bezeichnet, der zur Zeit des Ereignisses am

Ort des Ereignisses ist. Dazu wird vorausgesetzt, dass der Raum hinreichend dicht

mit hinreichend kleinen Steinen belegt ist. 

Aus der Diskussion des vorigen Kapitels wissen wir, dass ein Stein in endlicher

Eigenzeit von r > rS bis zum Zentrum r = 0 kommt. Damit ist klar, dass wir

mit den jetzt gewählten mitbewegten Koordinaten auch und gerade den Bereich

innerhalb des Schwarzschildradius beschreiben können. 

Nicht jedes frei fallende Teilchen hat eine Bahn der Form xi = const. So gibt es

im isotropen Gravitationsfeld natürlich auch frei fallende Teilchen mit nichtradialer

Bewegung; ein Teilchen könnte zum Beispiel eine ellipsenartige Bahn durchlaufen. 

Durch xi =

ν

const. sind dagegen ganz spezielle Bahnen gegeben. Diese speziellen

Bahnen sind zum einen radial (wegen θν = const. und φν = const.), und zum ande-

ren ergibt sich die radiale Geschwindigkeit allein aus der Zeitabhängigkeit der me-

trischen Koeffizienten U (r, t ) und V (r, t ). Diese Zeitabhängigkeit wird im nächsten

Kapitel spezifiziert. 

Auch in der Kosmologie werden wir eine Metrik der Form (46.2) verwenden. 

Die Massenelemente mit xi =

ν

const. sind dann frei fallende Galaxien. Ein Stern

innerhalb einer Galaxie fällt ebenfalls frei im Gravitationsfeld. Die Bahn des Sterns

ist aber wegen seiner Eigenbewegung relativ zur Galaxie nicht von der Form xi =

const. Diese Eigenbewegung ist durch die Anfangsbedingung und durch das lokale

Gravitationsfeld der Galaxie gegeben; beide Effekte sind in der Metrik (46.2) nicht

enthalten. 
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Abschließend berechnen wir die nichtverschwindenden Christoffelsymbole für

die Metrik (46.3), 

˙U

˙V

Γ 1 = Γ 1 =

, 

Γ 2 = Γ 2 = Γ 3 = Γ 3 =

01

10

2U

02

20

03

30

2V

˙U

˙V

˙V sin2 θ

Γ 0 =

, 

Γ 0 =

, 

Γ 0 =

11

2

22

2

33

2

V 

V  sin2 θ

(46.7)

Γ 1 = U  , 

Γ 1 = −

, 

Γ 1 = −

11

2U

22

2U

33

2U

Γ 2 = Γ 2 = Γ 3 = Γ 3 = V 

12

21

13

31

2V

Γ 2 = − sin θ cos θ , 

Γ 3 = Γ 3 = cot θ

33

23

32

Die nichtverschwindenden Komponenten des Ricci-Tensors lauten:

Ü

¨V

˙U2

˙V 2

R00 =

+

−

−

(46.8)

2 U

V

4 U 2

2 V 2

Ü

˙U2

˙U ˙V

V 

V 2

U V 

R11 = −

+

−

+

−

−

(46.9)

2

4 U

2 V

V

2 V 2

2 U V

¨V

˙U ˙V

V 

V U 

R22 = −1 −

−

+

−

(46.10)

2

4 U

2 U

4 U 2

˙V 

˙V V 

˙UV 

R01 = R10 =

−

−

(46.11)

V

2 V 2

2 U V

Hierbei ist ˙

X = ∂X/∂(c t). Nicht mit angeschrieben wurde R33 = R22 sin2 θ; al-

le weiteren Rμν sind null. Die Einsteinschen Feldgleichungen ergeben gekoppelte

Differenzialgleichungen für die unbekannten Funktionen U (r, t ) und V (r, t ). 

47 Gravitationskollaps. Supernova

Wir untersuchen den zentralen Kollaps von Materie unter ihrer eigenen Gravitation. 

Der Kollaps eines Sterns kann als Supernova beobachtet werden. 

Wir untersuchen den Kollaps unter sehr vereinfachenden Bedingungen:

1. Der Kollaps sei bezüglich eines Zentrums (des Sternmittelpunkts) isotrop. 

Damit sind nur radiale Geschwindigkeiten zugelassen; wir betrachten also

einen zentralen Kollaps. Wegen der sphärischen Symmetrie können wir die

Metrik (46.2) mit





gμν = diag 1, −U (r, t), −V (r, t), −V (r, t) sin2 θ

(47.1)

und den Gaußkoordinaten (xμ) = (c t, r, θ, φ) verwenden. 

2. Wir vernachlässigen den Druck der Materie, der dem Kollaps entgegenwirken

könnte, 

P = 0

(47.2)

Hierzu stellen wir uns eine  lose Anhäufung von Teilchen (Staubkörner, Steine)

vor, mit den Bahnen xi = const. und den Geschwindigkeiten

 





uμ = dxμ/dτ = (c, 0, 0, 0)

(47.3)

Die physikalische Bewegung dieser Teilchen ergibt sich allein aus der Zeit-

abhängigkeit der metrischen Koeffizienten U (r, t ) und V (r, t ). 

3. Die Massendichte des Sterns sei homogen, 

 (t) (r ≤ r0)

(r, t ) =

(47.4)

0

(r > r0)

Da die Koordinaten aller Teilchen während des Kollapses konstant sind, bleibt

eine anfangs homogene Dichte auch während des Kollapses homogen. 

Dieses Modell können wir auf ganz verschiedene Objekte anwenden:

• Kosmos mit den Galaxien als Teilchen

• Galaxie mit Sternen als Teilchen
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• Stern aus Teilchen

• Stern, für den der Gravitationsdruck gegen unendlich geht. 

Dabei sind jeweils nur zentrale Geschwindigkeiten zugelassen; damit kann etwa

die Expansion des heutigen Kosmos oder ein zentraler Sternkollaps beschrieben

werden. Ein Stern besteht im Allgemeinen nicht aus einer losen Anhäufung von

Teilchen; trotzdem können die Annahmen (47.2) – (47.3) sinnvoll sein: Mit P = 0

vernachlässigen wir den Druck im materiellen Energie-Impuls-Tensor (im Quell-

term der Feldgleichungen). Dies ist der innere Druck Pmat der Materie, zum Bei-

spiel Pmat =  kBT /m für ein heißes Plasma. Demgegenüber gibt (40.7) den durch

die Gravitation verursachten Druck Pgrav an. Für die in Teil VIII betrachteten Stern-

gleichgewichte gilt P = Pgrav = Pmat; daher konnten dort die Indizes letztlich weg-

gelassen werden. Wenn aber für R → (9/8) rS der Druck Pgrav divergiert (40.11), 

so führt dies zwangsläufig zu einem Nichtgleichgewichtszustand mit

Pgrav  Pmat

(47.5)

Dann ist die Näherung Pmat ≈ 0 im Quellterm der Feldgleichungen möglich. 

Wir beschreiben den Gravitationskollaps als Lösung der Feldgleichungen





Rμν = −8πG Tμν − T gμν

(47.6)

c4

2

Außerhalb des Sterns (r > r0) verschwindet die rechte Seite; in diesem Fall kön-

nen wir die Schwarzschildmetrik verwenden. Wir lösen hier (47.6) im Inneren des

Sterns, also im Bereich r ≤ r0. 

Aus (47.2) – (47.4) erhalten wir den Energie-Impuls-Tensor:





Tμν =  + P /c2 uμuν − P gμν = (t) c2 δ0 δ0

μ ν

(47.7)

Damit lautet der Quellterm der Feldgleichungen









Tμν − 1 gμν T

= 1 diag  c2, U c2, V  c2, V  c2 sin2 θ

(47.8)

2

2

Mit (46.8) – (46.11) werden die Feldgleichungen zu

Ü

¨V

˙U2

˙V 2

+

−

−

= −4πG 

(47.9)

2 U

V

4 U 2

2 V 2

c2

Ü

˙U2

˙U ˙V

V 

V 2

U V 

− +

−

+

−

−

= −4πG  U

(47.10)

2

4 U

2 V

V

2 V 2

2 U V

c2

¨V

˙U ˙V

V 

V U 

−1 −

−

+

−

= −4πG  V

(47.11)

2

4 U

2 U

4 U 2

c2

˙V 

˙

˙UV 

− V V  −

= 0

(47.12)

V

2 V 2

2 U V
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Die ersten drei Gleichungen enthalten Summen von Orts- und Zeitableitungen. Dies

legt einen Separationsansatz nahe:

U (r, t ) = R(t)2 f (r), 

V (r, t ) = S(t)2 g(r)

(47.13)

Der Separationsansatz schränkt die Lösungsvielfalt ein. Es genügt uns aber, wenn

wir  eine  Lösung finden, denn die physikalische Lösung ist aufgrund der Problem-

stellung eindeutig. Eventuelle andere Lösungen würden dann nur andere Koordina-

ten bedeuten. Mit (47.13) wird (47.12) zu

˙S

˙R

=

, 

also

S(t ) = const. · R(t)

(47.14)

S

R

Da die Funktionen f (r) und g(r) noch unbestimmt sind, können wir die Konstante

gleich 1 setzen. Die Form der Metrik (47.1) ist mit einer Skalierung der Radial-

koordinate (r → r = ϕ(r)) verträglich, so dass wir eine der beiden Funktionen, 

f (r) oder g(r), frei wählen können:

U (r, t ) = R(t)2 f (r) , 

V (r, t ) = R(t)2 r2

(47.15)

Wir setzen dies in die Feldgleichungen (47.10) und (47.11) ein:

f 

−

= ¨RR + 2 ˙R 2 − 4πG (t) R 2

(47.16)

r f 2

c2

− 1 + 1 − f 

= ¨RR + 2 ˙R 2 − 4πG (t) R 2

(47.17)

r2

r2f

2 r f 2

c2

Die linken Seiten hängen nur von r ab, die rechten dagegen nur von t . Jede Seite

muss daher gleich einer Separationskonstanten sein. Da die rechten Seiten gleich

sind, haben beide Gleichungen dieselbe Separationskonstante:

f 

−2k = − f  , 

−2k = − 1 + 1 −

(47.18)

r f 2

r2

r2f

2 r f 2

Die Elimination des (f /f 2)-Terms ergibt

f (r) =

1

(47.19)

1 − k r2

Dies löst beide Gleichungen in (47.18). Damit nimmt das Linienelement im Inneren

der Dichteverteilung (r ≤ r0) folgende Form an:







dr2

ds2 = c2dt2 − R(t)2

+ r2 dθ2 + sin2θ dφ2

(47.20)

1 − k r2

Da alle Abstände zwischen den Teilchen, die den Stern bilden, mit R = R(t) skalie-

ren, kann R auch als der zeitabhängige Radius des kollabierenden Sterns aufgefasst
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werden1. Wir vereinbaren, dass R die Dimension einer Länge hat; dann sind r und

k dimensionslos. 

Es steht uns frei, neben den Feldgleichungen auch noch die Energie-Impuls-

Erhaltung, 





μ

∂

μ

T μν ||ν = T μν|ν + Γ ν T λμ + Γ T λν =

1

√

|g| T μν + Γ T λν =

νλ

0

νλ

|g| ∂xν

νλ

(47.21)

zu verwenden, da sie durch die Feldgleichungen impliziert wird. Wir schreiben die-

se Gleichung für μ = 0 an. Da nur T 00 ungleich null ist (47.7) und da Γ 0 = 0, 

00

verschwindet der zweite Term auf der rechten Seite. Damit gilt

∂ 



|g| T 00 = 0

(47.22)

∂x0

Die Zeitabhängigkeit von g = det(gμν) folgt aus (47.20) zu |g| ∝ R(t)6. Zusam-

men mit T 00 = (t) c2 erhalten wir also  R3 = const. oder

M0 = 4π (t) R(t)3 = const. 

Massenerhaltung

(47.23)

3

Dieses Resultat kann als Massenerhaltung interpretiert werden. Mit (47.15) wird

die letzte Feldgleichung (47.9) zu

R ¨

R = − 4πG  R2

(47.24)

3 c2

Wir setzen dies und die Separationskonstanten k in (47.16) ein:

−2k = − 4πG  R2 + 2 ˙R 2 − 4πG  R 2

(47.25)

3 c2

c2

Mit (47.23) drücken wir  durch M0 aus und erhalten

˙

1

R 2 − 2GM0

= −k

Energiesatz

(47.26)

c2

R

In dieser Gleichung sind alle Terme dimensionslos; R und GM0/c2 haben die Di-

mension einer Länge, die Zeitableitung d/d(c t ) die einer inversen Länge. Eine

Multiplikation mit M0/2 ergibt





M

2

0

dR

GM 2

−

0 = const. 

(47.27)

2

dt

R

Der erste Term kann als kinetische Energie der Massenverteilung, der zweite als

potenzielle Energie interpretiert werden. Daher beschreibt (47.26) die Energie-

erhaltung. 

1In den Teilen IX und X bezeichnet das Symbol R immer den Skalierungsfaktor der Metrik und

nicht den Krümmungsskalar. 
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Wir haben nun folgendes erreicht: Die spezielle Wahl der mitbewegten Koor-

dinaten und die Annahme der Kugelsymmetrie führte zur Metrik (47.1). Mit Hilfe

der Feldgleichungen ergab sich hieraus (47.20). An dieser Stelle sind noch zwei

Funktionen offen, (t ) und R(t ). Für sie liefern die Feldgleichungen die Massen-

erhaltung (47.23) und die Energieerhaltung (47.26). Diese Gleichungen sind vom

Standpunkt einer nichtrelativistischen Theorie unmittelbar einleuchtend. Die Ergeb-

nisse unterscheiden sich aber von der Newtonschen Theorie, denn t ist die Zeit einer

mitbewegten Uhr und die Metrik ist nicht die eines flachen Raums. 

Wir diskutieren die Zeitabhängigkeit der Lösung von (47.26). Die Funktion R(t )

legt die Bewegung der Teilchen fest, denn deren Koordinatenwerte sind ja konstant. 

Zur Zeit t = 0 mögen alle Teilchen ruhen:

˙

R(0) = 0

(47.28)

Aus (47.26) folgt dann

1

k = 2GM0

(47.29)

c2

R(0)

und

˙

R(0) − R(t)

R 2 = k

(47.30)

R(t )

Die Lösung dieser Differenzialgleichung ist eine  Zykloide  mit der Parameterdarstel-

lung





R(0)

c t

=

√

ψ + sin ψ

(47.31)

2

k





R(0)

R

=

1 + cos ψ

(47.32)

2

Diese Zykloide ist in Abbildung 47.1 dargestellt. Der gewählten Anfangsbedingung

˙

R(0) = 0 entspricht eine zur Zeit t = 0 ruhende Ansammlung aus Teilchen. Die

Gravitationskräfte beschleunigen die Teilchen zum Zentrum hin. Aus dem Koordi-

natenwert r0 = const. des Sternrands und aus (47.20) folgt für den Inhalt F der

Sternoberfläche

F = 4π r 2 R(t)2

(47.33)

0

Bei ψ = π wird R = 0 und damit wird der Stern zu einer punktförmigen Singula-

rität. Diese Singularität wird nach der Zeit

. 

R(0) π

π R(0)

c2 R(0)

T = tψ =π =

√ =

(47.34)

2 c

k

2

c

2 GM0

erreicht (dieses Ergebnis wurde auf direkterem Weg bereits in Aufgabe 25.3 erzielt). 

Mathematisch lässt sich die Lösung wie in Abbildung 47.1 gezeigt fortsetzen. Im

nächsten Kapitel setzen wir die Diskussion des Kollapses fort. Dabei untersuchen

wir die Verbindung der Metrik (47.20) mit der Schwarzschildmetrik des Außen-

raums r > r0. 
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6R(t)

R(0) ·········································································································· -

T

t

Abbildung 47.1 Längenparameter R(t) der Metrik (47.20). Da alle Abstände zwischen

den Teilchen, die den Stern bilden, mit R(t) skalieren, kann R(t) als Radius des kollabie-

renden Sterns aufgefasst werden. Die physikalische Lösung endet in der Singularität R = 0

bei t = T . Die mathematische Lösung (47.31, 47.32) setzt sich periodisch fort. 

Supernova

Mit Nova bezeichnet man einen Stern, der seine Helligkeit innerhalb von einigen

Stunden auf das 102 bis 104-fache steigert; er erscheint dann als neuer (nova) Stern. 

Eine  Supernova  ist ein Stern, dessen Helligkeitssteigerung die einer gewöhnlichen

Nova um mehrere Größenordnungen übertrifft. Die Steigerung kann mehr als das

108-fache betragen. Beobachtete absolute Helligkeiten L > 109 L sind dann ver-

gleichbar mit denen der gesamten umgebenden Galaxie. So war die berühmte Su-

pernova im Jahr 1054 tagsüber mit bloßem Auge sichtbar. Die optische Intensitäts-

steigerung einer Supernova klingt innerhalb von Monaten wieder ab. Neben dem

Aufleuchten wird beobachtet, dass eine Gashülle explosionsartig (mit Geschwin-

digkeiten der Größe 104 km/s) nach außen abgestoßen wird. 

Phänomenologisch unterscheidet man Supernovae vom Typ I (mit einer opti-

schen Ausbruchsenergie von 10−5 . . . 10−4M c2 und einer abgestoßenen Masse

von 0.1 . . . 1 M) und vom Typ II (optische Ausbruchsenergie 10−6 . . . 10−5M c2, 

abgestoßene Masse 1 . . . 10 M). Die Einteilung in diese beiden Typen erfolgt an-

hand von Unterschieden im frühen Spektrum; Typ II enthält hier Wasserstofflinien, 

Typ I dagegen nicht. Die aufgezählten Eigenschaften sind mittlere Angaben, einzel-

ne Ereignisse können davon stark abweichen. 

Die spektakuläre Intensitätssteigerung verlangt nach einer entsprechend drama-

tischen Erklärung. Hierfür bietet sich der Kollaps eines Sterns an, bei dem Gra-

vitationsenergie von bis zu einigen 10% der kollabierenden Massen frei werden

kann (vergleiche (40.26)). Ein realistisches Supernovamodell muss dann beschrei-

ben, wie die beim Kollaps freiwerdende Gravitationsenergie zu einem (kleinen) Teil

in elektromagnetische Strahlung umgewandelt wird, die zur beobachteten Intensi-

tätssteigerung führt. Außerdem ist zu erklären, wie die den Prozess einleitende Im-

plosion (Kollaps) für einen Teil der Sternmasse zur beobachteten Explosion (Gas-

hülle) führt. 

Sterne mit wenigen Sonnenmassen enden meist als weiße Zwerge aus Kohlen-

stoff und Sauerstoff. Sterne mit mehr als einigen Sonnenmassen können dagegen
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alle Fusionszyklen bis zum stabilsten Element, dem Eisenisotop 56Fe, durchlaufen. 

Die ausgebrannten Sterne haben dann einen Eisenkern mit einer sehr hohen Dichte

(Größenordnung 4000 Tonnen/cm3) und sehr hohen Temperaturen (etwa 1010 K). 

Mögliche Prozesse, die den Kollaps eines solchen Sterns einleiten können, sind der

 inverse Betazerfall, die  Photodisintegration von Eisen  und die  Paarbildung. 

Durch Kontraktion des Sterns kann die Dichte soweit steigen, dass die Impulse

der Elektronen relativistisch werden. Dann führt die Reaktion

Inverser Betazerfall:

e− + p → n + νe

(47.35)

zum Zusammenbruch des Fermidrucks der Elektronen und damit zum Kollaps. 

Durch Kontraktion des Sterns kann die Temperatur soweit steigen, dass es im

hochenergetischen Teil der Planckverteilung einen relevanten Anteil von Photonen

gibt, deren Energie die Bindungsenergie von Eisen oder die zweifache Ruhmasse

des Elektrons übersteigt. Dann sind die Reaktionen

Photodisintegration:

γ + 56Fe → 13 4He + 4 n

(47.36)

Paarbildung:

γ → e+ + e−

(47.37)

möglich. Hierdurch kann der thermische Druck schlagartig zusammenbrechen, so

dass der Stern kollabiert. Nach Modellrechnungen sind folgenden Szenarien wahr-

scheinlich: Für Sterne im Massenbereich 8 – 13 M leitet der inverse Betazerfall

den Kollaps ein, im Massenbereich 13 –100 M ist es die Photodisintegration und

für Sterne mit mehr als 100 Sonnenmassen die Paarbildung. 

Der inverse Betazerfall spielt immer eine zentrale Rolle während des Kollap-

ses. In Abhängigkeit von der Masse können aber andere Prozess den Beginn des

Kollapses einleiten. 

In allen Szenarien bricht der Gegendruck (Fermidruck oder thermischer Druck)

zusammen, der dem Gravitationsdruck zunächst die Waage hält. Der damit einge-

leitete Gravitationskollaps des Eisenkerns ist eine dramatische Implosion, die sich

auf einer Zeitskala von einigen Millisekunden abspielt. 

Der Kollaps wird von einem explosionsartigen Ausstoß einer Materiewolke be-

gleitet: Zunächst kollabiert der Eisenkern zu einem kompakten, neutronensternar-

tigen Kern. Danach fallen die äußeren Schichten nahezu frei zum Zentrum. Am

Kern werden sie abrupt abgebremst und erzeugen dadurch eine Schockwelle, die

wieder nach außen läuft. Diese Schockwelle wird durch den extrem hohen Neu-

trinofluss der noch andauernden inversen Betazerfälle aufgeheizt. Dadurch kommt

es zu einem explosionsartigen Ausstoß von Materie und Energie, den wir als Su-

pernova beobachten. Im Zentrum der Supernova bleibt letztlich nur ein kleiner Teil

(bis etwa 10 Prozent) des ursprünglichen Sterns übrig. Sofern ein kompakter Kern

überlebt, könnte dies ein Neutronenstern (Pulsar) oder ein Schwarzes Loch sein. 

Die nach außen laufende Materiewolke beginnt sich abzukühlen. Dann kann

diese Materie Neutronen einfangen, die im Kern freigesetzt werden. Zusammen mit

nachfolgenden β-Zerfällen können hierdurch schwere Elemente auch jenseits von

Eisen entstehen. 
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Schließlich sei noch auf den Spezialfall einer Supernova vom Typ Ia hinge-

wiesen. In einem Stern mit nur einigen Sonnenmassen können die Fusionszyklen

bei Kohlenstoff enden. Wenn der entstehende Weiße Zwerg in einem Doppelstern-

system Masse von seinem Partner ansaugt, dann kann er sich der Chandrasekhar-

Grenzmasse annähern und instabil werden. Der Stern kontrahiert und zündet da-

durch doch noch das Kohlenstoffbrennen. In der entarteten Materie verbrennt der

Kohlenstoff explosionsartig. Die Supernova vom Typ Ia beginnt daher mit einer

Explosion (und nicht mit einen Kollaps). 

 Beobachtungen

Aus Beobachtungen von Supernovae in anderen Galaxien kann man ihre Häufigkeit

abschätzen; in unserer Galaxie erwartet man alle 10 bis 30 Jahre eine Supernova. 

Wir diskutieren nun einige beobachtbare Aspekte von Supernovae. 

Das Paradebeispiel ist die 1054 im Sternbild Taurus von chinesischen Astrono-

men registrierte Supernova. Der heute an dieser Stelle sichtbare Crab-Nebel wurde

von der ausgestoßenen Masse gebildet; der Nebel hat mittlerweile, nach nahezu

1000 Jahren, einen Durchmesser von etwa 7 bis 11 Lichtjahren. Im Zentrum beob-

achtet man einen Pulsar, also einen Neutronenstern. Der ursprüngliche Stern dürfte

eine Masse von etwa zehn Sonnenmassen gehabt haben. Für größere Ausgangsmas-

sen (M > 

∼ 40 M) könnte dagegen ein Schwarzes Loch im Zentrum übrig bleiben. 

Beim inversen β-Zerfalls verlassen die entstehenden Neutrinos ohne Verzöge-

rung den Kollapsbereich und stellen so ein signifikantes Signal des Gravitationskol-

laps dar; sie sollten etwa 102-mal mehr Energie abführen als die optische Strahlung. 

Solche Neutrinos (19 Ereignisse) wurden erstmalig am 23.2.1987 für eine Superno-

va in der Großen Magellanschen Wolke nachgewiesen. Diese Supernova in unserer

nächsten Nachbargalaxie (Abstand 55 kpc) war vom Typ II und erhielt den Namen

SN 1987A. 

Supernovae dürften auch die Ursache2 der  gamma-ray bursts 3 sein. Ungefähr

einmal pro Tag blitzt am Himmel eine punktförmige γ -Quelle auf, deren Inten-

sität vergleichbar oder größer ist als die aller anderen γ -Quellen zusammen. Im

sichtbaren Bereich des Universums kommt es etwa einmal pro Sekunde zu einer

Supernova. Damit führt nur ein kleiner Bruchteil aller Supernovae zu einem für

uns sichtbaren γ -ray burst; die Ausgangskonfiguration muss vermutlich eine große

Masse und eine hohe Rotation haben, und wir müssen im Strahlungskegel liegen. 

2J. H. Reeves et al.,  The signature of supernova ejecta in the X-ray afterglow of the γ  -ray burst 011211, Nature 416 (2002) 512, D. H. Hartmann,  Ausbruch nach Verschmelzen, Physik Journal 4(2005)16

3Für eine Einführung siehe http://imagine.gsfc.nasa.gov/docs/science/know_l1/bursts.html oder http://de.wikipedia.wiki.com/Gamma_ray_burst. Solche γ -ray bursts werden seit 1967 beobachtet. 
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Aufgaben

 47.1 Zykloidenlösung für Sternkollaps

Überprüfen Sie durch Einsetzen, dass die Zykloide









R(0)

R(0)

c t =

√

ψ + sin ψ

und

R =

1 + cos ψ
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2
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löst. 











48 Schwarzes Loch. Quasar

Ein zentraler Gravitationskollaps führt zu einem Schwarzen Loch. Wir untersuchen

die Beobachtbarkeit dieses Kollapses und des resultierenden Schwarzen Lochs. Wir

diskutieren die Frage der Existenz Schwarzer Löcher1. Schwarze Löcher im Zen-

trum von Galaxien sind eine plausible Erklärung für die Quasare. 

Einführung

Unter einem Schwarzen Loch verstehen wir eine Materieansammlung der Masse M

in einem Bereich r ≤ rS = 2GM/c2. Die Bezeichnung  schwarz  wird gewählt, weil

von der Oberfläche des Sterns keine Strahlung nach außen dringt. Der außenstehen-

de Beobachter erhält keinerlei Information aus dem Bereich r ≤ rS; insofern stellt

dieser Bereich ein  Loch  des Raums dar. 

Die Idee, dass ein Stern so massiv und kompakt sein kann, dass kein Licht von

der Oberfläche nach außen dringt, wurde bereits von Laplace vor etwa 200 Jahren

diskutiert: Die Fluchtgeschwindigkeit vfl eines Teilchens der Masse m ergibt sich

aus der Bedingung Ekin + Epot = mv 2/2 − GMm/R = 0 zu

fl

R→r

v 2 = 2GM

S

−→ c2

(48.1)

fl

R

Wie Newton hatte Laplace die Vorstellung, dass Licht aus einzelnen Teilchen be-

steht. Die Masse dieser Teilchen war unbekannt; sie geht aber nicht in (48.1) ein. 

Aus der bekannten Lichtgeschwindigkeit c konnte Laplace so die richtige Bedin-

gung R = 2GM/c2 = rS ableiten. 

Wir schätzen ab, welche kritische Dichte kr eine Massenansammlung haben

muss, damit sie zu einem Schwarzen Loch wird. Aus R ≈ rS, rS = 2GM/c2 und

M ≈ (4π/3) R3 folgt durch Elimination von R und rS:





kg

M

2



kr ≈

3 c6

≈ 2 · 1019

(48.2)

32 πG3M2

m3

M

Die dichtesten Objekte, die wir bisher betrachtet haben, waren die Neutronensterne. 

Sie haben eine Masse von M ∼ M und eine Dichte von  ≈ 6·1018 kg/m3, (43.9). 

Nach (48.2) können auch ganz gewöhnliche Dichten zu einem Schwarzen Loch

führen, wenn nur die Massenansammlung hinreichend groß ist; zum Beispiel erhält

1Für einen Übersichtsartikel sei auf B. Carr,  Black Holes in Cosmology and Astrophysics, Seite 143 –202 in [8] verwiesen. 
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man kr ∼ 2 g/cm3 für M ∼ 108M. Solche Massenansammlungen sind nicht

ungewöhnlich; im sichtbaren Kosmos finden wir etwa 1011 Galaxien jeweils mit

einer Masse der Größe M ∼ 1010M. Man könnte zum Beispiel aus 1010 Sternen

mit M = M ein Sterncluster mit einem mittleren Sternabstand von 20R bilden. 

Dies wäre dann ein Objekt mit R ≈ rS = 1.5 · 1010 km. Die Idee eines solchen

 relativistischen Sternclusters  wurde 1965 von Zel’dovich und Podurets konzipiert. 

Kollaps

Die phänomenologische Beschreibung einer Supernova in Kapitel 47 deutet an, dass

eine realistische Beschreibung eines Gravitationskollapses schwierig ist. Wir unter-

suchen hier den Kollaps zu einem Schwarzen Loch unter den sehr vereinfachenden

Annahmen (47.1) – (47.4): Der Stern sei isotrop und homogen, und der innere Druck

sei vernachlässigbar. 

Die in Kapitel 47 verwendete Metrik bezog sich auf den Bereich der homoge-

nen Dichte (47.4), also auf das Sterninnere. Nach dem Birkhoff-Theorem können

wir außerhalb des kollabierenden Sterns die Schwarzschildmetrik (SM) verwenden. 

Zur Beschreibung des gesamten Raums verwenden wir beide Metriken und verbin-

den sie beim Sternradius miteinander. Die Radial- und Zeitkoordinaten haben je-

weils verschiedene Bedeutungen und müssen daher unterschiedlich gekennzeichnet

werden. Für die Gaußkoordinaten verwenden wir τ und r, 

 dr2





ds2 = c2dτ 2 −R(τ )2

+ r2 dθ2 + sin2 θ dφ2

(r ≤ r ) (48.3)

1 − k r2

0

Die SM-Koordinaten bezeichnen wir mit t und r:







−1





ds2 = 1 − rS c2dt2− 1 − rS

dr2−r2 dθ2+sin2 θ dφ2

(r ≥ r0) (48.4)

r

r

Der Sternradius ist durch r und r

0

0 gegeben. Für (48.3) wurde eine homogene Stern-

dichte vorausgesetzt, also

 (τ)

r < r

(r, τ ) =

0

(48.5)

0

r > r0

Aus (48.3) folgt für die Oberfläche des Sterns A = 4πr 2R 2, und aus (48.4) folgt

0

A = 4πr 2. Der (im Prinzip messbare) Flächeninhalt ist unabhängig von der ver-

0

wendeten Metrik. Daher gilt

r0(t) = r R(τ )

(48.6)

0

Der Sternrand wird durch frei fallende Teilchen mit r = const. realisiert. In (48.3)

0

ist die Koordinatentransformation r → const. · r zulässig; dies führt lediglich

zu R → R/const. Daher können wir willkürlich r = 1 setzen; dann ist R(τ )

0
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gleich dem Sternradius r0(t). Zu Beginn des Kollapses sei der Sternradius gleich

drei Schwarzschildradien und die Sternmaterie ruhe:

r0(0) = r R(0) = 3 r

= 1 , 

˙R(0) = 0

(48.7)

0

S , 

r0

Die Konstanten k in (48.3) und rS in (48.4) sind durch die Anfangsbedingungen und

durch die Masse des Sterns festgelegt:

(47.29)

1

rS = 2GM , 

k

=

2 GM0

(48.8)

c2

c2

R(0)

Dabei ist M die gravitierende Masse, die das asymptotische Gravitationsfeld be-

stimmt. Nach (47.23) ist M0 = 4πR3/3. Da R der Radius des Sterns ist, liegt es

nahe, M0 mit M zu identifizieren:

M0 = M

(48.9)

Tatsächlich könnte es hier einen abweichenden Faktor der Größe 1 geben, und zwar

wegen der nichteuklidischen Metrik und wegen des Massendefekts (Kapitel 40). 

Eine solche Abweichung wäre ohne wesentlichen Einfluss auf die weiteren Ergeb-

nisse. Wir verzichten daher auf eine nähere Begründung von (48.9). 

Aus (48.8) und (48.9) folgt k = rS/R(0). Nach (48.7) gilt R(0) > rS, also k < 1. 

Damit wird der Koeffizient 1/(1 − kr2) von dr2 in (48.3) nirgends singulär, denn

zusammen mit r ≤ r = 1 gilt

0

rS

k r 2 ≤ k r2 = k =

< 1

(48.10)

0

R(0)

Die Lösung für R(τ ) wurde in (47.31, 47.32) und Abbildung 47.1 angegeben. Der

Sternradius R(τ ) nimmt monoton ab. Die Singularität R = 0 wird nach der Zeit

. 



3/2

(47.34) π R(0)

c2 R(0)

π R(0)

rS

rS

T

=

=

= 8.16

(48.11)

2

c

2 GM0

2

rS

c

c

erreicht; der numerische Wert gilt für R(0) = 3 rS. Die Zeit T ist auch die Eigenzeit

eines Teilchens auf dem Sternrand und somit die Zeit eines zusammen mit dem

Teilchen frei fallenden Beobachters. Für r ∼ rS ist die Kollapsgeschwindigkeit mit

der Lichtgeschwindigkeit vergleichbar. Die Zeitskala des Kollapses ist daher

rS

M

Zeitskala des Kollapses:

=

10−5 s

(48.12)

c

M

Der beobachtende Physiker wird den Kollaps lieber aus größerer Entfernung be-

trachten, also etwa mit einer Uhr, die die SM-Zeit t anzeigt (Eigenzeit einer im

Unendlichen ruhenden Uhr). Für r ≥ r0 gilt die SM (48.4). Der Sternrand r0(t) ist

zugleich die Bahn eines frei fallenden Teilchens. Ein solches Teilchen fällt in der
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6 Sternradius

r0(t) = r R(τ )

0

rS
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Abbildung 48.1 Kollaps einer anfangs ruhenden, homogenen Ansammlung aus Teilchen. 

Die Zeitabhängigkeit des Sternradius ist einmal angegeben für die Zeit t einer in großem

Abstand ruhenden Uhr (SM-Zeit), und zum anderen für die Zeit τ einer auf dem Sternrand

mitbewegten Uhr. Für den mitbewegten Beobachter endet der Kollaps nach der Zeit T in ei-

ner Singularität. Für den außenstehenden Beobachter schrumpft der Stern auf der Zeitskala

rS/c auf den Schwarzschildradius und erlischt dabei. 

endlichen Eigenzeit τ1 , (45.7), von r0(0) bis rS. Nach (45.10) ist die zugehörige

SM-Zeit t1 unendlich. Damit wird (48.6) für τ = τ1 zu

r0(∞) = r R(τ

0

1) = rS

(48.13)

Wir untersuchen etwas genauer, wie sich der Sternrand r0(t) dem Wert rS annähert. 

Aus (45.10) lesen wir den Ausdruck für dr/dt ab und wenden dies auf ein Teilchen

auf dem Sternrand an:



dr





0

c

c

= −

2 (C + GM/r0) (1 − rS/r0) r0 → rS

∼

−

r0 − rS

(48.14)

dt

F

rS

Der im letzten Schritt vernachlässigte numerische Faktor ist von der Ordnung 1. 

Wir integrieren (48.14) zu

c t

ln (r0 − rS) ∼ −

+ const. 

(48.15)

rS

und erhalten

r0 ∼ 1 + b exp (−ct/rS)

(r0 ∼ rS)

(48.16)

rS

Dabei ist b eine Integrationskonstante; für eine genauere Rechnung sei auf Aufgabe

25.3 verwiesen. Von außen gesehen nähert sich der Sternradius r0 also exponentiell

langsam dem Schwarzschildradius an, sobald r0 ∼ rS. Der davorliegende Teil des

Kollapses von einigen rS bis zu r ∼ rS erfolgt dagegen auf der Zeitskala t ∼ rS/c. 
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Die hier gefundenen Resultate für den Sternkollaps sind in Abbildung 48.1 für

einen Anfangsradius r0(0) = R(0) = 3 rS dargestellt. 

Für r0 → rS geht die Rotverschiebung für Licht vom Sternrand gegen unend-

lich. Aus (12.9) und (48.4) erhalten wir





r0 → r

c t

Rotverschiebung

z =

1



− 1

S

∼

exp

(48.17)

1 − r

2 r

beim Kollaps

S/r0

S

Die vom Sternrand ausgesandten Photonen verlieren also immer mehr Energie im

Gravitationsfeld. Zugleich werden sie in immer größeren Zeitabständen empfangen, 

denn den Abständen dτ entsprechen die SM-Zeitabstände

 

F dτ

r0 → r

c t

dt =

S

∼

dτ exp

(48.18)

c (1 − rS/r0)

rS

Wir diskutieren noch, wie Photonen auf das Schwarze Loch fallen. Aus (25.24) –

(25.27) folgt ˙r = dr/dλ = const. und dr/dt = const.·(c/F )(1−rS/r) und schließ-

lich wieder (48.16) (siehe auch Aufgabe 25.3). Von außen beobachtet nähern sich

Photonen also ebenso wie materielle Teilchen dem Schwarzschildradius nur asym-

ptotisch. Eine Energiebilanz für Strahlung muss von der Energiedichte ausgehen. 

Da die physikalischen Weglängen ds = dr/(1 − rS/r)1/2 in r-Richtung ebenso di-

vergieren wie die Frequenz, bleibt die Energiedichte eines Photonenstrahls endlich, 

auch wenn die Energie eines einzelnen Photons divergiert (für r → rS). 

Insgesamt stellt sich der Kollaps für den außenstehenden Beobachter so dar: Die

Kontraktion der Anfangskonfiguration mit r0  rS erfolgt zunächst nichtrelativis-

tisch langsam mit einer Rotverschiebung z  1. Sobald dann r0 einige rS erreicht, 

führt die Beschleunigung im Gravitationsfeld zu relativistischen Geschwindigkei-

ten. Auf der kurzen Zeitskala rS/c erreicht der Sternradius r0 Werte nahe bei rS und

der Stern erlischt. Trotz der exponentiell langsamen Annäherung des Sternradius

an rS, erscheint der Kollaps als ein plötzliches Ereignis (etwa mit einer Zeitdauer

T ∼ 10−4 s für einen Stern mit der Masse M ∼ M). 

Diese Beschreibung eines Sternkollapses wurde 1939 von Oppenheimer und

Snyder gegeben. Im Abstract ihrer Arbeit2 heißt es: „When all the thermonuclear

sources of energy are exhausted a sufficiently heavy star will collapse. Unless fis-

sion due to rotation, the radiation of mass, or the blowing off of mass by radiation, 

reduce the star’s mass to the order of that of the sun, this contraction will continue

indefinitely . . . the radius of the star approaches asymptotically its gravitational ra-

dius; light from the star is progressively reddened . . . the total time of collapse for

an observer co-moving with the stellar matter is finite . . . an external observer sees

the star asymptotically shrinking to its gravitational radius.“

2J. R. Oppenheimer und H. Snyder,  On Continued Gravitational Contraction, Phys. Rev. 56

(1939) 455
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Eigenschaften des Schwarzen Lochs

 Beobachtbarkeit

Die durch (48.17) begründete Unbeobachtbarkeit bedeutet nicht, dass das so ent-

standene Schwarze Loch von der Bildfläche verschwindet. Vielmehr gilt ja im Be-

reich r ≥ rS unabhängig von der Zeitabhängigkeit des Kollapses die Schwarz-

schildmetrik, das Schwarze Loch tritt also weiterhin durch sein Gravitationsfeld in

Erscheinung. Außerdem können sich beobachtbare Effekte ergeben, wenn Materie

auf das Schwarze Loch einfällt. 

Das Schwarze Loch ist von der geschlossenen Oberfläche r = rS umgeben, die

einen  Ereignishorizont  darstellt. Der äußere Beobachter sieht nur Ereignisse dies-

seits (r > rS) dieses Horizonts. Für ihn ist das Gebiet r ≤ rS ausgespart; denn bei

Annäherung an rS von außen geht die Rotverschiebung gegen unendlich. Die Flä-

che des Ereignishorizonts misst der Beobachter mit 4πr 2, über den Durchmesser

S

oder den Inhalt des ausgesparten Raumgebiets kann er keine Aussagen machen. Die

Singularität bei r = 0 ist für den außenstehenden Beobachter prinzipiell unbeob-

achtbar; insofern ist diese Singularität eine eher akademische Angelegenheit. 

 Hawking-Effekt

Tatsächlich gibt auch ein isoliertes Schwarzes Loch aufgrund des  Hawking-Effekts 3

Strahlung ab. In dem starken Gravitationsfeld (kurz außerhalb des Schwarzschild-

radius) können virtuelle Teilchen-Loch-Paare dadurch reell werden, dass ein Teil-

chen in das Schwarze Loch fällt und das zugehörige Antiteilchen abgestrahlt wird. 

Da das ausgehende Antiteilchen Energie wegtransportiert, muss das SL gleichzeitig

Energie (also Masse) verlieren. 

Weitergehende Betrachtungen zeigen, dass die vom SL aufgrund dieses Effekts

abgegebenen Teilchen sich wie die Strahlung eines Schwarzen Körpers verhalten, 

also wie die Strahlung eines Körpers mit einer Temperatur T . Das Schwarze Loch

emittiert also auch Photonen und Neutrinos, deren Energien einer Planckschen Ver-

teilung mit dieser Temperatur folgen4. Aufgrund dieses Hawking-Effekts verliert

ein isoliertes Schwarzes Loch kontinuierlich Masse. 

Für diese Temperatur eines SL der Masse M erhält man

kB T =

¯hc3

(48.19)

8 π GM

Dies bedeutet T ≈ (M/M) 10−7 K. Die Strahlungsleistung P (Energie pro Zeit)

3S. W. Hawking,  Black hole explosions? , Nature 248 (1974) 30

4In einer alternativen Betrachtung geht man von einem Beobachter aus, der kurz außerhalb des

Schwarzschildradius ruht. Um seine Position zu halten, muss dieser Beobachter fortwährend be-

schleunigt sein. Ein Beobachter, der sich beschleunigt im Vakuum bewegt, beobachtet eine thermische Strahlung. Für den außenstehenden Beobachter wird diese Strahlung vom SL abgegeben. 
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eines Körpers mit der Temperatur T folgt aus dem Stefan-Boltzmann-Gesetz

dM(t )

P (t ) = σ T (t)4F (t) = −

c2

(48.20)

dt

Dabei ist σ = π2 k 4/(60

ist

B

¯h3c2) die Stefan-Boltzmann-Konstant und F = 4π r 2S

die abstrahlende Fläche. Durch die Abstrahlung nimmt die Masse M(t ) im Laufe

der Zeit t ab, und die zugehörige Temperatur T (t ) wächst; für M → 0 gilt T → ∞. 

 τ

Aus

dt P (t ) = M(0) c2 erhält man die Lebensdauer τ des SL zu

0





M

3

τ = 5120 π G2M3 ≈ 10−16

s

(48.21)

¯hc4

1 kg

Hier ist M = M(0) die anfängliche Masse des SL. Ein „kleines“ SL von 1 Gramm

oder 1 Kilogramm würde nahezu augenblicklich zerstrahlen. Da dabei die Energie

Mc2 freigesetzt wird, ist das Ende eines solchen SL ein explosives Ereignis. 

Für ein SL mit M ≈ M ergibt sich τ ∼ 1067 Jahre. In diesem Fall ist die Ab-

strahlung ein völlig zu vernachlässigender Effekt, auch auf der Skala des Weltalters

(t0 ≈ 1010 Jahre). Praktisch werden derartige SL eher an Masse zulegen, indem sie

Materie aus der Umgebung ansaugen. 

Eine Lebensdauer τ ∼ t0 von der Größe des Weltalters erhält man für ein

Schwarzes Loch der Masse M ∼ 1012 kg und der Größe von rS = 2GM/c2 ∼

10−15 m. Solche kleinen Schwarzen Löcher könnten beim Urknall (Kapitel 55) ent-

standen sein, und ihr explosives Ende könnte dann heute beobachtet werden. 

 Energieproduktion

Schickt man Materie in das Schwarze Loch, so nähert sie sich von außen gesehen

asymptotisch dem Schwarzschildradius. Wir schätzen die Größe der dabei frei wer-

denden Energie ab:

|Gravitationsenergie|

GM m/r

≈

S

= 0.5

(48.22)

Ruhenergie

mc2

Dies ist nur eine grobe Abschätzung, weil wir die Newtonsche Gravitationsenergie

m |Φ| = GM m/rS verwendet haben. Die nur asymptotische Annäherung an rS

spielt hierbei keine Rolle, weil die Gravitationsenergie bei rS stetig ist. 

Beim Fall ins Schwarze Loch wird die Gravitationsenergie zunächst als kineti-

sche Energie frei. Nach (48.22) erreicht diese kinetischen Energie eine Größenord-

nung von 50 % der Ruhenergie. Diese kinetische Energie wird im Allgemeinen teil-

weise in Strahlung umgewandelt, die dann nach außen sichtbar wird. Realistische

Modellrechnungen ergeben Umwandlungsraten von bis zu 10 % der Ruhmasse; die-

se Raten liegen weit über derjenigen der Kernfusion (< 0.5 %). 

Das Hereinfallen geschieht auf der Zeitskala rS/c. Danach ist die Materie (Strah-

lung) von der Bildfläche verschwunden; das heißt, sie ist im Bereich r > rS prak-

tisch nicht mehr nachweisbar. Man kann daher auch sagen, die Materie (Strahlung)

wird vom Schwarzen Loch verschluckt (auch wenn sie sich, von außen beobachtet, 

dem Schwarzschildradius nur asymptotisch nähert). 
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 Raumschiff fällt in Schwarzes Loch

Wir betrachten ein Raumschiff, das zentral auf ein Schwarzes Loch zufällt. (Der

zentrale Fall bedeutet, dass der Drehimpuls null ist. Bei Drehimpuls ungleich null

sind sowohl eine hyperbelartige Bahn wie auch ein Fall ins Zentrum möglich, Ka-

pitel 25). Wir wollen die Gefahren für die Astronauten während der Passage von

r = rS untersuchen. 

Im Schwerpunkt des Raumschiffs heben sich Gravitations- und Trägheitskräfte

gerade auf. Es gibt aber Restkräfte, denen ein Astronaut aufgrund seiner endlichen

Größe ausgesetzt ist: Die Mitte des Astronauten falle mit dem Schwerpunkt des

Raumschiffs zusammen; hier wirkt keine resultierende Kraft. Die Änderung der

Gravitationsbeschleunigung a ∼ GM/r2 auf der Länge Δ ≈ 1 m des sitzenden

Astronauten ist

rS

Δa ≈ 2GM Δ = c2 Δ

(48.23)

r3

r3

Damit erhalten wir bei r = rS folgende Restbeschleunigung:



c2Δ

M 2

 m

1010 m/s2

(M = M)

Δa ≈

≈ 1010

=

(48.24)

r 2

M2 s2

S

10−10 m/s2 (M = 1010M)

Dabei würde Δa = 10 m/s2 bedeuten, dass Kopf und Füße des Astronauten mit ei-

ner seinem Gewicht (auf der Erde) entsprechenden Kraft auseinandergezogen wer-

den; dies wäre eine merkliche, aber erträgliche Belastung. Für M ≈ M sind die

Zerreißkräfte Δa ≈ 1010 m/s2 bei r = rS tödlich (sie sind bereits in größerer Ent-

fernung fatal). Bei einem supermassiven Schwarzen Loch mit M = 1010 M (etwa

einem relativistischen Sterncluster) kann der Astronaut die Stelle r = rS dagegen

unbeschadet passieren; allerdings ist auch dies eine Reise ohne Wiederkehr. 

Die Länge Δ, auf der wir die Restkräfte vernachlässigen können, bestimmt die

Größe des Lokalen IS. Bei einem supermassiven Schwarzen Loch können wir davon

ausgehen, dass das gesamte Raumschiff ein solches Lokales IS darstellt. Bei einem

Schwarzen Loch mit M ≈ M wäre die Ausdehnung des Lokalen IS dagegen

viel kleiner. Formal ist die Ausdehnung des Lokalen IS der Bereich, in dem eine

Entwicklung der Form (14.3) eine brauchbare Näherung ist. 

Nehmen wir an, das Raumschiff falle auf ein supermassives Schwarzes Loch

zu und sei daher ein Lokales IS. Dann laufen im Raumschiff alle Vorgänge so ab, 

wie ohne Gravitation. Insbesondere ist die Fläche r = rS (sie verlaufe quer durch

das Raumschiff) für physikalische Vorgänge im Raumschiff in keiner Weise aus-

gezeichnet; alle Vorgänge laufen gemäß den Gesetzen der Speziellen Relativitäts-

theorie ab. Allerdings hat ein im Augenblick der Durchquerung abgesandtes Signal

zur Erde nur dann ein theoretische Chance, wenn es im hinteren Teil (r > rS) des

Raumschiffs abgesandt wird (die praktische Chance ist auch hier wegen der großen

Rotverschiebung gering). Die Auszeichnung von rS besteht nur für den Kontakt

(Austausch von Information) mit einem äußeren Beobachter. 
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 No-Hair-Theorem

Unsere konkreten Rechnungen bezogen sich auf den Kollaps eines  sphärischen

Sterns. Nach dem Kollaps ist das Feld im zugänglichen Außenraum allein durch

den einen Parameter M (Masse des Schwarzen Lochs) bestimmt; dies gilt auch, 

wenn die ursprüngliche radiale Dichteverteilung nicht homogen ist. Alle anderen

Informationen (zum Beispiel über die materielle Zusammensetzung) sind verloren-

gegangen. 1965 äußerte Wheeler die Vermutung, dass Schwarze Löcher generell al-

lein durch die Erhaltungsgrößen Masse M, Drehimpuls L und Ladung Q bestimmt

sind; dieses sogenannte  no-hair-Theorem  wurde in den darauffolgenden Jahren für

die verschiedenen Fälle bewiesen. Es bedeutet, dass alle möglichen Strukturen (In-

homogenitäten, Multipolmomente oder eben „Haare“) durch den Kollaps gewis-

sermaßen eingeebnet werden; konkret werden die höheren Multipolmomente der

Massenverteilung durch Gravitationsstrahlung eliminiert. Der entstehende Zustand

ist dann bis auf die Größen M, L und Q von der Vorgeschichte des Sterns völlig

unabhängig. Die Größen M, L und Q bestimmen die Metrik im Außenraum. 

 Kerr-Metrik

Die Schwarzschildmetrik gilt für M = 0, L = 0 und Q = 0. Für L = 0 ist die

axialsymmetrische  Kerr-Metrik (1963) Lösung der Feldgleichungen, die wir hier

ohne Ableitung angeben, 









d 2

2

ρ2





2

ds2 =

c dt −b sin2 θ dφ

−

dr2 −ρ2 dθ2 − sin2 θ

r2 +b2 dφ −b c dt

ρ2

d 2

ρ2

(48.25)

mit d 2 = r2 − r rS + b2, ρ2 = r2 + b2 cos2 θ und b = L/Mc. Für L → 0 (also

b → 0) reduziert sich die Kerr-Metrik auf die SM. 

Für nicht zu großes L liefert die Kerr-Metrik ebenso wie die SM eine geschlos-

sene Fläche als Ereignishorizont des Schwarzen Lochs. Dieser Horizont schirmt die

nach den Feldgleichungen unvermeidliche Singularität (Singularitätstheorem von

Penrose und Hawking 1965) nach außen ab. Insofern ist die Singularität akademisch

und harmlos. Es gibt jedoch auch Lösungen mit einer nichtabgeschirmten (nackten)

Singularität, deren Konsequenzen und Bewertung problematisch sind. Hierfür wur-

de ein „kosmischer Zensor“ postuliert (Penrose 1969), der solche nackten Singulari-

täten verbietet. Möglicherweise führen tatsächlich auftretende Anfangsbedingungen

für einen Gravitationskollaps nur zu abgeschirmten Singularitäten. 

Gibt es Schwarze Löcher? 

Die Frage „Gibt es Schwarze Löcher?“ kann zweierlei bedeuten. Einmal: Endet der

Stern, wie in der ART berechnet, in einer punktförmigen Singularität? Schon we-

gen der prinzipiellen Begrenzung durch die Plancksche Länge (22.31) wird man mit

„nein“ antworten. Vor allem aber ist die Frage weitgehend akademisch wegen der
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diskutierten Unbeobachtbarkeit der Region innerhalb des Ereignishorizonts. Zum

anderen: Gibt es so kompakte Gebilde, dass kein Licht von ihrer Oberfläche nach

außen dringt? Die Antwort ist „vermutlich ja“. Im Folgenden betrachten wir die

gestellte Frage unter diesem Gesichtspunkt. Hierzu diskutieren wir zunächst theo-

retische Überlegungen und dann empirische Hinweise. 

Die theoretischen Überlegungen beruhen auf den möglichen Konfigurationen, 

die zu einem Schwarzen Loch führen können. Die Existenz von Sternen mit R ∼

3 rS ist empirisch gut belegt (Pulsare), und wegen der Divergenz des Gravitations-

drucks für R → 9 rS/8 gibt es keinen Mechanismus, der für massereichere Sterne

einen Kollaps verhindern könnte. Es wird angenommen, dass beim Gravitationskol-

laps eines Sterns mit M > 

∼ 40M ein Schwarzes Loch zurückbleibt. 

Außerdem kann nach (48.2) eine hinreichend große Massenansammlung bei

ganz gewöhnlichen Dichten einen Radius R ∼ rS haben. Für solche relativistischen

Sterncluster ist kein unvorhergesehener Effekt vorstellbar (wie vielleicht für Ster-

ne mit extremer Dichte), der den Kollaps zu R ≤ rS doch noch aufhalten könnte. 

Solche Objekte würden zu supermassiven Schwarzen Löchern führen. Der gleiche

Endzustand könnte auch durch fortgesetzten Materieeinfang eines gewöhnlichen

Schwarzen Lochs entstehen. 

Eine andere Konfiguration, die zu einem Schwarzen Loch führen kann, ist ein

Doppelpulsar. Aufgrund der Gravitationsabstrahlung fallen die beiden Neutronen-

sterne nach endlicher Spiralzeit (Kapitel 36) ineinander. Die gemeinsame Mas-

se liegt dann im Allgemeinen über der Massenobergrenze für einen Neutronen-

stern. Die Ausdehnung der entstehenden Konfiguration liegt bei wenigen Schwarz-

schildradien, so dass ein Kollaps zu einer Konfiguration mit r ≤ rS wahrscheinlich

erscheint. 

Die Beobachtung eines Schwarzen Lochs ist im Prinzip ganz einfach: Man

misst ein kugelsymmetrisches Gravitationsfeld mit verschwindender Massendich-

te im Bereich r > rS. Praktisch ist ein solcher Nachweis aber nur indirekt möglich. 

Ein guter Kandidat für ein Schwarzes Loch ist das Doppelsternsystem  Cygnus

 X-1, das aus einem sichtbaren Stern (M ≈ 8M) und einem unsichtbaren Partner

(M ∼ 4M) besteht. Der unsichtbare Partner macht sich durch die Dopplerver-

schiebung des Lichts vom sichtbaren Stern bemerkbar, die durch die Bewegung um

den gemeinsamen Schwerpunkt hervorgerufen wird. Die von Cygnus X-1 ausge-

hende Röntgenstrahlung lässt sich sehr gut in einem Modell deuten, in dem ein

Schwarzes Loch (der nichtsichtbare Stern) kontinuierlich Materie von dem sicht-

baren Partner abzieht. Beim Sturz in das Schwarze Loch emittiert diese Materie

Röntgenstrahlung. 

Mittlerweile gibt es Dutzende von Kandidaten für stellare SL, die alle Partner

in Doppelsternsystemen sind. Einen Überblick über diese Kandidaten und die Me-

thoden zur Bestimmung ihrer Masse präsentiert J. Ziółkowski in  Masses of Black

 Holes in the Universe, arXiv.0808.0435v1[astro-ph]. In diesem Artikel wird auch

auf die supermassiven SL (mit Massen bei 1010M) eingegangen, zu denen wir im

folgenden Abschnitt kommen. 
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Quasar

Große Schwarze Löcher im Zentrum von Galaxien sind ein plausibles Modell für

die sogenannten  Quasare (quasistellare Radioquellen). 

Im Laufe der sechziger Jahre konnten bestimmten, schon lange bekannten Ra-

dioquellen erstmals sichtbare Objekte zugeordnet werden5. Das Licht dieser Ob-

jekte weist häufig große Rotverschiebungen auf (heute werden Quasare mit bis

zu z ≈ 6 beobachtet). Diese Rotverschiebung lässt auf eine große Entfernung

(Kapitel 51) und eine entsprechend sehr große absolute Luminosität dieser Qua-

sare schließen. Diese absolute Strahlungsleistung erfordert einen Mechanismus, 

der bis zu einigen Sonnenmassen pro Jahr mit 10% Effizienz in Energie umwan-

delt. Daher kommen nur sehr große und zugleich kompakte Massenansammlungen

(∼ 106 . . . 1010 M) für einen Quasar in Frage. Gewöhnliche Galaxien (etwa mit

1010 M) haben weniger als 1% der erforderlichen Strahlungsleistung. Außerdem

zeigt die Strahlung von Quasaren zeitliche Variationen mit Δt ∼ 1 d; dies lässt

nur Objekte der Größe kleiner als ein Lichttag zu. (Zum Vergleich: Der Durchmes-

ser der Milchstraße beträgt 105 Lichtjahre). Optisch sind diese Objekte daher auch

nicht aufzulösen, sie erscheinen punktförmig wie Sterne, also quasistellar. 

Wegen der sehr hohen Energieumwandlung stellen große Schwarze Löcher mit

Massen M ∼ 106 . . . 1010 M im Zentrum von Galaxien ein plausibles Modell für

Quasare dar. Das Schwarze Loch könnte Materie aus seiner Umgebung ansaugen, 

die sich in einer Akkretionsscheibe ansammelt und mehr oder weniger kontinuier-

lich zum Zentrum hin einfällt. Bei Annäherung an den Schwarzschildradius wird die

Materie stark beschleunigt. Die beschleunigte und ionisierte Materie gibt elektro-

magnetische Strahlung ab. Die Energieproduktion des Quasars könnte so durch

fortlaufenden Materieeinfang aus der umgebenden Galaxie aufrecht erhalten wer-

den. Die freiwerdende Energie wurde in (48.22) abgeschätzt; die danach möglichen

Energieumwandlungsraten liegen weit über denen der Kernfusion. 

 Schwarzes Loch im Zentrum der Milchstraße

Quasare könnten ein Phänomen sein, das häufig in jungen Galaxien auftritt. Ein sol-

ches Schwarzes Loch saugt Materie aus der Umgebung auf und wird so zum Quasar. 

Ältere Galaxien enthalten dann möglicherweise im Zentrum ein oder mehrere große

Schwarze Löcher in einer relativ leeren Umgebung enthalten. 

Die Massenverteilung in Galaxien kann aus den Geschwindigkeiten der Sterne

bestimmt werden: Dazu nehmen wir der Einfachheit halber Kreisbahnen (Radius

d/2, Geschwindigkeit v) für die Bewegung der Sterne in der Galaxie an. Aus dem

Gleichgewicht von Gravitations- und Zentrifugalkraft folgt GM = v2 d/2, wobei

M die Masse innerhalb des Bereichs r ≤ d/2 ist. Aus der Messung von d und v

für einzelne Sterne erhält man so M = M(d). Die Geschwindigkeiten parallel zur

Beobachtungsrichtung können über den Dopplereffekt bestimmt werden. 

5C. Hazard et al., Nature 197 (1963) 1037, M. Schmidt, Nature 197 (1963) 1040
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Im Zentrum der Milchstraße gibt es eine Radioquelle mit dem Namen SgrA*

(oder Sagittarius A*). Die Messung der Geschwindigkeiten unmittelbar benachbar-

ter Sterne ergibt6

MSgrA∗ ≈ 4.3 · 106 M

(48.26)

für die Masse des Objekts. Insbesondere gibt es einen Stern mit dem Namen S2 (mit

MS2 ∼ 15 M), der beim Umlauf bis auf 17 Lichtstunden an SgrA* herankommt. 

Im Rahmen der ART ist ein stabiles Objekt mit M ≈ 4.3·106 M innerhalb eines so

eingegrenzten Bereichs nur als Schwarzes Loch denkbar. Dieses SL hat dann einen

Schwarzschildradius von rs ≈ 107 km. 

6S. Gillessen et al.,  The power of monitoring stellar orbits, arXiv:1002.1224v1[astro-ph.GA]

49 Massenuntergrenze für Schwarze Löcher? 

Es wird die Hypothese diskutiert, dass die minimale Masse eines Schwarzen Lochs

von der Größe der Planckmasse ist. Dazu wird argumentiert, dass ein Teilchen nicht

kleiner als seine Comptonwellenlänge sein kann. Dieses Argument wird am Bei-

spiel des Elektrons näher beleuchtet. Am Ende des Kapitels wird diskutiert, ob an

Beschleunigern kleine Schwarze Löcher erzeugt werden können. Der Inhalt dieses

Kapitels gehört nicht zum Standardlehrstoff einer Einführung in die ART. 

Einführung

Als klassische Lösungen der Einsteinschen Feldgleichungen kann es Schwarze Lö-

cher (SL) mit beliebig kleiner Masse geben. Sie könnten im frühen Universum ent-

standen sein. SL sollten Strahlung abgeben (Hawkingstrahlung, Kapitel 48), da-

durch (wenn sie isoliert sind) ihre Masse reduzieren und sich schließlich in einer

Explosion auflösen. 

Die Hawkingstrahlung berücksichtigt nur einen ausgewählten quantenfeld-

theoretischen Aspekt. Quantenmechanische Effekte für das SL selbst werden do-

minant, wenn seine Comptonwellenlänge λC vergleichbar mit oder größer als sein

Schwarzschildradius rS ist. Dies ist soweit allgemein bekannt und akzeptiert (Dis-

kussion am Ende von Kapitel 22). Im Folgenden wird dieser quantenmechanische

Vorbehalt dahingehend konkretisiert, dass es für λ > 

C ∼ rS keine SL gibt. Wir dis-

kutieren zunächst ganz allgemein, inwieweit lokalisierte (sehr kleine) Teilchen aus

quantenmechanisch-relativistischer Sicht überhaupt möglich sind. 

Wenn ein Teilchen die Größe (etwa Durchmesser)  hat, dann kann es in einen

Bereich der Größe Δx >  eingeschlossen werden. Umgekehrt, um festzustellen, 

dass ein Teilchen nur die Größe  hat, muss man es auch in einem Bereich der Grö-

ße Δx lokalisieren können (mit welchen experimentellen Methoden auch immer). 

Beim Einschluss in einen Bereich der Größe Δx hat das Teilchen zwangsläufig

Impulse der Größe Δp > 

∼ ¯h/Δx. Damit sind Energien der Größe ΔE ≈ Δpc ver-

bunden (wir betrachten sehr kleine Δx und damit den relativistischen Grenzfall der

Energie-Impuls-Beziehung). Wenn nun ΔE > 

∼ 2M c2 ist (wobei M die Ruhmasse

des betrachteten Teilchens ist), dann kommt man in einen Bereich, in dem der Teil-

chenbegriff verschwimmt. Denn dann existieren im Bereich Δx nicht nur das eine

betrachtete Teilchen, sondern zugleich weitere Teilchen-Antiteilchenpaare. 
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Von einem definierten Teilchen kann man daher nur sprechen, solange ΔE =

¯hc/Δx ≤ 2M c2. Von einem SL der Größe Δx = 2rs und der Masse MSL kann

man daher nur sprechen, solange

¯hc ≤ 2MSLc2

(49.1)

2 rs

Setzen wir hierin rS = 2GMSL/c2 ein, so erhalten wir eine untere Grenze für die

Masse eines SL:



MP

¯hc

MSL ≥

√ = 1

(49.2)

2

2

2

2 G

Diese Abschätzung kann die Grenzmasse natürlich nur bis auf einen Faktor der

Größenordnung 1 angeben. 

Die Vermutung einer solchen Untergrenze findet sich gelegentlich in der Lite-

ratur. Die Existenz einer solchen Untergrenze ist aber keine allgemein akzeptierte

Hypothese. Ein Grund hierfür dürfte sein, dass ähnliche Überlegungen für bekann-

te Teilchen, insbesondere für das Elektron, zu abwegig erscheinenden Resultaten

führen. 

Wendet man die vorgestellten Überlegungen auf ein Elektron an, dann kann das

Elektron (Masse me) nicht besser als in einem Bereich der Compton-Wellenlänge

λC,e =

¯h ≈ 4 · 10−11 cm

(49.3)

me c

lokalisiert werden. Quantenmechanisch-relativistisch ist dies an sich trivial: Wenn

man ein Elektron auf einen Bereich kleiner als λC,e begrenzt, dann entstehen zusätz-

lich Elektron-Positronpaare, so dass man nicht mehr von einem definierten Elektron

sprechen kann. Insofern scheint auch der Nachweis eines Elektrons, das kleiner als

λC ist, nicht möglich. Diese Aussage steht aber in Widerspruch zu Aussagen der

Hochenergiephysik, wonach das Elektron sich im Experiment als punktförmiges

Teilchen zeigt, oder jedenfalls als Teilchen, dessen Radius kleiner als 10−16 cm ist. 

Bevor wir mit der Diskussion der minimalen Masse eines SL fortfahren, klären wir

diesen (scheinbaren) Widerspruch für das Elektron. 

Punktförmiges Elektron? 

Die Argumente der Einleitung sprechen dafür, dass das Elektron ein Teilchen mit

einem Radius der Größe

RC ∼ λC,e =

¯h

(49.4)

me c

sein könnte, also mit dem Comptonradius RC. Üblicherweise wird aber gesagt, 

dass das Elektron ein (nahezu) punktförmiges Teilchen mit einem Radius Rexp < 

10−16 cm ist. Diese Behauptung ist aber eine recht spezielle Weise, in der eine expe-

rimentelle Grenze für eine mögliche Abweichung von der Quantenelektrodynamik
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(QED) angegeben wird. Die QED behandelt das Teilchen formal als Punktteilchen. 

Abweichungen hiervon könnten durch einen zusätzlichen Formfaktor F (q) be-

schrieben werden, der im Wesentlichen die Fouriertransformierte einer inneren

räumlichen Struktur des Elektrons ist (F = 1 für die räumliche Verteilung δ(r)). 

Man findet nun eine Übereinstimmung zwischen der QED und dem Experiment bis

hin zu den höchsten erreichbaren Impulsen qmax, also F = 1 für q ≤ qmax. Diese

Übereinstimmung wird dann formuliert als „das Elektron hat eine Ausdehnung von

weniger als ¯h/qmax = Rexp“. 

Fragen wir uns einmal ganz naiv, wie man den Radius R einer ausgedehnten

Ladungsverteilung messen könnte. Am einfachsten erscheint die Messung durch

die Streuung von elektromagnetischen Wellen an der Ladungsverteilung, denn: Für

Wellenlängen λ  R wird die Ladung als ganzes im elektromagnetischen Feld der

Welle beschleunigt; dies ergibt den Thomson-Streuquerschnitt. Für Wellenlängen

λ  R werden verschiedene Teile der Ladungsverteilung in verschiedene Richtun-

gen beschleunigt. Daher muss der Streuquerschnitt für λ < 

∼ R abfallen; die Stelle

des Abfalls bestimmt dann die Größe R der Ladungsverteilung. Der experimentelle

Streuquerschnitt für e-γ –Streuung fällt nun tatsächlich für λ < 

∼ RC deutlich ab. Auf

diese Weise erhält man die experimentelle Größe R ∼ RC für das Elektron. 

Ein anderes Experiment für die Größe (oder Kleinheit) des Elektrons wäre

die hochenergetische e-e–Streuung (Møller-Streuung). Betrachten wir dazu einen

direkten (head-on) Zusammenstoß von zwei Elektronen, die beide den Impuls

|p| = γ mc mit γ  1 haben. Im Schwerpunktsystem (zugleich dem Laborsys-

tem im colliding beam Experiment) kann man damit Strukturen bis zu der Größe

x = ¯h/|p| = RC/γ auflösen. Wegen x  RC könnte man schließen, dass die

experimentelle Møller-Streuung innere Strukturen eines Elektrons der Größe (49.4)

sehen müsste (und damit gegebenenfalls zu signifikanten Abweichungen von der

QED führt). Aber: Im Schwerpunktsystem ist die Ausdehnung der beiden Elek-

tronen zu RC/γ lorentzverkürzt (in der relevanten Richtung). Eine mögliche inne-

re Struktur im Bereich r < RC kann daher durch hochenergetische e-e–Streuung

nicht aufgelöst werden. Die Verifikation der QED-Vorhersagen für hohe Energien

ist zwar nicht trivial, sie kann aber ein gemäß (49.4) ausgedehntes Elektron nicht

ausschließen; dies gilt für beliebig hohe Energien. Die Gründe hierfür liegen in den

grundlegenden quantenmechanischen und relativistischen Gesetzen; sie sind daher

prinzipieller Natur. 

Als quantenmechanische  und  relativistische Gleichung berücksichtigt die Dirac-

Gleichung in spezifischer Weise, dass ein Elektron nicht besser als RC lokalisiert

werden kann. So führt sie im Rahmen der QED zu einem Streuquerschnitt für γ -

e-Streuung, der für λ < λC,e abfällt. Im nichtrelativistischen Grenzfall reduziert

sich die Dirac-Gleichung zur Schrödingergleichung mit drei relativistischen Kor-

rekturtermen: die Spin-Bahn-Wechselwirkung, eine relativistische Korrektur zur ki-

netischen Energie und der sogenannte Darwin-Term. Der Effekt des Darwin-Terms

kann als  Zitterbewegung  beschrieben werden. Dieser Term schmiert effektiv die

Schrödingersche Wellenfunktion über einen Bereich der Größe RC aus. 
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Wir fassen zusammen: Dass Elektronen punktförmige Teilchen oder jedenfalls

kleiner als 10−16 cm sind, ist eine eher unglücklich formulierte Aussage. In dem

zugrunde liegenden theoretischen Rahmen hat diese Aussage eine präzise Bedeu-

tung, nämlich keine Abweichung zwischen Experiment und QED für q < qmax. 

Sie bedeutet jedoch nicht, dass Elektronen tatsächlich (nahezu) punktförmig sind

(oder kleiner als ¯h/qmax). Vielmehr gibt es einen Spielraum für Modelle, in de-

nen das Elektron die Ausdehnung (49.4) hat. Bisher hat sich allerdings noch kein

solches Modell durchgesetzt. Für einen frühen Versuch sei auf Diracs1 „extensible

electron“ verwiesen, für andere Versuche auf Mac Gregors2 “enigmatic electron“. 

Schwarzes Loch im Bereich der Grenzmasse

Die Überlegungen des letzten Abschnitts bestärken uns darin, die in der Einleitung

präsentierten grundlegenden quantenmechanisch-relativistischen Überlegungen zur

Größe von Teilchen ernst zu nehmen. Danach haben wir bis auf Faktoren der Größe

1 die Untergrenze

 ¯hc

GeV

MSL ≥ Mlimit = 1

≈ 4 · 1018

(49.5)

2

2 G

c2

für die Masse von SL erhalten. Es sei noch einmal darauf hingewiesen, dass dies

keine allgemein akzeptierte Aussage ist. In Lehrbüchern wird meist davon ausge-

gangen, dass es SL mit beliebig kleiner Masse geben kann. Auch die folgenden

Überlegungen über die Annäherung an die Grenzmasse sind spekulativ. 

Betrachten wir nun zunächst ein klassisches SL mit einer Masse, die deutlich

über der Grenzmasse Mlimit liegt. Ein solches SL wird nach den Überlegungen

von Hawking strahlen und damit (wenn es isoliert ist) allmählich Masse verlieren. 

Eventuell in der Frühzeit des Universums entstandene SL könnten sich dadurch der

Grenzmasse Mlimit von oben nähern. Was passiert dann für MSL → Mlimit? 

Sobald die Comptonwellenlänge λC des SL mit dem Schwarzschildradius rS ver-

gleichbar wird, zum Beispiel für λC ∼ rS/3, werden Quantenfluktuationen wichtig. 

Dann wird der Schwarzschildhorizont nicht mehr eine statische Kugeloberfläche

sein, sondern die Oberfläche wird auf der Skala λC fluktuieren oder wabern. Bei

Annäherung an die Grenzmasse erscheinen zwei Szenarien naheliegend:

1. Für λC → rS werden die Fluktuationen so stark, dass der geschlossene

Schwarzschildhorizont sich auflöst und das SL instabil wird. Das SL könnte

dann in einer Explosion enden. Die Signatur dieser Explosion wäre ein Ener-

gieausstoß der Größe Mlimit c2. 

2. Für λC ∼ rS könnte es einen stabilen quantenmechanischen Grundzustand

eines SL geben. Dieser würde dann nicht mehr strahlen. 

1P. A. M. Dirac,  An extensible model of the electron, Proc. R. Soc. London A 268, 57 (1962) 2M. H. Mac Gregor,  The Enigmatic Electron, Kluwer Academic Publishers, Dordrecht 1992
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Als Analogon betrachte man ein Teilchen in einem Kastenpotenzial. Solange

die Comptonwellenlänge λC, T des Teilchens klein gegenüber dem Radius RK

des Kastenpotenzials ist, kann das Teilchen klassisch behandelt werden. Da

es sich im Potenzial beschleunigt bewegt, strahlt es und verliert Energie. Da-

mit wächst λC, T allmählich an. Für λC, T ∼ RK stehen dann nur die quanten-

mechanischen Eigenzustände im Kasten zur Verfügung. Das Teilchen endet

schließlich im Grundzustand, in dem es nicht mehr abstrahlt (davor kann es

noch mehr oder weniger lange in einem der angeregten Zustände verwei-

len). In analoger Weise könnte sich die klassische Lösung des SL dem quan-

tenmechanischen SL-Grundzustand nähern. (Während sich die Abstrahlung

des klassischen Teilchens in der Anfangsphase klassisch beschreiben lässt, 

muss die Hawking-Strahlung von vornherein quantenfeldtheoretisch begrün-

det werden.)

Natürlich sind ein SL und ein Teilchen im Potenzial  sehr  verschiedene Syste-

me. Die Analogie beruht darauf, dass in beiden Systemen die quantenmecha-

nische Wellenlänge sich durch Abstrahlung der charakteristischen Länge des

Systems annähert. 

Um die angesprochenen Möglichkeiten näher zu untersuchen, benötigt man eine

Quantenfeldtheorie der Gravitation. 

Erzeugung Schwarzer Löcher in Beschleunigern

Vor der Inbetriebnahme des LHC (Large Hadron Collider) am CERN (kontinuier-

licher Betrieb seit November 2009) wurde vereinzelt die Befürchtung geäußert, dass

bei den dort erzeugten hohen Energien kleine SL entstehen könnten, die schließlich

durch Massenakkretion die ganze Erde verschlingen würden. 

Nun sind die Energien am LHC (Hadronen mit Energien der Größe TeV =

103 GeV) viel niedriger als die, die in der kosmischen Strahlung (Teilchen mit Ener-

gien bis etwa 1014 GeV) vorkommen; insofern kann nichts erzeugt werden, was

nicht ohnehin auch in der Erdatmosphäre erzeugt wird. Ein durch kosmische Strah-

lung erzeugtes SL hätte aber eine hohe Geschwindigkeit im Gegensatz zu einem

im LHC in einer head on Kollision erzeugten. Das SL der kosmischen Strahlung

würde dann die Erde ohne nennenswerten Massenzuwachs durchfliegen, weil sei-

ne Wechselwirkung (Gravitation) mit der Materie extrem klein ist. Im Unterschied

dazu könnte ein im LHC erzeugtes SL im Gravitationsfeld der Erde gefangen sein, 

und hätte damit vielleicht genug Zeit, die Erde „aufzufressen“. 

Wir diskutieren die Möglichkeit, kleine SL am LHC zu erzeugen. Für die fol-

gende Abschätzung setzen wir den Wert

EC = 2 TeV = 2 · 103 GeV

(49.6)

für die Energie der Teilchen am Collider (C) an (etwa das Doppelte wird derzeit

erreicht). Wenn zwei Nukleonen mit der Energie EC zusammenstoßen, dann be-
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trägt die Masse eventuell entstehender Teilchen maximal 2EC/c2 (Energieerhal-

tung). Nach (49.5) liegt die minimale Masse Mlimit eines SL aber um viele Größen-

ordnungen darüber:

GeV

2EC

MSL ≥ Mlimit ≈ 4 · 1018

≈ 1015

(49.7)

c2

c2

Nun war (49.5) durch eine halbklassische Abschätzung begründet. In der ART als

 klassischer (nichtquantenmechanischer) Theorie kann es dagegen SL mit beliebig

kleiner Masse geben. In diesem Fall ist es nicht die fehlende Energie, sondern

die fehlende  Energiedichte, die die Erzeugung von SL ausschließt. Die Collider-

Energie (49.6) ist auf den Bereich der Comptonwellenlänge der beteiligten Hadro-

nen verteilt, also auf der Länge

LC = ¯hc ≈ 10−19 m

(49.8)

EC

Nun hat ein SL der Masse MSL die Größe

MSL

MSL

rS = 2GMSL = 2LP

≈ 3 · 10−35 m

(49.9)

c2

MP

MP

√

Wir verwenden hier Plancksche Masse MP =



¯hc/G ≈ 1.2·1019 GeV/c2 und die

Plancksche Länge LP =

¯hG/c3 ≈ 1.6 · 10−35 m aus (22.30) und (22.31). Damit

ein SL im Wechselwirkungsbereich der beiden Hadronen entstehen kann, muss es

auf diesen Bereich beschränkt sein:

r < 

> 

S ∼ LC

⇒ MSL ∼ 3 · 1015 MP ≈ 1031 (2EC/c2)

(49.10)

Anders ausgedrückt: Damit die Energiedichte ausreicht, müsste die Energie um 31

Größenordungen über der des LHC liegen. Zwar sind im Rahmen der klassischen

ART Schwarze Löcher mit beliebig kleiner Masse denkbar, ihre Energiedichte ist

aber  extrem  hoch. 

Für eine weitergehende Diskussion sei auf die entsprechende CERN-Studie3

verwiesen. Neben dem Argument der fehlenden Energiedichte wird hierin noch

ein anderer Grund für die Harmlosigkeit kleiner SL angeführt. Für ein kleines

SL gibt es zwei konkurrierende Effekte: Zum einen nimmt seine Masse aufgrund

der Hawking-Strahlung ab, zum anderen kann seine Masse durch Akkretion von

Masse aus der Umgebung (während seiner Bewegung in der Erde) wachsen. Die

Abschätzung3 ergibt, dass der erste Effekt für M < 1023 MP ≈ 1039 (2EC/c2)

überwiegt; der zweite Effekt wird durch die sehr kleine Gravitationswechselwir-

kung verursacht. Eventuelle SL mit M < 1023 MP würden also von selbst zerstrah-

len und schließlich im Inneren der Erde harmlos verpuffen. Erst ein schon recht

3J.-P. Blaizet, J. Iliopoulos, J. Madsen, G. G. Ross, P. Sonderegger, H.-J. Specht,  Study of potenti-ally dangerous events during heavy-ion collisions at the LHC: Report of the LHC study group, Genf 2003, http://doc.cern.ch/yellowrep/2003/2003-001/p1.pdf, ein update aus dem Jahr 2008 findet man in http://lsag.web.cern.ch/lsag/LSAG-Report.pdf
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gigantisches SL mit einer Masse von 1023 MP oder mehr hätte dagegen die Chance, 

die Erde „aufzufressen“. 

Die bisher angeführten Argumente bewegen sich im Rahmen der ART mit ih-

rer raumzeitlichen Metrik (3 + 1 Dimensionen). (Sowohl die Abschätzung (49.5)

wie auch die Hawking-Strahlung machen darüberhinaus Anleihen bei der Quan-

tenmechanik.) Im Rahmen der Theoretischen Physik werden aber auch exotischere

Theorien (etwa in d = 10 Dimensionen) diskutiert. Dabei gibt es Theorien, in de-

nen das Argument der fehlenden Energiedichte nicht gilt. Laut CERN-Studie3 gilt

aber weiterhin das Argument, dass eventuell erzeugte SL praktisch augenblicklich

zerstrahlen würden. 

Zusammenfassend stellen wir fest: Unsere Überlegungen ergeben eine Unter-

grenze Mlimit ∼ MP für die Masse eines SL, was die Erzeugung eines SL am LHC

aus Energiegründen ausschließt. Die Ausschließungskriterien der CERN-Studie3

für die Erzeugung eines SL (mangelnde Energiekonzentrationen am LHC) und für

die mögliche Gefährdung durch ein SL (Massenzuwachs nur für M > 1023 MP)

sind noch um Größenordnungen stärker. Zudem beruhen diese Ausschließungskri-

terien auf allgemein anerkannten Argumenten. 

X Kosmologie

50 Kosmologisches Prinzip

und Robertson-Walker-Metrik

Die Dynamik des Kosmos ist großräumig durch diejenige des Gravitationsfelds und

seiner Quellen gegeben. Wir diskutieren die Robertson-Walker-Metrik, die ein ein-

faches Modell für den Kosmos darstellt. Diese Metrik beruht auf der Annahme, dass

die Massenverteilung im Universum im Mittel homogen und isotrop ist. 

Wir verwenden die Begriffe Kosmos, Universum und Weltall synonym. Dabei be-

ziehen wir diese Begriffe meist auf den für uns heute sichtbaren Bereich; direkte

experimentelle Informationen können wir nur aus diesem Bereich erhalten. Aussa-

gen über den darüber hinausgehenden Bereich des Kosmos sind als möglicherweise

plausible, aber spekulative Extrapolationen zu betrachten. 

Zur ersten Orientierung seien einige Zahlen und Begriffe angeführt: Der für uns

sichtbare Bereich des Universums hat einen Radius von etwa 5 · 1010 Lichtjahren

(Lj). In ihm gibt es ungefähr 1011 Galaxien (Sternsysteme). Viele Galaxien haben

Massen im Bereich von 109 bis 1012 M. Unsere eigene Galaxie, die Milchstraße, 

hat eine Masse von etwa 1012 Sonnenmassen und einen Durchmesser von etwa

105 Lj (in der galaktischen Ebene). Galaxien treten in Haufen oder Clustern auf, die

etwa 200 Galaxien umfassen und 107 Lj groß sind. Unsere Milchstraße ist Teil eines

kleinen Haufens, der Lokalen Gruppe, mit nur etwa 20 Galaxien. 

Modelle des Kosmos (Weltmodelle) sollen die zeitliche Entwicklung und Struk-

tur des Universums auf einer großen Längenskala beschreiben. Das heißt, dass wir

uns nicht für Details innerhalb einer bestimmten Längenskala (zum Beispiel 108 Lj)

interessieren. Dieses grobe Raster eliminiert alle für uns wirklich relevanten Pro-

bleme. Insofern sind die Bezeichnungen „Weltmodell“ und „Weltzustand“ etwas

anmaßend. 

Nach unseren Beobachtungen ist das Universum im Mittel isotrop und homo-

gen. Im Mittel bedeutet, dass über große räumliche Bereiche (die viele Galaxien

enthalten) gemittelt wird; danach ist insbesondere die Dichte  (näherungsweise)

homogen. Die Isotropie impliziert, dass die gemittelten Geschwindigkeiten bezüg-

lich jedes Beobachtungspunkts zentrale Richtung haben. Unsere Beobachtungen
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sind begrenzt und mit Unsicherheiten behaftet; sie beziehen sich zudem nur auf den

für uns sichtbaren Bereich des Kosmos. Die Verallgemeinerung der angeführten

Beobachtungen führt zu folgender  Annahme:

KOSMOLOGISCHES PRINZIP:

Im Universum sind alle Positionen und Richtungen gleichwertig. 

Diese Annahme stellt eine starke Einschränkung an die Raumstruktur des Kosmos, 

also an die gesuchte Metrik dar. Die Metrik, die der Homogenitäts- und der Iso-

tropieanforderung des kosmologischen Prinzips genügt, ist die  Robertson-Walker-

 Metrik:

Robertson-Walker-Metrik:

 dr2





(50.1)

ds2 = c2dt2 − R(t)2

+ r2 dθ2 + sin2 θ dφ2

1 − k r2

Wir übernehmen diese Form der Metrik aus (47.20). Dort wurde sie für eine isotrope

und homogene Dichteverteilung eines Sterns abgeleitet; sie galt daher nur im Inne-

ren des Sterns. Wenn sich die homogene Dichteverteilung auf den ganzen Raum

erstreckt, dann gilt diese Metrik ohne diese Einschränkung und wird Robertson-

Walker-Metrik (RWM) genannt. Der Wegfall der Einschränkung führt zu einer viel

stärkeren Symmetrie; während der Stern nur bezüglich des Zentrums isotrop ist, gilt

die Isotropie nun für jeden Punkt. 

Der Standardweg zur direkten Ableitung von (50.1) aus dem kosmologischen

Prinzip ist folgender: Wegen der räumlichen Homogenität und Isotropie muss die

dreidimensionale Krümmung räumlich konstant sein. Gesucht wird also eine Me-

trik, die eine räumlich konstante Krümmung im dreidimensionalen Unterraum be-

schreibt; ein solcher Unterraum heißt maximal symmetrisch. Betrachten wir zur

Veranschaulichung eine Raumdimension weniger, so wären die maximal symmetri-

schen Flächen gesucht. Es gibt drei solche Flächen, nämlich diejenige mit konstan-

ter positiver, verschwindender oder negativer Krümmung; dies sind die Kugelober-

fläche, die Ebene und die Pseudosphäre. Jeder Punkt auf einer solchen Fläche ist

gleichwertig zu jedem anderen. Analog hierzu gibt es drei dreidimensionale Räume

mit maximaler Symmetrie. Sie werden durch den räumlichen Teil der Metrik (50.1)

mit k > 0, k = 0 und k < 0 beschrieben. 

Die Bedeutung der Koordinaten in (50.1) wurde eingehend in Kapitel 46 disku-

tiert. Dort wurde ein Stern aus einer losen Anhäufung von Teilchen (Steine, Staub-

körner) betrachtet. Die radialen Bahnen der frei fallenden Teilchen werden durch

die Bahnen xi =

ν

const. beschrieben, wobei ν die Teilchen nummeriert. Die mit ei-

nem Teilchen verbundene Uhr zeigt die Zeit tν an. Diese Überlegungen übertragen

wir jetzt auf den Kosmos, wobei die Teilchen durch Galaxien ersetzt werden und die

Beschränkung durch r ≤ r0 entfällt. Die Bahnen xi =

ν

const. sind spezielle Lösun-

gen der Bewegungsgleichungen. Diese Bahnen verlaufen nur in radialer Richtung

(wegen θν = const. und φν = const.), und die radiale Geschwindigkeit folgt allein

aus der Zeitabhängigkeit von R(t ). 
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Koordinaten dienen dazu, Ereignisse zu benennen. Angenommen, es gibt in ei-

nem bestimmten Gebiet N Galaxien mit den Bahnen xi =

ν

const. und der jeweiligen

Galaxiezeit tν (mit ν = 1, 2..., N). Ein bestimmtes Ereignis hat dann die Koordina-

ten t = tμ und xi = xiμ, wobei μ gerade die Galaxie ist, die zur Zeit des Ereignisses

am Ort des Ereignisses ist. Für ein dichteres Koordinatennetz können wir uns die

Galaxien durch Steine ergänzt denken, die in gleicher Weise wie die Galaxien im

kosmischen Gravitationsfeld fallen. 

Zur Bedeutung der Koordinaten der RWM halten wir fest:

Typische Galaxie: Bahn: xi = const., Zeit: t

(50.2)

Mit „typischer“ Galaxie ist gemeint, dass die Galaxie keine besondere Eigenbewe-

gung ausführt; die Bewegung der Galaxie soll vielmehr allein durch R(t ) bestimmt

sein. Eine Abweichung von der Bahn xi = const. könnte sich zum Beispiel daraus

ergeben, dass die Galaxie einen Galaxienhaufen umkreist; auch dies ist ein frei-

er Fall im Gravitationsfeld. Das lokale Gravitationsfeld des Galaxienhaufens, das

für diese zusätzliche Bewegung verantwortlich ist, wird aber nicht durch die Me-

trik (50.1) beschrieben. (Ähnliches gilt für Sterne innerhalb von Galaxien; auch ihr

freier Fall wird nicht durch Bahnen der Form xi = const. beschrieben.) Das kos-

mologische Prinzip impliziert aber, dass sich die über xi = const. hinausgehenden

Eigenbewegungen im Mittel aufheben. 

In (50.1) soll R(t ) die Dimension einer Länge haben; dann sind r und k dimen-

sionslos. Durch Skalierung von r können wir den Parameter k auf

k = 0, +1 oder − 1

(50.3)

beschränken. Im dreidimensionalen Unterraum (i = 1, 2, 3) berechnen wir aus den

gij den Krümmungsskalar R(3):

R(3) = R i

i

= 6k

(50.4)

R(t )2

Diese Krümmung hängt nicht vom Ort ab. Für k = ±1 hat der Faktor R(t) die

Bedeutung des Krümmungsradius des dreidimensionalen Raums. Im ebenen Raum

erfordert k = 0 keine Skalierung der Koordinate r; die Bedeutung des Faktors R(t)

hängt hier von der Festlegung für r ab. Im ebenen Raum könnten wir zum Beispiel

dem Zentrum der Milchstraße den Koordinatenwert r = 0 und dem Zentrum des

Virgohaufens den Wert r = 1 (und bestimmte θ- und φ-Werte) zuordnen; dann ist

R gleich der physikalischen Entfernung zwischen diesen Positionen (zur Zeit etwa

6 · 107 Lj). 

Alle räumlichen Abstände zwischen zwei Punkten mit festen Koordinatenwer-

ten sind proportional zu R(t ). Dies gilt insbesondere für den Abstand zwischen zwei

typischen Galaxien. Die Größe R(t ) wird daher  kosmischer Skalenfaktor  genannt. 

Für k = ±1 ist R(t), wie bereits gesagt, auch der Krümmungsradius des Kosmos; 

für k = 1 ist R(t) auch der Radius des (in diesem Fall endlichen) Universums. 
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Diskussion der RWM

Zur Diskussion der RWM betrachten wir die Metrik der maximal symmetrischen

Flächen, also Flächen mit konstanter Krümmung. Der Einfachheit halber beginnen

wir mit dem Fall konstanter positiver Krümmung, also mit der Oberfläche einer

Kugel mit dem Radius R(t ). Das Wegelement ds der Kugeloberfläche lautet:









dr2

ds2 = R(t)2 dθ2 + sin2 θ dφ2 = R(t)2

+ r2dφ2

(50.5)

1 − r2

Der zweite Ausdruck ergibt sich, wenn wir die dimensionslose Koordinate

r = sin θ

(50.6)

anstelle von θ einführen. Die θ -Werte gehen von 0 bis π, die r-Werte durchlaufen

zweimal den Bereich

0 ≤ r ≤ 1

(50.7)

Für r = 1 wird der metrische Koeffizient g11 singulär. Der Raum hat an dieser

Stelle aber die gleichen Eigenschaften wie an jeder anderen Stelle (r = 1 ist der

Äquator, wenn r = 0 der Nordpol ist). Es handelt sich daher lediglich um eine

Koordinatensingularität. 

Das Wegelement dσ des räumlichen Teils der RWM lautet

 dr2





dσ 2 = R(t)2

+ r2 dθ2 + sin2 θ dφ2

(50.8)

1 − k r2

Für k = 1 ist die Analogie zur Kugeloberfläche (50.5) offensichtlich. Wir verall-

gemeinern nun das Wegelement (50.5), indem wir ebenso wie in der RWM einen

Koeffizienten k zulassen:





dr2





ds2 = R(t)2

+ r2dφ2 = R(t)2 dχ2 + f (χ)2dφ2

(50.9)

1 − k r2

Die beiden angegebenen Formen sind durch die Transformation

⎧

⎨ sin χ

(k = 1)

r = f (χ ) = ⎩ χ

(k = 0)

(50.10)

sinh χ

(k = −1)

miteinander verknüpft. Für k = 0 ist (50.9) die Metrik einer Ebene (mit den Polar-

koordinaten ρ = χ und φ). Für k = 1 ist (50.9) die Metrik einer Kugeloberfläche

(mit den Winkelkoordinaten θ = χ und φ). Für k = −1 ist (50.9) die Metrik einer

Pseudosphäre (mit der Abstandskoordinate χ und der Winkelkoordinate φ). Man

überprüft leicht, dass die  Pseudosphäre überall die konstante negative Krümmung

−1/R2 hat. 
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Wir setzen jetzt die Substitution (50.10) in das Wegelement der RWM ein:

 dr2





ds2 = c2dt2 − R(t)2

+ r2 dθ2 + sin2 θ dφ2

1 − k r2







= c2dt2 − R(t)2 dχ2 + f (χ)2 dθ2 + sin2θ dφ2

(50.11)

In dieser Form ist die Analogie zwischen der RWM und der Metrik (50.9) der ma-

ximal symmetrischen Flächen offensichtlich. In beiden Fällen sind die möglichen

Werte der χ -Koordinate:

0 ≤ χ ≤ π für k = 1 , 

0 ≤ χ ≤ ∞ für k = 0, −1

(50.12)

Zur Bestimmung des Abstands zwischen zwei Punkten legen wir den ersten Punkt

in den Koordinatenursprung χ = 0; wegen der Homogenität des Raums ist dies

keine Einschränkung der Allgemeinheit. Der Abstand D zu einem zweiten Punkt

mit der Koordinate χ = 0 ist dann

 χ

D =

dχ  √gχχ = R(t) χ

(50.13)

0

Für den betrachteten Weg gilt dφ = 0 für (50.9), oder dθ = 0 und dφ = 0 für

(50.11), da der Abstand längs eines kürzesten Weges gemessen wird. Damit können

wir χ als Abstandskoordinate betrachten, während R(t ) die Rolle eines Skalenfak-

tors hat. 

Effekte der Krümmung

Zur Diskussion der Krümmung betrachten wir den geometrischen Ort aller Punkte, 

die den gleichen Abstand D von einem gegebenen Punkt haben. Wir berechnen den

Inhalt dieses geometrischen Orts und beziehen ihn auf den Abstand. 

Wir beginnen zunächst mit der Fläche (50.9), die je nach dem Wert von k eine

Kugeloberfläche, eine Ebene oder eine Pseudosphäre ist. Die Punkte, die von θ = 0

den Abstand D = R θ haben, bilden eine kreisförmige Linie. Für den Umfang

(Länge dieser Linie) gilt



√

Umfang

dφ

g

f (θ )

f (D/R)

=

φφ = 2π

= 2π

(50.14)

D

D

θ

D/R

Für die Ebene (k = 0) ergibt sich das für den Kreis bekannte Verhältnis 2π. Für die

Kugeloberfläche (k = 1) ist der Wert kleiner als 2π. Die Pseudosphäre (k = −1)

kann lokal durch ein Hyperboloid (mit dem Sattelpunkt am Koordinatenursprung)

ersetzt werden; damit lässt sich anschaulich verstehen, dass das Verhältnis größer

als 2π ist. 
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6 Fläche

4πD2

k = −1

k

··················································································

= 0

1 ···················································· ···· ···· ···· ····· ···· ···· ····· ···· ···· ···· ···· ···· ···· ···· ···

················································· k···=1

··············

χ

····

= D/R

···········

-

1

π

Abbildung 50.1 Im dreidimensionalen Unterraum der RWM ist der Ort aller Punkte, die

den Abstand D von einem gegebenen Punkt haben, eine Fläche. Für kleine Abstände ist der

Inhalt dieser Fläche gleich dem euklidischen Wert 4πD2. Die Abbildung zeigt die Abwei-

chung von diesem Wert als Funktion des Abstands für die Krümmungen +1/R2, −1/R2

und null. 

Auf der (glatten) Erdoberfläche kann man die Abweichung von 2π leicht mes-

sen: So ist zum Beispiel der Äquator der geometrische Ort aller Punkte mit dem Ab-

stand D = πR/2 vom Nordpol. Der Umfang dieses „Kreises“ ist mit 2πR = 4D

kleiner als der euklidische Wert 2πD ≈ 6.3D. Das Verhältnis Umfang/Abstand

könnte von Plattkäfern bestimmt werden, die auf einer Kugeloberfläche leben und

deren physikalische Welt und deren Vorstellungsvermögen zweidimensional sind. 

Dies bedeutet, dass die Krümmung eine innere Eigenschaft der Fläche ist, die sich

in Messungen innerhalb dieser Fläche bemerkbar macht. Bei der Bestimmung einer

eventuellen Krümmung unseres dreidimensionalen Raums sind wir in einer ähnli-

chen Situation wie die Plattkäfer: Wir können die Krümmung (zumindest im Prin-

zip) messen, sie uns aber nicht durch Einbettung in einen vierdimensionalen Raum

vorstellen. 

Wir betrachten nun in der RWM (50.11) die Fläche, deren Punkte den Abstand

D = R χ vom Punkt χ = 0 haben; für k = 0 ist dies eine Kugeloberfläche. Für den

Inhalt dieser Fläche gilt:

 

√

+

, 

Fläche

dx2 dx3

|g

f (χ )2

f (D/R) 2

=

22 g33| = 4π

= 4π

(50.15)

D2

D2

χ 2

D/R

Die Abweichung vom euklidischen Wert 4π ist in Abbildung 50.1 skizziert. Für

kleine Abstände D  R sind die Abweichungen gering, denn für x = D/R → 0

gilt f (x)/x → 1. 
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Direkte Messung der Krümmung

Wir skizzieren ein Verfahren, mit dem (im Prinzip) die Krümmung des dreidimen-

sionalen Raums gemessen werden kann. Dazu stellen wir uns zunächst gleichver-

teilte Galaxien mit gleicher absoluter Helligkeit vor. Die Strahlungsleistung einer

Galaxie verteilt sich im Abstand D auf die Fläche, die wir in (50.15) betrachtet

haben. Die scheinbare Helligkeit  = (D) einer Galaxie, deren Abstand von uns

gleich D ist, ergibt sich daher aus

1

∝ Fläche(D) = 4πR(t)2 f (D/R)2 k=0

= 4πD2

(50.16)

(D)

Die Anzahl N (D) der Galaxien mit einer scheinbaren Helligkeit  > (D) ist gleich

der Anzahl der Galaxien innerhalb des Abstands D:

 D/R

N (D) ∝ Volumen(D) = 4πR(t)3

dχ f (χ )2 k = 0

= 4π D3

(50.17)

0

3

Löst man (50.16) nach D = D() auf und setzt dies in (50.17) ein, so erhält man

die Anzahl N () aller Galaxien mit einer scheinbaren Helligkeit größer als . Die

Funktion N () kann im Prinzip experimentell bestimmt werden. Eine Abweichung

von

N (l) ∝ −3/2

für

k = 0

(50.18)

ließe auf die Krümmung des dreidimensionalen Raums schließen. 

Die hier gegebene Diskussion ist stark vereinfacht. Tatsächlich sind zahlreiche

Korrekturen anzubringen. So müssten die Verteilung der absoluten Helligkeiten von

Galaxien, die kosmologische Rotverschiebung und die Expansion des Kosmos be-

rücksichtigt werden. Wegen der damit verbundenen Unsicherheiten war eine solche

relativ direkte Bestimmung der Krümmung des Universums bisher nicht möglich. 

Endliches, unbegrenztes Universum

Für k = 1 ist der Rauminhalt  endlich. Der maximale Abstand zwischen zwei Punk-

ten des Raums ist gleich πR(t). Wir berechnen zunächst den Inhalt V (2) des zwei-

dimensionalen Raums mit der Metrik (50.9):











1

2π

R(t )2 r

V (2) =

dx1

dx2

|g11 g22| = 2

dr

dφ √

= 4πR(t)2

0

0

1 − r2

(50.19)

Wegen r = sin θ und 0 ≤ θ ≤ π überstreicht r den Bereich von 0 bis 1 und dann

von 1 bis 0; dies führt zum Faktor 2. Die analoge Rechnung für den Inhalt V (3) des

dreidimensionalen Unterraums mit der RWM (50.11) ergibt









V (3)

=

dx1

dx2

dx3

|g11 g22 g33|







1

π

2π

R(t )3 r2

=

sin θ

2

dr

dθ

dφ

√

= 2π2R(t)3

(50.20)

0

0

0

1 − r2
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Die Kugeloberfläche hat einen endlichen Inhalt (50.19); sie ist aber nicht begrenzt. 

Analog dazu hat der dreidimensionale Raum mit positiver, konstanter Krümmung

ein endliches Volumen, ohne begrenzt zu sein. 

Die Möglichkeit eines zwar unbegrenzten, jedoch endlich ausgedehnten Welt-

alls war eine wichtige Erkenntnis der ART. Die Metrik dieses möglichen Kosmos

mit k = 1 und R(t) steht, wie wir gesehen haben, in enger Analogie zu derjenigen

der Oberfläche einer Kugel mit dem Radius R(t ). Dem expandierenden Kosmos

entspricht dann ein (kugelförmiger) Luftballon, der aufgeblasen wird. Typische Ga-

laxien haben xi = const.; sie entsprechen daher Punkten, die auf den Luftballon

aufgemalt sind. Das Aufblasen des Luftballons führt zu Relativgeschwindigkeiten

zwischen den Punkten (Galaxien), die proportional zu R sind. Von einem Punkt der

Oberfläche aus gesehen, entfernen sich die anderen Punkte in radialer Richtung; die

Fluchtgeschwindigkeit nimmt mit dem Abstand zu. 







51 Rotverschiebungs-Abstands-Relation

Die Zeitabhängigkeit des Skalenfaktors R(t ) der Robertson-Walker-Metrik (RWM)

führt zur kosmologischen Rotverschiebung. Diese Rotverschiebung kann im Licht

weit entfernter Galaxien beobachtet werden. Wir stellen den Zusammenhang zwi-

schen dieser Rotverschiebung und dem Abstand der Quelle her. 

Man stelle sich eine Kugeloberfläche mit dem Radius R(t ) vor, wobei ˙

R > 0 sei; 

konkret etwa einen Luftballon, der aufgeblasen wird. Dann entfernen sich zwei be-

liebige Punkte mit bestimmten Koordinatenwerten (also zwei markierte Punkte auf

dem Luftballon) mit einer zu R proportionalen Geschwindigkeit voneinander. Zwi-

schen diesen Punkten ausgetauschte Signale erleiden eine Rotverschiebung, die als

Dopplereffekt gedeutet werden kann. Dies gilt analog für die RWM mit ˙

R > 0. 

Die Erklärung der kosmologischen Rotverschiebung als Dopplereffekt ist üblich

und ergibt für nicht zu große Abstände das richtige Ergebnis. Tatsächlich ist diese

Erklärung aber nicht konsistent: Der Dopplereffekt wird in der Speziellen Relativi-

tätstheorie berechnet und setzt ein Inertialsystem (IS) voraus, in dem die Quelle und

der Empfänger bestimmte Positionen und Geschwindigkeiten haben. Die Vorausset-

zung eines solchen IS ist für kosmologische Entfernungen jedoch nicht gegeben. In

der RWM gibt es nur Lokale IS (es sei denn R(t ) = const. und k = 0). 

Die korrekte und zugleich einfache Behandlung der kosmologischen Rotver-

schiebung erfolgt über das Wegelement der RWM. 

Wir betrachten zwei typische Galaxien, deren Bahn im kosmischen Gravitati-

onsfeld (also in der RWM) durch xi = const. gegeben ist, (50.2). Die Bewegung

dieser Galaxien ist dann durch die Zeitabhängigkeit von R(t ) bestimmt. Von einer

solchen Galaxie werde zur Zeit t1 Licht abgesandt, in einer anderen solchen Gala-

xie werde das Licht zur Zeit t0 empfangen. Wegen der Homogenität und Isotropie

können wir ohne Einschränkung der Allgemeinheit die Lichttrajektorie betrachten, 

die bei konstantem θ und φ von χ (t1) = 0 nach χ (t0) = χ führt. Für eine solche

Lichtbahn gilt

c dt

ds2 = c2dt2 − R(t)2 dχ 2 = 0 oder dχ =

(51.1)

R(t )

Wir betrachten zwei aufeinanderfolgende Wellenberge. Beide müssen von der Quel-

le zum Empfänger denselben Weg χ zurücklegen:





t0 c dt

t0+δt0 c dt

χ =

=

(51.2)

t

R(t )

R(t )

1

t1+δt1
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Hieraus folgt





t0+δt0 c dt

t1+δt1 c dt

c δt0

c δt1

0 =

−

=

−

(51.3)

t

R(t )

R(t )

R(t

R(t

0

t1

0)

1)

Die Zeitdifferenz δt zwischen zwei Wellenbergen ist gleich der inversen Frequenz

des Lichts, δt = 1/ν. Während der Zeitspanne δt (∼ 10−14 s für sichtbares Licht)

ist R(t ) praktisch konstant; daher kann R(t ) im Integrationsintervall durch eine

Konstante ersetzt werden. Wir drücken das Ergebnis (51.3) durch die Frequenz ν

des Lichts aus:

R(t1) ν1 = R(t0) ν0

(51.4)

Dabei ist ν1 die ausgesandte und ν0 die empfangene Frequenz. In der Form

R(t ) ν(t ) = const. 

(51.5)

ist die Aussage unabhängig von konkreten Emissions- und Absorptionsereignissen. 

Sie gilt für jede elektromagnetische Welle, denn wir könnten sie ja zu beliebiger

Zeit t beobachten. In einem expandierenden Kosmos vagabundierende Photonen

erleiden daher eine fortgesetzte Rotverschiebung; dies gilt insbesondere für die kos-

mische Hintergrundstrahlung (Kapitel 55). Physikalisch kann dies so gedeutet wer-

den, dass die Photonen gegen das schwächer werdende Gravitationsfeld anlaufen

und dabei Energie verlieren (so wie ein Stein, der sich von einem Stern entfernt). 

Die Aussage (51.5) kann auch so formuliert werden, dass die Wellenlänge mit dem

Faktor R(t ) skaliert. 

Ersetzt man für Photonen die Frequenz ν durch den Impuls p = hν/c, so wird

(51.5) zu

R(t ) p(t ) = const. 

(51.6)

Man kann zeigen (Aufgabe 51.1), dass diese Beziehung auch für den Impuls p(t ) =

γ mv von frei fallenden, massiven Teilchen gilt. 

Im Spektrum von Sternen oder Galaxien findet man Gruppen von Spektrallinien, 

die man bekannten Atomübergängen zuordnen kann. Dabei ist aber die gesamte

Linienstruktur verschoben (gegenüber der auf der Erde gemessenen Linienstruktur). 

Die Frequenzänderung wird durch den Rotverschiebungsparameter ausgedrückt:

λEmpfänger

λ0

ν1

z =

− 1 =

− 1 =

− 1

(51.7)

λQuelle

λ1

ν0

Für Licht, das zur Zeit t1 von einer Galaxie ausgesandt wurde und das heute (t0) bei

uns empfangen wird, folgt aus (51.7) und (51.5)

R(t0)

Kosmologische

zkosm =

− 1

(51.8)

R(t

Rotverschiebung

1)

Im expandierenden Kosmos, R(t0) > R(t1), ergibt sich eine Rotverschiebung, also

zkosm > 0. Diese  kosmologische  Rotverschiebung wird durch die Änderung von

R(t ) verursacht. Darüberhinaus können sich Frequenzverschiebungen auch aus an-

deren Gründen ergeben:
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1. Gravitationsrotverschiebung aufgrund des Gravitationsfelds am Ort der Quel-

le oder des Empfängers. 

2. Dopplerverschiebung aufgrund der Eigenbewegung der Quelle oder des Emp-

fängers. 

Zur Auswertung von (51.8) entwickeln wir R(t ) in eine Taylorreihe um t0, 





R(t ) = R(t0) 1 + H0 (t − t0) − 1 q0 H 2 (t − t0)2 + . . . 

(51.9)

2

0

Dabei haben wir die  Hubble-Konstante

c ˙

R(t0)

H0 =

(51.10)

R(t0)

und den dimensionslosen Verzögerungsparameter

¨R(t0) R(t0)

q0 = −

˙

(51.11)

R(t0)2

eingeführt. Wegen ˙

R = dR/d(c t) hat H −1 die Dimension einer Zeit. Wir setzen

0

(51.9) mit t = t1 in (51.8) ein:





q0

zkosm ≈ H0 (t0 − t1) + 1 +

H 2 (t0 − t1)2

(51.12)

2

0

Inhaltlich beziehen wir dies auf Licht, das wir heute (t0) empfangen und das vor

langer Zeit (t1) von einer entfernten Galaxie ausgesandt wurde. In dieser Bezie-

hung wollen wir die Lichtlaufzeit t0 − t1 noch durch den Abstand zu dieser Galaxie

ersetzen. Aus (51.1) erhalten wir





t0 c dt

t0 c dt 



χ

=

=

1 − H0 (t − t0) ± . . . 

t

R(t )

R(t

1

t1

0)

c (t

H

≈

0 − t1) + 0 c (t0 − t1)2

(51.13)

R(t0)

2 R(t0)

Hieraus folgt der (heutige) Abstand D zwischen Emissions- und Absorptionsort, 

H





0 c

2

D = D(t0) = R(t0) χ ≈ c (t0 − t1) +

t0 − t1

(51.14)

2

Hiermit eliminieren wir t0 − t1 in (51.12) und erhalten

Rotverschiebungs-Abstands-Relation

H

(51.15)

0

(1 + q0) H 2

z

0

kosm ≈

D +

D2

c

2 c2
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6Rotverschiebung

zkosm

q0 = 2

q0 = 0

10

s q0 = −1

1

s

s

s

0.1

s

0.01

s

s

0.001

s

···················································································

·················································································

········································································

Abstand D-

0.001

0.01

0.1

1

10

× 1010 Lj

Abbildung 51.1 Das  Hubble-Diagramm  zeigt die kosmologische Rotverschiebung zkosm als Funktion des Abstands D der Quelle, (51.15). Es wird eine doppelt-logarithmische Skala verwendet. Für nicht zu große Abstände gilt zkosm ≈ H0 D/c. Die Abweichungen von

diesem linearen Bereich hängen vom Verzögerungsparameter q0 ab; die Relation (51.15)

wurde für verschiedene Werte von q0 eingezeichnet (durchgezogene und gestrichelte Lini-

en). Durch Messungen (fette Punkte, schematisch) der Rotverschiebung und des Abstands

verschiedener Galaxien (oder anderer Objekte, insbesondere Supernovae vom Typ Ia) kön-

nen H0 und q0 bestimmt werden. In (51.17) wird der Abstand D0 angegeben, bei dem

die Rotverschiebung divergiert. Für diesen Abstand werden wir später D0 ≈ 4.8 · 1010 Lj, 

(54.18), erhalten. Bei Annäherung an D0 wird die Entwicklung (51.15) ungültig. 
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Diese Relation wird im  Hubble-Diagramm, Abbildung 51.1, dargestellt. Sie gibt die

Rotverschiebung zkosm einer Galaxie im (heutigen) physikalischen Abstand D an. 

Als Entwicklung nach Potenzen von H0D/c gilt die Relation unter der Einschrän-

kung H0D/c < 1. 

Die Auswertung der Rotverschiebungs-Abstands-Relation erfordert die Mes-

sung des Abstands D weit entfernter Galaxien. Diese Messung wird im nächsten

Kapitel diskutiert; danach werden numerische Werte für H0 und q0 angegeben. Es

sei bereits jetzt angemerkt, dass H0 positiv ist, also dass der Kosmos zur Zeit ex-

pandiert. 

Weltalter

Wenn man die heutige Expansion des Kosmos zurückverfolgt, kommt man (in den

meisten Weltmodellen, Kapitel 53 – 55) schließlich zu R = 0, also zu einer Singu-

larität. Im Rahmen unserer Beschreibung ist dies der Beginn der Welt (t = 0), und

der heutige Zeitpunkt t0 ist gleich dem  Alter der Welt. Der Wert für das Weltalter t0

wird später in (54.16) angegeben und diskutiert. 

Wie schon die Bezeichnung  Weltmodell (für die großräumige Beschreibung der

Dynamik der Massenverteilung), so ist auch die Bezeichnung von t0 als  Weltalter

eher anmaßend. Inhaltlich ist t0 einfach die Zeitspanne, über die wir die Bewegung

der Massen im Universum maximal zurückverfolgen können. Da diese Extrapolati-

on in einer Singularität endet, können wir keine Aussagen zum Zustand der Welt zur

Zeit t < 0 machen. Die Zeitspanne t0 charakterisiert daher vor allem die zeitliche

Begrenzung unserer (heutigen) Erkenntnis. 

Welthorizont

Aus R(t1) → 0 für t1 → 0 und (51.8) folgt

t

z 1→0

−→ ∞

(51.16)

Licht, das uns heute (t0) erreicht, kann daher maximal während der Zeit von t1 = 0

bis t0 unterwegs gewesen sein. Damit gibt es auch eine maximale Entfernung D0

zur Quelle dieses Lichts. Wir können nur Objekte sehen, deren Abstand kleiner

als D0 ist. Das heißt, dass es einen Horizont gibt, über den wir nicht hinaussehen

können. Wir berechnen den Radius D0 dieses  Welthorizonts 1. 

Wir betrachten wieder dieselbe Lichttrajektorie wie in (51.1) und (51.2). Für

Licht, das von t1 = 0 bis t0 unterwegs war, ergibt sich der (heutige) Abstand zwi-

schen Quelle und Empfänger:





t0

t0 c dt

D0 = R0

dχ = R0

(51.17)

0

0

R(t )

1Nach Rindler [4] unterscheidet man zwischen  Teilchenhorizont  und  Ereignishorizont. Der  Teilchenhorizont  ist der hier betrachtete Horizont, während der  Ereignishorizont  den Bereich abgrenzt, der für uns auch in Zukunft nicht sichtbar wird. Wir vermeiden daher hier die naheliegende Bezeichnung „Ereignishorizont“ für D0 und sprechen von Horizont oder Welthorizont. 
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In Kapitel 54 werden wir dieses Integral auswerten. Für D → D0 geht t1 → 0. 

Für Licht aus der Nähe des Horizonts D0 geht die Rotverschiebung daher gegen

unendlich:

z → ∞ für D → D0

(51.18)

Für Galaxien wurden Werte bis zu z ≈ 9.5 beobachtet. Licht vom Horizont oder

aus Bereichen jenseits des Horizonts kann uns nicht erreichen. Über diesen Teil des

Kosmos können wir daher nur spekulieren. 

Meist versteht man unter „Kosmos“ nur den für uns sichtbaren Teil mit dem

Radius D0. Wenn die Größe des Weltalls angegeben wird, dann handelt es sich um

diese Größe. 

Gelegentlich findet man folgende Begründung des Horizonts: „Die Geschwin-

digkeit von Galaxien relativ zu uns ist proportional zum Abstand. Daher gibt es

einen Abstand, bei dem die Relativgeschwindigkeit gegen c und damit die Rotver-

schiebung z gegen unendlich geht.“ Der letzte Argumentationsschritt benutzt den

Dopplereffekt. Die Formel für den relativistischen Dopplereffekt (mit z → ∞ für

v → c) gilt aber nur in Inertialsystemen (oder Lokalen IS), also nicht für kosmische

Entfernungen. Insofern ist diese Argumentation ungültig. Da sie aber bis auf Fakto-

ren der Größe O(1) das richtige Ergebnis liefert, kann man sie als elementarisierte

Darstellung zulassen. 

Überlichtgeschwindigkeiten

In einem offenen Universum (k = 0 oder −1) ist die kosmische Fluchtgeschwin-

digkeit zweier frei fallender Galaxien nicht begrenzt:

d 



dR

t = t

χ →∞

v

0

kosm =

R χ =

χ

= H0 R0 χ −→ ∞

(51.19)

dt

dt

Zur Veranschaulichung betrachte man etwa eine Ebene, in der  alle  Abstände (zwi-

schen Punkten mit bestimmten Koordinaten) linear mit R(t ) anwachsen. Die Me-

trik in dieser Ebene lautet ds2 = c2dt2 − R(t)2 (dx2 + dy2); dies entspricht der

Robertson-Walker-Metrik mit k = 0. Die mit dieser Metrik berechnete Relativ-

geschwindigkeit zweier fester Koordinatenpunkte ist offensichtlich unbegrenzt (für

˙

R = 0). Insbesondere sind für diese Relativgeschwindigkeit Überlichtgeschwindig-

keiten möglich, also vkosm > c. 

Wie sind solche Überlichtgeschwindigkeiten zu werten? Stehen sie nicht im Wi-

derspruch zur SRT? In einer Reihe von Punkten stellen wir noch einmal die Grund-

lage der benutzten Metrik klar und erläutern (formal und physikalisch), warum sich

kein Widerspruch zur SRT ergibt:

1. Die  beobachtete  kosmische Expansion bezieht sich auf Objekte, mit denen

wir kausal verbunden sind, also auf eine raumzeitliche Umgebung unserer

Position im Universum. Durch eine Homogenitäts- und Isotropieannahme

(kosmologisches Prinzip) wird diese beobachtete Expansion auf den  ganzen

Raum übertragen. Das kosmologische Prinzip ist offensichtlich die einfachst
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mögliche Annahme zur Festlegung der Metrik. Mit dieser Annahme geben

wir auch die Metrik für Bereiche an, mit denen wir kausal nicht verbunden

sind. Für diese Bereiche ist die kosmische Fluchtgeschwindigkeit (51.19) eine

theoretische, in der RWM berechnete Größe. 

Konkret: Zwei Galaxien ohne Eigenbewegung haben die Positionen χ1 und

χ2. Ihre Relativgeschwindigkeit vkosm = H0 R0 |χ2 − χ1| kann zusammen

mit dem Wert von |χ2 − χ1| beliebig groß sein. Diese Relativgeschwindigkeit

beruht darauf, dass die beiden Galaxien sich mit dem Raum bewegen; sie

schwimmen im expandierenden Raum mit. 

2. Die Spezielle Relativitätstheorie (SRT) gilt nur in Inertialsystemen. In der

RWM gibt es nur Lokale Inertialsysteme; die RWM kann nur lokal durch

ds ≈ ηαβ dxα dxβ angenähert werden. Nur in diesen Lokalen IS gelten die

Gesetze der SRT. (Lediglich für k = 0  und ˙

R = 0 gäbe es ein globales IS.)

Ein Lokales IS ist zum Beispiel für den Bereich unserer Galaxie möglich. 

Nur in Lokalen IS ist die Lichtgeschwindigkeit gleich c (und zwar unabhän-

gig von der Bewegung des IS); nur hier ist c eine Obergrenze für die Bewe-

gung materieller Teilchen. Es gibt aber kein IS, in dem wir die Bewegung von

sehr weit entfernten Galaxien beschreiben können. Dies gilt insbesondere für

Galaxien in der Nähe oder jenseits des Welthorizonts. 

3. Ein Lokales IS ist im Bereich unserer Milchstraße möglich, ein anderes Lo-

kales IS ist im Bereich einer sehr weit entfernten Galaxie möglich. Da diese

Lokalen IS keine (globalen) IS sind (Kapitel 10), können sie sich relativ zu-

einander auch mit Überlichtgeschwindigkeit bewegen. 

Eine ausführliche Diskussion der Überlichtgeschwindigkeiten im Kosmos wird von

T. M. Davis und C. H. Lineweaver in  Expanding confusion: common misconcep-

 tions of cosmological horizons and the superluminal expansion of the Universe, 

www.arxiv.org astro-ph/0310808, gegeben. 

Zusammenfassend sei noch einmal festgestellt: Die RWM ist ein Ansatz, mit

dem wir die Beobachtungen in einem  endlichen  Gebiet auf den  gesamten  Raum

übertragen. Die Übertragung auf den gesamten Raum ist die einfachst mögliche

Annahme, die zu einer bestimmten Metrik führt. Die Annahme ist aber nicht verifi-

zierbar, da die Beobachtungen auf das endliche sichtbare Gebiet begrenzt sind. 
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Aufgabe

 51.1 Impulse massiver Teilchen in RWM

Man zeige, dass die Impulse frei fallender, massiver Teilchen in der Robertson-

Walker-Metrik sich gemäß

p(t ) R(t ) = const. 

ändern. Es genügt dabei, die Metrik ds2 = c2 dt2 − R(t)2 dχ 2 zu betrachten. 









52 Kosmische Entfernungsleiter

Wir skizzieren die kosmische Entfernungsleiter, mit deren Hilfe die Abstände von

Sternen und Galaxien gemessen werden. Aus der gleichzeitigen Messung von Ab-

ständen und Rotverschiebungen können die Hubble-Konstante H0 und der Verzö-

gerungsparameter q0 bestimmt werden. 

Zentraler Bestandteil jeder Entfernungsmessung ist der Vergleich der scheinbaren

( ) und der absoluten (L) Luminosität von Sternen oder Galaxien. Dabei ist  die

Energiestromdichte, die wir auf der Erde empfangen, und L ist die von der Quelle

ausgesandte Leistung. Wenn die Leistung L isotrop abgegeben wird, dann verteilt

sie sich gleichmäßig auf die Fläche F , die durch einen konstanten Abstand D gege-

√

ben ist, also l = L/F . Im euklidischen Raum ist F = 4πD2, also D =

L/4π. 

Wir definieren den  Luminositätsabstand  L

DL =

(52.1)

4π

Im euklidischen Raum ist DL gleich dem tatsächlichen Abstand D, 

D = DL

im euklidischen Raum

(52.2)

In der Robertson-Walker-Metrik (RWM) weicht DL von D ab; diese Abweichungen

werden unten angegeben. 

Um den Abstand D aus der messbaren Luminosität  zu erhalten, muss man

die absolute Helligkeit L des betrachteten Objekts kennen. Es gibt eine Reihe von

Sterntypen, die durch bestimmte Charakteristika (etwa ihre Spektralverteilung) er-

kannt werden können, und deren Luminosität L nur in engen Grenzen variiert. Sol-

che Sterne kommen auch in unserer näheren Umgebung vor, für die wir den Abstand

direkt bestimmen können. Für diese Sterne können wir also  und D unabhängig

voneinander messen und daraus L bestimmen. 

Der Abstand näher gelegener Sterne kann durch  Triangulation  gemessen wer-

den (Abbildung 52.1). Hierzu verwenden wir den Durchmesser der Erdbahn als

Basislänge Δ ∼ 103 Lichtsekunden; diese Größe selbst kann etwa durch Radar-

echomessungen im Sonnensystem bestimmt werden. Von zwei gegenüberliegenden

Punkten der Erdbahn erscheinen nun Sterne unter etwas verschiedenem Winkel. 

Falls der Stern senkrecht zur Basislinie steht (wie in Abbildung 52.1), folgt aus der

beobachteten Winkeldifferenz δ der Abstand

Δ

D =

(52.3)

δ
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Abbildung 52.1 Von zwei entgegengesetzten Punkten der Erdbahn (Durchmesser Δ) er-

scheint ein Stern unter Winkeln, die sich um δ ≈ Δ/D unterscheiden. Für nicht zu weit

entfernte Sterne ist diese Winkeldifferenz beobachtbar. Am Sternhimmel erscheint der Stern

dann leicht verschoben gegenüber den meisten anderen Sternen, für die wegen ihrer großen

Entfernung δ ≈ 0 gilt. 

Messbar ist der Winkel δ aber nur für die Sterne, die innerhalb einer Entfernung von

etwa 30 pc liegen1; dies sind einige tausend Sterne. Beobachtet wird δ dabei relativ

zu weit entfernten Sternen mit δ ≈ 0. Man macht also etwa im Winter und im

Sommer eine Aufnahme eines bestimmten Himmelsgebiets. Auf den beiden Fotos

erscheinen dann einige Sterne verschoben (gegenüber den meisten anderen). Dies

sind näher gelegene Sterne. Aus der Verschiebung eines solchen Sterns auf den

Fotos folgen δ und damit der Abstand D. Aus dem Abstand D und der gemessenen

Luminosität  ergibt sich dann die absolute Helligkeit L des betrachteten Sterns. 

Mit dieser Methode legt man nun eine Liste der absoluten Luminositäten L

bestimmter Sterntypen an. Bei weiter entfernten Objekten mit bekanntem L ergibt

dann die alleinige Messung von  den Abstand. Dabei kann die Referenzliste für

Sterntypen mit bekannten L sukzessive auf andere Objekte erweitert werden. Dieses

Vorgehen beginnt mit der Triangulation und endet mit der Entfernungsbestimmung

aus der Rotverschiebungs-Abstands-Relation. Da die einzelnen Schritte aufeinander

aufbauen, heißt dieses Verfahren auch  kosmische Entfernungsleiter. Dabei bedingen

Unsicherheiten auf einzelnen Sprossen der Leiter zunehmende Fehlermöglichkeiten

für die höheren Sprossen. Wir skizzieren hier einige mögliche Sterntypen, die auf

dieser Leiter weiterführen:

1. Im Hertzsprung-Russell-Diagramm wird die absolute Helligkeit über dem

Frequenzmaximum aufgetragen. Das Frequenzmaximum ist durch die Ober-

flächentemperatur T bestimmt (Plancksche Strahlungsverteilung). Für die so-

genannten  Hauptreihensterne  steigt L mit T an. Zunächst wird die funktio-

nale Abhängigkeit

L = L(T )

(Hauptreihensterne)

für nähergelegene Hauptreihensterne bestimmt, deren Abstand D durch Tri-

angulation gemessen wurde. 

Mit der nunmehr bekannten Relation L(T ) können die Abstände weiter ent-

fernter Hauptreihensterne bestimmt werden (aus der Messung der scheinba-

1Astronomische Entfernungen werden in Lichtjahren (Lj) oder Parsec (pc) angegeben. Es gilt

1 pc ≈ 3.26 Lj. 
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ren Luminosität und des Frequenzmaximums). Dieses Verfahren funktioniert

bis zu Abständen von etwa 100 kpc. Somit können Entfernungen in unserer

eigenen Galaxie, der Milchstraße mit etwa 1010 Sternen, vermessen werden. 

Das Verfahren eignet sich nicht für weiter entfernte Galaxien, da hierfür die

Luminosität  der Hauptreihensterne zu gering ist. 

2. Es gibt Sterne, deren Helligkeit periodisch schwankt. Die absolute Lumino-

sität L dieser sogenannten δ-Cepheiden ist eine Funktion der Periode τ der

Schwankung:

L = L(τ )

(δ-Cepheiden)

Im bekannten Entfernungsbereich (Punkt 1) wird zunächst diese Funktion

bestimmt. Dann werden die scheinbare Luminosität  und die Periode τ von

weiter entfernten Cepheiden gemessen. Aus τ folgt dann L, und aus L und 

folgt der Abstand D. Hierdurch kann man Entfernungen bis zu etwa 20 Mpc

bestimmen. Damit kann neben der Lokalen Gruppe (umfasst etwa 20 Galaxi-

en) auch der große Virgo-Galaxienhaufen vermessen werden. 

3. Als Standardkerzen (Objekte mit bekannter absoluter Luminosität) eignen

sich insbesondere Supernovae (Kapitel 47) vom Typ Ia. Dies sind Weiße

Zwerge, deren Masse sich der Grenzmasse MC (Kapitel 41) nähert. Diese

Supernovae haben etwa die gleiche (zeitabhängige) absolute Luminosität. Mit

Hilfe dieser Standardkerzen erreicht man Abstände bis etwa 1010 pc, also Ent-

fernungen in der Nähe des Welthorizonts. 

4. Man kann annehmen, dass die hellsten Sterne in einer Galaxie etwa die glei-

che absolute Helligkeit L = Lmax Die analoge Annahme kann man für die

hellsten Galaxien in Galaxienhaufen machen. Diese weniger spezifische Me-

thode kann die anderen ergänzen. 

Insbesondere in den neunziger Jahren des letzten Jahrhunderts sind mit Hilfe großer

Teleskope (wie dem Hubble-Space-Teleskop2) wesentliche Fortschritte in der Ent-

fernungsbestimmung erzielt worden. Zunächst wurde mit der Methode 2 die lokale

Abstandsskala (≤ 20 Mpc) quantitativ abgesichert. Dann wurde in diesem Bereich

die absolute Luminosität von Supernovae genau bestimmt. Danach wurden die Ent-

fernungsmessungen nach der Methode 3 durchgeführt. Dabei wurden Supernovae

mit Rotverschiebungen bis nahe z = 2 beobachtet. Diese Fortschritte führten zu

relativ eindeutigen Werten für H0 und q0 (letzter Absatz dieses Kapitels). 

Aus den so gewonnenen Abständen D und der zugleich gemessenen Rotver-

schiebung z stellt man fest, dass der systematische Zusammenhang (51.15) zwi-

schen z und D tatsächlich gilt. Danach kann (51.15) selbst zur Entfernungsmes-

sung benutzt werden. Man misst also die Rotverschiebung eines Objekts (etwa eines

Quasars) und erhält dann aus (51.15) seine Entfernung. Damit endet die kosmische

Entfernungsleiter, die hier nur grob skizziert wurde. 

2http://hst.stsci.edu/
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Die Abstandsbestimmung von Galaxien führt zu Aussagen über die räumliche

Verteilung. Dabei stellt man Ungleichmäßigkeiten in der Verteilung der sichtba-

ren Materie fest; die Galaxien scheinen fadenähnliche Muster zu bilden. Solche

Ungleichmäßigkeiten bedeuten Abweichungen von der im kosmologischen Prinzip

angenommenen Symmetrie. Sie haben sich aus sehr kleinen Fluktuationen in dem

frühen Kosmos entwickelt, die sich unter dem Einfluss der Gravitation verstärkt ha-

ben. Die relativ große Gleichmäßigkeit des frühen Universums ist aber heute noch

in der kosmischen Hintergrundstrahlung (Kapitel 55) sichtbar. 

Entfernungsmessung in der RWM

Bisher sind wir von einem euklidischen Raum ausgegangen, also von (52.2). Wir

untersuchen jetzt die Modifikationen, die sich aus der Nicht-Euklidizität des Raums

ergeben. 

Wir betrachten zunächst wieder die Triangulation. Wir gehen vom Wegelement

(50.11) der Robertson-Walker-Metrik (RWM) aus, legen den Abstand Erde-Stern

in χ -Richtung (D = R χ ) und identifizieren den kleinen Öffnungswinkel δ mit dθ. 

Dann folgt aus (50.11) für die Basislänge Δ, 

Δ = f (χ ) R δ

(52.4)

Hierin setzen wir R = D/χ ein, 

Δ

χ

D =

(52.5)

δ f (χ )

Der Faktor χ /f (χ ) gibt den Effekt der Raumkrümmung an. Aus der Diskussion des

Weltzustands in Kapitel 54 wird sich ergeben, dass ein möglicher Krümmungsradi-

us R von der Größe des sichtbaren Universums (einige 1010 Lj) ist. Da die Triangu-

lation auf Entfernungen D ≤ 102 Lj beschränkt ist, sind die Korrekturen gegenüber

dem euklidischen Raum vernachlässigbar klein:

f (χ )/χ = 1 + O(D/R) = 1 + O(10−8)

(52.6)

Alle Stufen der kosmischen Entfernungsleiter, die auf die Triangulation folgen, be-

ruhen auf dem Vergleich von  und L; sie ergeben also zunächst DL. Hieraus ist

dann D zu bestimmen. Wir leiten die Beziehung zwischen DL und D ab. 

Die von einem Objekt ausgesandten Photonen verteilen sich im Abstand D =

R χ auf die Fläche

F = 4π f (χ )2 R(t0)2

(52.7)

Wir betrachten Photonen, die wir heute (t0) auf dieser Fläche empfangen. Wegen

g00 = 1 kommen die im Intervall Δt von der Quelle ausgesandten Photonen auch

während des Intervalls Δt beim Empfänger an. Nach (51.1) verteilen sich diese

Photonen aber auf unterschiedliche Strecken Δχ in Ausbreitungsrichtung:

c Δt

c Δt

Δχ1 =

und

Δχ0 =

(52.8)

R(t1)

R(t0)
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Bei Expansion (R(t0) > R(t1)) werden die Photonen ausgedünnt; die ankommende

Energiestromdichte  erhält einen Reduktionsfaktor R(t1)/R(t0) . Einen weiteren, 

gleich großen Faktor ergibt die Frequenzänderung (und damit Energieänderung) der

Photonen gemäß (51.5), R(t ) ν(t ) = const. Deshalb erhalten wir insgesamt für die

scheinbare Luminosität

L

R(t1)2

 =

(52.9)

4πf (χ )2 R(t0)2 R(t0)2

Hieraus und aus (52.1) ergibt sich

f (χ ) R(t





0)2

f (χ )

DL =

= D 1 + z

(RWM)

(52.10)

R(t1)

χ

Im letzten Schritt wurden (51.8), R(t0)/R(t1) = 1 + z und D = R(t0) χ verwendet. 

Damit haben wir den in der RWM gültigen Zusammenhang zwischen D und DL

hergestellt. Die Korrekturen zu D ≈ DL hängen von der messbaren Rotverschie-

bung z und dem Faktor f (χ )/χ ab, der durch die Raumkrümmung bestimmt ist. 

Zumindest der Korrekturfaktor 1 + z muss bei großen Entfernungen berücksichtigt

werden. 

Bestimmung der Hubble-Konstanten und des Verzögerungsparameters

Wir diskutieren die Bestimmung der Hubble-Konstanten H0 und des Verzögerungs-

parameters q0 aus der Rotverschiebungs-Abstands-Relation (51.15). 

Für zahlreiche Objekte seien die Rotverschiebung z und der Abstand D be-

stimmt. Wie in Abbildung 51.1 trägt man ln z über ln D auf. Dabei stellt man

fest, dass die lineare Näherung zkosm ≈ H0D/c über einen Bereich von mehreren

Dekaden gut erfüllt ist. Für sehr entfernte Objekte ergeben sich Abweichungen zu

höherem z. Aus diesen experimentellen Befunden erhält man:

1. Bestätigung der Annahme einer homogenen und isotropen Expansion des

Weltalls, also des kosmologischen Prinzips mit ˙

R > 0. 

2. Bestimmung der Hubble-Konstanten H0 und des Verzögerungsparameters q0. 

Hubble selbst erhielt 1929 den Wert H0 ≈ 500 km/s/Mpc. Bis etwa Mitte der

1990er Jahre gab es eine Jahrzehnte dauernde Kontroverse verschiedener For-

schungsgruppen um den richtigen Wert; zur Diskussion standen Werte um 50 und

um 100, mit sich gegenseitig ausschließenden Fehlergrenzen. Diese Kontroverse

spiegelt die Schwierigkeiten der Entfernungsbestimmung wider. Mittlerweile be-

steht Einigkeit über einen Wert bei 70. Neuere Auswertungen [10] ergeben



 km/s

H0 = 71.0 ± 2.5

(52.11)

Mpc

Verantwortlich für die mittlerweile erzielte weitgehende Einigkeit über den Wert

von H0 sind die oben skizzierten Erfolge bei der Entfernungsbestimmung, die ins-

besondere mit dem Hubble-Space-Teleskop2 erzielt wurden. Der Wert von H0 ist so
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zu interpretieren, dass sich zum Beispiel Galaxien im Abstand von 107 Lj mit einer

Geschwindigkeit von etwa 200 km/s von uns weg bewegen, und die zehnmal weiter

entfernten dann mit 2 000 km/s. 

Der Verzögerungsparameter wurde zu

q0 = −0.60 ± 0.04

(52.12)

bestimmt [10]. Der negative Wert von q0 bedeutet, dass sich die Expansion des

Weltalls  beschleunigt. Die Beziehung von q0 zu anderen kosmologischen Parame-

tern wird in Kapitel 54 angegeben. 

Die inverse Hubble-Konstante

1 ≈ 14 · 109 a

(52.13)

H0

legt, wie wir noch im Einzelnen sehen werden, die Skala für das Weltalter fest. 

Abschließend gehen wir noch auf einen Punkt ein, der bei dieser Auswertung

der Rotverschiebungs-Abstands-Relation berücksichtigt werden muss: Die  Eigen-

 bewegung  der Quelle und des Empfängers führt zu Rotverschiebungen, die der kos-

mologischen Rotverschiebung überlagert sind. Die Eigenbewegung unseres eigenen

Standpunkts kann man durch den Dopplereffekt in der kosmischen Hintergrund-

strahlung (Kapitel 55) bestimmen. Die wichtigsten Ergebnisse sind:

1. Die Eigenbewegung unseres Beobachtungspunkts (etwa 400 km/s) ergibt

sich aus der Bewegung der Erde um die Sonne (30 km/s), der Bewegung

unserer Sonne innerhalb der Milchstraße (230 km/s) und aus der Bewegung

der Milchstraße (etwa 500 bis 600 km/s). 

2. Die Milchstraße gehört zum Virgo-Galaxienhaufen. Die Milchstraße bewegt

sich (zusammen mit der Lokalen Gruppe) mit etwa 200 km/s auf das Zentrum

dieses Galaxienhaufens zu. Der Virgo-Galaxienhaufen selbst bewegt sich mit

etwa 400 km/s in Richtung auf den Galaxienhaufen Hydra-Centaurus. Um

diese Bewegung zu erklären, benötigt man große Massen, die über lange

Zeit gravitativ gewirkt haben. Dies führte Mitte der 1980er Jahre zu der Ver-

mutung, dass es hinter dem Galaxiencluster Hydra-Centaurus einen für uns

nicht sichtbaren Galaxiensuperhaufen gibt. Dieser Galaxiensuperhaufen wird

Großer Attraktor genannt. Er sollte etwa die Masse 5 · 1016 M und den Ab-

stand 50 Mpc haben. 

Die Eigenbewegung der Erde hat damit insgesamt eine Geschwindigkeit, die etwa

gleich der kosmologischen Geschwindigkeit im Abstand D = 3 · 107 Lj ist. Bei

der Auswertung der Rotverschiebungs-Abstands-Relation kann die Eigenbewegung

daher nur für sehr große Entfernungen (etwa für D > 3 · 109 Lj) vernachlässigt

werden. 









53 Weltmodelle

Wir wenden die Einsteinschen Feldgleichungen auf das Universum insgesamt an. 

Unter vereinfachenden Annahmen erhalten wir Weltmodelle, die die zeitliche Ent-

wicklung der Materieverteilung und des Gravitationsfelds des Kosmos beschreiben. 

Für die Massenverteilung gehen wir vom kosmologischen Prinzip aus. Dann kann

die Dynamik des Raums durch die Robertson-Walker-Metrik (RWM) beschrieben

werden. Der metrische Tensor der RWM lautet









gμν = diag 1, − R(t)2 , −R(t)2 r2 , −R(t)2 r2 sin2 θ

(53.1)

1 − k r2

Dieser metrische Tensor ist der Lösungsansatz für die Einsteinschen Feldgleichun-

gen (21.30) mit der kosmologischen Konstanten, 





Rμν − Λ gμν = − 8πG Tμν − T gμν

(53.2)

c 4

2

Die kosmologische Konstante Λ ist für die Dynamik des Kosmos insgesamt von

Bedeutung und wird daher jetzt berücksichtigt. 

Die Materie des Universums betrachten wir im Großen und im Mittel als konti-

nuierliche, ideale Flüssigkeit mit dem Energie-Impuls-Tensor (20.29), 





Tμν =  + P /c2 uμ uν − gμν P

(53.3)

Nach dem kosmologischen Prinzip sind die Massendichte  und der Druck P räum-

lich homogen, also

(r, t ) = (t) , 

P (r, t ) = P (t)

(53.4)

Die Galaxien, die (nach einer räumlichen Mittelung) die Massendichte (t ) bilden, 

haben Bahnen der Form xi = const., (50.2). Aus ui = dxi/dτ = 0, g00 = 1 und

gμν uμuν = gμν uμ uν = c2 folgt dann

 

 

uμ = uμ = (c, 0, 0, 0)

(53.5)

Damit wird der Energie-Impuls-Tensor zu





P R2

(Tμν) = diag  c2, 

, P R2 r2, P R2 r2 sin2 θ

(53.6)

1 − k r2

322



















Kapitel 53 Weltmodelle

323

Er hat die Spur

T = T λλ = gμν Tμν =  c2 − 3P

(53.7)

In die Ausdrücke (46.8) – (46.11) für den Ricci-Tensor setzen wir V = R2 r2 und

U = R2/(1 − k r2) ein. Dies ergibt

R00 = 3 ¨

R

(53.8)

R





R11 = −

1

R ¨

R + 2 ˙

R2 + 2k

(53.9)

1 − k r2





R22 = −r2 R ¨

R + 2 ˙

R2 + 2k

(53.10)

und R33 = R22 sin2 θ; alle anderen Rμν verschwinden. Die 00-Komponente der

Feldgleichungen (53.2) liefert





3 ¨

R − ΛR = −4πG  c2 + 3P R

(53.11)

c 4

Die räumlichen Komponenten ergeben alle dieselbe Gleichung





R ¨

R + 2 ˙

R2 + 2k − ΛR2 = 4πG  c2 − P R2

(53.12)

c 4

Damit haben wir aus den Feldgleichungen zwei Differenzialgleichungen für die

drei Funktionen R(t ), (t ) und P (t ) erhalten. Zur Lösung benötigen wir als dritte

Beziehung noch eine Zustandsgleichung P = P (). Hierfür betrachten wir zwei

Grenzfälle:

P

= 0

(Inkohärente Materie)

(53.13)

 c2

P

=

(Strahlungsdominanz)

(53.14)

3

Die erste Gleichung setzt nichtrelativistische Teilchen und P   c2 voraus. Hier-

zu stellen wir uns das Universum als inkohärente Ansammlung von Teilchen mit

nichtrelativistischen Geschwindigkeiten vor. Die Massendichte ist dann durch die

Ruhmassen der Teilchen dominiert. Dies ist eine brauchbare Näherung für unser

heutiges Universum (mit Galaxien als Teilchen und dxi/dt = 0 für typische Ga-

laxien). Die zweite Zustandsgleichung gilt exakt für elektromagnetische Strahlung

und näherungsweise für hoch relativistische Teilchen. Diese Näherung ist für das

sehr frühe Universum (Kapitel 55) angemessen. 

Wir lösen (53.11) nach ¨

R auf und setzen dies in (53.12) ein:

˙

R2 + k − 1 ΛR2 = 8πG  R2

(53.15)

3

3 c2

Wir differenzieren dies





2 ˙

R ¨

R − 2 ΛR ˙

R = 8πG 2R ˙

R  + R2 ˙

(53.16)

3

3 c2
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und ziehen hiervon die mit 2 ˙

R/3 multiplizierte Gleichung (53.11) ab:





P

˙ = − 3 ˙R  +

(53.17)

R

c2

Für (53.13) erhalten wir hieraus die Massenerhaltung, 

mat(t) R(t)3 = const. 

(P = 0,  = mat)

(53.18)

Wir bezeichnen eine materiedominierte Massendichte mit mat, eine strahlungsdo-

minierte dagegen mit str. Für (53.14) folgt aus (53.17):

str(t) R(t)4 = const. 

(P =  c2/3,  = str)

(53.19)

Für eine gemeinsame Diskussion dieser beiden Fälle setzen wir  = mat + str

und nehmen an, dass (53.18) und (53.19) separat gelten. Dies ist dann zulässig, 

wenn Strahlung und Materie nicht miteinander wechselwirken, oder wenn einer der

beiden Terme die Dichte  dominiert, so dass der andere vernachlässigt werden

kann. Wir verwenden die Abkürzungen

Km = 8πG mat R3 = const., 

Ks = 8πG str R4 = const. 

(53.20)

3 c2

3 c2

und setzen  = str + mat auf der rechten Seite von (53.15) ein. Die resultierende

Bewegungsgleichung für den Skalenfaktor R(t ) lautet dann

˙

Ks

Km

R2 −

−

− 1 ΛR2 = −k

Friedmannmodell

(53.21)

R2

R

3

Diese Gleichung kann in der Form ˙

R2 + V (R) = −k mit dem effektiven Potenzial

V (R) = − Ks − Km − 1 ΛR2

(53.22)

R2

R

3

geschrieben werden. Dieses Potenzial ist in Abbildung 53.1 skizziert. Die Größen

V (R), ˙

R = dR/d(c t) und k sind dimensionslos. Die Bewegungsgleichung (53.21)

für R(t ) ist das zentrale Ergebnis dieses Kapitels. 

Der kosmische Skalenfaktor R(t ) bestimmt die Dynamik der mittleren Massen-

verteilung im Kosmos, und damit das Gravitationsfeld und die Metrik. Daher sind

durch (53.21) Modelle für den Kosmos insgesamt gegeben; sie heißen  Weltmodel-

 le  oder  Friedmannmodelle. Verschiedene konkrete Modelle werden durch die Wahl der Konstanten k, Λ, Km und Ks definiert; die tatsächliche Lösung R(t) hängt au-

ßerdem noch von den Anfangsbedingungen R(0) und ˙

R(0) ab. 
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6V (R)

Λ < 0

−k ······ ······ ······ ······ ······ ······ ······ ······ ······ ······ ······ ······ ······ ······ ······ ······ ·

6

Rstat

0

-

R

Λ = 0

˙R2

? 

Λ > 0

························································································································

··························································································································

····························································································································

·············

Abbildung 53.1 Das effektive Potenzial V (R) für die kosmologische Bewegungsglei-

chung ˙

R 2 +V (R) = −k. Der Abstand zwischen der Horizontalen bei −k (in der Abbildung

wurde k < 0 angenommen) und V (R) ergibt ˙

R 2. Die möglichen Lösungen für den kosmi-

schen Skalenfaktor R(t) hängen vom Vorzeichen der kosmologischen Konstanten Λ ab. Für

Λ > 0 ist eine statische (aber instabile) Lösung R(t) = Rstat = const. am Maximum des

Potenzials möglich. 

Allgemeine Diskussion

Zur Diskussion der Lösungen ist das effektive Potenzial V (R) in Abbildung 53.1

skizziert. Hierfür wurde Ks = 0 angenommen; denn die Terme Ks/R2 und Km/R

verhalten sich im Maßstab von Abbildung 53.1 ähnlich. 

In Abbildung 53.1 ist der Abstand zwischen V (R) und der Horizontalen −k

gleich ˙

R2. Wenn man nun noch einen Anfangswert für R(t ) und das Vorzeichen

von ˙

R vorgibt, dann kann man die Lösung graphisch konstruieren. 

Für R → 0 dominieren die Terme proportional zu −1/R oder −1/R2, 





K

t 1/2

R →

s/R 2

0 :

˙R2 ≈

−→ R(t) ∝

(53.23)

Km/R

t 2/3

In realistischen Modellen gilt Ks = 0. Die Strahlungsdominanz (ausgedrückt durch

Ks/R2 > Km/R) besteht aber nur während eines sehr kurzen Zeitraums (etwa von

t = 0 bis t = 10−6 t0, wobei t0 das Weltalter ist). In den folgenden graphischen

Darstellungen kommt daher nur das Verhalten R(t ) ∝ t1/2 zum Ausdruck. 

Nach (21.32) entspricht die kosmologische Konstante der Energiedichte Λ c2 =

(c4/8πG)Λ. Daher wird man erwarten, dass Λ positiv ist. In diesem Fall wirkt der
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Term mit Λ antigravitativ: Die Terme −Km/R und −ΛR2/3 haben im Potenzial

(53.22) dasselbe Vorzeichen; die zugehörigen Kräfte −dV /dR haben dagegen ver-

schiedene Vorzeichen. Die gewöhnliche Massendichte wirkt in Richtung auf eine

Kontraktion, der Λ-Term dagegen in Richtung auf eine Expansion. 

Für Λ > 0 und hinreichend große R divergiert die Lösung





ΛR2



R → ∞ :

˙R2 ≈

, 

R(t ) ≈ R(0) exp

Λ/3 c t

(53.24)

3

Dies bedeutet eine exponentiell beschleunigte Expansion. Eine solche beschleunigte

Expansion erhält man auch, wenn Λ so groß ist, dass der Λ-Term die Bewegungs-

gleichung (53.21) dominiert. 

Seit den 1990er Jahren sind die Werte der kosmologischen Parameter relativ gut

bekannt; diese Werte und die zugehörige Lösung R(t ) werden in Kapitel 54 unter-

sucht. Früher wurden die Lösungsformen für alle möglichen (unbekannten) Werte

von k und Λ ausführlich diskutiert. Wir beschränken uns hier auf einige Grenzfälle, 

die teilweise von historischem Interesse sind. 

Newtonscher Grenzfall

Ohne die kosmologische Konstante und für ein materiedominiertes Universum (also

Ks = 0) können wir (53.21) in der Form





M

dR 2

GM 2

−

= const. 

(53.25)

2

dt

R

schreiben; dabei ist M = (4π/3)mat R3 nach (53.18) konstant. Diese Gleichung

kann als Energiesatz interpretiert werden: „Kinetische + potenzielle Energie = kon-

stant“. Das Vorzeichen der Gesamtenergie (const. = − k Mc2/2 auf der rechten Sei-

te) wird von k bestimmt. Im analogen Zweikörperproblem (mit der Radialgleichung

m ˙r2/2 + Veff(r) = const.) entspricht k = 1 einer gebundenen Bewegung (Ellipse)

und k = −1 einer ungebundenen (Hyperbel); k = 0 ist der dazwischen liegen-

de Grenzfall (Parabel). Auf das Universum angewandt bedeutet dies: Für k = −1

überwiegt die kinetische Energie, und die jetzige Expansion des Weltalls wird im-

mer weitergehen. Für k = 1 ist dagegen Ekin + Epot < 0; dann ist das System

gebunden, und die heutige Expansion wird schließlich aufhören und in eine Kon-

traktion übergehen. Diese Lösungsformen sind in Abbildung (53.2) skizziert. 

Einstein-de Sitter-Universum

Wir betrachten nun den Wert Λ = 0 im Friedmannmodell (53.21). Auch in diesem

Fall werden die Lösungen durch Abbildung 53.2 dargestellt; denn die Unterschiede

zum Newtonschen Grenzfall sind kleiner als die Zeichengenauigkeit. 

Für k = 1 erhalten wir eine gebundene Bewegung. Für k = 0 geht die Ge-

schwindigkeit der Expansion langsam gegen null (wegen ˙

R2 ∝ 1/R), für k = −1

gegen eine Konstante. Das Weltmodell mit Λ = 0 und k = 0 heißt  Einstein-de

 Sitter-Universum. 
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6R(t)

Λ = 0

k = −1

k = 0

k = 1

·························································································

·····································································································

··········································································································· ·· ·· ·· ··

-

t

Abbildung 53.2 Zeitabhängigkeit des kosmischen Skalenfaktors R(t) im Newtonschen

Grenzfall. Die Fälle k = 1, k = 0 und k = −1 entsprechen im analogen Zweikörperproblem

der Ellipsen-, der Parabel- und der Hyperbelbahn. Die Form der Lösungen gilt auch für das

Friedmannmodell mit Λ = 0. Das Weltmodell mit Λ = 0 und k = 0 heißt Einstein-

de Sitter-Universum. 

6R(t)

Λ > Λkr

k = 1

Λ = Λkr (1 + ), Lemaître-Universum

····································································································································

·············································································································

-

t

Abbildung 53.3 Zeitabhängigkeit des kosmischen Skalenfaktors R(t) für Λ > Λkr und

k = 1. Falls Λ sehr nahe bei Λkr liegt, gibt es eine längerdauernde, annähernd stationäre

Phase (Lemaître-Universum). Die obere Kurve gibt auch den qualitativen Verlauf für Λ > 0

und k = 0, −1 wieder. 
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Statisches Weltall

In Abbildung 53.1 hat V (R) für Λ > 0 ein Maximum. Dann ist es möglich, dass

die Horizontale k = 1 die waagerechte Tangente an diesem Maximum ist. Hierfür

gilt dann ˙

R = 0. Dies ist die  statische  Einsteinlösung. 

Speziell für Ks ≈ 0 (gute Näherung außer für die sehr frühe Zeit des Univer-

sums) erhalten wir aus dV /dR = 0 und V = −k = −1 dann

Λ = Λkr =

4

und

R = Rstat = 3Km

(53.26)

9 K 2

2

m

Einstein hatte die kosmologische Konstante eingeführt, um eine solche statische

Lösung zu erhalten. Allerdings erkennt man mit Hilfe von Abbildung 53.1 sofort, 

dass diese Lösung instabil ist. Kleine Abweichungen genügen, um eine Kontraktion

oder Expansion einzuleiten. 

Später betrachtete Einstein die Einführung der kosmologischen Konstanten in

den Feldgleichungen als Fehler (und favorisierte damit den Wert Λ = 0 und insbe-

sondere das Einstein-de Sitter Universum). Fehlerhaft war aber nur die Begründung

des Terms (Ermöglichung einer statischen Lösung). Ansonsten ist dieser zusätzliche

Term in den Feldgleichungen aus heutiger Sicht theoretisch nahezu zwangsläufig, 

weil er mit den grundlegenden Symmetrieforderungen kompatibel ist. Praktisch ist

er notwendig, um das heutige Universum im Rahmen eines Friedmannmodells zu

beschreiben (Kapitel 54). 

Lemaître-Universum

Angenommen, die kosmologische Konstante übersteigt den kritischen Wert (53.26)

nur ein wenig, also Λ = Λkr (1 + ) mit   1. Dann liegt die Waagerechte für

k = 1 nur knapp über dem Maximum von V (R). Daher wird die Geschwindigkeit ˙

R

dort entsprechend klein und die Expansion erfährt eine Verzögerung (untere Kurve

in Abbildung 53.3). Dieses Szenario heißt Lemaître-Universum. 

Allgemein gilt, dass die Expansion des Universums im Bereich des Maximums

von V (R) abgebremst wird (obere Kurve in Abbildung 53.3). 





































54 Weltzustand

Wir untersuchen, inwieweit unser heutiger Kosmos im Rahmen eines Friedmann-

modells beschrieben werden kann. Dabei ergibt sich das Lambda–Dark Matter–

Modell als spezielles Friedmannmodell. Es wird durch den kosmologischen Term

und die Materiedichte dominiert. Dieses seit etwa 1997 favorisierte Modell be-

schreibt ein nicht (oder nur schwach) gekrümmtes Universum, dessen Expansion

sich beschleunigt. Wir diskutieren die Bedeutung des dominierenden kosmologi-

schen Terms. Zum Abschluss gehen wir noch auf das Olberssche Paradoxon ein. 

Die globale Bewegung des Universums wird durch (53.21) beschrieben. Im heuti-

gen Universum ist der Beitrag der Strahlungsdichte sehr klein. Mit Ks ≈ 0 erhalten

wir:

˙

Km

R2 −

− 1 ΛR2 = −k

(54.1)

R

3

Hierin ist ˙

R = dR/d(ct). Wir werten (54.1) für den heutigen Zeitpunkt t = t0 aus. 

Dabei verwenden wir die Bezeichnungen

H

˙

¨

0

R(t0)

R(t0) R0

R0 = R(t0) , 

=

, 

q0 = −

(54.2)

c

R

˙

0

R(t0)2

für den kosmischen Skalenfaktor, die Hubble-Konstante und den Verzögerungspa-

rameter. Außerdem führen wir die dimensionslosen Variablen

R(t )

x(τ ) =

und

τ = H0 t

(54.3)

R0

ein. Wir multiplizieren (54.1) mit c2/H 2 und mit 1/R 2 und erhalten nach einfacher

0

0

Rechnung





dx 2

Ω

− m − ΩΛ x2 = Ωk

(54.4)

dτ

x

Dabei haben wir die Abkürzungen

mat(t0)

Λ c2

k c2

Ωm =

, 

ΩΛ = 1

, 

Ωk = −

(54.5)

kr(t0)

3 H 2

R 2 H 2

0

0

0

eingeführt, wobei

kg

kr(t0) = 3H 2

0

≈ 0.93 · 10−26

(54.6)

8πG

m3
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die sogenannte  kritische Massendichte  ist. Für den numerischen Wert wurde (52.11)

verwendet. 

Heute, also für t = t0 gilt

$

dx $

x(t = t

$

0) = 1 , 

= 1

(54.7)

dτ $t=t0

Wir setzen dies in (54.4) ein und erhalten

Ωm + ΩΛ + Ωk = 1

(54.8)

Die dimensionslosen Größen Ωm, ΩΛ und Ωk charakterisieren die Massendichte, 

die kosmologische Konstante und die Krümmung des heutigen Universums. Die

Zahlen Ωm, ΩΛ und Ωk sind jeweils das Maß dafür, wie stark der Einfluss der

zugehörigen Größen (Massendichte, kosmologische Konstante, Krümmung) in der

Bewegungsgleichung (54.4) zum heutigen Zeitpunkt ist. 

Wir leiten eine ähnlich einfache Beziehung für den Verzögerungsparameter q0

ab. Dazu differenzieren wir (54.1) nach der Zeit, 

K

˙

m R

2 ˙

R ¨

R +

− 2 ΛR ˙

R = 0

(54.9)

R2

3

Wir multiplizieren dies mit R/ ˙

R3 und setzen wieder t = t0. Mit den Bezeichnungen

aus (54.2) und (54.5) erhalten wir

Ωm

q0 =

− ΩΛ

(54.10)

2

Im diskutierten Modell wird der heutige Weltzustand durch die fünf  kosmologische

 Parameter





Weltzustand := Ωm, ΩΛ, Ωk, H0, q0

(54.11)

beschrieben. Wegen (54.8) und (54.10) sind nur drei dieser Größen voneinander

unabhängig. Die unabhängigen Größen können aus verschiedenen Beobachtungs-

größen bestimmt werden. Wir führen exemplarisch einige mögliche Bestimmungen

an:

1. Die Analyse von Supernovae vom Typ Ia mit neuen großen Teleskopen, ins-

besondere dem Hubble-Space-Teleskop führt zu Werten für H0 und q0 (Ka-

pitel 52). 

2. Als dritte unabhängige Größe könnte man die Materiedichte Ωm wählen und

so bestimmen: Die Bewegung der äußeren Galaxien eines Galaxienhaufens

lässt auf die Masse des Galaxienhaufens schließen (siehe hierzu die Diskus-

sion vor (48.24)). Die Wichtung mit der Anzahl der Galaxienhaufen pro Vo-

lumen führt dann zu Ωm ≈ 0.3 ± 0.1. 
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3. Die genauesten Ergebnisse für die kosmologischen Parameter ergeben sich

aus der Untersuchung [10] der Anisotropie der kosmischen Hintergrundstrah-

lung. Die kosmische Hintergrundstrahlung (Kapitel 55) stammt aus der Früh-

zeit des Universums, als Strahlung und (ionisierte) Materie im Gleichgewicht

waren. Die Entwicklung der Anisotropie hängt vor allem von der räumlichen

Krümmung des Kosmos ab. 

Lambda – Dark Matter – Modell

Die Analyse [10] der kosmischen Hintergrundstrahlung führt zur Massendichte

Ωm = Ωb + Ωdm = 0.267 ± 0.029

(54.12)

Sie setzt sich aus der baryonischen (sichtbaren, Index b) und der unsichtbaren (dark

matter, Index dm) Massendichte (siehe Abschnitt unten) zusammen. Für den Beitrag

der kosmologischen Konstanten erhält [10] man

ΩΛ = 0.734 ± 0.029

(54.13)

Aus (54.8) und (54.10) folgen dann als abhängige kosmologische Parameter

Ωk ≈ 0

und

q0 ≈ −0.60

(54.14)

jeweils mit Fehlern ähnlicher Größe. Der dritte verbleibende unabhängige kosmo-

logische Parameter ist die Hubblekonstante:



 km/s

H0 = 71.0 ± 2.5

(54.15)

Mpc

Für die folgenden Rechnungen verwenden wir die Werte:

Heutiger Kosmos:





km/s

Ωm, ΩΛ, Ωk ≈ (0.27, 0.73, 0) , 

H0 ≈ 71

(54.16)

Mpc

Ein so spezifiziertes Friedmannmodell wird auch als  Lambda -Dark Matter -Modell

bezeichnet. Der Name benennt die Beiträge, die die zentrale Bewegungsgleichung

(54.4) dominieren. 

Voraussetzung für die experimentelle Bestimmung der kosmologischen Para-

meterwerte ist, dass unser Kosmos tatsächlich im Rahmen von Friedmannmodel-

len beschrieben werden kann. Es sei betont, dass dies eine  sehr starke Annahme

ist. Dazu gehören zum einen das Kosmologische Prinzip, also eine weitreichende

Homogenitäts- und Isotropieannahme, die nur nach einer sehr großzügigen Mitte-

lung über die Materie in unserem Kosmos zu rechtfertigen ist. Zum anderen gehört

zu den zugrunde liegenden Annahmen die Beschränkung auf die einfachste rela-

tivistische Gravitationstheorie (ART mit kosmologischem Term). Vor dem Hinter-

grund dieser extrem vereinfachenden Annahmen ist etwa die Interpretation von Λ

als Vakuumenergiedichte nicht zwingend. Phänomenologisch beschreibt Λ einfach

die Beschleunigung der beobachteten Expansion. 
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6R(t)
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Abbildung 54.1 Kosmischer Skalenfaktor R(t) als Funktion der Zeit. Die gezeigte Kur-

ve ist die Lösung von (54.4) mit den kosmologischen Parametern (54.16). Zum heutigen

Zeitpunkt gilt R(t0) = R0. Früher (t  t0) dominierte der Term Ωm/x in (54.4) die Kurve

(negative Krümmung). Die heutige Dominanz des Terms ΩΛ x 2 in (54.4) führt jetzt und in

der Zukunft zu einer beschleunigten Expansion (positive Krümmung der Kurve). 

Zeitliche Entwicklung

Der zeitliche Verlauf des Skalenparameters x(τ ) oder, äquivalent, R(t ) folgt aus der

Integration der Bewegungsgleichung (54.4):

 x

dx

τ = H0 t =



(54.17)

0

Ωm/x + ΩΛ x2 + Ωk

Die sich hieraus ergebende Kurve R(t ) für unser Universum (54.15) ist in Abbil-

dung 54.1 dargestellt. Die Bewegung wird heute durch den Term ΩΛ x 2 mit der

kosmologischen Konstanten dominiert; denn für x = 1 ist dieser Term in (54.4)

etwa doppelt so groß wie der Materieterm Ωm/x. Dies macht sich durch die leicht

positive Krümmung der Kurve in Abbildung 54.1 zum heutigen Zeitpunkt bemerk-

bar. 

Die Rückverfolgung der jetzigen Expansion führt schließlich zum Wert null für

den kosmischen Skalenparameter. Bei der Annäherung an diesen Wert werden viele

physikalische Größen singulär; im betrachteten Modell sind daher keine Aussagen

mehr möglich. Der Zeitpunkt, an dem R(t ) = 0 ist, wird willkürlich gleich null

gesetzt (dies wurde in (54.17) verwendet) und als „Beginn der Welt“ betrachtet; 

Vorbehalte gegenüber diesen Bezeichnungen wurden im Abschnitt  Weltalter  in Ka-

pitel 51 diskutiert. Die physikalische Entwicklung vom Beginn der Welt bis heute

wird im Einzelnen noch im nächsten Kapitel diskutiert. 

Zum heutigen Zeitpunkt t0 ist x = 1. Das Alter der Welt folgt im unserem

Modell daher aus

 1

dx

TWelt = t0 = 1



(54.18)

H0 0

Ωm/x + ΩΛ x2 + Ωk
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Für Ωk = 0 kann das Integral durch die Substitution y2 = (ΩΛ/Ωm) x3 gelöst

werden:



. 

1

dx

ΩΛ

TWelt = 1



=

2√ arsinh

≈ 14 · 109 a

H0 0

Ω

Ω

Ω

m/x + ΩΛ x 2

3 H0

Λ

m

(54.19)

Das Endergebnis folgt aus den Parameterwerten (54.16). Der Wert des Faktors bei

1/H0 ist nahe 1, so dass

TWelt ≈ 1

(54.20)

H0

tatsächlich eine gute Näherung ist. 

Ähnliche Werte für das Weltalter erhält man aus hiervon unabhängigen Abschät-

zungen für das Alter der Milchstraße oder für die Lebenszeit der ältesten Sterne. 

Eine solche Abschätzung sei hier skizziert: Die schweren Elemente (jenseits von

Eisen) werden in Supernovae gebildet. Modellannahmen über die Bildung dieser

Elemente (Neutroneneinfang) führen zu einer Abschätzung der Isotopenhäufigkei-

ten. So sollte das Verhältnis 235U/ 238U zum Zeitpunkt der Entstehung bei 1.65 ge-

legen haben. Da 235U nun viel schneller zerfällt als 238U, nimmt dieses Verhältnis

kontinuierlich ab. Aus den bekannten Zerfallszeiten und dem heutigen Häufigkeits-

verhältnis (etwa 0.007) erhält man so eine Abschätzung für das Mindestalter unserer

Galaxie; denn eine Supernova setzt Sterne voraus. 

Wir berechnen noch den Radius (51.17) des für uns heute sichtbaren Univer-

sums:







t0 c dt

c

τ0 dτ

c

1

dx

D0 = R0

=

=

0

R(t )

H0 0 x(τ )

H0 0 x (dx/dτ )



c

1

dx

=



≈ 48 · 109 Lj

(54.21)

H0 0

Ωm x + ΩΛ x4 + Ωk x2

Für Licht von D → D0 geht z → ∞ (und temission → 0). Das heißt, dass durch D0

ein Horizont, der  Welthorizont, gegeben ist. 

Das Verhältnis D0/t0 übersteigt die Lichtgeschwindigkeit um mehr als das Drei-

fache. Das Licht, das aus der Nähe des Horizonts kommt, hat aber nicht wirklich

einen Weg der Länge D0 zurückgelegt; denn während der Lichtlaufzeit war der Ab-

stand zwischen den betrachteten Galaxien kleiner. Im Übrigen sei daran erinnert, 

dass es in der RWM nur Lokale Inertialsysteme gibt (in denen die Geschwindigkeit

des Lichts dann immer gleich c ist). Wir geben noch die heutige Geschwindigkeit

einer Galaxie im Abstand D0 an:

 t0 c dt

v(D

=

0)

= c ˙

R0 χ = c ˙

R0

H0 D0

0

R(t )

 1

dx

= c



≈ 3.4 c

(54.22)

0

Ωm x + ΩΛ x4 + Ωk x2
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Wie in Kapitel 51 diskutiert, ist eine solche Galaxie wegen z → ∞ für D → D0 für

uns gerade nicht mehr sichtbar. Die numerischen Werte für D0/(ct0) und v(D0)/c

weisen noch einmal daraufhin, dass die Interpretation der kosmologischen Rotver-

schiebung als Dopplereffekt nicht konsistent ist. Zu den auftretenden Überlichtge-

schwindigkeiten sei auf die Diskussion am Ende von Kapitel 51 verwiesen. 

Dunkle Materie

Die Materiedichte Ωm ≈ 0.267 ergibt sich (wie oben diskutiert) relativ direkt aus

der Bewegung in Galaxienhaufen oder indirekt aus der Anisotropie der kosmischen

Hintergrundstrahlung. Der Wert folgt jedoch nicht aus der Abzählung der sichtba-

ren Galaxien. Die  sichtbare  Materie entspricht im Wesentlichen der  baryonischen

Materie. Hierfür erhält man [10]

Ωb = 0.0449 ± 0.0028

(54.23)

Der Rest ist die sogenannte  dunkle Materie  mit [10]

Ωdm = 0.222 ± 0.026

(54.24)

Die dunkle Materie (Index dm) ist gravitativ wirksam. Sie ist insbesondere über

die Umlaufgeschwindigkeiten von Galaxien in Galaxienhaufen messbar. Für beide

Anteile zusammen gilt Ωm = Ωb + Ωdm. 

Als Kandidaten für Dunkle Materie werden diskutiert: abgekühlte Weiße Zwer-

ge, Braune Zwerge, intergalaktisches Gas, Hintergrundstrahlung von Neutrinos mit

endlicher Ruhmasse oder WIMPs. Interacting Massive Particles (WIMP) sind hy-

pothetische Teilchen mit Massen zwischen einigen zehn und etwa tausend GeV/c2. 

Experimente können solche Teilchen jeweils nur insofern ausschließen, als sie ei-

ne obere Grenze für den (sehr kleinen) Wirkungsquerschnitt eventueller WIMPs in

einem bestimmten Massenbereich angeben1. 

Strahlungsbeitrag

In (54.1) haben wir den Strahlungsbeitrag mit Ks in (53.21) weggelassen. Wenn

wir diesen Beitrag berücksichtigen, erhalten wir einen zusätzlichen Term −Ωs/x2

auf der linken Seite von (54.4), wobei Ωs = str/kr(t0). Außerdem wird (54.8) zu

Ωm + Ωs + ΩΛ + Ωk = 1. Für das heutige Universum schätzt man ab, dass

Ωs(t0) ≈ 10−4

(54.25)

Diese Strahlungsdichte Ωs(t0) besteht im Wesentlichen aus Neutrinos (mit der Ruh-

masse null, oder zumindest mit p  mν c). Der heutige Anteil der Photonen beträgt

dagegen nur Ωγ ≈ 0.00005. 

Der eventuelle Zusatzterm −Ωs/x2 in der Bewegungsgleichung (54.4) wäre

heute (x = 1) sehr klein. Für t → 0 und x → 0 wird er jedoch dominierend. 

Der Einfluss dieses Terms wird im folgenden Kapitel näher untersucht. 

1The CDMS and EDELWEISS Collaborations,  Combined Limits on WIMPs from the CDMS and

 EDELWEISS Experiments, arXiv:1105.3377v2[astro-ph.CO]
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Kosmologische Konstante

Vakuumenergiedichte

Die kosmologische Konstante entspricht der Energiedichte des Vakuums. Eine theo-

retische Abschätzung dieser Energiedichte führt zu einem Ergebnis, das nicht mit

dem empirischen Wert ΩΛ ≈ 0.73 kompatibel ist. 

Die kosmologische Konstante kann in eine Energiedichte Λ c2 = (c4/8πG) Λ

umgeschrieben werden, (21.32). Mit (54.5) und (54.6) erhalten wir für diese Dichte

c2Λ

kg

Λ =

= ΩΛ kr(t0) ≈ 6 · 10−27

(54.26)

8πG

m3

Der numerische Wert folgt aus ΩΛ ≈ 0.73 und (54.5). 

Dieser Dichte stellen wir nun eine theoretische Abschätzung für die Vakuum-

energie gegenüber. In der Quantenelektrodynamik führen die Nullpunktschwingun-

gen des elektromagnetischen Felds zu einer Vakuumenergie der Form





¯hωi

V

¯hω

E0 =

=

d3k

∼ V ¯hc k 4

2

(2π)3

2

max

(54.27)

i

Ein analoger Ausdruck ergibt sich auch für andere Felder. In einer Quantenfeldtheo-

rie, die die Gravitation berücksichtigt, ist der plausible Abschneideparameter kmax

für die Wellenzahl durch die Plancksche Länge (22.31) gegeben, kmax ∼ 1/LP =

c3/2/ ¯h1/2/G1/2. Daraus erhalten wir

E0

c5

MP

kg

vak =

∼

=

≈ 5 · 1096

(54.28)

V c2

¯hG2

L 3

m3

P

√

Dabei ist MP =

¯hc/G = 2.2 · 10−8 kg die Plancksche Masse. Das Ergebnis

für vak ist die zu erwartende Skala für eine Massendichte des Vakuums in einer

Quantenfeldtheorie der Gravitation. Gemessen an dieser Skala ist die experimentel-

le Dichte Λ extrem klein:

Λ = experimenteller Wert ≈ 10−123

(54.29)

vak

theoretischer Wert

Die große Diskrepanz zwischen dem experimentellen Wert und der theoretischen

Erwartung stellt ein ungelöstes Problem der theoretischen Physik dar. 

Dunkle Energie und negativer Druck

Nach der soeben gegebenen Abschätzung ist völlig unklar, woraus die Energiedich-

te Λ tatsächlich besteht. In Analogie zur dunklen Materie (54.24) spricht man daher

auch von  dunkler Energie. 

Die Materiedichte (die weitgehend dunkle Materiedichte ist), wirkt gravitativ

 anziehend. Ein positiver Wert von Λ oder Λ wirkt dagegen  abstoßend. Wenn wir
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(54.4) in der Form (dx/dτ )2 + Veff(x) = const. schreiben, haben die Terme in

Veff = −Ωm/x − ΩΛ x2 dasselbe Vorzeichen. Die zugehörigen Kräfte −dVeff/dx

haben aber entgegengesetztes Vorzeichen. Die gewöhnliche Materiedichte  wirkt

in Richtung auf eine Kompression, die Dichte Λ in Richtung auf eine Expansion. 

Im heutigen Universum dominiert der Term mit der Dichte Λ. Dies bedeutet, dass

die Expansion des Weltalls beschleunigt ist. 

Wir bezeichnen den zur Dichte Λ gehörigen Druck mit PΛ. Wenn das Volumen

(des Weltraums oder eines Galaxienhaufens) sich aufgrund der Expansion um ΔV

ändert, dann bedeutet die Energieerhaltung ΔE = 0 = (Λc2 + PΛ)ΔV , also

PΛ = −Λ c2 < 0

(54.30)

also ein  negativer  Wert für den Druck P , der in (53.17) oder im Energie-Impuls-

Tensor auftritt. 

Wir fassen zusammen: Der Ursprung der Energiedichte Λ ist rätselhaft2, also

„dunkel“. Der antigravitative Effekt ist formal zwar leicht verständlich, physikalisch

aber einigermaßen überraschend. 

Olberssches Paradoxon

In der nichtrelativistischen Kosmologie führt das kosmologische Prinzip zu einem

von Olbers (1758 – 1840) formulierten Paradoxon. Im euklidischen Raum bedeutet

die Homogenität, dass ein unendlicher Raum existiert und im Mittel überall die

gleiche Sterndichte hat. Dies hätte zur Konsequenz, dass der Nachthimmel überall

hell ist. Dieser Widerspruch zum tatsächlich beobachteten dunklen Sternhimmel

heißt Olberssches Paradoxon. 

Wir erläutern zunächst, warum der Nachthimmel hell sein sollte. Dazu betrach-

ten wir eine Folge von Kugelschalen mit der Erde im Zentrum. Die Kugelschalen

können durch Vi = {ρ : i · Δρ ≤ ρ ≤ (i + 1) · Δρ} definiert werden. Wegen der

Homogenität wächst die Anzahl der Sterne in jeder Kugelschale mit ρ 2. Die schein-

bare Helligkeit, die ein Stern im Zentrum hervorruft, nimmt mit ρ −2 ab. Nach dieser

Überlegung würde uns aus jeder Kugelschale die gleiche Energieflussdichte errei-

chen. Da das Licht weiter entfernter Sterne durch näher gelegene abgedeckt wird, 

ist der resultierende Energiefluss aber nicht unendlich. Vielmehr sollten wir in jeder

Richtung genau auf einen Stern sehen. 

Eine alternative Betrachtungsweise ist: Wir schauen in einen Raumwinkel δω, 

der so klein ist, dass der Blickkegel schließlich auf der Oberfläche eines einzigen

Sterns endet. Wenn der Stern von uns den Abstand ρ hat, dann erreicht uns das Licht

von einem Stück der Sternoberfläche von der Größe ρ2 δω (Basisfläche des Blick-

kegels). Wir schieben den Stern jetzt fiktiv zu uns hin, machen also den Abstand

ρ kleiner. Dann bleibt der Lichtfluss (Energie/Zeit) im Blickkegel (δω = const.)

2D. Giulini und N. Straumann,  Das Rätsel der kosmischen Vakuumenergiedichte und die be-

 schleunigte Expansion des Universums, www.arxiv.org astro-ph/0009368, für alternative Erklä-

rungsversuche siehe C. Wetterich,  Quintessenz – die fünfte Kraft, Physik Journal 3 (2004) 43
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gleich; denn die beitragende Sternoberfläche sinkt proportional zu ρ2, der Lichtfluss

von jedem Quadratmeter Sternoberfläche wächst aber proportional zu 1/ρ2 wegen

des geringeren Abstands. Wir sehen daher in beliebiger Richtung soviel Licht, als

ob dort ein nahegelegener, durchschnittlicher Stern wäre. Etwas salopp formuliert

heißt das, der Nachthimmel müsste überall so hell wie unsere Sonne sein. 

Die mögliche Absorption von Licht durch interstellares Gas löst das Paradoxon

nicht auf. Denn dieses Gas würde sich so lange aufheizen, bis es ebensoviel abstrahlt

wie absorbiert. 

Im nichtrelativistischen Weltall führt das kosmologische Prinzip also zu einem

Widerspruch. Inwieweit wird dieser Widerspruch nun in den relativistischen Welt-

modellen vermieden? 

Wir betrachten zunächst ein endliches (also k = 1) und statisches Weltall. Man

könnte ja vermuten, dass diese Endlichkeit (die erst in der relativistischen Theo-

rie mit dem kosmologischen Prinzip vereinbar ist) dazu führt, dass wir eben nicht

mehr in jedem Raumwinkelelement schließlich auf eine Sternoberfläche blicken. 

Im  statischen  Fall wird das Paradoxon aber tatsächlich nicht vermieden. Aus der

Eigenschaft „statisch“ folgt nämlich, dass es in jeder früheren Zeitspanne die glei-

che endliche Anzahl von Sternen gab wie heute (deren Lebensdauer im Einzelnen

durchaus endlich sein mag). Einmal emittiertes Licht breitet sich fortwährend im

endlichen Weltraum aus; es „läuft vielfach im Universum herum“. Eine unendliche

Vergangenheit führt daher zu unendlicher Helligkeit. 

Das Olberssche Paradoxon löst sich aber auf, wenn der Kosmos ein endliches

Alter hat. Im Rahmen der diskutierten Weltmodelle ist ein endliches Weltalter die

Regel. Endliches Alter bedeutet, dass die Rückverfolgung der jetzigen Expansion

zum Skalenfaktor R = 0 führt; der zugehörige Zeitpunkt wird gleich null gesetzt. 

Die kosmologische Rotverschiebung für Licht, das während der Zeit t0 − t1 unter-

wegs war, geht dann für t1 → 0 gegen unendlich, (51.16) – (51.18). Damit gibt es

einen Horizont D0, jenseits dessen wir wegen

z → ∞ für D → D0

(54.31)

nichts sehen. Auch in einem unendlich ausgedehnten Universum erreicht uns da-

her nur das Licht von den endlich vielen Objekten innerhalb dieses Horizonts. Der

dunkle Sternhimmel kann als direktes Indiz für die kosmische Expansion angesehen

werden. 

55 Kosmologisches Standardmodell

Die Rückverfolgung der jetzigen Expansion führt in den meisten Weltmodellen zu

t → 0

R(t ) −→ 0

(55.1)

für den kosmischen Skalenfaktor R(t ) der Robertson-Walker-Metrik. Die Vorstel-

lung, dass die Welt aus einer solchen Singularität entstanden ist, wird als Big Bang-

oder Urknall-Modell bezeichnet. Zusammen mit der zugehörigen Bewegungsglei-

chung für R(t ) stellt dieses Modell das kosmologische Standardmodell dar. 

Die Hypothese, dass das Weltall expandiert, wurde 1927 von Lemaître aufgestellt. 

Da die Hubble-Konstante positiv ist, muss die Dichte im Universum früher viel

größer gewesen sein. Wie wir im Folgenden sehen werden, gibt es auch experi-

mentelle Belege für ein frühes, sehr konzentriertes Universum. Bei Annäherung an

die Singularität (R = 0) wird das kosmologische Standardmodell aber zunehmend

spekulativ. 

Zur Singularität selbst, ihrer Ursache oder zum Zustand der Welt zur Zeit t < 0

werden keine Aussagen gemacht. Tiefergehende Fragen nach dem Ursprung der

Welt bleiben also unbeantwortet. 

Szenario

Mit R → 0 geht die potenzielle Gravitationsenergie Epot gegen minus unendlich. 

Die Masse  R3 und die Energie Ekin +Epot sind nach (53.20) und (53.23) konstant. 

Für R → 0 gehen daher die Dichte  und die kinetische Energie Ekin gegen unend-

lich. In dichter Materie kommt es zu Wechselwirkungen (etwa zu Stößen), so dass

die kinetische Energie Ekin auf alle zur Verfügung stehenden Freiheitsgrade verteilt

wird. Das bedeutet, dass für R → 0 die Temperatur divergiert, T → ∞. 

Mit abnehmendem R ändert sich die Temperatur T um viele Größenordnungen. 

Dabei treten ganz unterschiedliche physikalische Vorgänge und Effekte auf. Abbil-

dung 55.1 skizziert das Szenario dieser Vorgänge. Wir stellen zunächst im Überblick

die jeweils relevanten physikalischen Prozesse zusammen. Dabei beginnen wir mit

dem heutigen Zustand und betrachten danach weiter zurückliegende Abschnitte:

1. Heute (t = t0 ≈ 13 · 109 a) ist der Weltraum erfüllt von

(a) Strahlung (Photonengas), die die Temperatur T des Kosmos definiert. 

Diese  kosmische Hintergrundstrahlung  wird unten in einem eigenen

Abschnitt ausführlich diskutiert. 
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Abbildung 55.1 Temperatur T des Kosmos in Abhängigkeit von seiner relativen Größe

R/R0. Dabei ist R der Skalenfaktor der Robertson-Walker-Metrik, und R0 ist der heutige

Wert. Da die Abstände zwischen typischen Galaxien mit R(t) skalieren, könnten wir R/R0

auf der Abszisse auch als die relative Größe des Bereichs auffassen, der für uns heute sicht-

bar ist. Die gezeigte Abhängigkeit ist im Wesentlichen durch T ∝ 1/R und den heutigen

Wert T0 = 2.73 K bestimmt. Die relevanten physikalischen Prozesse sind schlagwortartig

gekennzeichnet. Am oberen Rand ist die zugehörige Zeitskala für R = R(t) eingezeichnet. 

340

Teil X Kosmologie

(b) Materie, etwa in Form von Galaxien und intergalaktischem Gas. Für

R > 10−3 R0 ist diese Materie im Wesentlichen von der Strahlung

entkoppelt. Betrachtet man ein Gas aus materiellen Teilchen, das sei-

ne Temperatur nur unter dem Einfluss der Expansion des Kosmos än-

dert, so erhält man den durch Tmat in Abbildung 55.1 gezeigten Ver-

lauf (gepunktete Linie). In dem Zeitraum nach der Entkopplung kommt

es jedoch auch zur Bildung von Sternen und Galaxien, also zu  lokalen

Aufheizungen durch Gravitationskontraktion, so dass es keine einheit-

liche Temperatur der Materie gibt. In den Sternen entstehen dann über

Fusionsbrennen und Supernovae schwerere Elemente. 

2. Für T > 3 000 K (oder t < 4 · 105 a) ist die Materie soweit ionisiert, dass

sich ein Gleichgewicht mit der Strahlung einstellt. Für noch höhere Tempera-

turen liegt dann ein vollständig ionisiertes Plasma im Gleichgewicht mit dem

Photonengas vor. 

3. Für kBT ∼ 10 . . . 100 keV (oder t ∼ 1 h) treten Kernreaktionen auf. In der

Zeit von etwa t ∼ 102 bis 104 s kommt es zur Bildung von Atomkernen

leichter Elemente (Wasserstoff, Helium, Lithium). 

4. Für kBT ∼ MeV (oder t ∼ 2 s) enthält die Strahlung Photonen mit der Ener-

gie Eγ > 1 MeV. Diese Photonen können Elektron-Positron-Paare erzeugen. 

Für noch höhere Temperaturen setzt Teilchen-Antiteilchen-Produktion für an-

dere Teilchensorten ein, für Baryonen ist dies für t < 10−4 s möglich. Die

freiwerdende Gravitationsenergie (für abnehmendes R) geht dann für eine

Weile in diese neuen Freiheitsgrade und nicht in eine Temperaturerhöhung. 

Daher ergibt sich in Abbildung 55.1 ein Plateau. Für andere Elementarteil-

chen kommt es dann zu weiteren Plateaus, zum Beispiel zu einem Plateau bei

kBT ∼ 2 GeV wegen der Nukleon-Antinukleon-Erzeugung. 

5. Schließlich wird für R → 0 die Temperatur so hoch, dass wir in den Be-

reich der Elementarteilchenphysik kommen. Die Standardtheorie SU(3) ×

SU(2) × U(1) der Elementarteilchenphysik ist im Bereich bis etwa 100 GeV

(oder T = 1015 K) experimentell verifiziert. Die Fortsetzung von Abbildung

55.1 in diesen Bereich beruht daher noch auf bekannten physikalischen Vor-

gängen; weitere Extrapolationen sind zunehmend spekulativ. Die sogenann-

ten Grand Unified Theories (GUT) vereinigen die starke, schwache und elek-

tromagnetische Wechselwirkung und führen zu Vorhersagen im Energiebe-

reich kBT = 1014 GeV. Für solche Energien ist das extrem frühe Universum

(t < 10−35 s) möglicherweise das einzige in Frage kommende Laboratorium! 

Schließlich dürften für t ≤ LP/c = (G ¯h/c5 )1/2 ≈ 5 · 10−44 s Quanteneffekte

der Gravitation selbst wichtig werden. 

6. In der klassischen ART kommt es unvermeidlich zu einer Singularität bei

R = 0 (mit T = ∞). Das Entstehen unserer Welt aus dieser Singularität wird

 Big Bang  oder  Urknall  genannt. 
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Das durch die Abbildung 55.1 charakterisierte Modell wird als ( kosmologisches)

 Standardmodell  oder auch Big Bang-Modell bezeichnet. Dabei bleibt offen, bis zu

welchen Zeiten (in der Nähe von null) das Modell ernst genommen wird; wie bereits

gesagt, wird die Extrapolation schließlich sehr spekulativ. 

Temperaturskala

Wir bestimmen den Zusammenhang zwischen der Temperatur T und dem kosmi-

schen Skalenfaktor R(t ). 

Das Weltall ist mit Strahlung (Photonen) erfüllt, die eine Plancksche Gleichge-

wichtsverteilung mit der Temperatur T hat; diese Aussage wird im nächsten Ab-

schnitt noch näher begründet. Wir betrachten dieses T als Temperatur des Kosmos. 

Vor der Entkopplung (für R < 10−3 R0) war dies auch die Gleichgewichtstempe-

ratur der Materie des Kosmos. Nach der Entkopplung ist es die einzige weltweit

wohldefinierte Temperatur. 

Die Energiedichte str c2 der Strahlung ist durch das Stefan-Boltzmann-Gesetz

π2k 4



B

str c2 = a T 4 , 

a =

(55.2)

15 ¯h3c3

gegeben. Nach (53.20) gilt

Ks

str = 3c2

= const. 

(55.3)

8πG R4

R4

Aus den letzten beiden Gleichungen folgt

T ∝ 1

(55.4)

R

In einem logarithmischen Plot ist dies eine Gerade mit der Steigung −1. Hierdurch

und durch den heutigen Wert der Temperatur ist der in Abbildung 55.1 gezeigte

Zusammenhang zwischen T und R weitgehend festgelegt. 

Wenn Materie von der Strahlung entkoppelt ist, kann sie eine andere Temperatur

haben. Dazu betrachten wir nichtrelativistische Teilchen (etwa neutrale Atome) der

Masse m mit dem mittleren Impuls p. Sofern diese Teilchen thermisch im Gleich-

gewicht sind, kann ihnen eine Temperatur Tmat zugeordnet werden:

p2 (51.6)

kB Tmat ≈

∝

1

(55.5)

2 m

R2

Dies ergibt eine Gerade mit der Steigung −2 in Abbildung 55.1. Im betrachteten

Bereich (R > 10−3 R0) gibt es aber keine weltweit wohldefinierte Temperatur der

Materie (siehe Punkt 1b oben). 

In Abbildung 55.1 haben wir durchweg (55.4) verwendet (bis auf das Pla-

teau, das auf das Einsetzen der Paarerzeugung zurückzuführen ist). Der dazu vor-

ausgesetzte Erhaltungssatz strR4 = const., (55.3), gilt allerdings nur im Fall
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der Entkopplung (für R > 10−3 R0) oder im Fall der Strahlungsdominanz (für

R < 3 · 10−4 R

< 

0). Im Zwischenbereich 3 · 10−4 < 

∼ R/R0 ∼ 10−3 könnte es Abwei-

chungen von T ∝ 1/R geben; dies spielt aber für das qualitative Gesamtbild keine

Rolle. Die angegebenen Zeiten für Strahlungsdominanz und Entkopplung werden

im Abschnitt „Zeitskala“ berechnet. 

Kosmische Hintergrundstrahlung

Für geladene Teilchen (Elementarteilchen oder Ionen und Elektronen) führt die

elektromagnetische Wechselwirkung zu einem thermodynamischen Gleichgewicht

der Teilchen und der Photonen. Wenn die Temperatur einen Wert von etwa 3 000 K

unterschreitet, bilden sich bevorzugt neutrale Atome. Die Dichte der geladenen Teil-

chen ist dann so klein, dass die Strahlung und Materie praktisch  entkoppeln. Zum

Zeitpunkt der Entkopplung liegt eine Gleichgewichtsverteilung der Materie und der

Strahlung vor, und zwar mit einer gemeinsamen Temperatur. Für die materiellen

Teilchen ist dies eine Boltzmannverteilung, für die Photonen eine Plancksche Strah-

lungsverteilung. Nach der Entkopplung entwickeln sich die beiden Verteilungen un-

abhängig voneinander. 

Wir untersuchen jetzt die Entwicklung der Planckschen Strahlungsverteilung

nach der Entkopplung. In dieser Phase spielen Absorptions- oder Emissionsprozes-

se oder die Photon-Photon-Streuung keine wesentliche Rolle. Wir zeigen, dass bei

der Expansion des Kosmos die Form der Planckschen Verteilung erhalten bleibt. 

Die Expansion führt lediglich dazu, dass die Temperatur dieser Verteilung im Laufe

der Zeit niedriger wird. 

Der Zeitpunkt der Entkopplung sei te. Die Dichte der Photonen (Anzahl pro

Volumen) mit einer Frequenz zwischen ω und ω + dω ist

ω 2 dω

n(ω, te) dω =

1

(55.6)

π2c3 exp(¯hω/kBTe) − 1

Dabei ist Te = T (te) ≈ 3000 K. Wir berechnen nun die Änderung dieser Verteilung

aufgrund der Expansion des Kosmos. 

Die Änderung der Frequenz eines Photons ist durch (51.5) gegeben. Wir be-

trachten die Frequenz ω eines herausgegriffenen Photons zur Zeit te und geben die

Frequenz ω dieses Photons zur Zeit t an:

ω = ω R(te)

(55.7)

R(t )

Dies beschreibt die kosmologische Rotverschiebung. 

Die Dichte n(ω, t ) dω der Photonen ist eine Anzahl pro Volumen und verhält

sich daher gemäß n ∝ 1/R3. Hieraus folgt

+

, 

R(t

3

e)

n(ω, t ) dω =

n(ω, te) dω

(55.8)

R(t )
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Hierin setzen wir n dω aus (55.6) ein, und eliminieren ω gemäß (55.7) zugunsten

von ω. Das Ergebnis ist

ω2 dω

n(ω, t ) dω =

1

(55.9)

π2c3 exp(¯hω/kBT ) − 1

mit

R(te)

Temperatur der kosmischen

T = T (t) = Te

(55.10)

R(t )

Hintergrundstrahlung

Also transformiert die Expansion des Kosmos eine Plancksche Verteilung wieder in

eine Plancksche Verteilung, ohne dass dazu Wechselwirkungsprozesse nötig wären. 

Die Expansion führt dabei zu einer zeitabhängigen Strahlungstemperatur

T (t ) ∝

1

(55.11)

R(t )

Die Entkopplung von Materie und Strahlung erfolgte zu einem relativ frühen Zeit-

punkt te; im nächsten Abschnitt werden wir te ≈ 4·10−5 t0 ableiten. Die Plancksche

Strahlungsverteilung aus dieser Frühzeit des Universums sollte heute mit entspre-

chend niedrigerer Temperatur T (t0) immer noch vorhanden sein. Eine solche Hin-

tergrundstrahlung wurde Ende der vierziger Jahre vorhergesagt. Alpher und Her-

man1 schätzten 1949 die Temperatur T (t0) auf 5 K; die theoretischen Grundlagen

dazu beruhen auf Arbeiten von Gamov. Penzias und Wilson2 entdeckten 1965 eine

solche  kosmische Hintergrundstrahlung  mit einer Temperatur von etwa 3 K. Dabei

wurde zunächst nur Strahlung einer Wellenlänge (λ = 7.35 cm) nachgewiesen. Der

gemessenen Intensität kann dann nach (55.9) eine Temperatur zugeordnet. Zahlrei-

che weitere Messungen der Frequenzabhängigkeit bestätigten, dass es sich tatsäch-

lich um eine Plancksche Verteilung handelt, und zwar mit der Temperatur3

Heutige Temperatur der kosmi-

T0 = T (t0) = 2.725 ± 0.001 K

(55.12)

schen Hintergrundstrahlung

Wir bestimmen die heutige Massendichte str(t0) der Hintergrundstrahlung. Sie er-

gibt sich aus der Planckschen Verteilung (55.9) oder aus dem Stefan-Boltzmann-

Gesetz (55.2):

 ∞

π2 k 4

kg



B

str(t0) = 1

dω ¯hω n(ω, t0) =

T 4 = 4.7 · 10−31

(55.13)

c2

0

0

15 ¯h3c5

m3

Nach dem Abzug eines Dopplereffekts aufgrund der Eigenbewegung unserer Ga-

laxie zeigt die Hintergrundstrahlung eine weitgehende Isotropie. Ordnet man der

1R. A. Alpher und R. C. Herman, Phys. Rev. 75 (1949) 1089

2A. A. Penzias and R. W. Wilson, Astrophys. J. 142 (1965) 419. Penzias und Wilson erhielten

1978 für ihre Entdeckung den Nobelpreis. 

3J. C. Mather et al., Astrophys. J. 512 (1999) 511
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Strahlung aus verschiedenen Richtungen jeweils die Temperatur T (θ , φ) zu, so er-

hält man über Winkelbereiche von etwa einem Grad Schwankungen der Größe

ΔT ∼ 10−5

(55.14)

T0

Die Abweichungen von der perfekten Isotropie sind von besonderem Interesse: Wä-

re der Kosmos zum Zeitpunkt der Entkopplung völlig isotrop gewesen, dann würde

dies auch für die jetzige Hintergrundstrahlung gelten. Tatsächlich gab es damals

aber kleine Dichtefluktuationen, die sich im weiteren Verlauf unter dem Einfluss

der Gravitation verstärkten und zur Bildung von Galaxien und Galaxienhaufen führ-

ten. Die damaligen Fluktuationen waren gleichermaßen in der Materie- wie in der

Strahlungsdichte vorhanden. Nach der Entkopplung ist die Entwicklung der Strah-

lung nur noch von den globalen kosmologischen Parametern bestimmt. Die ge-

nauere Untersuchung zeigt, dass diese Entwicklung im Wesentlichen lediglich von

der Krümmung abhängt. Dabei wirkt eine positive Krümmung fokussierend (zwei

Lichtstrahlen (Großkreise) auf einer Kugel nähern sich schließlich wieder an), eine

negative Krümmung dagegen defokussierend. Dementsprechend erhöht (erniedrigt)

sich der Abstand benachbarter Maxima in der Winkelverteilung. Wie in Kapitel 54

diskutiert, führt die Analyse der Experimente (Boomerang und Maxima-1) zu der

Aussage, dass die Krümmung des Raums null oder jedenfalls klein ist (Ωk ≈ 0). 

Die heutige geringe Winkelabhängigkeit von T (θ , φ) bedeutet, dass zum Zeit-

punkt te der Entkopplung der Kosmos  sehr homogen und isotrop  gewesen sein muss. 

Die heute beobachtete, weitgehend homogene und isotrope Hintergrundstrahlung

ist damit auch eine Rechtfertigung des kosmologischen Prinzips. Die Tatsache der

Existenz von Galaxien impliziert Abweichungen von der Homogenität und der Iso-

tropie. Unsere kosmologischen Modelle enthalten diese (natürlich wichtigen) Ab-

weichungen nicht; denn sie sollten nach einer Mittelung über hinreichend große

Längenskalen klein sein. 

Der Dopplereffekt aufgrund der Eigenbewegung unseres Beobachtungspunkts

führt zu einer scheinbaren Anisotropie der Temperatur T (θ , φ). Aus dieser Ani-

sotropie können wir unsere Eigenbewegung (siehe letzter Abschnitt in Kapitel 52)

bestimmen. Damit stellt die kosmische Hintergrundstrahlung so etwas wie einen

„absoluten Bezugsrahmen“ dar, relativ zu dem wir unsere Geschwindigkeit definie-

ren können. Dies ist aber in Übereinstimmung mit dem Machprinzip eine Bewe-

gung relativ zu anderen Objekten (Hintergrundstrahlung, und letztlich Gesamtheit

der Galaxien) und nicht relativ zu einem abstrakten absoluten Raum. Allerdings ist

die Metrik des Raums (also die RWM) eng verknüpft mit der vorhandenen Materie

und in besonders einfacher Weise mit der Hintergrundstrahlung. 

Sofern wir die Spezielle Relativitätstheorie anwenden können, verletzt die Aus-

zeichnung des Bezugssystems „ruhend relativ zur Hintergrundstrahlung“ nicht das

Relativitätsprinzip. Die Gleichwertigkeit relativ zueinander bewegter Inertialsyste-

me gilt nur für grundlegende physikalische Gesetze, nicht aber in Bezug auf tat-

sächlich vorhandene Objekte (wie Massen oder Strahlung). 
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Eine kosmische Hintergrundstrahlung erwartet man auch für Neutrinos, die bei

T ∼ 1011 K aus dem thermischen Gleichgewicht mit Materie entkoppeln. Sie soll-

ten heute eine Verteilung haben, die durch die Temperatur T ≈ 1.9 K charakterisiert

ist. Daneben dürfte es auch eine Hintergrundstrahlung aus Gravitonen geben. 

Zeitskala

Die zeitliche Entwicklung unseres Universums ist durch die Bewegungsgleichung

(53.21) oder (54.4) gegeben. Die Lösung (54.17) dieser Bewegungsgleichung wird

nicht komplizierter, wenn wir im Nenner den Term Ωs/x2 hinzufügen. Dieser

Strahlungsterm wird x  1, also in der Frühzeit des Universums wichtig. An-

stelle dieser numerischen Lösung wollen wir im Folgenden einfache analytische

Näherungen betrachten. Mit diesen Näherungen schätzen wir einige Zeiten ab, die

in dem in Abbildung 55.1 vorgestellten Szenario auftreten. 

Die Krümmung des Universums ist so klein, dass sie in der Bewegungsglei-

chung für den kosmischen Skalenfaktor R(t ) keine Rolle spielt. Wir gehen daher

von (53.21) mit k = 0 aus:

˙

Ks

Km

R2 =

+

+ 1 ΛR2

(55.15)

R2

R

3

An den R-Potenzen der einzelnen Terme sieht man, dass der Strahlungsterm für

frühe Zeiten oder kleine R dominiert, der Λ-Term dagegen für große Zeiten und

große R. Dazwischen ist der Materieterm der wichtigste. Wenn wir jeweils nur den

dominanten Term berücksichtigen, erhalten wir folgenden Bewegungsgleichungen

und Lösungstypen:

⎧

⎧

⎨ Ks/R2

⎨ t1/2

(0 < t < t1)

˙R2 ∼ ⎩ Km/R , 

R(t ) ∝ ⎩ t2/3√



(t1 < t < t2)

(55.16)

ΛR2/3

exp

Λ/3 c t

(t2 < t)

Im Folgenden schätzen wir die Übergangszeiten t1 (Strahlungs- zu Materiedomi-

nanz) und t2 (Übergang zur Dominanz des Λ-Terms) ab. Dazu berechnen wir zu-

nächst das heutige Verhältnis der Kräfte, die den einzelnen Termen auf der rechten

Seite von (55.15) entsprechen:

$

2 K

$

s/R3 $

= 2str(t0) ≈ 3 · 10−4

(55.17)

K

$

m/R2



t

mat(t0)

0

$

Ω

$

m/x2 $

Ω

=

m

≈ 0.2

(55.18)

2 Ω

$

Λ x

2 Ω

t

Λ

0

Die Faktoren 2 kommen daher, dass die Kräfte die Ableitung der jeweiligen Terme

nach R oder x sind. Die Strahlungsdichte str(t0) ≈ 4.8 · 10−31 kg/m3 wurde in

(55.13) angegeben. Die Materiedichte mat(t0) = Ωm kr(t0) ≈ 3.1 · 10−27 kg/m3
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folgt aus (54.5), (54.6) und (54.16). In (55.18) haben wir die Bezeichnungen von

(54.4) zusammen mit x(t0) = 1 und den Werten aus (54.16) verwendet. 

Die Übergangszeiten t1 und t2 ergeben sich aus:

2 Ks/R(t1)3 != 1 −→ R(t1) ≈ 3 · 10−4 R0

(55.19)

Km/R(t1)2

Ωm/x(t2)2 != 1 −→ R(t2) ≈ (0.2)1/3R0 ≈ 0.6R0

(55.20)

2 ΩΛ x(t2)

Aus den Bedingungen auf der linken Seite und den Werten (55.17) und (55.18)

können die angegebenen Verhältnisse R/R0 abgelesen werden. 

Der Übergang von der Strahlungsdominanz zur Materiedominanz erfolgte sehr

früh (R(t1)  R0), der weitere Übergang zur Dominanz des Λ-Terms dagegen erst

spät (R(t2) ∼ R0). Die heutige Dominanz des Λ-Terms ist daher noch nicht stark

ausgeprägt. 

Strahlung und Materie entkoppelten, als die globale Temperatur etwa 3000 K

betrug. Mit T (t ) ∝ 1/R(t), (55.11), und mit dem heutigen Wert der Strahlungstem-

peratur erhalten wir

7

T (t0) ≈ 3 K

T (t

−→

0)

R(te) =

R0 ≈ 10−3 R0

(55.21)

T (te) ≈ 3000 K

T (te)

Damit haben wir die Radien R(t1), R(t2) und R(te) zu den diskutierten Übergangs-

zeiten bestimmt. Wir kommen nun zu den Zeiten selbst. 

Die Lösung der ersten Zeile in (55.16), dR2/d(ct )2 = Ks/R2, ist





 √

1/4

t

R(t ) ≈ 4Ks c2

t ≈ R0

(55.22)

1012 a

Für den letzten Schritt haben wir Ks aus (53.20) mit str(t0) aus (55.13) verwendet. 

Mit (55.22) bestimmen wir t1:





R(t

2





1)

(55.19)

2

t1 =

1012 a

=

3 · 10−4

1012 a ≈ 105 a

(55.23)

R0

Die Lösung der zweiten Zeile in (55.16), dR2/d(ct )2 = Km/R, ist R(t) = const. ·

t 2/3. Wir fassen zusammen: ⎧ 

⎪

⎪





⎪

t

⎨

0 ≤ t < 105 a

1012 a

R(t ) ≈ R0 · ⎪

(55.24)

⎪ 



⎪

2/3





⎩

t

105 a < t ≤ t0/2

15 · 109 a

Dies sind einfache Näherungen, die in den Übergangsbereichen auch ungenau sein

können. Zu Abschätzung des Faktors C in R(t ) = C t2/3 gibt es zwei Möglichkei-

ten: (i) Der stetige Anschluss an die Lösung der ersten Zeile zur Zeit t1 = 105 a
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ergäbe C = R0/(18 · 109 a)2/3. (ii) Die Fortsetzung der Lösung R(t) = C t2/3 bis

t0 ergäbe C = R0/(t0)2/3 = R0/(13 · 109 a)2/3. Wir haben in der zweiten Zeile

von (55.24) einen mittleren Wert angesetzt. Die obere Grenze t2 für die Lösung

R(t ) = C t2/3 ergibt sich aus (55.20). 

Die exakte Lösung für R(t ) können wir aus (54.17) erhalten, wenn wir dort noch

den Strahlungsterm einfügen. Die Abweichung durch den Strahlungsterm Ωs/x2

wäre in der Abbildung 54.1 aber gar nicht sichtbar, denn sie bezieht sich auf einem

Bereich von etwa 0.001 mm neben dem Nullpunkt (wegen t1/t0 < 10−5). In diesem

Bereich wäre die Lösung R ∝ t2/3 durch R ∝ t1/2 zu ersetzen (beide Funktionen

starten mit einer senkrechten Tangente). Der Strahlungsbeitrag würde auch unser

Ergebnis (54.18) für das Weltalter nicht ändern. 

Um den Zeitpunkt te der Entkopplung zu bestimmen, verwenden wir die Lösung

R(t ) ∝ t2/3; angesichts von insgesamt zu überbrückenden fünf Größenordnungen

spielt die nicht gerechtfertigte Ausdehnung auf das Intervall (t0/2, t0) keine wesent-

liche Rolle. Aus t ∝ R3/2 folgt





R(t

3/2

e)

(55.21)

te =

t0

≈ 10−3·(3/2) 13 · 109 a ≈ 4 · 105 a

(55.25)

R0

Die Entkopplung von Strahlung und Materie erfolgte damit etwas später als der

Übergang vom strahlungs- zum materiedominierten Universum. 

Probleme des kosmologischen Standardmodells

Das hier vorgestellte kosmologische Standardmodell ist teilweise experimentell be-

legt und teilweise spekulativ. Darüberhinaus führt es zu neuen, offenen Fragen. 

Das kosmologische Standardmodell beruht auf den Bewegungsgleichungen für

R(t ) und auf der heute gemessenen Expansionsrate H0 = c ˙

R(t0)/R(t0) > 0. Durch

die Hintergrundstrahlung ist die Existenz eines Strahlungsgleichgewichts und damit

eine Vorhersage des Modells aus der Zeit t ≤ te ≈ 4 · 105 a experimentell belegt; 

gemessen an der jetzigen Zeit t0 ist dies bereits eine sehr frühe Zeit, te ≈ 3 · 10−5 t0. 

Hier nicht diskutierte Erklärungen der Elementverteilung im Kosmos können als

weitere Bestätigung des Modells für den Bereich t > 1 s gelten. Die Extrapolation

in den davorliegenden Bereich ist dann zunehmend spekulativ. Das Standardmodell

führt aber auch im nichtspekulativen Bereich zu Problemen, von denen wir hier

zwei vorstellen. 

Flachheitsproblem

Zur der Diskussion des heutigen Weltzustands haben wir in (54.4) die Hubble-

Konstante und andere Größen (etwa kr) speziell auf den heutigen Zeitpunkt t0 be-

zogen. Anstelle von t0 greifen wir nun einen beliebigen früheren Zeitpunkt t heraus

und wiederholen die für (54.4) gegebene Diskussion teilweise. 
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Zunächst einmal betrachten wir die Hubble-Konstante H (t ) und die kritische

Dichte kr(t) zum Zeitpunkt t:

H (t )

˙R(t)

=

, 

kr(t) = 3H (t)2

(55.26)

c

R(t )

8πG

Für frühere Zeiten müssen wir in der Dichte (t ) = mat(t)+str(t) den damals grö-

ßeren Beitrag der Strahlungsdichte berücksichtigen; daher ersetzen wir Ωm durch

Ω = Ωm + Ωs. Die Definitionen (54.5) werden damit zu

(t )

Λ c2

k c2

Ω(t ) =

, 

ΩΛ = 1

, 

Ωk = −

(55.27)

kr(t)

3 H (t )2

R(t )2 H (t ) 2

Für die Variable x(t ) = R(t)/R(t) können wir nun wieder eine Gleichung der

Form (54.4) aufstellen. Für t  = t gilt dann wieder x = 1 und dx/dτ = 1. Wir

erhalten daher die zu (54.8) analoge Relation

Ω(t ) + ΩΛ(t) + Ωk(t) = 1

(55.28)

Für die Frühzeit des Universums, also für t → 0, lesen wir aus Abbildung 54.1 ab:

t →0

t →0

t →0

t →0

R(t ) −→ 0 , 

˙R(t) −→ ∞ , H(t) −→ ∞ , H(t)R(t) = c ˙R(t) −→ ∞

(55.29)

Diese Aussagen gelten auch für k = 0. Aus ihnen folgt nun

t →0

t →0

t →0

ΩΛ(t) −→ 0 , 

Ωk(t) −→ 0 , 

Ω

(t ) −→ 1

(55.30)

Die ersten beiden Aussagen folgen aus (55.29), die letzte dann aus (55.28). 

Für frühe Zeiten ergibt sich eine extreme Annäherung an die Grenzwerte. Nach

(54.13) ist ΩΛ(t0) ≈ 0.7. Für R(t) ∝ tν (vergleiche (55.24)), ist 1/H (t) ∝ t, also

ΩΛ(t) ∝ t2. Damit gilt

 

t

2

Ω

< 

Λ(t ) ≈ ΩΛ(t0)

∼ 10−35 für t = 1 s

(55.31)

t0

Ähnliche Resultate erhält man für Ωk(t); denn 1/(R2H 2) skaliert für R ∝ t2/3 mit

t 2/3, und für R ∝ t1/2 mit t. Dabei schließen wir Ωk(t0) = 0 nicht von vornherein

aus; nach (54.12) ist Ωk(t0) ja nur ungefähr gleich null. Als Konsequenz von (55.28)

erhalten wir dann entsprechend extrem kleine Werte für |Ω(t) − 1|. 

Unabhängig von den genauen heutigen Werten der kosmologischen Parameter

war das Universum in der Frühzeit daher extrem flach, die Massendichte war fast

exakt gleich der kritischen Massendichte, und ΩΛ war fast exakt gleich null. Das

kosmologische Standardmodell liefert aber keine Erklärung dafür, dass die Größen

ΩΛ, Ωk und |Ω − 1| fast exakt gleich null waren. 
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Man kann zeitlich auch umgekehrt argumentieren: Kleine Abweichungen der

Größen ΩΛ, Ωk und |Ω − 1| von null in der Frühzeit des Universums hätten heute

großen Werte dieser Parameter zur Folge. Von daher gesehen ist die heutige Klein-

heit der kosmologischen Parameter ΩΛ, Ωk und |Ω − 1| (alle kleiner als 1) des

Universums ein Rätsel. Das Fehlen einer Erklärung hierfür wird (bezogen auf die

Krümmung) als „Flachheitsproblem“ bezeichnet. 

Ein verwandtes Problem ist das Dichtefluktuationsproblem: Anfangs sehr kleine

Dichteschwankungen verstärken sich unter dem Einfluss der Gravitation. Die heu-

tige relative Homogenität der Materieverteilung im Großen, insbesondere aber die

Isotropie der Hintergrundstrahlung erfordert im Standardmodell ein unwahrschein-

lich homogenes Universum in der Frühzeit. Im hier vorgestellten Standardmodell

gibt es aber keinen „glättenden“ Mechanismus, der diese Homogenität (oder Flach-

heit) erklären könnte. 

Horizontproblem

Der für uns heute sichtbare Bereich des Kosmos hat den Radius D0. Früher hatte

dieser Bereich dann den Radius



R(t )

t0 c dt

D

(51.17)

(t ) = D0

= R(t)

(55.32)

R0

0

R(t )

Mit Dkaus(t) bezeichnen wir den Radius des Gebiets, mit dem unser Standpunkt zur

Zeit t kausal verknüpft war. Diese Größe ergibt sich aus der Entfernung, die Licht

in der Zeit von 0 bis t zurückgelegt hat:

 t

D

c dt 

kaus(t ) = R(t )

(55.33)

0 R(t )

Der Vergleich der beiden Ausdrücke zeigt, dass

Dkaus(t) < D(t) (für t < t0)

(55.34)

Dies bedeutet, dass früher nur Teile des heute für uns sichtbaren Bereichs mit-

einander kausal verbunden waren. Für eine grobe Abschätzung verwenden wir

R(t ) = const. · t2/3 für die Zeit nach der Entkopplung. Damit erhalten wir

 

D

1/3

kaus(t )

t

=



D

1

(für t  t0)

(55.35)

(t )

t0

Speziell zum Zeitpunkt t = te ≈ 4 · 105 a der Entkopplung gilt D 3 ≈ 3 · 104 D 3 . 

kaus

Also bestand der heute für uns sichtbare Bereich damals aus etwa 3 · 104 kausal

voneinander unabhängigen Volumina. 

Dies führt zu folgendem Problem: Wegen des fehlenden kausalen Zusammen-

hangs ist es nicht verständlich, dass die kosmische Hintergrundstrahlung weitge-

hend isotrop ist (55.14). Diese Strahlung kommt aus dem für uns heute sichtbaren
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Bereich. Für diese Isotropie, also für die gleiche Temperatur T der Strahlung in

dem für uns sichtbaren Gebiet, müsste ein früheres Gleichgewicht in eben diesem

Gebiet verantwortlich sein. Ein statistisches Gleichgewicht setzt aber eine kausale

Verknüpfung voraus. 

Das kosmologische Standardmodell steht nicht im Widerspruch zu der beschrie-

benen Flachheit, Isotropie und Homogenität des Universums. Das Problem liegt

vielmehr darin, dass das Modell diese wesentlichen Eigenschaften nicht erklärt. 

Ein Vorschlag zur Lösung dieser Probleme ist das Modell des inflationären Kos-

mos. In der extremen Frühzeit (t < 10−30 s) können die Grand Unified Theories

(GUT) zu einer großen Vakuumenergiedichte führen, so dass ΛR2 der dominie-

rende Term in (53.21) ist. Dies bedingt dann eine exponentielle Expansion (In-

flation) wie in (53.27) angegeben. Dadurch kann aus einem kleinen, homogenen

(kausal verbundenen) Gebiet in sehr kurzer Zeit ein um viele Zehnerpotenzen grö-

ßeres Gebiet entstehen, das ebenfalls homogen, aber kausal nicht verbunden ist. 

Dieses Gebiet wäre dann der extrem flache und homogene Anfangszustand (etwa

bei t = 10−30 s) für den Teil des Kosmos, der sich mittlerweile auf den heute sicht-

baren Bereich ausgedehnt hat. 
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Die Nummerierung der Aufgaben erfolgt nach den Kapiteln, in denen sie gestellt

wurden; der Aufgabentext wird hier nicht wiederholt. Die Nummerierung der For-

meln in den Lösungen erfolgt fortlaufend mit dem vorgestellten Buchstaben A. 

4.1 Zeitdilatation bei Raumfahrt

Als Bezugs- und Bewegungsrichtung wählen wir die x-Achse, als Anfangsbedingungen

x(0) = 0 und v(0) = 0; dabei ist v(t) = dx/dt. 

Bei einer konstanten Beschleunigung wirkt die Newtonsche Kraft F 1 = M g auf den

N

Raumfahrer. Nach (4.7) ist daher F 1 = γ M g auf der rechten Seite von (4.4) einzusetzen. 

Auf der linken Seite setzen wir d/dτ = γ d/dt und u1 = γ v ein. Ein γ -Faktor und die

Masse kürzen sich, und wir erhalten:

d

v(t)



= g

dt

1 − v(t)2/c2

Die Integration ergibt

 



g t

c2

g2 t2

v(t) = 

und

x(t) =

1 +

− 1

(A.1)

1 + g2 t2/c2

g

c2

Im x-t-Diagramm ist dies eine  Hyperbel  im Gegensatz zur nichtrelativistischen Parabel x = g t2/2. Man spricht daher auch von „hyperbolischer Bewegung“. Während die Geschwindigkeit sich asymptotisch c nähert, steigt die Energie immer weiter an:



m c2

g2 t2

E = 

= mc2 1 +

1 − v2/c2

c2

Hiermit können wir den zeitlichen Verzögerungsfaktor bestimmen:



v(t)2

dt

dτ = dt

1 −

= 

c2

1 + g2 t2/c2

Dies wird integriert:

c

g t

c

g τ

τ =

arsinh

oder

t =

sinh

g

c

g

c

Für g = 9.81 m/s2 gilt c/g ≈ 0.97 a. Damit erhalten wir t ≈ 84 a für τ = 5 a. Während

der vier Abschnitte der Reise durchläuft der Verzerrungsfaktor (1 − v(t)2/c2)1/2 zwischen

dt und dτ die gleichen Werte in gleichen Zeitabschnitten. Daher gilt bei der Rückkehr

t ≈ 336 a und τ = 20 a
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Der Zwilling auf der Erde ist also um etwa 316 Jahre älter als der zurückkehrende Astro-

naut. Aus (A.1) ergibt sich die Entfernung des Raumschiffs nach der ersten Etappe zu

x(τ = 5a) ≈ 83 Lj. Die maximale Entfernung von der Erde beträgt somit etwa 166 Licht-

jahre (Lj). Aufgrund der Beschleunigung wird nach etwa einem Jahr eine Geschwindigkeit

v ≈ c erreicht. Die fortwährende Beschleunigung kann diese Geschwindigkeit und damit

die schließlich erreichte Distanz nicht wesentlich erhöhen; sie vergrößert jedoch das Ver-

hältnis t/τ . 

Das Ergebnis wird auch als Zwillingsparadoxon bezeichnet. Diese Bezeichnung  Para-

 doxon  erklärt sich aus folgender Fragestellung: Vom Astronauten aus gesehen bewegt sich die Erde mit −v(t). Damit durchläuft v(t)2 vom Astronauten aus gesehen die gleichen Werte wie oben. Müssten dann nicht die Uhren auf der Erde gegenüber denen im Raumschiff

nachgehen? 

Dies ist nicht so, weil das Raumschiff kein Inertialsystem (IS) darstellt. Dagegen ist die

Erde (näherungsweise) ein IS, so dass wir im Bezugssystem der Erde die Gesetze der SRT

(insbesondere dτ = (1 − v2/c2)1/2 dt ) verwenden können. 

5.1 Lorentztensor zweiter Stufe

Laut Voraussetzung gilt V α = T αβ Wβ in jedem Inertialsystem, also auch in IS: V α =

T  αβ W  . Hierin setzen wir die bekannten Transformationen

β

V  α = Λα V γ , 

W  = –

Λδ W

γ

β

β

δ

der Lorentzvektoren ein:

Λα V γ = T αβ –

Λδ W

γ

β

δ

–

–

Beide Seiten der Gleichung werden mit Λμ multipliziert und Λμ Λα = δμ ausgenützt

α

α

γ

γ

V μ = –

Λμ T  αβ –

Λδ W

α

β

δ = T μδ Wδ

–

γ

Es folgt Λμ T αβ –

Λδ = T μδ, oder nach Kontraktion mit Λν und Λ

α

β

μ

δ

γ

T  νγ = Λν Λ T μδ

μ

δ

Also transformiert sich T αβ wie ein Lorentztensor 2-ter Stufe. 

5.2 Levi-Cività-Tensor im Minkowskiraum

Die Definition der Determinante lautet

(detΛ) = Λ0 Λ1 Λ2 Λ3 αβγ δ

α

β

γ

δ

Damit werten wir (5.31) aus:

$$

$

$ Λα Λα Λα Λα $

0

1

2

3

$

$

Λβ

Λβ

Λβ

Λβ $

 αβγ δ = (detΛ) Λα

$ 0

1

2

3 $

α Λβ

β Λγ

γ  Λδδ αβγ δ = (detΛ) $$ Λγ Λγ Λγ Λγ $

$ 0

1

2

3 $$

Λδ

Λδ

Λδ

Λδ

0

1

2

3

= (detΛ)2 αβγδ = αβγδ

Die Lorentztransformation genügt der Bedingung ΛTη Λ = η. Wenn man hiervon die De-

terminante nimmt, erhält man det Λ = ±1. Dies wurde im letzten Schritt verwendet. 

Die Größe αβγ δ wird zunächst unabhängig von einem Bezugssystem durch konkrete

Zahlenzuweisungen definiert. Bei einer Transformation als Pseudotensor erhält man ein

damit konsistentes Ergebnis. Daher kann αβγ δ auch als Pseudotensor aufgefasst werden. 
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5.3 Ladung als Lorentzskalar

Aus der Definition von daα folgt









daα = dx1 dx2 dx3, dx0 dx2 dx3, dx0 dx1 dx3, dx0 dx1 dx2

Für den Rand x0 = const. wird dieses „Flächenelement“ zu (daα) = (dx1 dx2 dx3, 0, 0, 0). 



Damit wird (13.36) zu q = d3r j 0/c. Wir werten nun die Differenz q − q aus:





& 



c (q − q ) =

daα j α −

daα j α =

daα j α =

d4x ∂α j α = 0

x 0 = const. 

x0 = const. 

x1 6

6∞

Im ersten Integral wurde der Lorentzskalar da j α

α

a

durch daα j α ersetzt. Danach besteht der Unterschied

der beiden Integrale nur noch in den „Flächen“ x0 =

const. und x0 = const., über die sie laufen. 

Im nebenstehenden x-t- oder x0-x1-Diagramm sind

-

diese (dreidimensionalen) „Flächen“ als vertikale Li-

x0

x 0

c t

nien dargestellt. Sie können durch die horizontalen

Linien (bei x1 = ±a) zu einer geschlossenen Flä-

che gemacht werden. Die hinzugefügten Ränder ge-

ben für a → ∞ keine Beiträge, weil die Stromver-

?−∞

teilung begrenzt ist (und damit im Unendlichen ver-

schwinden muss). 

Das nunmehr geschlossene (dreidimensionale) “Flächenintegral“ wird dann mit dem Gauß-

schen Satz im Minkowskiraum in ein vierdimensionales Integral umgewandelt. Im letzten

Schritt wird schließlich die Voraussetzung ∂α j α = 0 benutzt. 

Das Ergebnis bedeutet insbesondere, dass die Ladung eine Eigenschaft ist, die von der

Geschwindigkeit unabhängig ist. Experimentell wird dies etwa durch die Neutralität des

Wasserstoffatoms nachgewiesen. 

6.1 Relativistische Bewegungsgleichung

Wir werten die kovariante Form m duα/dτ = (q/c) F αβ uβ für α = 1 aus. Die linke Seite

ist

du1

du1

d

vx

m

= m γ

= m γ



dτ

dt

dt

1 − v2/c2

Die rechte Seite ist

q

q 



q





F 1β uβ =

F 10 u0 + F 12 u2 + F 13 u3 =

γ Ex c + Bz vy − By vz

c

c

c

Wir setzen beide Seiten gleich, kürzen einen Faktor γ und schreiben das Ergebnis in der

Form





d

m v

v

x



= q E +

× B · ex

dt

1 − v2/c2

c

Mit den entsprechenden Gleichungen für α = 2 und 3 erhalten wir dann gewünschte Er-

gebnis. 
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6.2 Dopplereffekt

Eine Quelle sende eine endliche Anzahl von Wellenbergen aus; diese Anzahl ist gleich der

Phasendifferenz zwischen dem Anfang und dem Ende der Welle geteilt durch 2π. Durch die

Lorentztransformation kann diese diskrete Zahl nicht geändert werden; denn jeder Knoten

der Welle (mit E = B = 0) bleibt bei der Lorentztransformation erhalten. Daher muss die Phase kαxα ein Lorentzskalar sein. Da xα ein Lorentzvektor ist, muss dies auch für kα

gelten, also

k α = Λα kβ

β

Wir schreiben dies für die spezielle Lorentztransformation und für die 0-Komponente an:

k0 − v k1/c

k 0 = 

oder

ωRS = γ (ω − v k1)

(A.2)

1 − v2/c2

Eine Quelle im Ruhsystem RS = IS sendet mit der Frequenz ω = ωRS = c k0. Ein in IS

ruhender Beobachter misst dagegen die Frequenz ω = c k0. Diese Frequenzänderung heißt

 Dopplereffekt. Wegen v = v ex gilt v k1 = v · k = v k cos φ = v (ω/c) cos φ; dabei ist φ

der Winkel, den der Beobachter in IS zwischen der Ausbreitungsrichtung k der Welle und der Geschwindigkeit v der Quelle sieht. Wir setzen dies in (A.2) ein und lösen nach ω auf:

1 − v2/c2

ω = ωRS

(Dopplereffekt)

(A.3)

1 − (v/c) cos φ

Der Faktor 1 − (v/c) cos φ ist ein kinematischer Effekt, der bereits aus der Galileitrans-

formation folgt. Der Faktor (1 − v2/c2)1/2 ist dagegen ein relativistischer Effekt, der der

Zeitdilatation entspricht. 

Für v 
 k ist der Effekt von der Ordnung v/c (linearer Dopplereffekt). Für v ⊥ k ist der Effekt von der Ordnung v2/c2 (quadratischer Dopplereffekt). 

6.3 Hamiltonsches Prinzip

Wir werten das Hamiltonsche Prinzip für eine beliebige Lagrangefunktion L(x, u) aus:















∂L

∂L

∂L

d ∂L

δ

dτ L =

dτ

δxα +

δuα

= dτ

−

δxα = 0

∂xα

∂uα

∂xα

dτ ∂uα

Dabei haben wir δuα = (d/dτ ) δxα eingesetzt und partiell integriert. Aus der Beliebigkeit

der Variation δxα folgen die Euler-Lagrange-Gleichungen:

d

∂L

∂L

=

(A.4)

dτ ∂uβ

∂xβ

Die Lagrangefunktion ist gegeben:



q

L(u, x) = −mc uγ uγ − Aβ uβ

(A.5)

c

Im Argument von L kommen die Potenziale nicht vor, da die Aα(x) äußere, gegebene

Felder sind (und keine Größen, die zu variieren wären). Über das Argument x = (xα) von
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Aα(x) hängt L aber explizit vom Ort und von der Zeit ab. Wir berechnen die beiden Seiten

der Euler-Lagrange-Gleichungen (A.4) für die Lagrangefunktion (A.5):





d ∂L

d

−mc u

q

du

q ∂A

=

α

√

−

α

α

Aα(x) = −m

−

uβ

dτ ∂uα

dτ

uγ uγ

c

dτ

c ∂xβ

∂L

q ∂A

= −

β uβ

∂xα

c ∂xα

In die Bewegungsgleichung (nicht aber in die Lagrangefunktion!) darf dabei uγ uγ = c2

eingesetzt werden. Die Ableitungen des Potenzials werden in Fαβ = ∂α Aβ − ∂β Aα zusam-

mengefasst. Damit erhalten wir die Euler-Lagrange-Gleichung

duα

q

m

=

Fαβ uβ

(A.6)

dτ

c

7.1 Drucktensor aus Lorentztransformation

Wir gehen von der Matrixform (3.18) der speziellen Lorentztransformation aus. Da wir vom

Ruhsystem IS zu IS transformieren wollen, ersetzen wir hier v durch −v, 





γ

γ v/c

Λ =

γ v/c

γ

Transformiert werden soll der durch (7.16) gegebene Drucktensor. Im relevanten Unterraum

fassen wir die Komponenten des Drucktensors zu einer Matrix Π zusammen:





P 00

P 01

Π =

P 10

P 11

Wie in (3.16) schreiben wir die Transformation dann in Matrixform an:



 

 







γ

γ v/c

0

0

γ

γ v/c

v2/c2

v/c

Π = ΛTΠΛ =

= P γ 2

γ v/c

γ

0

P

γ v/c

γ

v/c

1

Wir gehen nun von der kovarianten Form aus und setzen (uα) = γ (c, v) ein:













uαuβ

1

v/c

1

0

Π =

P

− P ηαβ = P γ 2

− P

c2

v/c

v2/c2

0

−1









1 − 1/γ 2

v/c

v2/c2

v/c

= P γ 2

= P γ 2

v/c

v2/c2 + 1/γ 2

v/c

1

Beide Ergebnisse stimmen überein. 

9.1 Uhrzeit in beschleunigtem System

Die Zeit einer Uhr ist allgemein durch dτ = dsUhr/c gegeben. Dieser Ausdruck ist zunächst

im IS und dann in KS auszuwerten. 

 Rechnung in IS: In IS folgt aus dτ = dsUhr/c die Uhranzeige

 t



0

τ =

dt

1 − v 2 /c2

Uhr

0
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Für die IS-Uhr gilt v = 0, also

 t0

π

Δt =

dt = t0 =

0

ω

Für die KS-Uhr gilt v = a ω cos(ω t), also





t





0

a2ω2

a2ω2

π

Δt =

dt

1 −

cos2(ω t) ≈

1 −

0

c2

4 c2

ω

Bei der Auswertung des Integrals wurde a ω  c verwendet. 

 Rechnung in KS : Um dτ = dsUhr/c auszuwerten, muss zunächst das Wegelement in KS

bestimmt werden. Wir bezeichnen die Koordinaten in KS mit t, x, y, z. Eine mögliche

Transformation zwischen IS und KS ist

t = t, 

x = x + a sin(ω t) , 

y = y, 

z = z

Damit erhalten wir für das Wegelement (ohne die dy2- und dz2-Terme):





a2ω2

ds2 = c2 dt2 − dx2 = 1 −

cos2(ω t) c2 dt2 − dx2 − 2a ω cos(ω t) dx dt

c2

(A.7)

Die KS-Uhr ruht in KS, also dx = 0 und







t





0



t0

a2ω2

a2ω2

π

Δt = 1

dt

g00(rUhr) =

dt

1 −

cos2(ω t) ≈ 1 −

c 0

0

c2

4 c2

ω

Für die IS-Uhr gilt dx = −aω cos(ω t) dt (folgt aus dx = 0). Dies ist in (A.7) einzuset-

zen und liefert ds2 = c2 dt2, also

 t0

π

Δt =

dt = t0 =

0

ω

Die richtig berechneten Uhrzeiten hängen nicht davon ab, in welchem Bezugssystem sie

berechnet wurden. 

11.1 Christoffelsymbole

R3  mit Kugelkoordinaten: Die Koordinaten sind (x1, x2, x3) = (r, θ, φ). Aus dem Weg-

element ds2 = dr2 + r2 (dθ2 + sin2 θ dφ2) folgt der metrische Tensor:

⎛

⎞

⎛

⎞





1

0

0





1

0

0

g

⎝

⎠

⎝

⎠

μν

=

0

r2

0

, 

gμν =

0

1/r2

0

(A.8)

0

0

r2 sin2 θ

0

0

1/(r2 sin2 θ )

Nur die Ableitungen ∂g22/∂x1, ∂g33/∂x1 und ∂g22/∂x2 sind ungleich null. Da der metri-

sche Tensor zudem diagonal ist, sind nur die Christoffelsymbole mit den Indizes (2, 2, 1), 

(3, 3, 1) oder (3, 3, 2) ungleich null:

Γ 2 = Γ 2 = 1 , 

Γ 1 = −r , 

Γ 3 = Γ 3 = 1

12

21

r

22

13

31

r

(A.9)

Γ 1 = −r sin2 θ , 

Γ 3 = Γ 3 = cot θ , 

Γ 2 = − sin θ cos θ

33

23

32

33
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R3  mit Zylinderkoordinaten: Die Koordinaten sind (x1, x2, x3) = (ρ, ϕ, z). Aus dem Wegelement ds2 = dρ2 + ρ2 dϕ2 + dz2 folgt der metrische Tensor:

⎛

⎞

⎛

⎞





1

0

0





1

0

0

g

⎝

⎠

⎝

⎠

μν

=

0

ρ2

0

, 

gμν =

0

1/ρ2

0

0

0

1

0

0

1

Nur die Ableitung ∂g22/∂x1 ist ungleich null. Da der metrische Tensor zudem diagonal ist, 

sind nur die Christoffelsymbole mit den Indizes (2, 2, 1) ungleich null:

g11 ∂g22

g22 ∂g22

Γ 1 = −

= −ρ , 

Γ 2 = Γ 2 =

= 1

(A.10)

22

2

∂x1

21

12

2

∂x1

ρ

 Kugeloberfläche: Die Koordinaten sind (x1, x2 ) = (θ, φ ). Aus dem Wegelement ds2 =

a2 (dθ 2 + sin2 θ dφ2 ) folgt der metrische Tensor:













1

0





1

0

gik = a2

, 

gik = 1

(A.11)

0

sin2 θ

a2

0

1/ sin2 θ

Die einzige nichtverschwindende Ableitung ist ∂g22/∂x1 = 2 a2 sin θ cos θ. Damit sind nur

die Christoffelsymbole mit den Indizes (2, 2, 1) ungleich null:

g11 ∂g22

g22 ∂g22

Γ 1 = −

= − sin θ cos θ , 

Γ 2 = Γ 2 =

= cot θ

(A.12)

22

2

∂x1

21

12

2

∂x1

11.2 Beschleunigungskräfte aus metrischem Tensor

Aus dem Wegelement (9.2) können wir den metrischen Tensor ablesen:

⎛

⎞

1 − ω2 (x2 + y2)/c2 ω y/c −ω x/c

0





⎜

ω y/c

−1

0

0 ⎟

G = gμν = ⎝

−

⎠

(A.13)

ω x/c

0

−1

0

0

0

0

−1

Zur Berechnung der Christoffelsymbole benötigen wir die inverse Matrix:

⎛

⎞

1

ω y/c

−ωx/c

0

⎜ ωy/c

−1 + ω2y2/c2

−ω2x y/c2

0 ⎟

G−1 = (gμν) = ⎝ −

⎠

(A.14)

ω x/c

−ω2x y/c2

−1 + ω2x2/c2

0

0

0

0

−1

Das Standardverfahren zur Bestimmung der inversen Matrix ist die Gauß-Elimination. 

Mit diesem Verfahren werden die Lösungsvektoren y(k) des linearen Gleichungssystems

Gy(k) = e(k) mit e(1) T = (1, 0, 0, 0), . . . , e(4) T = (0, 0, 0, 1) bestimmt. In der gesuchten inversen Matrix sind die y(k) dann die Spaltenvektoren:





Gy(k) = e(k)

⇒

G−1 = y(1), y(2), y(3), y(4)

Im vorliegenden Fall ist nur die 3 × 3-Matrix des (x0, x1, x2)–Unterraums zu invertieren. 

Man könnte auch zunächst zu Zylinderkoordinaten übergehen; dann ist nur eine 2 × 2-

Matrix (im Unterraum der Koordinaten x0 und φ) zu invertieren. Durch Multiplikation der

Matrizen (A.13) und (A.14) überprüft man das Ergebnis. 
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Folgende Ableitungen der gμν aus (A.13) sind ungleich null:

∂g00

∂g

∂g

ω

∂g

ω

= − 2 ω2

00

01

02

x , 

= − 2 ω2 y , 

=

, 

= −

∂x

c2

∂y

c2

∂y

c

∂x

c

Dazu kommen noch ∂g10/∂y = ∂g01/∂y und ∂g20/∂x = ∂g02/∂x. Damit berechnen wir

exemplarisch einige der Christoffelsymbole (11.18):

g11 ∂g00

g12 ∂g00

2 ω2 x

ω2 x y 2 ω2 y

ω2

Γ 1 = −

−

= − 1 − ω2y2/c2

−

≈ −

x

00

2

∂x

2

∂y

2

c2

c2

c2

c2

Hierbei haben wir Terme der relativen Größe O(ω2 y2/c2) = O(v2/c2) weggelassen. Ein

anderes Beispiel ist





g00

∂g01

∂g02

g01 ∂g11

Γ 0 =

+

+

+ . . . = 0

12

2

∂y

∂x

2

∂y

Im ersten Term auf der rechten Seite addieren sich die beiden partiellen Ableitungen zu null; in den weiteren Termen verschwinden die partiellen Ableitungen direkt. Insgesamt erhalten

wir in der führenden Ordnung folgende nichtverschwindende Christoffelsymbole:

ω2 x

ω2 y

ω

ω

Γ 1 = −

, 

Γ 2 = −

, 

Γ 2 = Γ 2 =

, 

Γ 1 = Γ 1 = −

00

c2

00

c2

01

10

c

02

20

c

Hiermit sind die Bewegungsgleichungen d2xκ /dτ 2 = −Γ κ (dxμ/dτ )(dxν /dτ ) auszu-

μν

werten. Wir schreiben zunächst die x- und y-Komponente dieser Gleichungen an:



2



2

d2x

ω2 x

dx0

dx0 dy

d2y

ω2 y

dx0

dx0 dx

=

+ 2 ω

, 

=

− 2 ω

dτ 2

c2

dτ

c

dτ dτ

dτ 2

c2

dτ

c

dτ dτ

Die z-Komponente ist d2z/dτ 2 = 0 ist ohne besonderes Interesse. Die 0-Komponente ergibt

d2x0/dτ 2 = 0 oder dτ = const. · dt. Mit x0 = c t und dτ = const. · dt werden die

Bewegungsgleichungen zu

d2x

dy

d2y

dx

= ω2 x + 2 ω

, 

= ω2 y − 2 ω

dt2

dt

dt2

dt

Der erste Term auf der rechten Seite ist jeweils die Zentrifugalkraft, der zweite die Corioliskraft. 

12.1 Zeitverschiebung für Satelliten

Das Produkt GME aus der Gravitationskonstanten und der Masse der Erde kann durch die

Erdbeschleunigung g ≈ 9.81 m/s2 und den Erdradius R ≈ 6370 km ausgedrückt werden. 

Diesen Zusammenhang erhält man, wenn man das Gewicht mg eines Körpers durch das

Gravitationsgesetz ausdrückt, mg = GmME/R2. Dies ergibt GME = gR2 oder Φ(r0) =

− gR2/r0. 

Die Zeitdilatation für die bewegte Satellitenuhrzeit ist



tS

v2

v2

Φ(r

Φ(r

=

0)

0)

1 −

≈ 1 − 1

= 1 +

⇒ δ =

t∞

c2

2 c2

2 c2

2 c2
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Für die Kreisbahn wurde v2 = GME/r0 = −Φ(r0) verwendet. Mit dem Einfluss des Gra-

vitationsfelds wird dies zu

tS

Φ(r

Φ(r

=

0)

0)

1 +

+

= 1 + 3Φ(r0) = 1 − 3 gR2

t∞

2 c2

c2

2 c2

2 r0 c2

Für die Erdlaborzeit gilt

tL

Φ(R)

g R

= 1 +

= 1 −

t∞

c2

c2

Die Geschwindigkeit der Erdrotation (urot ≈ 460 m/s) wird vernachlässigt, denn die Satel-

litengeschwindigkeit ist mehr als zehnmal so groß. Die relative Zeitverschiebung zwischen

Labor und Satellit ist somit





t L − tS

t

gR

=

S

3R

1 −

=

− 1

t L

tL

c2

2 r0

Die Skala des Effekts ist durch gR/c2 ≈ 7 · 10−10 gegeben. Für den erdnahen Satelliten

ist r0 ≈ R und tS < tL; die Uhr des erdnahen Satelliten geht also langsamer. Für den

geostationären Satelliten gilt r0 ≈ 6.6 R. Dann ist tS > tL; die Uhr des geostationären

Satelliten geht schneller. Die Satellitennavigation (GPS, global positioning system) kann

nur funktionieren, wenn diese Effekte berücksichtigt werden. 

13.1 Euler-Lagrange-Gleichung für geodätische Linien

Das Variationsprinzip ergibt















∂L

∂L

∂L

d ∂L

δ

dτ L =

dτ

δxκ +

δ ˙xκ

= dτ

−

δxκ = 0

∂xκ

∂ ˙xκ

∂xκ

dτ ∂ ˙xκ

Es wurde einmal partiell integriert. Aus der Beliebigkeit der Variation δxκ folgen die Euler-

Lagrange-Gleichungen:

d

∂L

∂L

=

dτ ∂ ˙xκ

∂xκ

Wir werten dies für die gegebene Lagrangefunktion aus:

d

gκν(x) ˙xν

(∂g



= 1

μν /∂ xκ ) ˙

xμ ˙xν



dτ

g

2

λσ ˙

xλ ˙xσ

gλσ ˙xλ ˙xσ

Hierin kann nun c2 = gλσ (x) ˙xλ ˙xσ eingesetzt werden; dies folgt aus ds2 = c2 dτ 2 =

gλσ (x) dxλ dxσ und ˙xσ = dxσ /dτ . Auf der linken Seite wirkt die Ableitung nach τ dann

auf ˙xν und auf das Argument von gκν(x). Damit erhalten wir

∂gκν

∂gμν

gκν ¨xν = −

˙xμ ˙xν + 1

˙xμ ˙xν

∂xμ

2 ∂xκ

Wir schreiben den ersten Term auf der rechten Seite zweimal jeweils mit einem Faktor 1/2

an und vertauschen in einem der Terme die Indizes μ ↔ ν. Dann multiplizieren wir beide

Seiten mit gσ κ und verwenden (11.17). Zusammen mit der Symmetrie gκν = gνκ ergibt dies





d2xσ

gσ κ

∂g

∂g

∂g

dxμ dxν

dxμ dxν

= −

μκ + κν − μν

= −Γ σ

(A.15)

dτ 2

2

∂xν

∂xμ

∂xκ

dτ

dτ

μν

dτ

dτ

Im letzten Schritt wurde die Definition (11.18) der Christoffelsymbole verwendet. Das Er-

gebnis sind die gesuchten Euler-Lagrange-Gleichungen. 
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13.2 Geodätische Linien

R3  mit Kugelkoordinaten: Die Koordinaten sind (x1, x2, x3) = (r, θ, φ). Mit den Christoffelsymbolen (A.9) werden die Euler-Lagrange-Gleichungen (A.15) zu









d2r

dxi dxk

dθ 2

dφ 2

= −Γ 1

= r

+ r sin2 θ

dτ 2

ik

dτ dτ

dτ

dτ





d2θ

dxi dxk

dr dθ

dφ 2

= −Γ 2

= − 2

+ sin θ cos θ

(A.16)

dτ 2

ik

dτ dτ

r dτ dτ

dτ

d2φ

dxi dxk

dr dφ

dθ dφ

= −Γ 3

= − 2

− 2 cot θ

dτ 2

ik

dτ dτ

r dτ dτ

dτ dτ

Für konstantes θ und φ sind die zweite und dritte Gleichung erfüllt, und die erste wird zu

d2r/dτ 2 = 0. Hieraus folgt r = c1 τ +c2, also eine radiale Gerade. Natürlich ist jede andere Gerade ebenfalls Lösung. 

R3  mit Zylinderkoordinaten: Die Koordinaten sind (x1, x2, x3) = (ρ, ϕ, z). Mit den Christoffelsymbolen (A.10) werden die Euler-Lagrange-Gleichungen (A.15) zu









d2ρ

dϕ 2

dϕ 2

= −Γ 1

= ρ

dτ 2

22

dτ

dτ

d2ϕ

dρ dϕ

dρ dϕ

= −2 Γ 2

= − 2

dτ 2

21 dτ dτ

ρ dτ dτ

d2z

dxi dxk

= −Γ 3

= 0

dτ 2

ik

dτ dτ

Für konstantes ρ und ϕ sind die erste und zweite Gleichung erfüllt, und die dritte wird zu

d2z/dτ 2 = 0. Hieraus folgt z = c1 τ + c2, also eine vertikale Gerade. Für konstantes z und

ϕ sind die zweite und dritte Gleichung erfüllt, und die erste wird zu d2ρ/dτ 2 = 0. Hieraus

folgt ρ = c1 τ + c2, also eine radiale Gerade. 

 Kugeloberfläche: Die Koordinaten sind (x1, x2) = (θ, φ). Mit den Christoffelsymbolen

(A.12) werden die Euler-Lagrange-Gleichungen (A.15) zu





d2θ

dφ 2

d2φ

dθ dφ

= sin θ cos θ

, 

= −2 cot θ

dτ 2

dτ

dτ 2

dτ dτ

Diese Gleichungen erhält man auch aus den Euler-Lagrange-Gleichungen (A.15), wenn

man dort r = a = const. setzt. Für θ = π/2 ist die erste Gleichung erfüllt, und die zweite

wird zu d2φ/dτ 2 = 0. Hieraus folgt φ = c1 τ + c2, also der Großkreis des Äquators. 

Natürlich ist jeder andere Großkreis ebenfalls Lösung. 

13.3 Krümmung einer Geodäte

Für eine Kurve y = y(x) ist der Krümmungsradius durch

1

|y|

$

$

=

y=0

= $y(x)$

R

(1 + y2)3/2



















Lösungen der Aufgaben

361

definiert; am betrachteten Scheitelpunkt haben die Kurven eine waagerechte Tangente. Wir

berechnen:

$

$

$

$

1

$ d2x3 $

g

$ d2x3 $

g

= $

$

1

und

= $

$

R

$

$ =

$

$ =

1

d(x0)2

c2

R2

d(x1)2

v2

R2 ist der Krümmungsradius der sichtbaren Wurfparabel, etwa R ≈ 10 m für v = 10 m/s. 

R1 bezieht sich dagegen auf den vierdimensionalen Minkowskiraum. Damit ist 1/R1 ein

Krümmungsmaß im Riemannschen Raums, in dem die Bahnkurve eine Geodäte ist. Die

Krümmung 1/R1 ist sehr klein, R1 = c2/g ≈ 9 · 1012 km, also etwa 109 Erdradien. 

16.1 Basisvektoren auf Kugeloberfläche

Der Radius der Kugel sei R. Aus dem Wegelement

dr = R eθ dθ + R sin θ eφ dφ = ei dxi = ei dxi

lesen wir ab:

e

e

e

θ

φ

1 = R eθ , 

e1 =

, 

e2 = R sin θ eφ , e2 =

R

R sin θ

Es gelten e

k

i · ek = gik , ei · ek = gik und ei · ek = gi

= δk. Die metrischen Koeffizienten

i

sind in (A.11) mit a = R gegeben. 

16.2 Parallelverschiebung auf Kugeloberfläche

Die Parallelverschiebungen sind aus (16.4) mit den aus (A.12) bekannten Christoffelsym-

bolen zu berechnen, also

δAi = −Γ i Ak dxp

mit

Γ 1 = − sin θ cos θ , 

Γ 2 = Γ 2 = cot θ

kp

22

21

12

oder





δA1 = sin θ cos θ A2 dφ

und

δA2 = − cot θ A1 dφ + A2 dθ

(A.17)

Für die Einheitskugel ist der Startvektor

 

A = e

0

φ :=

Startvektor

1

Wir beginnen mit dem Weg 1. Längs (θ, φ) = (π/2, 0) → (, 0) gilt dφ = 0 und (A.17)

wird zu

δA1 = 0

und

δA2 = − cot θ A2 dθ

(Weg 1)

(A.18)

Um hieraus A2(θ ) längs des betrachteten Wegs zu berechnen, kann δA2 wie ein ge-

wöhnliches Differenzial behandelt werden. Die Lösung der zweiten Gleichung ist dann

A2(θ ) = a/ sin θ. Aus der Anfangsbedingung A2(π/2) = 1 folgt a = 1. Damit ist

A2() = 1/ sin , also

 





A = e

0

1

0

φ :=

→

1

1/ sin 

Auf dem Weg 2, also für (θ, φ) = (, 0) → (, π/2) gilt dθ = 0 und (A.17) wird zu

δA1 = sin  A2 dφ

und

δA2 = − 1

A1 dφ

(Weg 2)

sin 
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Der Faktor cos  wurde gleich 1 gesetzt. Hieraus folgen δ2A2(φ)/dφ2 = −A2 und

A2(φ) = a cos(φ + φ0). Aus der zweiten Gleichung folgt dann A1(φ) = (sin ) a sin(φ +

φ0). Die Anfangsbedingungen A1(0) = 0 und A2(0) = 1/ sin  legen die Integrationskon-

stanten fest, so dass

A1(φ) = sin φ

und

A2(φ) = cos φ

(Weg 2)

sin 

Damit können wir die Änderungen auf dem Weg 2 angeben:

 





 

A = e

0

1

0

2

1

φ :=

→

→

1

1/ sin 

0

Auf dem Weg 3, (θ, φ) = (, π/2) → (π/2, π/2) ist dφ = 0 und (A.17) wird wieder zu

(A.18). Hieraus folgt wieder A2(θ ) = a/ sin θ. Wegen der Anfangsbedingung A2() = 0

ist diesmal aber a = 0, also

δA1 = 0

und

δA2 = 0

(Weg 3)

Auf dem Weg 4, (θ, φ) = (π/2, π/2) → (π/2, 0) ist cos θ = 0 und (A.17) wird damit zu

δA1 = 0

und

δA2 = 0

(Weg 4)

Damit gilt insgesamt

 





 

 

 

A = e

0

1

0

2

1

3

1

4

1

φ :=

→

→

→

→

=: e

1

1/ sin 

0

0

0

θ

Dieser Paralleltransport ist in Abbildung 16.1, rechts, für  → 0 skizziert. In der Rechnung

wurde  = 0 verwendet, um die Koordinatensingularität bei θ = 0 zu umgehen. Es ist

charakteristisch für den gekrümmten Raum, dass der Paralleltransport längs eines geschlos-

senen Wegs ungleich null ist. 

17.1 Kovariante Maxwellgleichungen

Der Zusammenhang zwischen den ko- und kontravarianten Komponenten (Basisvektoren)

und den üblichen Komponenten (Basisvektoren) ergibt sich aus dem Wegelement

dr = er dr + r eθ dθ + r sin θ eφ dφ = ei dxi = ei dxi mit













dxi ) = dr, dθ, dφ)

und

dxi =

dr, r2 dθ , r2 sin2 θ dφ

Für die Komponenten des elektrischen Feldvektors (oder eines anderen Vektors) gilt damit

Eθ

Eφ

E1 = E1 = Er , 

E2 =

, 

E2 = r Eθ , 

E3 =

, 

E3 = r sin θ Eφ

r

r sin θ

Aus den Christoffelsymbolen (A.9) erhalten wir

Γ i = 2 , 

Γ i = cot θ , 

Γ i = 0

i 1

r

i 2

i 3
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werten wir die kovariante Ableitung aus:

∂E1

∂E2

∂E3

Ei||i = Ei|i + Γ i Ep =

+

+

+ Γ i E1 + Γ i E2

ip

∂r

∂θ

∂φ

i 1

i 2

∂E

∂E

∂E

=

r + 1

θ +

1

φ + 2 Er + cot θ Eθ

∂r

r ∂θ

r sin θ ∂φ

r

r

Dies stimmt mit dem bekannten Ausdruck für div E in Kugelkoordinaten überein. Für die

andere Maxwellgleichung beschränken wir uns auf die 1-Komponente. Dann steht auf der

rechten Seite jr und ∂t Er . Mit g = r4 sin2 θ wird die linke Seite zu









1

∂B

∂B

∂ (r sin θ B

∂ (r B

√

3

2

φ )

θ )

1kl Bl|k =

1

−

=

1

−

g

r2 sin θ

∂x2

∂x3

r2 sin θ

∂θ

∂φ

Ein Faktor r kann jeweils gekürzt werden. Damit erhält man die bekannte r-Komponente

von rot B. 

18.1 Umformung des Krümmungstensors

In die rechte Seite von (18.30) setzen wir die Definition (15.1) der Christoffelsymbole ein

und berücksichtigen gks gkr = δr :

s









gkr

∂gpr

∂grm

∂gpm

gkr

∂gpr

∂grs

∂gps

gksΓ k + g

= g

+

−

+ g

+

−

pm

kmΓ k

ps

ks

km

2

∂xm

∂xp

∂xr

2

∂xs

∂xp

∂xr









∂g

∂g

∂g

∂g

∂g

∂g

= 1

ps + sm − pm + 1

pm + ms − ps

2

∂xm

∂xp

∂xs

2

∂xs

∂xp

∂xm

Im letzten Ausdruck kürzen sich der 1. und 6. Term, und der 3. und 4. Die verbleibenden

Ableitungen sind gleich und ergeben das erwartete Ergebnis. Die Relation (18.31) ergibt

sich sofort, wenn man gms gsr = δr nach xp ableitet. Aus der Kombination der beiden

m

Relationen erhalten wir

∂gsr

∂g





ms

gms

= −gsr

= −gsr gqs Γ q + gqm Γ q

(A.19)

∂xp

∂xp

pm

ps

Wir schreiben nun Rmikp = gms Rsikp mit Rsikp aus (18.8) an, wobei wir die Christoffel-

symbole in den ersten beiden Termen ausschreiben:









∂

gsr

∂gri

∂grk

∂gik

∂

gsr

∂gri

∂grp

∂gip

Rmikp = gms

+

−

− gms

+

−

∂xp 2

∂xk

∂xi

∂xr

∂xk 2

∂xp

∂xi

∂xr





+ gms Γ r Γ s − Γ r Γ s

ik

rp

ip

rk

Die Ableitungen ∂p und ∂k vor den großen Klammer wirken zum einen auf die Klammern

und geben 6 zweite Ableitungen des metrischen Tensors, von denen sich zwei aufheben. 

Die Ableitungen wirken zum anderen auf den unmittelbar dahinter stehenden metrischen

Tensor. Für diesen Anteil verwenden wir (A.19) und fassen den Klammerinhalt wieder zu

Christoffelsymbolen zusammen:





∂2gmk

∂2gip

∂2gik

∂2gmp

Rmikp = 1

+

−

−

2

∂xi ∂xp

∂xm ∂xk

∂xm ∂xp

∂xi ∂xk









− grs Γ r + g

Γ s + g

+ g

Γ s

pm

rm Γ r

ps

ik

rs Γ r

km

rm Γ r

ks

pi





+ gmr Γ s Γ r − Γ s Γ r

ik

sp

ip

sk
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Die erste Zeile ist gleich der ersten Zeile von (18.11). Der erste und dritte Term in der

zweiten Zeile ergeben die zweite Zeile von (18.11); dabei ist jeweils die Vertauschungs-

symmetrie der unteren Indizes der Christoffelsymbole zu beachten. Die dritte Zeile haben

wir aus der vorhergehenden Formel übernommen, jedoch mit vertauschten Summationsin-

dizes r und s. Danach sieht man sofort, dass sich die dritte Zeile und der zweite und vierte

Term in der zweiten Zeile aufheben. Insgesamt haben wir damit das gewünschte Ergebnis

(18.11) abgeleitet. 

18.2 Gaußsche Krümmung

Die Abstände sind durch ds2 = dx2 + dy2 + dz2 bestimmt, wobei dz = x dx/ρ1 + y dy/ρ2

einzusetzen ist:









x2

y2

ds2 = dx2 + dy2 + dz2 = 1 +

dx2 + 1 +

dy2 + 2 x y dx dy

ρ 2

ρ 2

ρ

1

2

1 ρ2

Hieraus kann der metrische Tensor abgelesen werden:













1 + x2/ρ 2 x y/(ρ

1

1 ρ2)

(x,y)=(0,0)

1

0

gik =

=

x y/(ρ

0

1

1 ρ2)

1 + y2/ρ 22

Damit gelten g(0, 0) = 1 und gik(0, 0) = δik. Die einzige nichtverschwindenden Ableitun-

gen sind

∂g11

∂g

∂g

y

∂g

x

= 2x

22

12

12

, 

= 2y , 

=

, 

=

∂x

ρ 2

∂y

ρ 2

∂x

ρ

∂y

ρ

1

2

1 ρ2

1 ρ2

Bei (x, y) = (0, 0) verschwinden alle Ableitungen und damit auch alle Christoffelsymbo-

le, 

Γ i = 0 für (x, y) = (0, 0)

kl

Daher tragen in R1212 nur die zweiten Ableitungen der metrischen Koeffizienten bei:





∂2g11

∂2g22

∂2g21

∂2g12

R1212 = 1

+

−

−

= − 1

2

∂y2

∂x2

∂x ∂y

∂x ∂y

ρ1 ρ2

Aus (18.23) mit g = 1 folgt der Krümmungsskalar

R = 2 R1212 = − 2

= − 2K

g

ρ1 ρ2

Dies ist der gesuchte Zusammenhang zwischen R und K. 

20.1 Konstanten der Bewegung

Entscheidend sind die unterschiedlichen Vorzeichen in den Bewegungsgleichungen

duμ

duμ

= Γ ν uν uλ und

= −Γ μ uν uλ

dτ

μλ

dτ

νλ

Dies folgt zum Beispiel aus dem Vergleich von (15.11) mit (15.13)). Es gilt entsprechend

für dsμ/dτ und dsμ/dτ . 
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Hiermit berechnen wir

d 



duμ

duμ

uμ uμ = uμ

+ uμ

= uμ Γ ν uν uλ − uμ Γ μ uν uλ = 0

dτ

dτ

dτ

μλ

νλ

Nach geeigneter Umbenennung der Summationindizes sieht man, dass beide Terme gleich

sind und sich aufheben. Analog gilt für den Spin

d 



sμ sμ = sμ Γ ν sν uλ − sμ Γ μ sν uλ = 0

dτ

μλ

νλ

Alternative Lösung: Die Bewegungsgleichungen können auch in der Form Duμ/dτ =

0 und Dsμ/dτ = 0 mit dem kovarianten Differenzial geschrieben werden. Nun ist die

kovariante Ableitung eines Skalars gleich der gewöhnlichen Ableitung:

d 



D 



Duμ

Duμ

uμ uμ =

uμ uμ = uμ

+ uμ

= 0

dτ

dτ

dτ

dτ

Damit gilt Aμ Aμ = const. für jeden Vektor Aμ, für den DAμ = 0 ist. 

20.2 Thomas-Präzession

Die zu lösenden Bewegungsgleichungen (20.18) lauten

dsα

du

= − 1

β sβ uα

(A.20)

dτ

c2 dτ

Aus der gegebenen Bahn xα(t) und dτ = dt/γ folgen

 









dxα

uα =

= γ c, −R ω sin(ωt), R ω cos(ωt), 0

dτ









duα

= −γ 2 ω2R 0, cos(ωt), sin(ωt), 0

dτ









d2uα

= γ 3 ω3 R 0, sin(ωt), − cos(ωt), 0

dτ 2













d3uα

duα

= γ 4 ω4 R 0, cos(ωt), sin(ωt), 0 = −γ 2 ω2

dτ 3

dτ

Wir betrachten nun die 0-Komponente der Bewegungsgleichung, 

ds0

duβ

γ duβ

= − 1

sβ u0 = −

sβ

(A.21)

dτ

c2 dτ

c dτ

d2s0

γ d2uβ

γ duβ ds

γ d2uβ

= = −

β

sβ −

= −

sβ

(A.22)

dτ 2

c dτ 2

c dτ

dτ

c dτ 2

Nach (20.16) ist dsβ /dτ proportional zu uβ. Wegen uβ (duβ /dτ ) = 0 fällt daher in der

zweiten Gleichung ein Term weg. Wir bilden noch eine weitere Ableitung:





d3s0

γ

d3uβ

d2uα

duβ

= −

− 1

uα

sβ

dτ 3

c

dτ 3

c2 dτ 2

dτ





γ

γ 4

duβ

γ 5 ω2 duβ

ds0

= −

− γ 2ω2 −

ω4 R2

sβ =

sβ = − γ 4 ω2

c

c2

dτ

c

dτ

dτ
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Für uα(τ ) wurde die bekannte Bewegung eingesetzt. Mit dτ = dt/γ wird das letzte Er-

gebnis zu

d3s0

ds0

= − γ 2 ω2

und

s0(t) = A sin(γ ω t)

dt3

dt

Als Anfangsbedingung wurde s0(0) = 0 verwendet. Wir setzen die Lösung s0(t) und das

bekannte uα(τ ) in (A.21) und (A.22) ein:





γ 3 ω2 R

γ 2ω A cos(γ ω t) = −

s1 cos(ω t) + s2 sin(ω t)

c





γ 4 ω3 R

− γ 4ω2A sin(γ ωt) =

s1 sin(ω t) − s2 cos(ω t)

c

Hieraus erhalten wir

A

A

s1 cos(ω t) + s2 sin(ω t) = −

cos(γ ω t) ≈ −

cos(γ ω t)

γ v/c

v/c

A

s1 sin(ω t) − s2 cos(ω t) = −

sin(γ ω t)

v/c

In der Amplitude wurden Terme der relativen Größe v2/c2 vernachlässigt. Wir lösen die

letzten beiden Gleichungen nach s1(t) und s2(t) auf und erhalten (20.33) mit σ = −Ac/v

und ωTh = ω (γ − 1). Für die 3-Komponente folgt aus (A.20) ds3/dτ = 0 oder s3 = const. 

Für die Anfangsbedingung s = σ ex ist das Gesamtresultat dann

















sα(t) =

− σ (v/c) sin(γ ωt), σ cos (γ − 1)ωt , −σ sin (γ − 1)ωt , 0

Obwohl kein Drehmoment wirkt, kehrt der Spin nach einem Umlauf (ω t = 2π) auf der

Kreisbahn nicht wieder in seine Ursprungsrichtung zurück. Er ist vielmehr um den Winkel

(γ − 1) 2π ≈ −πv2/c2 verdreht. Im Atom muss diese Thomas-Präzession bei der Behand-

lung des Spin-Bahn-Terms berücksichtigt werden. 

21.1 Umformung der Feldgleichungen

Wir multiplizieren

R

Rμν −

gμν + Λ gμν = − 8πG Tμν

(A.23)

2

c4

mit gμν ; dies schließt die Summation über μ und ν mit ein. Mit gμν gμν = 4, gμν Rμν = R

und gμν Tμν = T erhalten wir dann

R − 2R + 4Λ = − 8πG T

c4

oder R = 4Λ + 8πGT /c4. Wir setzen dieses R in (A.24) ein und erhalten





T

Rμν − Λ gμν = − 8πG Tμν −

gμν

c4

2

Man beachte den Vorzeichenwechsel des Terms Λgμν . 
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22.1 Eichbedingung für schwache Felder

Wenn man Sμν = Tμν − T ημν/2 mit ημν multipliziert, erhält man S = −T und

S

Tμν = Sμν −

ημν

2

Damit wird die Energie-Impuls-Erhaltung T |ν

μν

= 0 (für schwache Felder) zu

2Sμν|μ − Sμμ|ν = 0

(A.24)

Die Eichbedingungen sind von derselben Form, 2hμν|μ − hμμ|ν = 0. Diese Bedingung soll

für die retardierte Lösung



hμν(r, t) = − 4G

d3r Sμν (r, t − |r − r|/c)

(A.25)

c4

|r − r|

ausgewertet werden. Nun können hier im Integral alle Ableitungen von h.. auf S.. umgewälzt

werden. Für die Zeitableitung geht dies unmittelbar. Für eine Ableitung nach r besteht das Umwälzen in zwei Schritten: Da die r-Abhängigkeit nur in der Form |r − r| vorkommt, kann statt nach r auch nach r abgeleitet werden. Im zweiten Schritt wird diese Ableitung durch partielle Integration auf das Ortsargument von Sμν umgewälzt. Jeder dieser beiden

Schritte ist von einem Minuszeichen begleitet. Damit ergibt 2hμν|μ − hμμ|ν ein Integral mit

2Sμν|μ − Sμμ|ν im Integranden. Da dieser Ausdruck verschwindet, sind die Eichbedingun-

gen erfüllt. 

22.2 Gravitationsfeld einer rotierenden Kugel

Im statischen Fall entfallen die Zeitargument in (A.25). In erster Ordnung in v/c oder

ω R/c lautet das zu lösende Problem dann



hμν(r) = − 4G

d3r Sμν (r)

c4

|r − r|

wobei Sμν = Tμν − T ημν/2. In den Energie-Impuls-Tensor (20.29) setzen wir P ≈ 0 und

(uμ) ≈ (c, vi) und die gegebene Dichte ein. Dann ist Sμν = 0 für r > R und

⎛

⎞

1/2

v





1/c

v2/c v3/c

⎜ v

⎟

S

1/c

1/2

0

0

μν (r )

= c2 ⎝

⎠

(r ≤ R)

v2/c

0

1/2

0

v3/c

0

0

1/2

Hieraus ergeben sich die Diagonalelemente zu



hμμ(r) = − 2G

d3r



= − 2GM

(r > R)

c2

|r − r|

r≤R

c2 r

Dabei ist M = 4πR3/3. Das Geschwindigkeitsfeld aufgrund der Rotation ist v = ω × r oder vi = ikn ωk xn. Damit erhalten wir



ikn ωk xn

h0i(r) = − 4G ikn ωk

d3r

 x n

= − 4GMR2

(r > R)

c3

|r − r|

r≤R

5c3

r3

Die zugehörige Wegelement ist in (30.14) angegeben. In Kapitel 30 finden sich auch wei-

tere Details der Rechnung und eine Diskussion des Ergebnisses. Zu den Details gehören

insbesondere die Vorzeichen, zum Beispiel v1 = vx = −v1, und 123 = 1, aber 123 = −1

im Minkowskiraum, siehe (17.15). 
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23.1 Isotrope Form der Metrik

Mit der angegebenen Ersetzung wird das Wegelement zu





 

ds2 = B(r) c2 dt2 − G(r) dr2 − C(r) dr2 + r2 dθ2 + sin2 θ dφ2

Die angegebene Beziehung zwischen ρ und r wird durch



. 

r dr

G(r)

ln ρ(r) =

1 +

r

C(r)

gelöst; diese Beziehung wird für Lösung der Aufgabe nicht benötigt. Aus (23.19) folgt





r2

C + G dr2 = C

dρ2

ρ2

Wir setzen dies in ds2 ein:

r2





ds2 = B(r) c2 dt2 − C2

dr2 − C(r) r2 dθ2 + sin2 θ dφ2

ρ2 



= H (ρ) c2 dt2 − J (ρ) dρ2 + ρ2 dθ2 + ρ2 sin2 θ dφ2

Die zweite Zeile ergibt sich mit H (ρ) = B(r) und J (ρ) = r2 C(r)/ρ2, wobei für r jeweils

r(ρ) einzusetzen ist. 

25.1 Satellitenuhr in Schwarzschildmetrik

Für den freien Fall des Satelliten im Zentralfeld gelten (25.24) und (25.25) mit ε = c2 und

λ = τ (massives Teilchen), und ˙r = 0 (Kreisbahn), also





dt

a ε

2

a 2

F 2 − c2

c

1 − 2a

= F , 

−

+

−

=

(A.26)

dτ

r

r

2 r2

r3

2

Wir lösen die zweite Gleichung nach F 2 = (c2 + 2/r2)(1 − 2a/r) auf und setzen dieses

F in die erste Gleichung ein:

. 

dτ =

1 − 2a/r

(A.27)

dt

1 + 2/(c2 r2)

Wir drücken noch den Drehimpuls l durch den Radius r aus. Die Kreisbahn ergibt beim

Minimum des effektiven Potenzials (25.27):









a c2

2

dVeff

a c2

2

Veff(r) = −

+

1 − 2a

, 

=

−

1 − 3a

= 0

r

2 r2

r

dr

r2

r3

r

Hieraus folgt

2

a/r

=

c2 r2

1 − 3a/r

Wir setzen dies in (A.27) ein:



dτ = 1 − 3a ≈ 1 − 3a

(A.28)

dt

r

2 r 



In Aufgabe 12.1 hatten wir das genäherte Ergebnis aus dτ ≈ 1 − v2/(2c2) + Φ(r)/c2 dt

erhalten. 
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25.2 Einfang durch ein Schwarzes Loch

Das Gravitationsfeld des Schwarzen Lochs kann durch die Schwarzschildmetrik beschrie-

ben werden. Wir gehen von der Bewegungsgleichung (25.26) aus:

˙r2

c2

+ Veff(r) = const. =

2

4

√

Der Wert der Konstanten folgt aus Veff(∞) = 0 und ˙r∞ = v∞ = c/ 2. Wenn das Maxi-

mum des effektiven Potenzials (Abbildung 25.1) kleiner als c2/4 ist, fällt das Raumschiff

ins Zentrum, andernfalls ergibt sich eine hyperbelartige Bahn, die wieder vom Schwarzen

Loch wegführt. In das effektive Potenzial (25.27) setzen wir den Drehimpuls

√

 = v∞ b = 4 2 a c

ein:





+



, 

Veff(r)

a

dV

a

= − + 16 a2

eff/d r

1 − 2a

und

=

1 − 32 a 1 − 3a

= 0

c2

r

r2

r

c2

r2

r

r



√ 

Aus der zweiten Gleichung folgt r = 16 ± 4 10 a. Damit gilt für das Maximum



√



V max = V

(16 − 4 10 ) a ≈ V

eff

eff

eff(3.35 a) ≈ 0.276 c2

Da in ˙r2/2 + Veff(r) = c2/4 nur die „Energie“ 0.25 c2 zu Verfügung steht, verhindert das

Maximum bei 0.276 c2 einen Fall ins Zentrum. 

25.3 Zentraler Fall in Schwarzschildmetrik

Für den zentralen Fall eines massiven Teilchens im Zentralfeld gelten (25.24) und (25.25)

mit 2a = rS und

ε = c2 , 

λ = τ , 

 = 0

Wir verwenden die Bewegungsgleichungen









dt

r

2

S

F

1

dr

rS

F 2

1 −

=

und

−

=

− 1

dτ

r

c

c2

dτ

r

c2

Wenn man die Anfangsbedingungen in die zweite Gleichung einsetzt, erhält man F 2/c2 =

2/3. Damit werden die beiden Gleichungen zu

√



dt

dr

c

=

2/3

3 rS

, 

= ± √

− 1

(A.29)

dτ

1 − rS/r

dτ

3

r

Aufgrund der Anfangsbedingungen kommt in der zweiten Gleichung nur das Minuszeichen

in Frage. Die Lösung r(τ ) beginnt bei r(0) = 3 rS mit einer waagerechten Tangente, wird

dann kleiner und endet zur Zeit τ0 im Zentrum. Diese Lösung r(τ ) ist in Abbildung (48.1)

skizziert. Mit der Substitution y = 3 rS/r berechnen wir die Zeit τ0, 



√ 

√



0

dτ

− 3

0

dr

−3 3 r

1

S

dy

τ0 =

dr

=

√

=

√

3 r

dr

c

3 r

c

y2

y − 1

S

3 rS

S /r − 1

∞

√

r

r

= 3 3 π S ≈

S

8.16

2

c

c
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Auf der Zeitskala rS/c erlebt ein frei fallender Beobachter den Sturz ins Zentrum. Für einen

entfernten Beobachter mit der Zeit t ist dagegen die Bahn r(t) maßgebend. Hierfür erhalten

wir aus (A.29)



 

dr

dr dτ

c

r

r − r

=

= − √

S

3 rS

r→rs

S

1 −

− 1 ≈ − c

dt

dτ dt

2

r

r

rS

Damit stellt der entfernte Beobachter eine asymptotische Annäherung an den Schwarz-

schildradius fest:





c t

r(t) ≈ r +

−

S

b exp

(m = 0)

rS

Die bisherigen Betrachtungen gelten für ein massives Teilchen. Für ein Photon setzen wir

ε = 0 und  = 0 in (25.25) ein:









dt

r

2

S

F

dr

1 −

=

und

= F 2

dλ

r

c

dλ

Hieraus erhalten wir





dr

dr dλ

r

c 



=

= −

S

r→rs

c 1 −

≈ −

r − rS

dt

dλ dt

r

rS

und





c t

r(t) ≈ r +

−

S

b exp

(m = 0)

rS

Auch das Photon nähert sich – von außen gesehen – dem Schwarzschildradius nur asympto-

tisch an. 

26.1 Bild einer relativistisch bewegten Kugel

Die Diskussion kann auf den Schnitt mit der Ebene z = 0 beschränkt werden (Abbildung), 

da in z-Richtung keine Längenkontraktion auftritt. Diese Ebene schneidet die Kugel im

Äquator x2 + y2 = D2/4. Durch Längenkontraktion in v-Richtung wird dieser Kreis in IS

zu der Ellipse

x2





D2

+

2

y − L

=

(A.30)

1 − v2/c2

4

Diese Ellipse ist in der Abbildung gezeigt. Zur Berechnung der Koordinaten von A und B

leiten wir die Ellipsengleichung nach x ab:

x

dy 



x

y − L

+

y − L =

+

= 0

1 − v2/c2

dx

1 − v2/c2

v/c

Dabei haben wir dx/dy = (dx/dy)/γ = v/c eingesetzt. Wir lösen nach y auf und ver-

wenden die Ellipsengleichung:





v2

D

v D

x

= ∓ 1 −

, 

y

= L ±

A,B

c2

A,B

2

c 2

Das obere Vorzeichen gilt für A, mit dem unteren erhält man den entgegengesetzten Punkt

B (siehe Abbildung). Beide Punkte markieren den Äquator, von dem gerade noch Licht in

Richtung zum Beobachter gesandt werden kann. 
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Das von B abgesandte Licht hat gegenüber dem von A einen um Δy = (v/c)D kür-

zeren Weg. Damit es gleichzeitig beim Beobachter ankommt, muss das Licht von B zu

einer um Δt = v D/c2 späteren Zeit abgesandt werden. Während dieser Zeit rückt B um

d = v Δt = (v2/c2) D nach B, dies ergibt die rechte oben abgebildete Ellipse. Die auf dem

Foto registrierte Objektausdehnung in x-Richtung ist demnach





v2

v2

D = 2 |x | + d = 1 −

D +

D = D

A,B

c2

c2

In z-Richtung sieht der Beobachter ebenfalls die Ausdehnung D, da hier weder eine Län-

genkontraktion noch ein Laufzeitunterschied auftreten. Damit erscheint der sichtbare Rand

der Kugel auf dem Foto als Kreis. In diesem Sinn kompensieren sich die Effekte von Län-

genkontraktion und Aberration, und die Kugel erscheint als Kugel. Der fotografierte Rand

ist ein Großkreis der Kugel. Dieser Großkreis aber liegt so, dass der Beobachter einen Teil

der Hinterseite der Kugel sieht (und einen Teil der Vorderseite nicht). 

30.1 Gravitomagnetische Kräfte für Merkur

Für das Feld der Sonne ist Φ ≈ −GM/r. Für das Ω-Feld gehen wir von (30.22) aus, 

wobei wir Winkelfaktoren und Faktoren O(1) vernachlässigen:

$$

$

GM

$

$

GM R 2 ω

grad Φ $ ≈

und

$Ω × v$ ≈



ω r

r2

c2

r3

Dabei haben wir ω r für die Geschwindigkeit des Merkur eingesetzt. Das gesuchte Verhält-

nis ist

|Ω × v|

ω

≈  ωR 2 ≈

|

10−11

grad Φ |

c2

Man kann die Größe des Effekts noch mit den Termen der Ordnung v2/c2 = ω2 r2/c2

vergleichen, die wir als relativistische Korrekturen zur Bahnbewegung betrachtet haben:

|Ω × v|

ω2 r2 ω

R 2

ω2 r2

≈



 ≈

|

5 · 10−4

grad Φ |

c2

ω

r2

c2

Eventuelle Korrekturen zu der Rechnung in Kapitel 27 sind daher kleiner als ein Promille. 

33.1 Elliptische Auslenkung im Feld der Welle

Wir betrachten die erste Zeile von (33.12). Für cos(ω t) = 0 ergibt sich ein Kreis, für

cos(ω t) = ±1 die volle Auslenkung. Ohne besondere Einschränkung der Allgemeinheit

wählen wir cos(ω t) = −1. Die Exzentrizität hängt nicht von der absoluten Größe ab, so

dass wir L = 1 setzen können:

ρ2 = x2 + y2 = 1 + 2 h cos(2ϕ) = 1 + 2 h cos2 ϕ − 2 h sin2 ϕ = 1 + 2 hx2 − 2 hy2

Unter Vernachlässigung der Terme der Ordnung O(h2) wird dies zu

x2

y2

+

= 1

1 + 2 h

1 − 2 h

also einer Ellipse mit den Halbachsen a = 1 + h und b = 1 − h. Hieraus folgt die Exzen-

trizität



√

 =

1 − b2/a2 = 2 h + O(h2)
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36.1 Änderung der Bahn eines Doppelsterns durch Abstrahlung

Aus (36.24) folgen für die Kreisbahn

v2

Ω2 r2

rS

Ω2 = 2 GM

und

=

=

r3

c2

c2

r

Die abgestrahlte Leistung (36.25) und die Energie E sind:

G4 M5 1

GM2

P = 64

, 

E = − 1

5

c5

r5

2

r

Die Energie ist gleich der halben potenziellen Energie. Die pro Umlauf abgestrahlte Energie

ist P multipliziert mit einer Bahnperiode T = 2π/Ω. Damit erhalten wir

 

 

ΔE

P

r

5/2

v 5

= 2π

= 32 π

S

= 32 π

|E|

Ω |E|

5

r

5

c

36.2 Bahngeschwindigkeit in PSR 1913 + 16

Für eine einfache Abschätzung gehen wir von einer Kreisbahn (Durchmesser r) aus. Mit

M1 = M2 = M erhalten wir aus (36.24)

rS c2

r3 = 2GM =

Ω2

Ω2

Die Geschwindigkeit v eines Sterns ist das Produkt aus dem Radius r/2 und der Winkelge-

schwindigkeit:





v

r Ω

r

1/3

=

= 1

S Ω

≈ 10−3

c

2 c

2

c

Damit ist die Voraussetzung v  c für die Quadrupolstrahlungsformel erfüllt. 

36.3 Gravitationsabstrahlung der Erde

Aus (36.24) folgt Ω2 = GM/r3; es wurde ME  M verwendet. Damit wird die Strah-

lungsleistung (36.25) zu

M 2 M 3

P = 32 G4

E

 = 32 G Ω6 r4 M 2 ≈ 200 Watt

5 c5

r5

5 c5

E

Selbst bei einer sehr genauen Berechnung der Erdbahn spielt diese Abstrahlung nur eine zu

vernachlässigende Rolle. 

36.4 Amplitude der Gravitationswelle eines Doppelsterns

Die Energiestromdichte ΦGW und die Strahlungsleistung P sind

(34.6)

c3

(36.25)

M5

ΦGW

=

ω2 h2

und

P

=

64 G4

8πG

5 c5

r5
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Die Frequenz ω folgt aus (36.24) mit ω = 2 Ω. Wir gehen von einer isotrope Abstrahlung

der Leistung P aus; dies entspricht einer Mittelung über alle möglichen Ausrichtungen der

Bahnebene. Dann gilt

'

 (

ΦGW = P

4πD2

c3

M5

⇒

8 GM

1

h2 = 64 G4

ω2 = 8 GM/r3

8πG

r3

5 c5

r5 4πD2

Wir lösen nach h auf und erhalten

r 2

h =

1

√

S

(A.31)

5 D r

37.1 Abstandsänderung Erde–Mond durch Gravitationswelle

Nach (37.3) ist die Amplitude der Gravitationswelle von i Boo gleich h ≈ 10−20; dies folgt

aus (36.37) mit (34.6). Daraus ergibt sich die Änderung

ΔL = L h ≈ 3 · 10−12 m

des Abstands L ≈ 3 · 108 m zwischen Erde und Mond. Eine solche Abstandsänderung

könnte im Prinzip durch ein Laser-Interferenz-Experiment mit einem Spiegel auf dem Mond

nachgewiesen werden (Kapitel 37). Mit der Bahnperiode T = 0.268 Tage aus (36.35), Ω =

2π/T und ω = 2Ω erhalten wir die Wellenlänge der Gravitationswelle

c T

λ = 2πc =

≈ 3.5 · 1012 m

ω

2

Damit gilt L  λ. 

37.2 Wirkungsquerschnitt eines Gravitationswellendetektors

Mit der Auslenkung ξ(t) aus (37.17) und der Kraft FGW aus (37.15) erhalten wir die zeitge-

mittelte Leistung

/

0

 T

P

˙

˙

absorb(h, ω) = 4 FGW ξ

= 4

dt FGW ξ =

2 mL2 h2 γ ω6





T

2

0

ω2 − ω 2

+ γ 2ω2

0

Der Faktor 4 steht für die vier Massen in der Anordnung von Abbildung 37.1. Mit der

Energiestromdichte (34.6) erhalten wir hieraus

Pabsorb

2 mL2 γ ω4

σ (ω) =

= 8πG 



Φ

2

GW

c3

ω2 − ω 2

+ γ 2ω2

0

Der Wirkungsquerschnitt ist die effektive Fläche, an der die einfallende Energiestromdichte

ΦGW absorbiert wird. An der Resonanz erhalten wir den maximalen Wirkungsquerschnitt

2 mL2 ω 2

rS ω0

σ (ω

0

0) = 8 π G

= π σgeom

c3

γ

λ0 γ

Dabei wurde ω0 = 2πc/λ0 verwendet. Die Anordnung hat einen Durchmesser der Größe

2L und damit einen geometrischen Wirkungsquerschnitt σgeom ≈ 4πL2 . Die Detektormas-

se M = 4 m wurde durch den zugehörigen Schwarzschildradius r =

S

2GM/c2 ausge-

drückt. Wegen r ≪

S

λ0 ist der σ (ω0) ≪ σgeom. Der Resonanzfaktor ω0/γ kann zwar groß

gegenüber 1 sein (zum Beispiel 106 ); es bleibt aber in jedem Fall bei σ (ω0) ≪ σgeom. 
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38.1 Druck im Zentrum der Erde

Nach (38.11) gilt





r2

P = P0 − 2π G  2 r2 = P0

1 −

(A.32)

3

0

R 2

E

An der Oberfläche ist P (RE) ≈ 1 bar = 105 Pa ≈ 0. Hieraus folgt P0 = (2π/3) G 2 R 2

0

E

und damit der letzte Ausdruck in (A.32). Wir werten den zentralen Druck P0 numerisch

aus:

0 g RE

P0 = 2π G 2 R 2 =

≈ 3 · 1011 Pa

3

0

E

2

Dabei haben wir zunächst (4π/3) 0 R 3 = M

verwendet. 

E

E und g = GME/R 2

E

39.1 Verhältnis Umfang zu Radius für Erdbahn

In der Schwarzschildmetrik sind der Umfang U und der Durchmesser D durch

 r



U = 2πr

und

D = 2

dr

A(r)

0

gegeben. Dabei ist A(r) durch

+

,−1

A(r) = 1 − 2GM(r)

c2 r

gegeben mit M = (4π/3) 0 r3 für r ≤ R und M = M für r > R. Damit und unter

Berücksichtigung von rS/R  1 berechnen wir das Integral:





+

, 



r



R

−



1/2





r

r

−1/2

S

r 2

rS

dr

A(r) =

dr

1 −

+

dr

1 −

0

0

R R 2

R

r





+

, 



+

, 

1

−

−

r

1/2

r/R

r

1/2

=

S

S

1

R

dx

1 −

x2

+ R

dx

1 −

0

R

1

R x



+

, 



+

, 

1

r

r/R

r

=

S

S

1

R

dx

1 +

x2

+ R

dx

1 +

0

2 R

1

2 R x

+

, 

r

r

=

1

r + S

+ ln

2

3

R

Hieraus erhalten wir für das gesuchte Verhältnis

+



, 

Umfang

U

r

r





=

= π

S

1

1 −

+ ln

≈ π 1 − 6 · 10−8 < π

Durchmesser

D

2 r

3

R

Das Ergebnis U/D < π bedeutet eine positive Raumkrümmung. 
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47.1 Zykloidenlösung für Sternkollaps

Es ist zu zeigen, dass c t = R(0) (ψ + sin ψ )/(2 k1/2) und R = R(0) (1 + cos ψ )/2 die

Differenzialgleichung

˙

R(0) − R(t)

R 2 = k

(A.33)

R(t)

erfüllen. Dazu berechnen wir

√

˙

dR

dR

dψ

R(0) 

 2 k

1

R =

=

=

− sin ψ

d(ct)

dψ d(ct)

2

R(0) 1 + cos ψ

Damit wird die linke Seite von (A.33) zu

sin2 ψ

linke Seite = ˙

R 2 = k (1 + cosψ)2

Wir berechnen nun die rechte Seite von (A.32):

R(0) − R(t)

1 − cos ψ

sin2 ψ

rechte Seite = k

= k

= k

R(t)

1 + cos ψ

(1 + cos ψ )2

Für den letzten Schritt wurden Zähler und Nenner mit dem Faktor (1 + cos ψ) multipliziert. 

Damit ist gezeigt, dass für die angegebenen Funktionen R(ψ) und t (ψ) die rechte und die

linke Seite von (A.33) übereinstimmen. Diese Funktionen stellen daher eine Lösung dar. 

51.1 Impulse massiver Teilchen in RWM

Wegen der Isotropie und Homogenität genügt es, die Metrik

ds2 = c2 dτ 2 = c2 dt2 − R(t)2 dχ2

mit den Koordinaten x0 = c t und x1 = χ zu betrachten. Für den metrischen Tensor













1

0

1

0

gμν =

, 

(gμν ) =

0

−R(t)2

0

−1/R(t)2

gibt es nur die folgenden nichtverschwindenden Christoffelsymbole:

g11 ∂g

˙

11

R(t)

Γ 1 = Γ 1 =

=

01

10

2

∂x0

R(t)

Die 1-Komponenten der Vierergeschwindigkeit und der „gewöhnliche“ relativistische Im-

puls p sind:

dx1

dχ

dx



1

dχ

dχ

u1 =

=

, 

u1 =

= −R(t)2

, 

p = m

−u1 u1 = m R(t)

dτ

dτ

dτ

dτ

dτ

Wir benötigen noch die Bewegungsgleichung für x1(τ ), 

d2χ

d2x1

dχ d(ct)

=

= −2 Γ 1 u1 u0 = − 2 ˙

R(t)

dτ 2

dτ 2

10

R(t) dτ

dτ
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Damit berechnen wir





d





d

dχ

dχ

d2χ

dτ

R(t) p(t)

= m

R(t)2

= 2 m R(t) ˙

R(t)

+ m R(t)2

d(ct)

d(ct)

dτ

dτ

dτ 2 d(ct)

dχ

dχ

=

2 ˙

R(t)

2 m R(t) ˙

R(t)

− m R(t)2

= 0

dτ

R(t) dτ

Damit ist gezeigt, dass sich die Impulse frei fallender Teilchen gemäß p(t) ∝ 1/R(t)

ändern. Im expandierenden Universum laufen die Teilchen gegen das schwächer werdende

Gravitationsfeld an und verlieren dabei Energie. Ebenso wie die Wellenlänge von Licht

skaliert auch die (quantenmechanische) Wellenlänge λ = 2π ¯h/p mit dem Skalenfaktor

R(t). 
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