

2. Auflage

enger

Arduino

Manuel Odendahl,

Physical Computing für

Julian Finn & Alex W

Bastler, Designer & Geeks

s s

lly c

i is

e a

’r b

o

Microcontroller-Programmierung für alle

Rapid Prototyping

Mit kompletter Programmiersprachenreferenz

2. Auflage

Arduino – Physical Computing

für Bastler, Designer und Geeks

 Manuel Odendahl, Julian Finn & Alex Wenger

Beijing · Cambridge · Farnham · Köln · Sebastopol · Taipei · Tokyo

Die Informationen in diesem Buch wurden mit größter Sorgfalt erarbeitet. Dennoch können Fehler nicht vollständig ausgeschlossen werden. Verlag, Autoren und Übersetzer übernehmen

keine juristische Verantwortung oder irgendeine Haftung für eventuell verbliebene Fehler und deren Folgen.

Alle Warennamen werden ohne Gewährleistung der freien Verwendbarkeit benutzt und sind

möglicherweise eingetragene Warenzeichen. Der Verlag richtet sich im Wesentlichen nach den

Schreibweisen der Hersteller. Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Alle Rechte vorbehalten einschließlich der Vervielfältigung, Übersetzung,

Mikroverfilmung sowie Einspeicherung und Verarbeitung in elektronischen Systemen.

Kommentare und Fragen können Sie gerne an uns richten:

O’Reilly Verlag

Balthasarstr. 81

50670 Köln

Tel.: 0221/9731600

Fax: 0221/9731608

E-Mail: kommentar@oreilly.de

Copyright der deutschen Ausgabe:

© 2010 by O’Reilly Verlag GmbH & Co. KG

1. Auflage 2009

2. Auflage 2010

Bibliografische Information Der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der

Deutschen Nationalbibliografie; detaillierte bibliografische Daten

sind im Internet über http://dnb.d-nb.de abrufbar.

Lektorat: Volker Bombien, Köln

Korrektorat: Kathrin Jurgenowski, Köln

Satz: III-satz, Husby

Umschlaggestaltung: Michael Oreal, Köln

Produktion: Karin Driesen, Köln

Belichtung, Druck und buchbinderische Verarbeitung:

Druckerei Kösel, Krugzell; www.koeselbuch.de

ISBN 978-3-89721-995-3

Dieses Buch ist auf 100% chlorfrei gebleichtem Papier gedruckt.

Inhalt

Einleitung .

IX

1

Von Königen und Kondensatoren .

1

Die Geschichte des Arduino-Projekts .

1

Der Arduino, das unbekannte Gerät .

3

Arduino-Projekte: eine kleine Vorstellung .

8

Hardware .

17

Die Arduino-Entwicklungsumgebung .

22

2

Physical Computing, elektrische Grundlagen und der Sprung ins kalte Wasser

31

Elektrische Grundlagen .

35

Schaltungen, Bauteile und Schaltbilder .

43

Löten .

64

Fehlersuche in elektronischen Schaltungen .

73

3

Workshop LED-Licht .

83

Erste Schritte . 83

Eine blinkende LED – das »Hello World« des Physical Computing

84

4

LEDs für Fortgeschrittene . 109

LED-Matrix . 109

Animationen . 113

Interrupts . 115

Tamagotchi . 118

Brainwave und Biofeedback . 121

V

5

Sprich mit mir, Arduino! . 129

Nach Hause telefonieren mit der seriellen Konsole . 131

Automatisierung mit Gobetwino . 137

Processing . 142

6

Arduino im Netz . 153

Hello World – ein Mini-Webserver . 157

Sagś der Welt mit Twitter . 160

Fang die Bytes – Datalogger . 165

7

Sensoren . 171

Sensoren . 171

Aktoren . 187

Elektronischer Würfel . 191

8

Automation . 199

Alles hört auf mein Kommando . 199

DMX . 200

Barlicht . 202

RF-Steckdosen . 204

Gespensterschreck . 207

9

Wearable Computing . 209

Programmierbare Kleidung . 209

Wearable Komponenten . 211

Die iPod-Steuerung im Mantel . 215

10 Musik-Controller mit Arduino . 227

Musik steuern mit dem Arduino . 227

Das MIDI-Protokoll . 233

Die MidiDuino-Bibliothek . 239

Ein MIDI-Zauberstab . 241

MIDI-Input . 244

11 Musik mit Arduino . 247

Töne aus dem Arduino . 247

Erster Sketch: Töne mit langsamer PWM . 251

Zweiter Sketch: Angenehme Klänge mit schneller PWM . 252

Dritter Sketch: Steuerung von Klängen . 254

Vierter Sketch: Berechnungen in einer Interrupt-Routine . 255

Fünfter Sketch: Musikalische Noten . 258

VI

Inhalt

A

Arduino-Boards und -Shields . 265

Arduino-Boards . 265

Arduino-Shields . 269

B

Arduino-Bibliotheken . 275

EEPROM-Bibliothek: Werte langfristig speichern . 276

Ethernet-Bibliothek: mit dem Internet kommunizieren . 277

Firmata-Bibliothek . 281

LiquidCrystal-Bibliothek . 282

Servo-Bibliothek . 284

Debounce-Bibliothek . 285

Wire-Bibliothek . 286

capSense-Bibliothek . 288

C

Sprachreferenz . 291

Übersicht: Programmiersprachen . 291

Struktur, Werte und Funktionen . 292

Syntax . 293

Programmwerte (Variablen, Datentypen und Konstanten) . 297

Ausdrücke und Anweisungen . 309

Ausdrücke . 310

Kontrollstrukturen . 327

Funktionen . 338

Sketch-Struktur . 347

Funktionsreferenz . 350

D

Händlerliste . 367

Index . 369

Inhalt

VII

In diesem Kapitel:

• Fü r we n is t diese s Buc h

Einleitung

gedacht?

• Aufbau dieses Buchs

• Typografische Konventionen

• Verwendung der Code-

beispiele

• Die Codebeispiele zu diesem

Buch

• Die Arduino-Welt

• Dedication from David

Cuartielles

Vielleicht stehen Sie gerade im Laden und überlegen sich, ob Sie

dieses Buch kaufen möchten. Vielleicht haben Sie es auch schon

erworben, wofür wir uns natürlich recht herzlich bedanken. In

jedem Fall aber halten Sie gerade das erste deutschsprachige Buch

zum Thema Arduino in den Händen. Arduino ist die Verbindung

aus einem Board, das einen Mikrocontroller beherbergt, mit einer

Programmiersprache, die es sehr leicht macht, diesem kleinen Pro-

zessor auch Befehle zu erteilen. Zusammen bilden die beiden die

Basis für sogenanntes Physical Computing, die Verbindung der rea-

len, physischen Welt mit der virtuellen Welt der Einsen und Nullen.

Der Arduino eignet sich hervorragend für alle möglichen Projekte,

denn er ist günstig zu erwerben und einfach und vor allem schnell

zu programmieren. So wird die Zeit von der fixen Idee bis zur

Umsetzung möglichst kurz gehalten. Das bewahrt viele gute Pro-

jekte vor dem Papierkorb, in dem sie unweigerlich landen, wenn

ihre Schöpfer vor allzu großen Problemen stehen.

Der Arduino wurde im italienischen Ivrea entwickelt, um Design-

studenten möglichst leicht zu bedienende Werkzeuge an die Hand

zu geben, und hat seit 2005 einen fast beispiellosen Siegeszug ange-

treten. Rund um den Globus finden sich nun an Kunsthochschulen

Seminare zur Programmierung, zum Löten und über physikalische

Grundlagen, begünstigt durch die einfache Verfügbarkeit dieser

Technologie. Mehr über die Geschichte des Arduino finden Sie in

Kapitel 1 .

Aber vorweg – um was geht es hier eigentlich genau? Arduino ist

zum einen eine Plattform, die aus einem Mikrocontroller besteht,

der ähnlich wie ein PC eigenständig Berechnungen durchführen

IX

kann, aber auch leicht mit vielen Sensoren zur Interaktion mit der

Umwelt verbunden werden kann. Arduino ist aber auch die dazu-

gehörige Entwicklungsumgebung, und – nicht zu vergessen – das

Framework, das viele komplizierte Details der hardwaregestützten

Entwicklung einfacher macht. So kann mit einem einzelnen Knopf-

druck der Programmcode sowohl kompiliert als auch direkt über

USB in den Arduino geladen werden.

All das erlaubt die schnelle Entwicklung von Prototypen; aber

dadurch, dass alle Teile auf bestehenden Standards wie C++ und

verbreiteten Mikrocontrollern basieren, kann es später auch losge-

löst vom Arduino-Konzept weiterverwendet werden.

Für wen ist dieses Buch gedacht?

Sie haben die Einleitung gelesen und fragen sich nun, ob Sie zu den

»Bastlern, Designern und Geeks« gehören, die der Buchtitel

anspricht? Nun, wahrscheinlich schon. Dieses Buch versucht, sei-

nen Leserinnen und Lesern die Welt des Physical Computing und

damit auch der Programmierung anhand von praktischen Beispie-

len näherzubringen.

Sie alle haben gemeinsam, dass sie fortan Neues entwickeln wollen,

entweder in der realen Welt als Gegenstand oder virtuell auf dem

Rechner als Daten und Software. Hier fügen sich mit Arduino zwei

Welten zusammen, die eigentlich nie richtig voneinander getrennt

waren, und doch ist das Überqueren dieser Grenze für viele eine

hohe Hürde. Der Programmierer scheut den Lötkolben und löst

Probleme lieber auf seine Weise, wogegen der Bastler lieber noch

drei weitere Bausätze verwendet, als dass er sich mit der Program-

mierung eines Computers oder Mikrocontrollers auseinandersetzt.

Bastlern, die bisher vielleicht nur in der physischen Welt an ihren

Projekten gearbeitet haben, werden dadurch neue Möglichkeiten

eröffnet: Sie können die im Buch aufgezeigten Ideen verfolgen und

dabei lernen, wie der Arduino zu ihrem Hobby viele neue Aspekte

beisteuern kann.

Als Designer und Medienkünstler werden Sie bislang möglicher-

weise ähnliche Probleme gehabt haben: Die Inspiration war da,

bloß an der Umsetzung hat es gehapert. Mit dem Arduino können

einfache Prototypen schnell umgesetzt werden, sodass man sich

nicht mit allzu komplizierter Technik aufhalten muss. Man kommt

auch nicht mehr in die Situation, dass Informatiker einem gern hel-

X

Einleitung

fen würden, aber einfach nicht so recht verstehen, was man ihnen

eigentlich sagen will.

Auch wenn Sie schon Erfahrung mit einer Programmiersprache

haben, sollten Sie nun das Buch nicht beiseite legen: Es ist so aufge-

baut, dass die Programmierung beiläufig erklärt wird, während die

einzelnen Projekte zusammengesetzt werden. Selbst als Geek, des-

sen natürliche Umgebung meist aus einem Codedschungel besteht,

wird Ihnen die Lektüre also kaum langweilig werden. Besonders

wenn Sie zwar im Schlaf Software schreiben können, dafür aber

noch unerfahren in Sachen Lötkolben, Sensoren und Widerstände

sind, wird Ihnen dieses Buch bieten, was Sie suchen. All das erlaubt

das schnelle Erstellen von Prototypen, sodass nicht die langwierige,

umständliche Umsetzung, sondern die Idee im Vordergrund steht.

All das heißt natürlich auch, dass dieses Buch sich vor allem an Ein-

steiger richtet. Trotzdem geht es z. B. in Kapitel 11, das sich mit der

Anbindung von Arduino an die Welt der Musik beschäftigt, auch

ein wenig mehr in die Tiefe. Weiterhin bietet der Anhang eine voll-

ständige Referenz der Programmiersprache, sodass Sie diese Seiten

auch im weiteren Verlauf Ihrer Physical-Computing-Karriere auf

dem Schreibtisch behalten sollten, um jederzeit nachschlagen zu

können.

Der Projektcharakter ist bewusst nach den Prinzipien des Rapid

Prototyping gestaltet, um die Fantasie der Leser nicht unnötiger-

weise einzuengen. Wir freuen uns natürlich über Projektbeschrei-

bungen und Bilder der daraus entstandenen Arbeiten, die Sie uns

gern über Twitter (@arduinobuch) zuschicken können.

Hilfreich ist es, wenn Sie zum Buch auch ein Arduino-Board erwer-

ben, falls Sie noch keines besitzen. In Kapitel 1 finden Sie Hinweise dazu, wo Sie den hier verwendeten Arduino Duemilanove beziehen

können. Weiterhin wird für die im Buch beschriebenen Workshops

eine Reihe von Bauteilen benötigt. Wir empfehlen, dass Sie die

Liste der benötigten Teile zu Anfang durchlesen und entsprechend

einkaufen. Zudem wäre es hilfreich, wenn Sie einen Lötkolben,

ausreichend Lötzinn und Entlötlitze sowie ein Steckbrett besitzen.

Aufbau dieses Buchs

Die Kapitel dieses Buchs lassen sich einteilen in einzelne Work-

shops und Erläuterungen der physikalischen Aspekte der Entwick-

lung von Arduino-Projekten. Nach der Einleitung und Einführung

Aufbau dieses Buchs

XI

in Arduino sowie der Installation der Programmierumgebung wer-

den zunächst die physikalischen Grundlagen erklärt, und wir versu-

chen, Ihnen die Angst vor dem Basteln zu nehmen. Dazu gehören

zum Beispiel richtiges Löten und die Verwendung von Steckbret-

tern sowie etwas Hilfe bei der Fehlersuche. Ab Kapitel 3 werden dann einzelne Projekte beschrieben, wobei Kapitel 7 als Einschub die gängigsten Sensoren und Aktoren beschreibt. Zu jedem The-menkomplex beschreibt das Buch zudem weitere Projekte, zu

denen man im Internet Anleitungen finden kann, sowie Ideen dazu,

was man mit dem erlernten Wissen noch alles anstellen kann.

Komplette Neueinsteiger in die Programmierung werden schon in

Kapitel 3 in die Grundbegriffe der Programmierung eingeführt und sollten dieses Kapitel gründlich durcharbeiten. Ab Kapitel 5 werden auch weiterführende Aspekte der Programmierung eingesetzt,

die ebenfalls recht ausführlich erklärt ist. Sollten Sie zunächst an

einer Stelle kapitulieren, empfehlen wir dennoch, weiterzulesen. Sie

werden mit Sicherheit später noch einmal darauf zurückkommen

können.

In Kapitel 1 wird zunächst die Geschichte des Arduino-Projekts erläutert. Anschließend wird der Frage nachgegangen, was der

Benutzer eigentlich vor sich hat, wenn er ein Arduino-Board

gekauft hat. Das Kapitel endet mit der Installation und Erläuterung

der Arduino-Software und dem Anschluss des Boards an einen PC.

Kapitel 2 unternimmt einen Ausflug in die Welt des Physical Computing. Zunächst werden der Begriff geklärt und eine Reihe ver-

schiedener Projekte vorgestellt. Im Folgenden erläutern wir die

physikalischen Grundlagen wie etwa den Zusammenhang zwischen

Strom, Spannung und Widerstand. Weitere Grundlagen umfassen

etwa den Aufbau von Schaltkreisen und wichtigen Bauteilen wie

Schalter oder Netzteil. Den Abschluss machen ausführliche Anlei-

tungen zum Basteln selbst: Lötkolben und Lötzinn werden ebenso

beschrieben wie die Fehlersuche mit Multimeter oder Oszilloskop.

Kapitel 3 beinhaltet den ersten Workshop des Buches. Ziel des

Workshops ist es, eine Lampe mit LEDs zu bauen und sie mit dem

Arduino zu betreiben. Dazu gehören die ersten Schritte in der Pro-

grammiersprache sowie der Aufbau von einfachen Schaltungen mit

LED, Widerstand und später Schaltern oder Tastern. Am Ende

steht der Code für eine programmierbare RGB-Lampe, die fast alle

Farben des sichtbaren Spektrums darstellen kann, sowie ein Aus-

blick auf weitere Möglichkeiten mit Arduino und Licht.

XII

Einleitung

Kapitel 4 führt den Workshop aus Kapitel 3 fort und erklärt, wie an den Arduino mit dem sogenannten Multiplexing auch Matrix-Displays mit 7x5-LEDs angeschlossen werden können. Zudem wird

mit dem Interrupt eine etwas weiter fortgeschrittene Technologie

erklärt. Der Workshop schließt mit einer Gehirnwellenmaschine,

die durch pulsierende LEDs für Entspannung im Kopf sorgen soll.

Kapitel 5 erlöst den Arduino aus seiner Einsamkeit und zeigt verschiedene Möglichkeiten der Kommunikation mit dem Rechner

und darüber hinaus. Zunächst wird auf die einfache Verbindung

über den USB-Port eingegangen und auf die Kommunikation mit

der seriellen Konsole der Arduino-Programmierumgebung, die man

auch für die Fehlersuche nutzen kann. Anschließend wird das Pro-

gramm Gobetwino erklärt, das ebenfalls unkompliziert die Kom-

munikation zwischen Arduino und PC ermöglicht. Das Kapitel

schließt mit der Anbindung an Processing, eine Programmierumge-

bung, die dem Arduino als Vorbild gedient hat. Sie ermöglicht es,

einfach und schnell grafische Anwendungen zu entwickeln, die mit

dem Arduino gesteuert werden.

Kapitel 6 führt das fünfte Kapitel fort und erläutert die Verwendung eines Ethernet-Shields. Dieser Aufsatz für das Arduino-Board

erlaubt den Anschluss eines Netzwerkkabels, sodass der Arduino

auch mit dem Internet verbunden werden kann. Zunächst wird ein

einfacher Webserver implementiert, mit dem man den Status des

Arduino im Browser anzeigen lassen kann. Dann folgt ein kleines

Projekt, das über Twitter meldet, ob das Licht im Raum an oder

aus ist – Physical Computing in Reinform! Zum Abschluss erklärt

das Kapitel den Datenspeicher, auf den der Arduino zurückgreifen

kann und beschreibt, wie sich dort einzelne Daten ablegen und wie-

der auslesen lassen.

Kapitel 7 bildet einen Einschub zwischen die verschiedenen Workshops des Buches. Nun, da einige Grundlagen erläutert sind, wer-

den die gängigsten Sensoren und Aktoren beschrieben, die man mit

dem Arduino verwenden kann, und einige Projekte und Einsatz-

möglichkeiten geschildert. Zudem liefert das Kapitel ein Beispiel

dafür, wie man einen kapazitiven Näherungssensor recht einfach

selbst bauen kann. Das Kapitel schließt mit einem kleinen Würfel-

Projekt, das auf einen kleinen Schalter aufbaut, der zufällig öffnet

und schließt.

Kapitel 8 vernetzt den Arduino noch weiter mit seiner Umgebung.

In diesem Kapitel wird eine Lichtsteuerung per DMX-Bus erklärt.

Anschließend wird der Arduino verwendet, um herkömmliche

Aufbau dieses Buchs

XIII

Funksteckdosen aus dem Baumarkt anzusteuern. So kann man das

gesamte Haus ohne Probleme automatisieren; ob Lichter einge-

schaltet oder der Fernseher aus, bleibt ganz dem Bastler überlassen!

In Kapitel 9 wird ein kleiner Ausflug in die Welt der Kleidung unter-nommen. Das Prinzip des »Wearable Computing« wird erklärt und

anhand eines kleinen Beispiels eingeführt. Mit dem erläuterten Pro-

jekt sollte es problemlos möglich sein, eine beliebiges Kleidungs-

stück zu einer iPod-Steuerung umzufunktionieren. Nie mehr lästiges

Herumfummeln, nur um die Musik an- oder auszumachen!

Kapitel 10 handelt von der Steuerung von Musik mit dem Arduino.

Dazu gehören verschiedene Musikprogramme auf dem PC, die

etwa über Midi angesteuert werden. Zudem geht das Kapitel auf

Möglichkeiten ein, mit Aktoren direkt auf Musikinstrumente ein-

zuwirken und sie so zu bespielen.

In Kapitel 11 wird dann der Arduino selbst zur Erzeugung von

Klängen verwendet. Zunächst geht das Kapitel dabei auf die elek-

tronische Klangerzeugung im Allgemeinen ein, bevor anhand eini-

ger Beispiele erläutert wird, wie man dem Arduino diese Klänge

entlocken kann. Den Abschluss des Kapitels macht ein Workshop,

in dem ein Theremin, ein elektronisches Musikinstrument, selbst

gebaut wird, dessen Töne sich ohne Berührung mit den Händen

steuern lassen.

Der Anhang ist in diesem Buch vergleichsweise lang. Er enthält

neben einer vollständigen Referenz zur Programmiersprache auch

eine Übersicht über die wichtigsten Arduino-Bibliotheken, Boards

und Shields. Damit dient das Buch auch als Nachschlagewerk beim

Entwickeln eigener Projekte.

Typografische Konventionen

Die folgenden typografischen Konventionen werden in diesem

Buch verwendet:

 Kursiv

Wird für URLs, die Namen von Verzeichnissen und Dateien,

Optionen, Menüs und zur Hervorhebung verwendet.

Nichtproportionalschrift

Wird für Codebeispiele, den Inhalt von Dateien und sowie für

die Namen von Variablen, Befehlen und anderen Codeab-

schnitten verwendet.

XIV

Einleitung

Verwendung der Codebeispiele

Dieses Buch soll Ihnen bei der Umsetzung Ihrer Projekte helfen. Es

ist allgemein erlaubt, den Code aus diesem Buch in Ihren Program-

men und Dokumentationen weiterzuverwenden. Dafür ist es nicht

notwendig, uns um Erlaubnis zu fragen, es sei denn, es handelt sich

um eine größere Menge Code. So ist es beim Schreiben eines Pro-

gramms, das einige Codeschnipsel dieses Buchs verwendet, nicht

nötig, sich mit uns in Verbindung zu setzen, beim Verkauf oder

Vertrieb einer CD-ROM mit Beispielen aus O’Reilly-Büchern dage-

gen schon. Das Beantworten einer Frage durch das Zitat von

Beispielcode erfordert keine Erlaubnis. Verwenden Sie einen erheb-

lichen Teil des Beispielcodes aus diesem Buch in Ihrer Dokumenta-

tion, ist unsere Erlaubnis dagegen nötig.

Eine Quellenangabe ist zwar erwünscht, aber nicht obligatorisch.

Dazu gehört in der Regel die Erwähnung von Titel, Autor, Verlag

und ISBN, zum Beispiel: »Arduino – Physical Computing für Bast-

ler, Designer und Geeks« von Manuel Odendahl, Julian Finn &

Alex Wenger. Copyright 2010 O’Reilly Verlag, ISBN 978-3-89721-

995-3.«

Falls Sie sich nicht sicher sind, ob die Nutzung der Codebeispiele

außerhalb der hier erteilten Erlaubnis liegt, nehmen Sie bitte unter

der Adresse kommentar@oreilly.de Kontakt mit uns auf.

Die Codebeispiele zu diesem Buch

Zu diesem Buch gibt es einen Twitter-Account namens

 @arduinobuch unter http://twitter.com/arduinobuch.

Dort werden interessante Links zu Arduino-Projekten genauso

angegeben wie Errata oder Hinweise zum Buch.

Die Codebeispiele zum Buch und weitere Informationen finden Sie

auch auf der Website des O’Reilly Verlags unter http://www.oreilly.

 de/catalog/micprogger.

Die Arduino-Welt

Arduino wird zwar von einer italienischen Firma vertrieben, die

Layoutdaten für das Board sind aber ebenso wie die Programmier-

umgebung unter einer Open-Source-Lizenz verfügbar. Die Weiter-

entwicklung wird also auch von einer Gemeinschaft unterstützt,

Die Arduino-Welt

XV

die hilft, beides konstant zu verbessern. Zudem gibt es eine riesige

und stets wachsende Menge an Websites, die Arduino-Projekte

dokumentieren oder Anleitungen zum Basteln geben. Hier im Buch

sind viele dieser Projekte erwähnt, zusätzlich wollen wir einen klei-

nen Überblick darüber geben, welche Ressourcen und Websites im

Zusammenhang mit dem Arduino interessant sind.

Das Arduino-Projekt

Die Marke »Arduino« sowie die Rechte an den Schaltplänen liegen

bei der Firma tinker.it, die aus den ersten Arbeiten am Arduino her-

vorgegangen ist. Die Firma behält sich allerdings nur das Marken-

recht vor, alle anderen Daten können also frei verwendet werden,

sofern die Ergebnisse nicht unter dem Namen Arduino veröffent-

licht werden. Neben dem Arduino hat sich tinker.it vor allem auf

Consulting und Training rund ums Physical Computing und den

Arduino spezialisiert.

Das Make Magazine

Das Make Magazine erscheint vierteljährlich beim O’Reilly Verlag

in den USA und ist auf Projekte zum Selbstbasteln spezialisiert.

Jede Ausgabe kommt mit einer ganzen Reihe an Anleitungen, die

Schritt für Schritt nachgebaut werden können. Unter http://www.

 makezine.com/ gibt es zudem eine umfangreiche Website, die unter

anderem auch ein Archiv für Arduino-Projekte beherbergt. Für wei-

tere Inspiration und Anleitungen sei Ihnen http://blog.makezine.

 com/archive/arduino/ empfohlen. Dort finden Sie eine lange Liste

von Ideen, mit denen man sich stundenlang beschäftigen kann.

Weiterführende Quellen

Neben den schon genannten Webseiten gibt es eine ganze Reihe

von Ressourcen rund um das Thema Arduino. Für den Erwerb von

Boards sei zusätzlich der entsprechende Absatz in Anhang A empfohlen. Hier wollen wir einige interessante Websites vorstellen.

Diese Liste ist natürlich nicht einmal annähernd vollständig.

• Freeduino.org ist eine Community-Seite, die Projekte und

Möglichkeiten rund um Arduino und seine Abwandlung Free-

duino sammelt. Die Seite verfügt über einen Index von Anlei-

tungen rund um Sensoren und Aktoren, die mit dem Arduino

verbunden werden können, und ist deshalb besonders nütz-

XVI

Einleitung

lich, wenn man auf der Suche nach Informationen über ein

bestimmtes Bauteil ist.

• Instructables.com ist ein Portal im Netz, das Anleitungen für

allerlei Projekte zur Verfügung stellt. Auch zum Thema Ardu-

ino und Physical Computing wird man hier fündig, ebenso gibt

es einige Bastelanleitungen für selbstgebaute Sensoren oder

Aktoren.

• Ladyada (http://www.ladyada.net) ist eine Website einer ehe-

maligen MIT-Studentin, die eine umfangreiche Ressourcen-

sammlung zum Thema Arduino zusammengetragen hat. Hier

finden sich viele Ideen, aber auch Angebote für verschiedene

Arduino-Shields.

• Die Webseite http://mediamatic.net beschäftigt sich mit dem

künstlerischen und designerischen Aspekt von Physical Com-

puting. Insbesondere ist die Website empfehlenswert, weil sie

eine umfangreiche Ressourcensammlung zum Thema Wea-

rable Computing beherbergt, also Computer, die in Kleidung

eingearbeitet sind. Diese Unterseite ist unter http://www.

mediamatic.net/page/12648/nl zu finden.

• Unter http://www.talk2myshirt.com findet sich eine herausragende Ressource rund um das Thema Wearable Computing.

Ein Blog beschreibt immer wieder neue und interessante Pro-

jekte, während eine Community zu fast allen Problemen eine

Lösung findet.

Danksagungen

Wir möchten hiermit noch einer Reihe von Menschen danken,

ohne die dieses Buch nicht möglich gewesen wäre. Zunächst möch-

ten wir unserem herausragenden Lektor Volker Bombien danken,

mit dem dieses Projekt weit mehr als eine normale Geschäftsbezie-

hung war. Weiterer Dank gilt Jens Ohlig für das großartige Einlei-

tungskapitel sowie allen unseren Freunden im Entropia e.V.,

besonders Cupe, Flowhase, Bugbabe, Neingeist, Syb, nanoc und

Hannes.

Zudem möchten wir in dieser zweiten Auflage besonders all jenen

danken, die uns wertvolles Feedback geschickt haben.

Julian Finn dankt desweiteren besonders Steffi sowie Silvan Hor-

bert, Roman Alexis Anastasini, Jayoung Bang und Martin Feld-

kamp für Inspiration und Instruktion.

Die Arduino-Welt

XVII

Manuel Odendahl möchte seinen Dank aussprechen an Julia

Tziridis, Hans Hübner, Philip Baljeu, Martin Hirsch und Fabienne

Serriere.

Besonders bedanken möchte sich Alex Wenger bei seiner Frau und

seinen Kindern, die immer Verständnis für die viele Arbeit hatten.

Sicherlich ein ganzes Stück schlechter wäre dieses Buch ohne die

KorrekturleserInnen Prisca Fey, Benedikt Achatz, Frank Bierlein,

Greta Louise Hoffmann, Lukas Fütterer und David Loscher, die

uns mit hilfreicher Kritik aus Sicht unserer »Zielgruppe« unterstützt

haben.

Natürlich wäre das Buch auch nicht möglich ohne die fantastische

Arduino-Community und insbesondere die Hauptentwickler Mas-

simo Banzi, David Cuartielles, Tom Igoe, Gianluca Martino, David

Mellis und Nicholas Zambetti.

Ein ganz spezieller Dank geht an unseren Fotografen Jonas Zilius,

dem wir das Fotostudio mehrere Tage belagert haben, und an Yun-

jun Lee, der für uns all diese fantastischen Zeichnungen erstellt hat.

Dedication from David Cuartielles

Thinking, burning, redesigning

There is little things in life where it is actually allowed to fail. First

time I got to understand this, was at the end of my graduate studies

back in the 90's. A professor explained to me it didn't matter my

thesis could render somehow unsuccessful because I would at least

demonstrate the path of my choice was not the right one. It wasn't

a relief, but he claimed it should at least help others figuring out the

right way. In my defense I should say the project turned out right,

but it could also have failed and I would have gotten my degree.

Trial and error, in my opinion one of the most important aspects of

the scientific method, doesn't apply to its full extent when one

introduces the cost factor. One might consider not risking his pre-

cious smartphone to science when studying gravity by throwing it

from a certain height and measure the fall using the internal accele-

rometer. There could be a lot of beneficial outcomes from such an

experiment, but are you crazy enough to try?

The act of acquiring the right tool to do something is almost a reli-

gious one. Imagine you are about to learn astronomy, you will be

XVIII

Einleitung

interested in getting a telescope to look at the stars. You might not

go for the »gold edition« one in the first place. People usually get

something that works, and if they like it and get hooked, then they

make a move for something better - and probably more expensive.

When it comes to learn about crafting electronic devices like you

want to feel the thrill of controlling a light bulb, starting up the

engine of your car remotely, or time up your fireworks next New

Year's Eve by means of digital logics ... Arduino offers a door to

easily access this world. Get yourself a board, download the soft-

ware, check out the examples and in a couple of sessions you will

be controlling motors, launching rockets, and reading data from a

GPS.

We made Arduino a tool for learning. It is made to be easy to use

for beginners, but also powerful for those that want to go deeper in

the topic. However, we wanted it to be affordable. We like people

to try things without the fear of breaking them. Your Arduino will

most likely not let you down, but if it did ... it wouldn't be a big

deal. It is cheap to get a new one, but even cheaper to fix it. Since it

is open source you can always consider the possibility of creating

your own version of it, our website will tell you how.

I hope this book will encourage you to try things out. Its authors

have put a lot of effort in transmitting one of the Arduino Philoso-

phy Fundamentals: make it work while having fun!

May 2010

 David Cuartielles ist Mitentwickler des Arduino-Boards

Dedication from David Cuartielles

XIX

KAPITEL 1

In diesem Kapitel:

Von Königen und

• Die Geschichte des Arduino-

Projekts

• Der Arduino, das unbekannte

Kondensatoren

Gerät

• Arduino-Projekte: eine kleine

Vorstellung

• Hardware

• Die Arduino-Entwicklungs-

umgebung

Die ersten Investitionen sind getätigt. Das Buch hier und ein Ardu-

ino-Board sind gekauft, und nun liegt dieses wundersame Gebilde

aus Schaltkreisen, Chips und Pins auf dem Tisch. Wo kommt es

her, wo wird es hingehen? Die folgenden Kapitel sollen darin Ein-

blick geben. Von der Geschichte des Arduino-Projektes geht es zur

Beschreibung des in diesem Buch verwendeten Boards, des Arduino

Duemilanove. Wenn Sie noch keines besitzen, können Sie in diesem

Kapitel auch Bezugsquellen nachschlagen. Anschließend werden

die Grundzüge des Physical Computing und der dafür notwendigen

Physik erklärt, um in den darauf folgenden Kapiteln schließlich mit

kleinen Workshops zu beginnen, die die Programmiersprache und

einfache Schaltungen erklären. Wer diese Workshops durcharbei-

tet, sollte anschließend in der Lage sein, größere Projekte mit Ardu-

ino durchzuführen. Ob dabei bunte Lampen gebastelt werden, eine

Pflanze über Twitter meldet, wenn sie Wasser benötigt, oder der

Arduino dazu verwendet wird, Musik zu machen – dieses Buch

sollte nicht nur Einsteigern genügend Möglichkeiten bieten, die

Welt des Physical Computing kennenzulernen.

Die Geschichte des Arduino-Projekts

Im Jahre 1002 ließ sich Arduino, Markgraf im oberitalienischen

Ivrea, nach dem Tod von Kaiser Otto III zum König von Italien

wählen. Er hatte sich damit eine Marktnische gesucht, die es vorher

nicht gegeben hatte: Italien war bis dahin von den römisch-deut-

schen Königen beherrscht worden. An die Macht gekommen war

Arduino durch unrechtmäßige Aneignung von Kirchengut, was

ihm nach der Ermordung des Bischofs Petrus von Vercelli 997 die

Exkommunikation einbrachte, seinen Weg zu mehr Einfluss aber

1

nicht aufhielt. Sein Geschäftsmodell erwies sich als letztendlich

nicht tragfähig: Nachdem er erheblichen militärischen Widerstand

von Adel und Klerus erfahren hatte, verzichtete er auf den Thron

und starb in einem Kloster. Italien bekam nach ihm erst in der Neu-

zeit wieder einen König.

Das Arduino-Projekt hat seinen Namen nicht direkt von dem

machthungrigen, aber letztendlich erfolglosen italienischen König

geerbt. Ein freundlicherer Namenspatron wäre sicher der Geograph

Giovanni Arduino (1714–1795), der Vater der italienischen Geo-

wissenschaft, nach dem auch der Meeresrücken Dorsum Arduino

auf dem Mond benannt ist. Noch näherliegend ist aber eine ganz

andere Erklärung für den Namen: »Arduino« war der Name einer

Studentenkneipe (die wiederum nach König Arduino benannt ist)

in der Nähe des Interaction Design Institute Ivrea (IDII) in Italien,

einer ehemaligen Hochschule für Gestaltung.

Ganz wie der König aus dem 11. Jahrhundert hat das Elektronik-

projekt Arduino aber etwas ganz Neues versucht, was es in dieser

Form bisher nicht gab. Allerdings ist dem Projekt bis jetzt größerer

Erfolg beschieden, und statt Machtgier und Intrigen ist das Leit-

prinzip die Offenheit.

Die Gestaltung von Interaktion wurde am IDII von 2001 bis 2005

gelehrt. Unter Interaction Design versteht man diejenige Fachrich-

tung der Gestaltung, die sich mit Verhaltensweisen von Produkten

und Systemen beschäftigt, mit denen ein Benutzer interagieren

kann. Das IDII hatte nur genau einen Kurs und einen Magisterab-

schluss in Interaction Design im Angebot. Obwohl die Schule nach

vier Jahren mit einer anderen Akademie zusammenlegt wurde,

nachdem die ursprüngliche Förderung ausgelaufen war, und heute

nicht mehr als eigenständige Institution existiert, hatte sie einen

Einfluss, der noch heute spürbar ist. Neben dem Arduino entstan-

den hier wichtige Beiträge zu der Grafikprogrammierplattform

»Processing« vom MIT Media Lab und ein viel gelesenes Standard-

werk zum Interaction Design.

Im Winter 2005 hatte Massimo Banzi, Dozent für Gestaltung am

IDII, ein Gespräch mit David Cuartielles, einem Mikrochip-Inge-

nieur aus Spanien, der einen Forschungsaufenthalt am Institut

absolvierte. Die beiden sprachen darüber, wie oft Banzi Klagen von

Studenten hörte, dass es keine preiswerten und einfach zu pro-

grammierenden Mikrocontroller-Plattformen für Kunstprojekte

gebe. Sie entwickelten ihr eigenes Design für ein Board. Ausgehend

von der Entwicklungsumgebung Processing schrieb David Mellis

2

Kapitel 1: Von Königen und Kondensatoren

eine Programmiersprache für das Projekt, und irgendwann muss

die Idee entstanden sein, das Ganze nach der örtlichen Kneipe zu

benennen.

Mit 3.000 Euro Startkapital wurden eine erste Serie von Arduinos

bei einem kleinen Hersteller produziert und das komplette Design

unter einer Creative-Commons-Lizenz im Internet veröffentlicht.

Creative Commons ist ein Satz von vorgefertigten Lizenzverträgen

für die Veröffentlichung und Verbreitung digitaler Medieninhalte.

Der einfachste CC-Lizenzvertrag verlangt vom Nutzer lediglich die

Namensnennung des Rechteinhabers. Unter diesen Bedingungen

ist auch das Hardwaredesign für Arduino verfügbar, solange es

unter den gleichen Bedingungen weitergegeben wird. Lediglich den

Namen »Arduino« möchten die Entwickler als Marke behalten und

bitten darum, eigene Entwicklungen unter einem anderen Namen

zu veröffentlichen.

Mittlerweile ist aus dem Projekt eine kleine internationale Firma

geworden, unterstützt vom Professor Tom Igoe vom Interactive

Telecommunications Program der New York University. Die Tatsa-

che, dass jeder sich das Design von Arduino schnappen kann und

in einer Fabrik in Fernost Kopien in Massenproduktion anfertigen

kann, hat nicht geschadet. Die Offenheit ist nicht nur ein Grund für

die Beliebtheit der Plattform, sondern hat auch dazu beigetragen,

dass sich Schaltungen und Code für Arduino an vielen Stellen im

Internet finden lassen. Eine Firma, die sich nicht der offenen

Gemeinschaft von Enthusiasten bedienen könnte, weil sie die Ver-

wertungsrechte mit Zähnen und Klauen verteidigt, hätte diesen

unschlagbaren Vorteil nicht.

Arduino als Gemeinschaft ist vergleichbar mit dem Phänomen der

Emergenz in der Natur. Dieser Begriff bezeichnet das spontane

Herausbilden von Strukturen in Systemen durch das Zusammen-

spiel ihrer Elemente, ohne dass das Endergebnis auf die einzelnen

Elemente direkt zurückführbar ist. Ob beim Ameisenbau oder bei

der freien Mikrocontroller-Plattform: Das Ganze ist größer als die

Summe seiner Teile.

Der Arduino, das unbekannte Gerät

Arduino besteht aus einer Entwicklungsumgebung und einem

Entwicklungsboard. Die Entwicklungsumgebung läuft auf einem

normalen Computer und bildet den Softwareteil. In ihr werden

Programme geschrieben, die dann auf dem Board, der Hardware,

Der Arduino, das unbekannte Gerät

3

ausgeführt werden. Das Board funktioniert dabei als Schnittstelle

von der Welt der Bytes zur der Welt der Dinge: Es kann Eingaben,

etwa von Sensoren, verarbeiten und elektrische Signale ausgeben.

Zum Beispiel an Aktoren, also Bauteile, die eine Auswirkung auf

die physikalische Welt haben. Das können Motoren sein, Relais

oder aber Ausgabeschnittstellen wie Lichter, Lautsprecher oder

Displays. Oder man steuert damit wiederum Sensoren, also Bau-

teile, die von der realen Welt beeinflusst werden und diese Verän-

derungen elektronisch weiterleiten, wie etwa einfache Schalter,

Temperatur- oder Lichtsensoren. Seine Anweisungen erhält das

Board von Programmen, die in der Arduino-Software geschrieben

und anschließend in den Speicher geladen werden.

Dabei kann der Entwickler frei entscheiden, ob er das Board vom

Computer abkoppeln und als eigenständiges Gerät einsetzen oder

als Schnittstelle zwischen Computer und Außenwelt verwenden

möchte. Indem es ständig mit dem Computer kommuniziert, kann

es benutzt werden, um Programme wie PureData, Processing,

Flash, VVVV oder Max/MSP zu steuern. Das Arduino-Board kann

hier durchaus mehr Arbeit leisten, als nur Daten zu übermitteln. Es

kann sie vorher verarbeiten, oder es kann für Benutzerschnittstellen

mit Tastern, Drehreglern, Lichtern und vielen anderen Möglichkei-

ten eingesetzt werden.

Abbildung 1-1

Das Arduino-Board

Beim Arduino-Projekt wird viel Wert auf eine Entwicklungsme-

thode gesetzt, die iterativ und interaktiv ist: Man geht davon aus,

4

Kapitel 1: Von Königen und Kondensatoren

dass Elektronik und Programmieren am besten durch Basteln, Aus-

probieren und Modifizieren erlernt werden können. Eine Schaltung

versteht man am besten, indem man sie zunächst aufbaut und zum

Laufen bringt. Anschließend kann man sie erweitern und modifi-

zieren. Auf die gleiche Weise lernt man auch den Umgang mit einer

Programmiersprache besonders gut. Des Weiteren gibt es im Inter-

net eine riesige Menge an verschiedenen Beispielen und Schaltun-

gen mit Arduino, die jeder bei sich zu Hause ausprobieren und

weiter modifizieren kann. Dadurch können viele Schaltungen sehr

einfach selbst gebastelt, analysiert und auch verstanden werden.

Die ursprüngliche Zielgruppe von Arduino waren Designer und

Künstler. Deswegen sind viele Funktionen sehr einfach gestaltet,

damit Benutzer, die noch nie zuvor programmiert und elektroni-

sche Schaltungen gebaut haben, sich schnell mit der Umgebung

vertraut machen können. Schon nach einigen Stunden können

eigene Prototypen und Projekte zum Laufen gebracht werden. Fort-

geschrittenen Nutzern mag vieles ein bisschen umständlich oder

ineffizient vorkommen, es steht ihnen aber auch nichts dabei im

Wege, fortgeschrittene Programme zu schreiben, die vollen Zugriff

auf die tieferen Funktionen haben. Das Ziel von Arduino ist, Kom-

plexität und Aufwand von normalen elektronischen Projekten zu

verringern, damit auch Anfänger sich schnell zurechtfinden und

nicht abgeschreckt werden.

Die Arduino-Software ist frei unter http://www.arduino.cc erhältlich

und wird als Open Source zur Verfügung gestellt. Das heißt, sie

darf verändert und wieder zum Download angeboten werden.

Auch die Schaltpläne für das Board sind frei, sodass es eine Vielzahl

von Abwandlungen zu kaufen gibt. Das derzeit (April 2010) aktu-

ellste Board ist der »Arduino Duemilanove«, der auch in diesem

Buch verwendet wird. Die Sprache basiert auf den Grundideen von

Processing, wobei sie keine Variante von Java ist, sondern vielmehr

auf C++ basiert. Man braucht diese Sprachen, wenn man denn

schon von ihnen gehört hat, nicht zu fürchten, denn ihre Komplexi-

tät wird bei Arduino durch viele hilfreiche Konstrukte vor dem

Benutzer versteckt (sie ist aber für fortgeschrittene Benutzer immer

noch zugänglich).

Natürlich gibt es noch eine Reihe von anderen Hardware-Entwick-

lungsumgebungen. Arduino bietet aber einige Vorteile:

• Arduino ist günstig. Die Software ist kann frei heruntergeladen

werden, das günstigste Arduino-Board schon für ca. 25 Euro

Der Arduino, das unbekannte Gerät

5

zu haben. Der Hauptchip kostet nur ca. vier Euro, lässt sich

also im schlimmsten Fall leicht austauschen.

• Arduino ist frei. Die Open-Source-Philosophie hat beim Ardu-

ino-Projekt viele Früchte getragen: Die Software wird ständig

von vielen Menschen in der Welt weiterentwickelt und verbes-

sert; dazu kommt eine Vielzahl an Bastelprojekten, die zum

Nachbauen und Erweitern im Netz veröffentlicht werden.

Auch die Schaltpläne für die Hardware stehen unter einer

Open-Source-Lizenz. Das Ergebnis ist eine Vielzahl von eige-

nen Arduino-Versionen, die jeweils speziell an die Bedürfnisse

eines Projektes angepasst wurden. Und zu guter Letzt ermög-

licht es diese Freiheit, dass im Internet eine Vielzahl von Erwei-

terungen verkauft werden kann; sogenannte Shields, die auf

das Board aufgesteckt werden. Mehr Informationen über

Shields finden sich im entsprechenden Anhang .

• Arduino funktioniert überall. Die Arduino-Software ist für

Windows, Mac OS X und Linux verfügbar und basiert auf Pro-

cessing, das schon seit Langem von vielen Künstlern und Pro-

grammierern eingesetzt wird. Das Board kann mit einem USB-

Kabel angeschlossen werden. Damit werden viele Probleme

vermieden, die in anderen Projekten auftreten. Andere Schwie-

rigkeiten lassen sich leicht lösen, weil Hard- und Software ent-

sprechend weit verbreitet sind.

• Arduino hat viele Fans und deren Gemeinde wächst stetig. So

ist es sehr einfach, sich mit anderen Nutzern auszutauschen

oder Hilfe zu bekommen, wenn es Probleme gibt. Auch die

Anzahl gut dokumentierter Beispielprojekte wächst ständig,

sodass gute Ideen leicht nachzubauen und an die eigenen

Bedürfnisse anzupassen sind.

• Arduino ist einfach. Die Programmiersprache basiert auf Pro-

cessing, das für ein einfaches Lernen entwickelt wurde. Es ist

besonders freundlich für Anfänger und macht es besonders

einfach, »schnell mal was auszuprobieren«. Das hilft aller-

dings nicht nur Einsteigern, sondern auch hartgesottenen Pro-

fis: Es genügt, ein paar Zeilen zu schreiben und auf den

»Upload and Run«-Knopf (siehe Kapitel 1) zu drücken, um ein

neues Programm auf die Hardware zu laden und auszuprobie-

ren. In vielen anderen Projekten muss man zuerst eine kom-

plexe Softwareumgebung einrichten, bevor die erste Zeile

Code geschrieben werden kann. Die Herangehensweise bei

Arduino gibt viel mehr Raum für kreative Entfaltung. Viele

6

Kapitel 1: Von Königen und Kondensatoren

Ideen können einfach ausprobiert werden, ohne dass einem

starren Vorgang gefolgt werden müsste, der eher Ingenieuren

entgegenkommt als Künstlern oder Designern.

Die Arduino-Philosophie

Im Gegensatz zu einer traditionellen Entwicklung von elektroni-

schen Projekten, bei denen der Prozess im Vordergrund steht, wie

sie z.B. in Ingenieurschulen gelehrt wird, wird bei Arduino-Projek-

ten Wert auf das Implementieren und Bauen gesetzt, weniger auf

das lange und anstrengende Planen. Alles ist dazu gedacht, mög-

lichst schnell und elegant einen funktionierenden Prototypen zum

Laufen zu bringen. Diese Herangehensweise mag zuerst ein biss-

chen verwirrend klingen: Ist sorgfältige Planung, gerade bei Elek-

tronik, nicht notwendig, um Fehler und Nebenwirkungen zu

vermeiden? Bei Arduino ist der Weg ein großer Teil des Ziels: Erst

beim Ausprobieren (und oft auch, wenn unvorhergesehene Fehler

oder nicht geplantes Verhalten zutage treten) setzt man sich mit der

Materie richtig auseinander. Und wenn ein schneller Erfolg eintritt,

motiviert das zusätzlich die Entwicklung: Die Energie bleibt erhal-

ten, auch wenn man sich durch größere Projekte hindurcharbeitet.

Das Basteln und Ausprobieren ist bei Arduino ein Spiel, das Spaß

machen soll. Anstatt zielstrebig von A nach B zu gehen, wie es sonst

bei Projekten der Fall ist, kommt es hier oft vor, dass man sich auf

dem Weg ein bisschen verirrt und dann auf einmal bei C landet.

Auch für fortgeschrittene Nutzer ist diese Eigenschaft von Arduino

sehr erfrischend: Man muss nicht mühsam, sauber und korrekt

Projekte bauen und Programme schreiben, sondern überrascht sich

schnell dabei, wie man wilde Ideen »einfach nur so« ausprobiert,

weil es eben sehr schnell möglich ist. Am besten lässt sich Arduino

mit älteren Homecomputern vergleichen, die einen beim Anschal-

ten gleich mit einem BASIC-Prompt einluden, verrückte Pro-

gramme zu schreiben.

Im Sinne des schnellen Erzeugens von funktionierenden Proto-

typen wird bei Arduino viel Wert auf die kreative Nutzung von

Technik gesetzt. Anstatt alles von Grund auf aufzubauen, werden

oft fertige Komponenten (sogenannte Shields, siehe auch

Anhang A) zusammengesteckt und mit fertigen Programmteilen angesprochen (sogenannten Libraries, siehe auch Anhang B).

Ähnlich wie bei den schon kurz erwähnten grafischen Program-

mierumgebungen Max/MSP, Reaktor oder VVVV werden bei

Der Arduino, das unbekannte Gerät

7

Arduino oft einzelne Blöcke zusammengesteckt und mithilfe eines

angepassten Programms kombiniert. Dadurch lassen sich auch

viele aufwendige Schaltungen, die von anderen Entwicklern schon

entworfen wurden, leicht wiederverwenden. Oft werden bei Ardu-

ino-Projekten auch herkömmliche Haushaltsgeräte oder elektroni-

sche Spielzeuge modifiziert und »missbraucht«, um bestimmte

Schaltungen zu bauen.

Arduino-Projekte: eine kleine Vorstellung

Die Bandbreite an Arduino-Projekten reicht von Lichtinstallationen

über Gebrauchsgegenstände bis hin zur Robotik. Hier sollen einige

Projekte vorgestellt werden, die besonders interessant sind und

auch als Motivation gedacht sind, sich durch das Buch zu arbeiten,

die Programmiersprache zu erlernen und mit elektronischen Bau-

teilen zu experimentieren.

LilyPad und Wearable Computing

Das Arduino LilyPad, eine Abwandlung des in diesem Buch

benutzten Arduino-Boards, lässt sich auch in Kleidung einnähen.

Diese kann so mit LEDs ausgestattet werden, um etwa auf ihr

Umfeld zu reagieren oder mit ihm zu kommunizieren. Am wichtigs-

ten sind dabei leitende Stoffe oder solche, die ihre Form verändern

können sowie elektronische Bauteile, die in Kleidung eingearbeitet

sind. Das kann von Displays auf dem Rücken bis hin zu intelligen-

ter Bekleidung reichen, die ihre Umwelt wahrnehmen oder mit

anderen kommunizieren kann. In Kapitel 9 werden diese leitenden Fäden näher beschrieben und ein Projekt erläutert, das diesem

sogenannten Weareable Computing zuzuordnen ist.

Interaktive Kunstinstallationen

Neben Designern und Modeschöpfern sind vor allem Künstler die

großen Nutznießer von Arduino. Da Künstler sich meistens nicht

mehr als nötig mit Technik und Programmierung beschäftigen,

sondern sich lieber auf ihre kreative Arbeit konzentrieren wollen,

ist ein einfach zu programmierender Mikrocontroller geradezu ein

Segen und eröffnet ganz neue Möglichkeiten, den eigenen Ideen

freien Lauf zu lassen.

8

Kapitel 1: Von Königen und Kondensatoren

Wundersame VGA-Bilder

Der koreanische Pionier der Videokunst Nam June Paik dürfte mit

Sicherheit einen Einfluss auf das Projekt von Sebastian Tomczak

gehabt haben, der ein VGA-Signal nutzt, um mit Signalstörungen

Bilder auf einem Computermonitor hervorzurufen. Die dafür not-

wendigen Signale werden von einem Arduino gespeist, an dem

einige Pins eines VGA-Kabels angeschlossen sind. Die anderen

Kabel hängen an einem Laptop, der für die horizontalen und verti-

kalen Frequenzsignale sorgt. Damit können zum Beispiel visuelle

Effekte passend zu laufender Musik erzeugt werden, und indem die

Farbkanäle bei einem anderen Monitor umgedreht werden, sind

sogar verschiedene Bilder auf einmal möglich. Weitere Informatio-

nen zu diesem Projekt finden Sie unter http://littlescale.blogspot.

 com/2009/04/how-to-use-arduino-to-generate-glitchy.html, wo nicht

nur das Grundsetup erläutert wird, sondern auch einige Videobei-

spiele gezeigt werden.

Gute Luft

Das AIR-Projekt ist in erster Linie als soziales Experiment gedacht:

Jeder Teilnehmer erhält ein Gerät, basierend auf einem Arduino,

das Umweltdaten wie den Grad der Luftverschmutzung misst.

Diese Daten werden über ein Netzwerk zu einem zentralen Server

übertragen und an die anderen Teilnehmer weiterverbreitet. Die

Nutzer können also selbstständig herausfinden, wo in ihrer Umge-

bung besondere Verunreinigungen existieren. Das Projekt will zum

Beispiel die Reaktionen darauf herausfinden und sehen, ob die

Menschen sich selbstständig darum kümmern, ihre direkte Umwelt

lebenswerter zu machen. Zudem soll es Diskussionen rund um

Umweltpolitik, Gesundheit und soziale Zusammenhänge innerhalb

einer Gemeinschaft anregen. Die Website für das Projekt findet

sich unter http://www.pm-air.net/.

Buchstabenklettern

Eine spielerische Kunstinstallation hat Olaf Val mit dem Digiripper

geschaffen, eine Matrix von 7 mal 5 Elementen aus Plastik, die in

eine Wand eingelassen sind. Dahinter befinden sich Leuchtdioden.

Wenn diese aufleuchten, fahren die Plastikelemente aus und bieten

dem Nutzer Halt, um darauf zu klettern. Wird das Licht ausge-

schaltet, fährt das Element wieder ein, der Kletterer verliert seinen

Arduino-Projekte: eine kleine Vorstellung

9

Halt. Nun gilt es, sich eine Reihe von Buchstaben zu merken, die

nacheinander angezeigt werden. Wechselt der Buchstabe, muss

man schnell umgreifen, um nicht von der Wand herunterzufallen.

Gewonnen hat, wer am längsten durchhält. Die Website des Pro-

jekts finden Sie unter http://www.olafval.de/digigripper/. Es findet

regelmäßig seinen Platz in Ausstellungen im deutschsprachigen

Raum.

Abbildung 1-2

Digigripper, © Olaf Val

Klangstufen

Um dem Betrachter ein Gefühl für die Klänge seiner Stadt zu geben,

wurde die Installation »Klangstufen« geschaffen. Unter einer kleinen

Holztreppe sind Entfernungssensoren angebracht, die erkennen,

wenn ein Mensch auf einer Stufe steht. Der Betrachter kann nun

einen Punkt in der Stadt auswählen und einen Kopfhörer aufziehen.

Je nach Ort und Stufe hört er nun Klänge, die an diesem räumlichen

Punkt aufgenommen wurden. Jede Stufe repräsentiert dabei einen

Schritt in die Höhe, beginnend bei 0 Metern, auf denen man die

U-Bahn, Wasser oder das Rauschen in der Erde hört. Von dort aus

geht es weiter über den Klang der Stadt (200 m), des Umlands (1.

500 m), des Wetters (8.000 m) und der Flugzeuge (12.500 m). Das

Projekt befindet sich immer noch in der Weiterentwicklung wird

unter http://gestaltung.fh-wuerzburg.de/blogs/reconqr/?p=809 doku-

mentiert, wo man sich auch ein Video ansehen kann.

10

Kapitel 1: Von Königen und Kondensatoren

Klang-Körper

Die Installation Sonic Body bringt dem Betrachter die Geräusche

und Töne des menschlichen Körpers näher. In einem kleinen Raum

sind die inneren Organe eines Menschen aus Stoff nachgebildet,

sodass der Besucher das Gefühl hat, sich inmitten des Körpers zu

befinden. Die einzelnen Organe sind dabei mit Berührungssensoren

ausgestattet, die über einen Arduino zusammengeführt und mit

MAX/MSP verbunden sind. Werden die Organe berührt, gedrückt

oder gestreichelt, sorgt der angeschlossene PC für eine Kulisse von

Geräuschen, die aus dem Inneren des Körpers aufgenommen wur-

den. Ziel des Ganzen ist, Besuchern ein Gefühl für sich selbst und

für die wundersame Schönheit der Natur zu geben. Wer mehr

erfahren möchte, kann unter http://www.sonicbody.co.uk eine volle

Dokumentation finden.

Die binäre Brücke

Auch wenn der Arduino nur ein kleines Gerät ist, kann er auch für

Kunstinstallationen von großem Ausmaß verwendet werden. Im

Hafen von Malmö etwa haben vier Studenten eine Brücke mit zwölf

Bewegungssensoren ausgestattet. Diese sind in der Lage, zu mes-

sen, wie viele Menschen sich gerade auf der Brücke befinden. Die

Anzahl der Fußgänger wird dann in eine Binärzahl umgewandelt,

die wiederum die Farbgebung von Lampen steuert, die unter der

Brücke angebracht sind. Ist die Binary Bridge (http://binarybridge.

 k3.mah.se/) leer, ist sie auch nicht erleuchtet, ist sie voller Men-

schen, erstrahlt sie in vollem Glanz. Dazwischen leuchtet sie in

allen möglichen Farben von Grün bis Purpur, je nachdem, welche

Werte die Fußgänger gerade erzeugen.

Kreative Aggressionen

Boxsäcke eignen sich seit jeher recht gut, um angestauten Aggressi-

onen freien Lauf zu lassen, ohne dass dabei Menschen zu Schaden

kommen. Die Designer von Fluidforms (http://fluidforms.eu/de/Cas-

 siusWhat.php) nutzen die Fäuste ihrer Kunden, um individuelle

Lampen zu erschaffen. Die Energie, die bei jedem Schlag in einen

speziell präparierten Boxsack freigesetzt wird, wird mit Sensoren

und einem Mikrocontroller an einen PC übermittelt. Dort läuft ein

3D-Programm, das einen weißen Zylinder anzeigt, der Schlag um

Schlag verformt wird. Das Ergebnis kann anschließend gespeichert

und mit einen 3D-Drucker gedruckt werden, welcher als Lampen-

schirm verwendet wird.

Arduino-Projekte: eine kleine Vorstellung

11

Roboter

Auch wenn Roboter noch weit davon entfernt sind, für uns zu den-

ken oder die Weltherrschaft zu übernehmen, findet man sie immer

mehr auch außerhalb von Produktionsstraßen in riesigen Fabrik-

hallen. Neben einer großen Anzahl an Spielzeugrobotern bevölkern

heute auch automatische Staubsauger und Wischmops unsere

Wohnzimmer, und die Anzahl der Projekte, die eigene Roboter

bauen oder im Handel erhältliche Geräte für sich nutzbar machen,

wird ständig größer.

Musikinstrumente

Einen ganz eigenen Bereich in der Kunst nehmen Projekte ein, die

Arduino nutzen, um Musik zu machen oder zu steuern. In diesem

Buch widmet sich Kapitel 10 der direkten Sounderzeugung und

Ausgabe auf dem Arduino. Zudem gibt das Kapitel eine Übersicht

über weitere Projekte in diesem Feld und beschreibt, wie man mit

dem Arduino eigene Musikinstrumente bauen kann.

Spiele

Ein Mikrocontroller, wie er auf dem Arduino-Board aufgebracht

ist, ist längst viel leistungsfähiger als die ersten Spielekonsolen, die

Anfang der 1980er in die Wohnzimmer der Welt drängten. Das

bedeutet natürlich, dass es möglich ist, einfache Computerspiele

auf dem Arduino selbst zu entwickeln oder bekannte Klassiker

nachzubauen. In diesem Buch finden sich zwei Spiele: In Kapitel 7

wird ein Würfel mit einem Kontaktsensor gebaut, in Kapitel 5 wird Processing und ein Lichtsensor für ein kleines Geschicklichkeits-spiel verwendet.

Pong auf dem Arduino

Das erste erfolgreiche Computerspiel aller Zeiten war Pong von

Atari, das seit 1972 die Welt revolutionierte. Dabei basierte das

Spiel nicht auf einem Mikroprozessor, sondern vielmehr auf einem

fest verdrahteten Schaltkreis. Das ändert natürlich nichts daran,

dass dieses berühmteste Tennis-Computerspiel der Welt auch auf

dem Arduino programmiert werden kann. Dabei muss es nicht

unbedingt auf dem Fernseher angezeigt werden. Auch Versionen

zum Beispiel mit LED-Anzeigen sind möglich. Das Projekt Blinken-

lights (http://www.blinkenlights.org) nutzt gar die Fassade eines

12

Kapitel 1: Von Königen und Kondensatoren

ganzen Hauses: In den Fenstern sind Lampen angebracht, die von

einem zentralen Schaltkreis gesteuert werden. Auch wenn Blinken-

lights nicht auf Arduino basiert, zeigt das Beispiel, was alles mit ein

bisschen Kreativität und genügend Einsatz möglich ist. Wer seine

eigene Pong-Variante mit dem Arduino nachbauen möchte, findet

unter anderem bei Alastair Parker (http://alastair.parker.googlepa-

 ges.com/arduinopong) eine Anleitung mit Schaltplan und passen-

dem Quellcode.

Spielend die Hand trainieren

Vor einigen Jahren waren Powerballs kurzzeitig in Mode: Plastik-

kugeln, in deren Innerem ein schwerer Rotor verankert ist, der

durch Kreisbewegungen auf Touren gebracht wird. Dabei baut sich

ein Drehmoment auf, das der Hand entgegenwirkt, wenn diese den

Ball seitlich kippt. Diese Bälle können dazu verwendet werden, das

Handgelenk zu stabilisieren und bei langen Computerarbeiten für

den Ausgleich in den Muskeln zu sorgen. Man kann sie aber auch

an einen Arduino anschließen und damit Geschwindigkeiten mes-

sen. Damit hat der Niederländer Eric Holm ein Spiel namens Gyro

als Abschlussarbeit gebaut: Die Messdaten steuern ein kleines

Raumschiff, das in die Höhe fliegt und dabei Objekten ausweichen

muss. Es ist unter http://ericholm.nl/gyro/ beschrieben, wenn auch

leider nur spärlich, was dem geneigten Bastler natürlich nur als

Ansporn dienen sollte, die Funktionsweise selbst herauszufinden

und nachzubauen.

Gotcha!

Es mag zwar nicht die feine Art sein, auf Menschen zu schießen,

aber es kann durchaus Spaß machen, wenn es sich bei den Geschos-

sen beispielsweise um Farbkugeln handelt. Beim »Lasertag« werden

Infrarotstrahlen verwendet, wobei jeder Mitspieler neben seiner

Waffe auch die passende Kleidung trägt, die mit Sensoren ausge-

stattet ist. Diese Sensoren können zum Beispiel mit einem Arduino

(hier empfiehlt sich ein LilyPad) verbunden sein, der die Treffer

registriert und sofort oder nach Ende des Spiels zur Auswertung an

einen Rechner überträgt. Die Beschreibung eines vollständigen

Projektes finden Sie unter http://www.ibm.com/developerworks/views/

 opensource/libraryview.jsp?search_by=Arduino+laser. Hiermit sei

jedoch darauf hingewiesen, dass Laserspiele in Deutschland mit

Verweis auf die Garantie der Menschenwürde im Grundgesetz

verboten sind, da es bei den kommerziellen Angeboten darum

geht, möglichst viele Treffer zu landen, und nicht, wie bei Paint-

Arduino-Projekte: eine kleine Vorstellung

13

ball oder Gotcha, eine Fahne oder ein Gebiet zu erobern. Nach-

bauen darf man das Projekt natürlich trotzdem, und wer es

spielen möchte, wird sich auch auf moralisch akzeptable Spielre-

geln einlassen können.

Nicht wackeln!

Labyrinthe aus Holz haben schon Generationen von Kindern frust-

riert. Sie wissen schon: diese Spiele, bei denen eine Kugel auf einem

mit einem Drehknopf in zwei Richtungen schwenkbaren Unter-

grund vom Start ins Ziel gebracht werden soll, vorbei an Löchern,

durch die sie fallen kann. Dank dem Arduino ist nun die Zeit

gekommen, diesen garstigen Maschinen ein Schnippchen zu schla-

gen, denn mithilfe zweier Servos kann das Labyrinth auch ohne

zittrige Hände gesteuert werden, wie Jestin Stoffel zeigt. Man kann

allerdings auch diesen Triumph über die Schwerkraft ruinieren,

indem man ein Wii-Balance-Board anschließt, wie es unter http://

 someoneknows.wordpress.com/2009/01/12/arduino-powered-

 robotic-labyrinth-game/ erklärt wird.

Arduinoboy

Um einen Arduino mit dem Thema Computerspiele in Verbindung

zu bringen, braucht es nicht unbedingt ein Spiel: Längst wird auch

die Hardware alter und neuerer Konsolen verwendet, um mit dem

Arduino zu kommunizieren. Der Arduinoboy hingegen arbeitet mit

einem Nintendo Gameboy zusammen, dem Urvater aller Hand-

held-Konsolen, der seit 1989 weltweit 118 Millionen mal verkauft

wurde. Die Verbindung läuft dabei in die andere Richtung: Der

Arduino wird an einen Gameboy angeschlossen, um diesem als

Midi-Controller zu dienen. Für den Gameboy gibt es mittlerweile

eine ganze Reihe von Programmen wie Nanoloop und Little-

SoundDJ, die dem Soundchip Klänge entlocken können. Mehr

Informationen zu diesem Projekt finden Sie unter http://code.

 google.com/p/arduinoboy/.

Das automatisierte Zuhause

Schon in den zukunftsfreudigen 1950er Jahren erträumte man

neben atomgetriebenen Rasenmähern ein vollautomatisches Zu-

hause. Dank Physical Computing und bezahlbaren Bauteilen gibt

es nun immer mehr Menschen, die sich diesen Traum zumindest

teilweise erfüllen. Ob es eine Alarmanlage ist, die mögliche Einbre-

14

Kapitel 1: Von Königen und Kondensatoren

cher über Twitter melden kann, oder ein selbst gebauter Anschluss

für das kommerzielle X10-System – die Möglichkeiten sind vielfäl-

tig. Kapitel 8 zeigt auf, wie mit begrenzten Mitteln eine eigene Heimautomatisierung über das DMX-Protokoll gestaltet werden

kann. Hier geht es darum, Lampen und Steckdosen mit dem Ardu-

ino zu steuern und so zum Beispiel die Hausbar mit der nötigen Be-

leuchtung auszustatten.

Ein frisch Gezapftes, bitte!

Nutzer der Bierbrau-Community Brewboard verwenden Arduino,

um die Temperatur in ihren Zapfanlagen zu regeln (http://www.brew-

 board.com/index.php?showtopic=77935). Das Projekt »BrewTroller«

geht noch ein ganzes Stück weiter und versucht, den Bierbraupro-

zess mithilfe eines Sanguino, einer Arduino-Variante, zu optimie-

ren. Der BrewTroller misst konstant das Volumen und die Tem-

peratur der einzelnen Braukomponenten und kontrolliert die

Hitzequellen, Pumpen und Ventile. Ziel des Ganzen ist der Auto-

Brew-Modus, also das vollständig automatisch gebraute Bier. Na-

türlich zeigt auch dieses Projekt, dass Technik nicht alle Projekte

lösen kann: Ob ein Bier wohlschmeckend ist, hängt auch immer

von der Qualität der Zutaten ab, und das richtige Rezept kann kein

Sensor oder Mikocontroller der Welt ersetzen.

Der Duft frischen Gebäcks

Geht man in ein Café in voller Vorfreude auf einen frisch gebacke-

nen Muffin, kann die Enttäuschung groß sein: Das Gebackene

schmeckt wie vom Vortag, weil das frische Blech noch nicht aus

dem Ofen ist. Oder es gibt nur noch Schokolade, weil die Blaubee-

ren heute gar nicht auf dem Programm standen und der Inhaber zu

beschäftigt war, um die Kreidetafel am Eingang zu aktualisieren.

Der BakerTweet (http://bakertweet.com/) soll da Abhilfe schaffen,

eine kleine Box, die mit einem Arduino, einem kleinen Drehknopf

und Display ausgestattet ist. Dort können vorprogrammierte Back-

waren einfach ausgewählt werden, und der Arduino meldet die

Nachricht anschließend über eine Netzwerkverbindung an Twitter.

Der Vorteil: Cafés können einfach und direkt für sich Werbung

machen, und die Gäste wissen sofort Bescheid, wenn es sich lohnt,

eine kleine Auszeit zu nehmen. Das erste Café, das den BakerTweet

eingesetzt hat, war das Albion Café im Londoner Stadtteil Shore-

ditch; auf der Webseite des Projektes finden sich aber alle Details,

um selbst in das twitternde Bäckerbusiness einzusteigen.

Arduino-Projekte: eine kleine Vorstellung

15

Gadgets

Nicht alle Physical-Computing-Projekte müssen direkt einleuchten

oder einen Anwendungszweck verfolgen. Oft sind es auch die klei-

nen Ideen, die man schnell mithilfe eines Arduino umsetzen kann.

Das können kleine Experimente sein oder nutzlose, aber schöne

Ausstellungsobjekte. In Kapitel 4 erhält auch dieses Buch sein kleines Gadget: eine Gehirnwellenmaschine, mit der man sich selbst in

einen Modus der Entspannung versetzen kann.

Schlaf beobachten mit dem Arduino

Weil die ehemalige MIT-Studentin Anita Lilie mehr über ihren

Schlafrhythmus erfahren wollte, erfand sie den Sleeptracker. In ers-

ter Linie wollte sie damit herausfinden, warum sie so ein Morgen-

muffel war. Sie hatte bemerkt, dass sie immer nur dann unausge-

schlafen war, wenn sie von einem Wecker geweckt wurde. Wenn sie

ohne aufwachte, ging es ihr gut. Sie ging von der Annahme aus, dass

es nicht die Menge an Schlaf war, die das Problem verursachte, son-

dern vielmehr der Zeitpunkt innerhalb eines 90-minütigen Rah-

mens, in dem der Schlaf tiefer und leichter wird. Das Ziel war also,

nicht etwa 6 oder 10 Stunden zu schlafen, sondern den genauen

Zyklus herauszufinden, um sich während besonders leichten Schlafs

wecken lassen zu können. Also schloss sie mehrere Beschleuni-

gungssensoren an einen Arduino an und zeichnete die Daten auf. So

konnte sie feststellen, wie lang ihr Schlafzyklus dauerte, und den

Wecker entsprechend programmieren. Ob sie damit Erfolg hatte, ist

leider nicht dokumentiert, was wohl auch daran liegt, dass die Daten

sich als deutlich komplexer als erwartet darstellten. Leider ist das

Projekt auch nicht als perfekter Wecker geeignet, da niemand gern

jede Nacht mit drei langen Kabeln und Sensoren am Körper verbrin-

gen möchte. Dennoch ist es sicher interessant und empfiehlt sich für

jeden, der neugierig ist und zufällig gerade drei Beschleunigungssen-

soren zu Hause hat. Eine genaue Dokumentation finden Sie unter

 http://flyingpudding.com/projects/sleep_tracker/.

Schöne Bilder

Digitale Bilderrahmen sind immer noch recht teuer und natürlich

viel langweiliger als ein selbst gebasteltes Projekt. Das March

Frame Project (http://nat.org/blog/2009/04/march-frame-project/)

kann zwar keine digitalen Bilder anzeigen, aber immerhin mit ein-

16

Kapitel 1: Von Königen und Kondensatoren

fachen Methoden zwischen drei unterschiedlichen Motiven wech-

seln. Zwei dieser Bilder werden dabei in den Farben Rot und Blau

übereinandergelegt und auf ein Papier gedruckt. Das dritte ist

eine Schablone, die dahinter angebracht wird. Der Arduino steu-

ert nun drei unterschiedliche LEDs (eine rote, eine blaue und eine

weiße), die diese Motive zum Leuchten bringen. Wenn eines der

beiden farbigen Lichter leuchtet, löscht es das entsprechende

Motiv auf dem Bild aus, das andere wird klar dargestellt. Sind

beide aus, kann die weiße LED im Hintergrund die Schablone auf

das Papier projizieren. Das Ergebnis ist ein schöner Bilderrahmen

(sofern die Elektronik stilvoll verkleidet wurde), der mit Sicher-

heit für Aufsehen unter Besuchern sorgt.

Die glückliche Katze

Wer eine Katze besitzt, weiß, dass sie recht unruhig werden kann,

wenn der Futter- oder Trinknapf wieder einmal leer ist. Ein für-

sorglicher Besitzer, der über einen Arduino verfügt, kann diesen

dafür nutzen, rechtzeitig Meldung zu erstatten oder zumindest

beim Wasser sogar automatisch für Nachschub sorgen. Unter

 http://scoopmycatbox.com/blog/2009/03/ultrasonic-cat-dish-up/ fin-

det sich ein Projekt, das mit einem Ultraschallsensor den Wasser-

stand im Napf messen und sich bemerkbar machen kann. Der

Erschaffer des Projektes arbeitet derzeit auch daran, das Nachfül-

len zu automatisieren, was nicht allzu schwer sein dürfte – Nach-

ahmer und Bastler, die weitere Ideen umsetzen, sind dort

sicherlich willkommen!

Hardware

Hält man zum ersten Mal ein Arduino-Board in der Hand, erkennt

man nur einzelne Teile wieder, zum Beispiel den Anschluss für das

USB-Kabel. Anders als beim PC sollte aber ein Arduino-Nutzer alle

Bauteile seines Gerätes genau kennen.

Beschreibung

Alle Erklärungen in diesem Buch beziehen sich auf den Arduino

Duemilanove, die 2009er-Ausgabe des Arduino-Boards. Dieses

Board besteht im Wesentlichen aus den folgenden Bestandteilen.

Hardware

17

Abbildung 1-3

Das Arduino-Board mit seinen

einzelnen Bestandteilen

Mikrocontroller

Auf dem Arduino Duemilanove ist ein Atmega168- oder Atmega328-

Mikrocontroller angebracht, ein kleiner Computer, der mit 16 MHz

Taktfrequenz arbeitet. Er besitzt zwar wenig Speicher (16 bzw. 32

KByte Speicher und 2 bzw. 4 KByte Arbeitsspeicher) und kann nur

8-Bit-Befehle verarbeiten, dafür aber direkt mit anderer Hardware

verbunden werden. Natürlich besitzt dieser »Computer« weder

Festplatte noch Tastatur oder Display, aber er ist in der Lage, kleine

Programme auszuführen, die meist jeweils eine einzelne Aufgabe

erledigen.

Im Gegensatz zu anderen Entwicklungsboards muss der Mikrocon-

troller beim Arduino nicht direkt programmiert werden, der Code

wird vor dem Upload automatisch umgewandelt, erweitert und in

Maschinensprache übersetzt (kompiliert). Diese Maschinensprache

ist zwar durchaus für Menschen lesbar, aber sehr abstrakt und auf-

wendig zu programmieren.

USB-Port und USB-Chip

Der USB-Port verbindet das Board mit dem Computer. Dabei dient

er als Daten- und Stromquelle zugleich: Über das Kabel können

neue Programme hochgeladen werden, denn die 5 Volt und 0,5

Ampere, die über USB fließen, bieten genügend Strom. Der Ardu-

ino kann aber auch konstant über USB Daten austauschen, etwa

um als Steuerungselement für Computersoftware zu dienen. Da

USB ein verhältnismäßig komplexes Protokoll ist, wird die Kom-

munikation im USB-Chip umgewandelt.

18

Kapitel 1: Von Königen und Kondensatoren

Stromanschluss

Um Arduino-Programme auch unabhängig von einem Computer

laufen zu lassen, kann man auch ein Netzteil anschließen. So kann

das Board in ein größeres Projekt eingebaut werden und auch dann

laufen, wenn der Computer nicht angeschaltet ist. Optimal läuft

das Board bei 7 bis 12 Volt, wobei es dabei selbst etwa 40 mA benö-

tigt. Das kann sich aber deutlich erhöhen, wenn man zum Beispiel

LEDs an den Arduino anschließt.

Reset-Schalter

Das aktuell laufende Programm lässt sich natürlich auch neu star-

ten, wenn das Board nicht mit dem Computer verbunden ist. Dafür

dient der Reset-Schalter: Wird der rote Knopf betätigt, beendet der

Arduino alle derzeitigen Aktionen und begibt sich in den Anfangs-

zustand, den er auch beim Einschalten des Netzteils oder der USB-

Stromquelle hatte. Anschließend wird das aktuell auf dem Arduino

geladene Programm von Neuem ausgeführt.

Betriebsleuchte und Übertragungsleuchten

Ist der Arduino angeschaltet und es läuft ein Programm, so leuchtet

die mit PWR (für Power) markierte LED. Werden zwischen Ardu-

ino und Computer Daten übertragen, blinken die mit TX und RX

markierten Leuchtdioden. TX steht für Transmitter, RX für Receiver, es wird also angezeigt, ob das Board gerade Daten sendet oder

empfängt.

Bootloader/ICSP-Header

Schließt man den Arduino über ein USB-Kabel an, kommuniziert

man nur mit dem sogenannten Bootloader – einem sehr kleinen

Programm, das immer auf dem Chip vorhanden ist. Sobald der

Prozessor mit Strom versorgt wird, wird es ausgeführt. Der Ardu-

ino-Bootloader ermöglicht es, über die USB-Schnittstelle ein

neues Programm hochzuladen. Dadurch, dass der Bootloader

immer zuerst ausgeführt wird, ist es möglich, auch bei einem

komplett defekten Programm wieder eine korrigierte Version

hochzuladen.

Über den ICSP-Header (In-Circuit Serial Programming) ist aber

auch die direkte Kommunikation mit dem Mikroprozessor mög-

lich. Dafür ist allerdings ein sogenannter Programmierer notwen-

dig, der an den Computer angeschlossen wird und über diese In-

Hardware

19

Circuit-Schnittstelle ein neues Programm auf den Arduino hochla-

den kann. Für die in diesem Buch erklärten Workshops ist die

Benutzung des ICSP-Header nicht nötig. Die Verwendung eines

externen Programmiergeräts wird allerdings dann gebraucht, wenn

ein neuer Bootloader auf den Arduino-Prozessor hochgeladen wer-

den soll (z.B. wenn man den Atmega168 auf einem älteren Arduino

Duemilanove durch einen Atmega328 austauschen möchte). Es ist

auch möglich, einen Arduino-Prozessor im Internet zu bestellen,

der schon mit einem Bootloader programmiert ist.

Digitale Pins

An der oberen Seite des Boards befinden sich 16 Steckplätze. 14

davon sind sogenannte digitale I/O-Pins (Input/Output). Sie sind

mit den Zahlen 0 bis 13 markiert und dienen als Anschlussmöglich-

keit für alle Sensoren und Aktoren, die zum Betrieb nur digitale Sig-

nale, also Einsen und Nullen benötigen, um etwas ein- und

auszuschalten. Dazu gehören zum Beispiel LEDs und Schalter, wie

sie in den Workshops ab Kapitel 3 verwendet werden. Sechs dieser Pins haben zusätzlich die Beschriftung PWM. Mit dieser sogenannten Pulsweitenmodulierung können beispielsweise LEDs gedimmt

werden (mehr dazu in Kapitel 3, Pulsweitenmodulierung). Beach-

ten sollte man zusätzlich, dass die Pins 0 und 1 auch für die serielle

Kommunikation mit dem Arduino (siehe Kapitel 5) verwendet wer-

den. Setzt man diese gleichzeitig als digitale Aus- oder Eingänge

ein, kann es zu merkwürdigen Nebenwirkungen kommen. Man

sollte also beachten, dass sich serielle Kommunikation und andere

Verwendung des Pins nicht in die Quere kommen. Außerdem kann

über die Pins 10 bis 13 mit dem SPI-Protokoll kommuniziert wer-

den, das allerdings nicht Bestandteil der Arduino-Sprache ist, wes-

halb es in diesem Buch nicht verwendet wird.

GND

Auf dem Board gibt es zwei Massepunkte, die als Minuspol für den

Stromkreis dienen. Sie sind mit GND (Ground) beschriftet und

befinden sich in den beiden Pinreihen oben und unten.

Analoge Pins

Die rechte Pinreihe auf der unteren Seite des Boards besteht aus

sechs Analogen Input-Ports, die in der Lage sind, analoge Signale

in digitale 10-Bit-Signale umzuwandeln. Das heißt, diese Signale

können 1.024 Werte annehmen. Dabei wird von einer maximalen

20

Kapitel 1: Von Königen und Kondensatoren

Eingangsspannung ausgehend ein Wertebereich festgelegt. Liegt

nun am Pin eine Spannung an, besteht diese aus einem Bruchteil

des Maximums. Dieser Bruchteil kann nun als Wert zwischen 0

und 1.023 weiterverarbeitet werden.

Bezugsquellen

Und woher bekommt man solch ein Arduino-Board? Natürlich aus

dem Internet.

Tatsächlich gibt es eine Handvoll Onlinehändler in Deutschland,

die sowohl den Arduino Duemilanove als auch seine Vorgänger, die

Bluetooth-Version und eine Vielzahl von Shields verkaufen. Die

Preise unterscheiden sich kaum, sodass andere Faktoren wie Ver-

sandkosten oder die zusätzliche Verfügbarkeit von Materialien eine

weitaus wichtigere Rolle spielen sollten. Eine aktuelle Liste von

deutschen Arduino-Händlern wird auf der Projektwebsite unter

 http://www.arduino.cc geführt.

Besonders empfohlen sei das »Bausteln«-Projekt, auf dessen Web-

site http://www.bausteln.de nicht nur Arduino-Boards verkauft wer-

den, sondern die gesamte Philosophie behandelt wird. Die

Betreiber bieten weitergehenden Support an, veranstalten monat-

lich Baustel-Abende und arbeiten daran, eine deutsche Community

rund um Physical Computing und »Do-it-yourself«-Elektronik auf-

zubauen.

Abbildung 1-4

bausteln.de

Nun, da Sie vermutlich ein Arduino-Board besitzen und auch wis-

sen, wie es aufgebaut ist, kann mit der Installation der Entwick-

Hardware

21

lungsumgebung begonnen werden. Im folgenden Abschnitt wird

erklärt, wie das Arduino-Board an den PC angeschlossen und wie

das erste Programm auf dem Arduino ausgeführt wird.

Die Arduino-Entwicklungsumgebung

Installation der Arduino-Software

Die Arduino-Entwicklungsumgebung kann von der Arduino-Web-

site http://www.arduino.cc für alle drei gängigen Betriebssysteme

(Windows, Linux, Mac OS X) heruntergeladen werden (zum Zeit-

punkt des Schreibens dieses Buches ist die aktuelle Version ardu-

 ino-018). Die Seite, die die aktuelle Version zur Verfügung stellt, ist

 http://www.arduino.cc/en/Main/Software. Dort kann das Archiv für

das jeweilige Betriebssystem heruntergeladen werden. Die Umge-

bung enthält den Arduino-Editor, die Arduino-Dokumentation

sowie eine Anzahl von Beispielprogrammen und Libraries. Im fol-

genden Abschnitt wird die Installation der Arduino-Umgebung

unter Windows und Mac OS X beschrieben. Die Installation unter

Linux ist ein bisschen komplizierter und hängt auch sehr von der

verwendeten Linux-Distribution ab. Deswegen verweisen wir auf

die Wiki-Seite zur Linux-Installation, http://www.arduino.cc/play-

ground/Learning/Linux.

Nachdem die Archivdatei für die Arduino-Umgebung heruntergela-

den wurde, muss sie mit einem Doppelklick entpackt werden: Es

wird ein Ordner erzeugt, der arduino-[version] heißt. Dieser Ordner

kann jetzt an eine beliebige Stelle kopiert werden, zum Beispiel in

den Dokumentenordner oder nach C:\Program Files\ unter Win-

dows oder nach /Applications unter Mac OS X. Um Arduino zu

starten, genügt es dann, in diesem Ordner das Programm Arduino

zu öffnen. Vorher müssen allerdings noch ein paar Schritte ausge-

führt werden.

Mitgeliefert werden auch Treiber für den USB-Baustein, der auf

dem Arduino-Board installiert ist. Dieser Chip ist ein FTDI-seriell-

nach-USB-Konvertierer. Für Windows und Mac OS X sind Treiber

mitgeliefert, die installiert werden sollten, bevor das Board an den

Computer angeschlossen wird. Unter Linux sind diese Treiber

meistens schon im Distributions-Kernel enthalten. Je nachdem,

welches Arduino-Board benutzt wird (ältere Boards haben noch

keine eingebaute USB-Schnittstelle), muss ein externer USB-nach-

seriell-Adapter verwendet werden.

22

Kapitel 1: Von Königen und Kondensatoren

Installation der Treiber unter Windows

Unter Windows muss zuerst das Arduino-Board an den Computer

angeschlossen werden. Da das Betriebssystem noch keine Treiber

für die USB-Schnittstelle installiert hat, taucht der Installations-

assistent für unbekannte Hardware auf. Die automatische Installa-

tion von der Microsoft-Website und über Windows Update muss

übersprungen und die Installationsoption Von einer Liste oder

 bestimmten Quelle installieren ausgewählt werden. Danach wird

die Weiter-Taste betätigt. Aktivieren Sie die Option Diese Position

 auch durchsuchen und wählen Sie (über die Durchsuchen-Schalt-

fläche) den Ordner aus, in dem die lokale Arduino-Installation sich

befindet. In diesem Ordner muss der Unterordner Drivers\FTDI

 USB Drivers ausgewählt werden. Anschließend kann über OK und

 Weiter die Installation durchgeführt werden. Diese Schritte müs-

sen noch einmal wiederholt werden, weil die USB-nach-seriell-

Schnittstelle zwei Treiber benötigt: einen für die USB Schnittstelle

an sich und einen, um diese als seriellen Port im Betriebssystem

anzubieten.

Nach diesen Schritten können das Arduino-Board erneut an den

Computer angeschlossen und die Arduino-Entwicklungsumgebung

gestartet werden.

Installation der Treiber unter Mac OS X

Unter Mac OS X sind im Unterordner Drivers die Treiber für den

FTDI-USB-Chip zu finden. Diese heißen FTDIUSBSerialDriver_x_

 x_x.dmg, wobei x_x_x für die aktuelle Versionsnummer steht.

Wird ein Macintosh-Rechner mit Intel-Prozessor verwendet (wie

bei den meisten neuen MacBooks, Mac Minis, Mac Pros und

iMacs), müssen die Treiber mit »Intel« im Namen installiert wer-

den. Wenn ein älterer Macintosh-Rechner mit G4- oder G5-Prozes-

sor verwendet wird, werden jene ohne »Intel« im Namen benötigt.

Nachdem das Disk-Image geöffnet wurde, führen Sie das Installati-

onsprogramm von FTDI aus. Die Installationsanleitung wird auf

dem Bildschirm angezeigt, und Sie werden aufgefordert, das Admi-

nistrator-Passwort einzugeben (was alles seine Richtigkeit hat,

denn es handelt sich um Systemtreiber, die mit Administratorrech-

ten installiert werden müssen). Nach der Installation ist es am sinn-

vollsten, den Rechner neu zu starten, um sicherzustellen, dass die

neuen Treiber auch geladen werden. Danach kann das Arduino-

Board an den Rechner angeschlossen werden. Funktioniert alles,

Die Arduino-Entwicklungsumgebung

23

müsste die PWR-LED grün leuchten und die LED, die mit L

gekennzeichnet ist, regelmäßig blinken. Ist das nicht der Fall, wird

in unter »Fehlersuche in Elektronischen Schaltungen« erklärt, wie

häufige Fehlerquellen zu erkennen und zu beheben sind.

Anschließen und Starten

Der Arduino Duemilanove wird mit einem USB-Kabel an den Rech-

ner und damit an die Entwicklungsumgebung angeschlossen. Als

nächster Schritt muss jetzt die Entwicklungsumgebung konfiguriert

werden, damit sie die korrekte serielle Schnittstelle benutzt und die

korrekte Boardbezeichnung verwendet. Im Tools-Menü der Ardu-

ino-Umgebung muss im Untermenü Serial Port die serielle Schnitt-

stelle ausgewählt werden, an die das Arduino-Board angeschlossen

ist. Unter Mac OS X heißt diese Schnittstelle meistens /dev/cu.

 usbserial-x.

Abbildung 1-5

Der Windows Gerätemanager

Unter Windows ist dieser Schritt ein bisschen komplizierter, weil

Windows standardisierte Namen mit COMX: an alle seriellen

Schnittstellen vergibt. Um den genauen Namen der Arduino-USB-

Schnittstelle zu finden, muss der Gerätemanager gestartet werden

(über START → EINSTELLUNGEN → SYSTEMSTEUERUNG → COMPU-

TER). Unter dem Eintrag Ports (COM & LPT): werden die USB-

Schnittstelle des Arduino und der entsprechende COMX:-Name

24

Kapitel 1: Von Königen und Kondensatoren

angezeigt. Eine Eigenart von Windows ist, dass diese Bezeichnung

sich ändert, wenn das Arduino-Board an eine andere USB-Schnitt-

stelle des Computers angeschlossen wird.

Im nächsten Schritt muss noch das korrekte Arduino-Board einge-

richtet werden. Durch diese Einstellung weiß die Arduino-Entwick-

lungsumgebung, welcher Prozessor und welche Pin-Konfiguration

auf dem Arduino-Board verwendet werden. Unter dem Tools-Menü

müssen Sie im Untermenü Board das korrekte Board auswählen. Im

Fall des Arduino Duemilanove muss sichergestellt werden, dass

auch der korrekte Prozessor ausgewählt wird. Ältere Arduino Due-

milanove-Boards benutzten den Atmega168-Prozessor, während

neuere Boards den Atmega328-Prozessor verwenden.

Abbildung 1-6

Boardkonfiguration

Falls die entsprechende Board-Option nicht im Untermenü vorhan-

den ist, muss eine neuere Version der Arduino-Entwicklungsumge-

bung heruntergeladen werden.

Die Arduino-Entwicklungsumgebung

Das Fenster der Umgebung besteht aus drei Hauptbestandteilen,

nämlich der Symbolleiste und zwei Fenstern für den Programm-

code und die Kommunikation mit dem Arduino. Das schwarze

Kommunikationsfenster wird auch »Konsole« genannt.

Nachdem das Kabel verbunden wurde, müssen Sie in der Program-

mierumgebung das Board und den seriellen Port, also die Verbin-

dung, unter der die Kommunikation laufen soll, auswählen. Beide

Menüpunkte finden sich unter Tools.

Die Arduino-Entwicklungsumgebung

25

Die Symbolleiste

Die Symbolleiste besteht aus acht Symbolen, von denen mindestens

drei aus fast jedem anderen Programm bekannt sein sollten.

Abbildung 1-7

Die Symbolleiste

Abbildung 1-8

Das Symbol New öffnet einen neuen Sketch. Als »Sketches« werden

Das Symbol New

Programme bezeichnet, wobei jedes Programm aus mehreren

Dateien bestehen kann. Dieser Sketch ist komplett leer. Wird

gerade ein anderer Sketch bearbeitet, sollte dieser gespeichert wer-

den, wobei das Programm dabei auch noch einmal nachfragt.

Abbildung 1-9

Das Symbol Open File öffnet einen gespeicherten Sketch. Damit

Das Symbol

lassen sich auch Bibliotheken, die aus dem Netz heruntergeladen

Open File

wurden, im Arduino-Programm ansehen und bearbeiten. Generell

werden alle Sketches als Dateien gespeichert, sodass sie auch mit

anderen Nutzern ausgetauscht werden können.

Abbildung 1-10

Das Symbol Save speichert den aktuellen Sketch. Gerade beim Pro-

Das Symbol Save

grammieren ist es hier wichtig, daran zu denken, dass man alle Ver-

sionen, die man ausprobiert, getrennt abspeichert. Oft kommt man

erst nach langem Probieren darauf, dass ein Teil der ersten Version

eine gute Lösung war.

Die restlichen Symbole sind in zwei Gruppen aufgeteilt: die Steue-

rung des Arduino sowie die Kommunikation mit ihm. Die Pro-

grammsteuerung ist dabei recht einfach.

Abbildung 1-11

Mit diesem Knopf wird der aktuelle Sketch kompiliert, also in

Das Symbol Verify

Maschinensprache übersetzt, und dabei auf seine Korrektheit über-

prüft. Das Ergebnis des Kompiliervorgangs sowie die Größe des

erzeugten Programms werden in der Konsole angezeigt. Damit

kann überprüft werden, ob das Programm auch in den Speicher des

Arduino passt (die Arduino-Variante mit Atmega168 hat 16 KByte

CodeSpeicher, von denen 2 KByte vom Arduino-Bootloader belegt

sind. Es sind also 14 KByte für den kompilierten Sketch übrig. Die

Arduino-Variante mit Atmega328 hat 32 KByte Codespeicher, von

denen 30 KByte für den kompilierten Sketch übrig sind). Ein Sketch

belegt allerdings nicht nur Codespeicher, sondern auch Arbeitsspei-

cher. Dieser wird nach der Kompilierung als »data« angezeigt. Die

26

Kapitel 1: Von Königen und Kondensatoren

Arduino-Variante mit Atmega168 hat 2 KByte Arbeitsspeicher, die

Arduino-Variante mit Atmega328 4 KByte. Es ist wichtig, sicherzu-

stellen, dass genügend Speicher vorhanden ist. Ansonsten kann sich

das Programm sehr merkwürdig verhalten. Nun kann man mit dem

Upload-Knopf das Programm auf das Board laden.

Das Stop-Symbol beendet das laufende Programm auf dem Ardu-

Abbildung 1-12

Das Symbol Stop

ino. Der Arbeitsspeicher wird anschließend gelöscht, sodass bei

einem erneuten Start der gesamte Programmablauf wieder von vorn

beginnt.

Das Upload-Symbol verarbeitet (»kompiliert«) den aktuellen

Abbildung 1-13

Das Symbol Upload

Sketch in Maschinencode und lädt ihn auf den Arduino. Er funktio-

niert also wie der Verify-Knopf, transportiert das Programm jedoch

danach auf den Arduino. Anschließend wird auf dem Board ein

Reset ausgeführt und damit begonnen, den Sketch abzuspielen.

Die Konsole dient als Kommunikationskanal zwischen dem Ardu-

Abbildung 1-14

Das Symbol Console

ino und der Programmierumgebung, sobald das Programm einmal

hochgeladen und gestartet ist. Dabei können Daten mit bis zu 9.

600 Bits pro Sekunde ausgetauscht werden, was genug ist, um

Kommandos an den Arduino zu senden und Informationen zu

empfangen. Eine genauere Erklärung der Kommunikation über die

serielle Konsole findet sich in Kapitel 6.

Das Codefenster

Bevor mit der eigentlichen Programmierung in der Arduino-Umge-

bung begonnen wird, wird ein Beispielprogramm auf das Arduino-

Board hochgeladen. Dazu wird eins der Beispiele, die mit der

Umgebung mitgeliefert werden, geöffnet. Über FILE → SKETCH-

BOOK → EXAMPLES können diese Beispiele ausgewählt werden. Wie

man sehen kann, wird schon eine große Menge von Beispielen mit-

geliefert, die man sich als Anregung und als Anleitung anschauen

kann. Zum Testen der Umgebung laden Sie über DIGITAL → BLINK

das Programm Blink, das die LED, die sich auf dem Arduino-Board

befindet, blinken lässt. Nachdem die Datei geöffnet ist, kann sie

übersetzt und auf das Arduino-Board hochgeladen werden. Dazu

muss der Upload-Knopf betätigt werden. Das Kompilieren kann

ein paar Sekunden dauern, danach beginnen die RX- und TX-LEDs

auf dem Arduino-Board zu flackern (was bedeutet, dass das über-

setzte Programm übertragen wird). Nach einen paar weiteren

Sekunden wird das Programm dann auch ausgeführt: Die LED

Die Arduino-Entwicklungsumgebung

27

beginnt zu blinken und die Arduino-Entwicklungsumgebung zeigt

 Upload Completed an. Falls es Probleme beim Hochladen gibt, mel-

det die Umgebung in der braunen Zeile den Fehler. Als Erstes sollte

dann überprüft werden, ob das Arduino-Board korrekt an den

Computer angeschlossen ist und ob das richtige Board und die

richtige serielle Schnittstelle eingestellt wurden. Weitere mögliche

Probleme werden unter »Fehlersuche« in Kapitel 2 behandelt.

Code wird in der Arduino-Umgebung geschrieben wie in jedem

anderen Texteditor auch. Dabei wird das sogenannte Syntax High-

 lighting unterstützt: Einzelne Programmelemente werden als sol-

che erkannt und so eingefärbt, dass sie sich leicht erkennbar von

den anderen unterscheiden. So lassen sich Fehler schon beim

Schreiben des Codes vermeiden. Beim Speichern einer Datei wird

diese in einem eigenen neuen Ordner unterhalb des sogenannten

Sketchbook (also Skizzenbuch) gespeichert. Das Verzeichnis für

das Skizzenbuch wird beim ersten Starten von der Arduino-Ent-

wicklungsumgebung erstellt (unter Mac OS X unter Dokumente/

 Arduino, unter Windows in Eigene Dateien \Arduino. Der Pfad zu

diesem Verzeichnis kann leicht in den Einstellungen von Arduino

geändert werden (unter Mac OS X über ARDUINO → PREFERENCES,

unter Windows und Linux FILE → PREFERENCES). Dort lässt sich

auch einstellen, ob jede neue Datei zuerst benannt werden soll

(was sehr praktisch ist, weil das Skizzenbuch sich sonst schnell mit

vielen » sketch_XXX« benannten Dateien füllt) und ob leere

Dateien beim Verlassen der Umgebung gelöscht werden sollen.

Weitere Einstellungen für fortgeschrittene Benutzer können in der

Datei preferences.txt, deren Pfad bei den Arduino-Einstellungen

angezeigt wird, von Hand mit einem normalen Texteditor einge-

tragen werden.

Mit dem Programmieren beginnen

Nun ist alles vorbereitet, um mit der Programmierung des Arduino

zu beginnen. In den folgenden Kapiteln sollen einzelne Workshops

nach und nach die Programmiersprache, aber auch die elektroni-

schen und physikalischen Grundlagen erklären. Dabei genügt

unser Platz natürlich nicht, um ausführlich große Basteleien zu

erläutern. Aber das, was erklärt wird, reicht aus, um anschließend

weitergehende Ideen zu verwirklichen. Zudem sind die einzelnen

Übungen so angelegt, dass sie in kurzer Zeit und mit wenig Mitteln

selbst ausprobiert werden können: Alle Bauteile sind günstig und

im normalen Elektronikfachhandel erhältlich, wenn sie nicht sogar,

28

Kapitel 1: Von Königen und Kondensatoren

etwa aus Drähten, selbst hergestellt werden können. Eine umfas-

sende Referenz zur Arduino-Programmiersprache finden Sie im

Anhang. Sie erklärt strukturiert und ausführlich alle Bestandteile

der Sprache und ist somit auch zum schnellen Nachschlagen geeig-

net, wenn Sie weitere Ideen ausprobieren wollen.

Um die Workshops sinnvoll auszuprobieren, empfiehlt es sich, eine

Arbeitsecke einzurichten. Hier sollte genügend Platz frei sein, um

Drähte zu schneiden und Bauteile zu verlöten. Nach jedem Basteln

ist es auch wichtig, diesen Platz wieder sauberzumachen, denn am

nächsten Tag hat man schon mal Probleme damit, eine halb fertig

liegengelassene Schaltung noch zu verstehen.

Zudem erklärt ein kleiner Exkurs die physikalischen Grundlagen

rund um Spannung, Stromstärke und Widerstand. Außerdem wird

der Begriff des Physical Computing ein wenig präzisiert, wozu

auch ein Ausblick auf bekannte und interessante Arduino-Projekte

gehört.

Die Arduino-Entwicklungsumgebung

29

KAPITEL 2

In diesem Kapitel:

Physical Computing,

• Elektrische Grundlagen

• Schaltungen , Bauteil e un d

Schaltbilder

elektrische Grundlagen und

• Löten

• Fehlersuche in elektronischen

der Sprung ins kalte Wasser

Schaltungen

Physical Computing ist die Verbindung von physikalischen Syste-

men mit Software und Hardware zu einem interaktiven Ganzen.

Oft wird ein Computer immer noch als Gerät betrachtet, das nur

über den Bildschirm und die Tastatur zu bedienen ist und Pro-

gramme ausführt. In diesem Buch wird aber nicht mit Computern

und Computerprogrammen gearbeitet, sondern mit dem allgemei-

neren Konzept des »informatischen Rechnens« (englisch »compu-

ting«). Mittlerweile sind in vielen alltäglichen Gegenständen kleine

eigenständige (eingebettete) Computer, oder Mikrocontroller, ein-

gebaut, die über physikalische Schnittstellen mit Umfeld und

Benutzer kommunizieren. Diese Schnittstellen unterscheiden sich

oft sehr von Tastatur, Maus und Display. So steckt zum Beispiel in

einer Kaffeemaschine ein kleiner Computer, der zwar über ein Dis-

play und Tasten mit dem Benutzer kommuniziert, aber gleichzeitig

auch über Temperatursensoren und Feuchtigkeitssensoren das

Kochen von Kaffee überwacht, über einen Motor Kaffeebohnen

mahlen und mit verschiedenen Pumpen und Druckventilen Wasser

erhitzen und Milchschaum erzeugen kann. Beim Physical Compu-

ting geht es also um die Verbindung von Rechnen und Rechnern

auf der einen Seite und der realen Welt auf der anderen. Mehr und

mehr Gegenstände werden so zu kleinen intelligenten Geräten: eine

elektrische Zahnbürste, die verschiedene Programme kennt, eine

Lampe, die sich nur anschaltet, wenn Menschen anwesend und

wach sind, ein Kühlschrank, der seinen eigenen Inhalt und Strom-

verbrauch überwacht und seinem Besitzer meldet, wenn bestimmte

Ware nachbestellt werden muss.

31

Der Vorteil dieser intelligenten Geräte ist, dass man den Umgang

mit ihnen deutlich flexibler gestalten kann. So werden viele kleine

Vorgänge auf den Benutzer direkt angepasst. Schließt man einen

Schalter an eine Lampe an, ohne einen Mikrocontroller einzuset-

zen, lässt sich kaum mehr erreichen, als dass man durch Betätigen

des Schalters das Licht an- oder ausschaltet. Mit einem Mikrocont-

roller kann man allerdings das Licht zum Beispiel für eine

bestimmte Zeit nach einem Schalterdruck anschalten (ähnlich wie

mit einer Zeitschaltuhr), oder nur dann, wenn andere Lichter schon

aus sind. Es ist auch möglich, über diesen einen Schalter deutlich

kompliziertere Vorgänge zu erkennen: Der Benutzer kann etwa

durch langes Drücken auf den Schalter den Zeitschaltmodus akti-

vieren oder die Lampe regelmäßig blinken lassen. Solche einfachen

Lichtsteuerungen findet man heutzutage in jeder Fahrradbeleuch-

tung: Die unterschiedlichen Blinkmuster lassen sich ohne »Rech-

nen« nicht einfach bauen.

Der Arduino-Prozessor ist ein gutes Beispiel für einen solchen

Mikrocontroller. Er verfügt über genügend Rechenleistung, um die

meisten Anwendungen locker zu erledigen, und hat mit seinen Aus-

und Eingängen Platz für Sensoren und Aktoren, mit denen viele

Projekte umgesetzt werden können.

Der Begriff »Physical Computing« beschreibt diese Kommunika-

tion zwischen Benutzer und einem physikalischen elektrischen

Gerät. Dieses kann eingehende Information (auf Englisch »Input«)

verarbeiten und anhand eines Programms in eine Reihe von Aus-

gangssignalen (auf Englisch »Output«) umwandeln. Ziemlich jedes

Programm kann als fortgehende Schleife dargestellt werden, die

Input zu Output verarbeitet. Dieser Ansatz wird auch in der Struk-

tur von Arduino-Programmen deutlich, wie Sie im entsprechenden

Abschnitt am Ende dieses Kapitels sehen werden.

Input erlaubt der realen Welt, mit dem Computer zu kommunizie-

ren. Sensoren können ihre Umwelt wahrnehmen und in Signale

verwandeln, die der Rechner verstehen kann. Dabei unterscheidet

man zwischen digitalem Input, der nur zwei Zustände (An und

Aus) kennt, und analogem mit einer Vielzahl von Zwischenwerten.

Neben Sensoren gehören zum Input auch all jene Bauteile, über die

ein Mensch Eingaben machen kann, wie etwa Schalter.

Die Ausgänge (oder auch der Output) ermöglichen es, die reale

Welt in der Umgebung des Computers zu verändern. Aktoren

32

Kapitel 2: Physical Computing, elektrische Grundlagen und der Sprung ins kalte Wasser

manipulieren Licht und Ton oder setzen Dinge in Bewegung. Gene-

rell ist der Output dabei der schwierigere Teil des Physical Compu-

ting, weil er oft auch vom Erschaffer verlangt, dass dieser sich mit

den elektrischen und mechanischen Eigenschaften seiner Aktoren

auskennt und sie sinnvoll einsetzt. Es ist zum Beispiel viel einfa-

cher, die Umgebungshelligkeit zu messen, als sie mit richtig positi-

onierten und angesteuerten Lichtern zu verändern. Zum Output

zählt es aber auch, dass Bilder auf Monitoren angezeigt oder Töne

an Soundkarten ausgegeben werden, ein Mikrocontroller also wei-

tere angeschlossene Chips (und unter Umständen auch eigenstän-

dige Computer bzw. Mikrocontroller) steuert. Die gängigsten

Sensoren und Aktoren werden in Kapitel 7 vorgestellt.

Ein wichtiger Bereich des Physical Computing ist die Erweiterung

der Benutzerschnittstelle herkömmlicher Desktop-Computer.

Normale Software wird angepasst, damit sie mit physikalischen

Gegenständen interagieren kann. Dafür kann zum Beispiel die

Programmierumgebung Processing verwendet werden, die sich als

Schnittstelle zwischen Input und Output anbietet. Processing

besteht aus einer einfachen Programmiersprache, die vor allem die

Entwicklung von grafischen Programmen sehr leicht macht. In

diesem Buch taucht Processing deshalb an vielen Stellen auf, zum

Beispiel in Kapitel 5. Processing ist eng mit der Arduino-Programmierumgebung verwandt, in der Tat handelt es sich bei Arduino

um eine Weiterentwicklung davon, um Programme auf Mikrocon-

trollern schreiben zu können.

Ein Beispiel für eine solche Benutzerschnittstellenerweiterung sind

die Multitouch-Oberflächen, die es dem Benutzer erlauben, mit

mehreren Fingern oder Händen direkt mit einem Bildschirm zu

interagieren. Solche Oberflächen erinnern an den Film »Minority

Report«, und es gibt im Internet beeindruckende Videos auf den

Seiten der Forschungsgruppen, die sich mit diesem Konzept

beschäftigen. Sie lassen sich relativ einfach mit Kameras und Bea-

mern bauen und erobern zum Beispiel als Multitouch-Tische die

Museen und Bühnen dieser Welt. Es wird nicht mehr lange dauern,

bis wir diese auch in der freien Wildbahn beobachten können (das

iPhone und das iPad von Apple sind ein gutes Beispiel für diese

Technologie). Neue Eingabegeräte bedeuten auch einen neuen

Umgang mit Computern, die mit der Zeit immer weniger als solche

wahrgenommen werden.

Physical Computing, elektrische Grundlagen und der Sprung ins kalte Wasser

33

Abbildung 2-1

Multitouch-Tisch: Reactable

(Foto: Xavier Sivecas Saiz)

Auch die großen Firmen haben die alternativen Eingabegeräte für

sich entdeckt, vom EyeToy von Sony, das Bewegungen des Spielers

über eine Kamera verfolgt, über Dance Dance Revolution, das den

Spieler zu mehr oder weniger echten Tanzschritten animiert und

diese als Grundlage für den Spielverlauf nimmt, bis hin zur Wii, die

Kamera und Bewegungssensoren kombiniert. Von Microsoft soll

Ende 2010 das Project Natal für die XBOX erscheinen, mit dem

über Kameras die Bewegungen der Nutzer in nie dagewesener Prä-

zision verarbeitet werden können. Allen gemeinsam ist der Trend,

sich von althergebrachten Konzepten zu lösen und neue Wege der

Benutzerinteraktion zu beschreiten.

Physical Computing harmoniert wunderbar mit Forschung und

Lehre: Studenten wird ein möglichst einfacher und vor allem inter-

essanter Einstieg in die Technik gegeben. Die Studenten wiederum

lassen sich von den schier unbegrenzten Möglichkeiten inspirieren

und entwickeln in Seminaren oder als Abschlussarbeiten die erstaun-

lichsten Projekte. Waren die Programmierung von Computern und

das Arbeiten mit elektrischen Bauteilen über Jahrzehnte eine

Domäne der Fakultäten für Informatik, Physik und Elektrotechnik,

ist es nun auch Kunst- und Designhochschulen möglich, ihre Kreati-

vität in eine weitere Dimension voranzutreiben. Interdisziplinäre

Gruppen rund um den Globus entwickeln dabei Technologien, die

schon bald auch in unseren Alltag übergehen werden, wobei sie die

Industrie oft vor sich hertreiben.

34

Kapitel 2: Physical Computing, elektrische Grundlagen und der Sprung ins kalte Wasser

Zunächst benötigt man für einen Einstieg in das Physical Compu-

ting jedoch einige Grundlagen, die im Folgenden erklärt werden.

Dabei geht es zunächst um die Physik von Schaltungen und

Stromkreisen, die Vorstellung häufig gebrauchter Bauteile und

Werkzeuge sowie die Einführung ins Basteln, Löten und in die

Fehlersuche. Im Anschluss folgt ein kurzer Überblick über die

Arduino-Programmiersprache und die dazugehörige Software.

Elektrische Grundlagen

Der Kern aller Physical-Computing-Projekte ist der elektrische

Schaltkreis. Alle Eingangs- und Ausgangsschnittstellen kommuni-

zieren über elektrische Signale. Diese Signale übermitteln sowohl

Information, indem diese in elektrische Werte codiert wird, als

auch Energie, um z.B. Licht oder mechanische Kraft zu erzeugen

(um Gegenstände zu bewegen oder Klänge zu generieren). Ein elek-

trischer Schaltkreis (auch Stromkreis genannt) besteht aus Bautei-

len, die eine gewisse Funktion erfüllen und mit diesen elektrischen

Signalen umgehen, sowie aus Verbindungen, die diese einzelnen

Bauteile miteinander verknüpfen.

Elektrische Größen: Strom, Spannung, Widerstand

In einem Stromkreis gibt es drei wichtige Größen, die im Folgenden

kurz näher beschrieben werden.

Die Spannung, gemessen in Volt, ist der relative Unterschied der

Energie zwischen zwei Punkten. Vergleicht man die Elektrizität mit

Wasser, dann entspricht die Spannung dem Wasserdruck in einer

Leitung. Nur wenn der Wasserdruck an einer Stelle höher ist als an

der anderen, fließt es auch durch eine Verbindung der beiden Stel-

len. Zum Beispiel fließt von einem Berg (hohe Spannung) das Was-

ser von oben nach unten. Das Gleiche passiert bei der Elektrizität:

Auch hier benötigen wir einen Spannungsunterschied, damit ein

Strom fließen kann. In einer Schaltung gibt es meistens einen Punkt

(GND oder ERDE genannt), der als Referenz für alle Spannungs-

messungen gilt. Bei einfachen Schaltungen verwendet man den

tiefstmöglichen, also null, für diesen Zweck, sodass alle Spannun-

gen in der Schaltung positiv sind. Wichtig ist, sich bei Spannungs-

angaben immer zu merken, dass damit eine Differenz zwischen

zwei Punkten gemeint ist.

Elektrische Grundlagen

35

 Strom ist die Menge der elektrischen Energie, die durch eine Ver-

bindung in der Schaltung fließt, und wird in Ampere gemessen.

Elektrischer Strom ist eigentlich die Bewegung von Abermillionen

kleiner Partikel, die eine elektrische Ladung tragen: den Elektro-

nen. Diese fließen von einem Punkt mit hoher elektrischer Energie

(also hohem elektrischen Potenzial) zu einem Punkt mit niedriger.

Im Wasserbeispiel entspricht der Strom der Menge des Wassers,

die innerhalb einer konstanten Zeit durch eine Röhre fließt. Damit

Strom von einer Stelle in einer Schaltung zu einer anderen Stelle

fließen kann, müssen diese beiden Stellen verbunden werden, zum

Beispiel mit einem Draht oder auch einem Bauteil; eine Lampe

stellt auch eine Verbindung dar, durch die der Strom fließen kann.

Alle Teile einer Schaltung, durch die Strom fließt, stellen für den

Strom unterschiedlich große Hindernisse dar: den Widerstand,

gemessen in Ohm. Durch diese Strombegrenzung wird elektrische

Energie umgewandelt. Ein einfacher Widerstand z.B. wandelt die

Energie, die an ihm abfällt, einfach in Wärme um, während andere

Bauteile Energie etwa in Bewegung (wie ein Motor) oder in Licht

(LEDs und Lampen) umsetzen können. Digitale Bauteile benutzen

diese Energie, um Berechnungen auszuführen. Drähte und Verbin-

dungen auf einer Platine haben einen sehr geringen Widerstand, sie

begrenzen den Stromfluss fast nicht. Schließt man zwei Punkte mit

unterschiedlichen elektrischen Potenzialen über einen Draht zusam-

men, wird nur wenig Widerstand in den Weg gestellt, es fließt ziem-

lich viel Strom und es kommt zu einem Kurzschluss. Im besten Fall

greifen dann Schutzmechanismen: Beim Arduino-Board, das über

USB seinen Strom bekommt, wird der Strom dann vom angeschlos-

senen Rechner gekappt. In einer Wohnung springen dann meist die

Sicherungen heraus. Es ist allerdings auch möglich, mit Kurzschlüs-

sen Bauteile zu beschädigen oder sich selbst zu gefährden, weshalb

man beim Zusammenbauen von elektrischen Schaltungen immer

vorsichtig vorgehen sollte. Man sollte lieber ein zweites Mal über-

prüfen, ob auch keine Kurzschlüsse erzeugt werden.

Ein sehr einfacher Schaltkreis wäre z.B. eine Glühbirne, die an eine

Stromquelle angeschlossen ist. Um die Lampe ein- und ausschalten

zu können, wird noch ein Schalter in den Schaltkreis eingebaut.

Dieser ist ein Bauteil, das eine elektrische Verbindung erzeugen und

trennen kann: Ist er offen, besteht keine elektrische Verbindung,

und es kann auch kein Strom durch den Schalter fließen; ist er

geschlossen, verhält er sich wie ein Draht, und der Strom fließt hin-

durch. Die Lampe verhält sich wie ein Widerstand, der den Strom-

36

Kapitel 2: Physical Computing, elektrische Grundlagen und der Sprung ins kalte Wasser

fluss begrenzt und die Energie des Stroms in Licht und Hitze

umwandelt.

Jedes Bauteil im Schaltkreis braucht eine gewisse Menge Strom, um

seine Aufgabe zu erledigen. Bekommt die Glühbirne nicht genug

davon, wird der Draht, der das Licht erzeugt, nicht heiß genug, und

die Birne leuchtet nicht. Bekommt sie aber zu viel Strom, brennt

der Draht durch und die Glühbirne ist danach defekt. Die Menge

Strom, die durch ein Bauteil fließt, und die Spannung, die an ihm

anliegt, müssen also genau eingestellt werden.

Abbildung 2-2

Anschließen einer Lampe

Ohmsches Gesetz

Um Strom und Spannung in einem Schaltkreis zu berechnen, lassen

sich folgende Formeln einsetzen, die die drei elektrische Größen

verbinden. Diese Formeln sind auch die am häufigsten gebrauchten,

um Schaltungen zu entwerfen, und nach einer gewissen Zeit entwi-

ckelt man auch ein Bauchgefühl, wie ein Schaltkreis zu entwerfen

ist. Sie werden auch Ohmsches Gesetz genannt und lauten wie folgt:

 U (Spannung) = R (Widerstand) × I (Strom)

oder wenn man das Ganze umformt:

 I (Strom) = U (Spannung) / R (Widerstand)

Anschaulich lassen sich diese Formeln wie folgt beschreiben: Je

höher die Spannung zwischen zwei Punkten, desto mehr Strom

Elektrische Grundlagen

37

wird zwischen ihnen fließen, wenn sie zusammengeschlossen wer-

den. Je größer der Widerstand zwischen diesen zwei Punkten,

desto weniger Strom wird fließen. Wird also eine Spannung an ein

Bauteil angeschlossen, fließt genau so viel, wie der Widerstand des

Bauteils zulässt.

Als Beispiel wird ein Bauteil (Glühbirne) mit einem Widerstand

von 15 Ohm verwendet (Im Zweifelsfall kann der genaue Wider-

stand mit einem Messgerät ermittelt werden) und es an eine Span-

nungsquelle von 5 Volt angeschlossen. Die URI-Formel ergibt:

I = 5 Volt / 15 Ohm → I = 0,33A

Bevor man das tatsächlich anschließt, sollte man auf der Glühbirne

nachsehen, ob sie einen Strom von 0,33A verträgt. Bei 5V ent-

spricht das P = 5 Volt × 0,33A → 1,65 Watt

Befinden sich in einer Schaltung mehrere Bauteile hintereinander,

so wird ihr Widerstand einfach addiert. Der Strom wird bei jedem

Bauteil ein bisschen stärker eingeschränkt. So lässt sich auch der

Strom einstellen, der durch eine Glühbirne fließt; man begrenzt

ihn, damit der Draht der Glühbirne nicht durchbrennt. Bei Bautei-

len, die hintereinander angeschlossen werden, sagt man, dass sie in

 Serie geschaltet sind. Der Gesamtwiderstand der in der Abbildung

gezeigten Schaltung ist also

R (Gesamt) = R (Widerstand) + R (Glühbirne)

Abbildung 2-3

Widerstand und Glühbirne in Serie

Eine wichtige Anwendung von in Serie geschalteten Widerständen

ist eine Schaltung, die man Spannungsteiler nennt. Werden zwei

Widerstände mit den Werten R1 und R2 in Serie geschaltet und an

ihren Enden eine definierte Spannung U angelegt, so fließt durch

beide derselbe Strom, der durch I = U / (R1 + R2) gegeben ist.

38

Kapitel 2: Physical Computing, elektrische Grundlagen und der Sprung ins kalte Wasser

Dadurch fällt an jedem Widerstand also eine Spannung ab, die pro-

portional zu seinem Widerstandswert ist. Die Spannung an der

Stelle A im Bild ist also UA = U × (R2 / (R1 + R2)). Diese Schaltung

wird sehr oft benutzt, um zum Beispiel definierte Referenzspannun-

gen zu erzeugen, eine Spannung zu skalieren oder um resistive

Sensoren, also jene, die sich wie ein veränderbarer Widerstand ver-

halten, auszulesen.

Ein Spannungsteiler aus zwei gleich großen Widerständen teilt also

eine Spannung genau in der Mitte, aus 5 Volt werden 2,5V. Aller-

dings nur so lange, wie kein oder fast kein Strom von dieser Mitte

aus woanders hinfließt.

Abbildung 2-4

Spannungsteiler

Bauteile können auch parallel angeschlossen werden, man spricht

dann davon, dass sie parallel geschaltet sind. In diesem Fall teilt

sich der Strom in mehrere Wege auf und fließt abhängig vom ihren

einzelnen Widerständen.

Leistung

Eine weitere wichtige Größe ist die Leistung, die in Watt gemessen

wird. Die Leistung gibt an, wie viel Energie ein Bauteil verbraucht,

wenn es in einem Schaltkreis angeschlossen ist und Strom durch

ihn fließt. Die Leistung, die ein Bauteil benötigt, kann berechnet

werden, indem man die Spannung an seinen Anschlüssen mit dem

fließenden Strom multipliziert, der durch ihn fließt. Dadurch lässt

sich auch berechnen, wie viel Strom und Spannung notwendig

sind, damit ein Bauteil seine Aufgabe erledigen kann. So braucht

eine 60-Watt-Glühbirne bei einer Spannung von 12V also 5A

Strom, damit sie mit ihrer vollen Helligkeit leuchtet.

Die Leistung ist auch wichtig, um zu wissen, wie viel Strom und

Spannung ein Bauteil verträgt, bevor es durchbrennt. Ein handels-

üblicher Widerstand verträgt zum Beispiel 0.125 bis 0.25 Watt. Da

Energie niemals ohne Weiteres vernichtet werden kann (obwohl es

einem oft so vorkommt), muss der Widerstand diese Leistung als

Wärme wieder abgeben, er wird also heiß. Kann die Wärme nicht

Elektrische Grundlagen

39

schnell genug an die Umgebung (Luft oder Kühlkörper) abgegeben

werden, wird der Widerstand so heiß, dass er zerstört wird. Dabei

können sogar Gegenstände in seiner Umgebung in Brand geraten.

Sicherheitsregeln

Für Menschen sind Ströme von mehr als 5 bis 10 mA sehr gefähr-

lich. Für Spannungen kleiner als 48 Volt kann im Normalfall davon

ausgegangen werden, dass nichts passieren kann, da der Wider-

stand eines Menschen zu groß ist, um bei einer solchen Spannung

so viel Strom fließen zu lassen.

Die auf dem Arduino-Board verwendeten Spannungen von 5 und 3

Volt stellen keine Gefahr für den Menschen dar. Trotzdem sollten

direkte Verbindungen zum Menschen (Berührung, EEG usw.) min-

destens mit einem 100kOhm-Widerstand in Reihe abgesichert wer-

den, wenn das Arduino-Board nicht aus einer Batterie versorgt

wird. Niemand kann garantieren, dass das Netzteil (z.B. im ange-

schlossenen PC) bei einem Defekt sicher bleibt. So können im

Ernstfall plötzlich 230 Volt aus der Steckdose an der Schaltung

anliegen.

Für Experimente mit höheren Spannungen sollte unbedingt ein

Experte herangezogen werden. Mindestens aber sollte immer eine

 Fehlerstromsicherung verwendet werden. Diese Sicherungen sind

als Zwischenstecker in Baumärkten erhältlich und trennen die Ver-

bindung, sobald ein Strom von mehr als 10 bis 30mA über die

Hand fließt.

Ist es unumgänglich, an einer unter Spannung stehenden Schaltung

zu arbeiten, sollte eine Hand immer hinter den Rücken gehalten

werden: So wird ein gleichzeitiges Berühren mit beiden Händen

verhindert und somit ein Stromfluss direkt durch das Herz ver-

mieden. Schlimme Unfälle passieren häufig dadurch, dass eine

Hand am geerdeten Metallgehäuse ist, während die andere ein

Strom führendes Teil berührt.

Analoge und digitale Schaltungen

Bei elektrischen Schaltungen wird oft zwischen rein elektrischen

Schaltungen und elektronischen Schaltungen unterschieden. Als

elektrische Schaltungen bezeichnet man im allgemeinen Schaltun-

gen, die ohne Halbleiter auskommen (Transistor, IC). Eine Lampe

mit einem Schalter ist zum Beispiel eine elektrische Schaltung.

40

Kapitel 2: Physical Computing, elektrische Grundlagen und der Sprung ins kalte Wasser

In elektronischen Schaltungen werden oft Spannungen und Ströme

verwendet, um Informationen zu übermitteln, ohne dass man mit

dieser Energie direkt etwas antreiben möchte. Deshalb können

diese Ströme sehr viel kleiner sein. So kann zum Beispiel ein Audio-

signal als Spannung kodiert und in einer elektronischen Schaltung

verändert werden (z.B. um die Anteile an Höhen und Bässen einzu-

stellen, oder die Lautstärke). Erst im letzten Schritt wird dieses

Spannungssignal dann so verstärkt, dass damit große Lautsprecher

angesteuert werden können. Zur Verstärkung und Manipulation

dieser Signale werden Transistoren eingesetzt. Für viele Aufgaben

gibt es integrierte Schaltungen (ICs, integrated circuits), die diese

Leistungstransistoren ersetzen. Diese werden meistens Treiber

genannt. Diese integrierten Schaltungen können mehrere Millionen

einzelne diskrete Bauteile enthalten (wie z.B. Transistoren) und

werden in kleinen Plastikgehäusen mit Anschlusspins geliefert.

Diese Bauteile nennt man Chips, und es gibt sie von sehr einfachen

Varianten, die nur eine Handvoll Transistoren enthalten, über

komplizierte mikromechanische Sensoren (wie z.B. den Beschleu-

nigungssensor) bis hin zu großen Prozessoren wie z.B. einem Pen-

tium-Prozessor.

In elektronischen Schaltungen werden oft Spannungen eingesetzt,

die nur zwei Werte annehmen können: hohe Spannung (auch

HIGH-Spannung) und niedrige (auch LOW-Spannung). Diese zwei

unterschiedlichen Spannungen werden verwendet, um sogenannte

Bits zu codieren: 0 oder 1. Man spricht auch von diskreten Span-

 nungswerten, weil es sich um zwei klar getrennte und definierte

Spannungen handelt, im Unterschied zu kontinuierlichen Span-

nungswerten, die über den gesamten Bereich von GND bis VCC

gehen. Diese Codierung, d.h. Darstellung von Information in Span-

nung, in diskrete Werte nennt man auch digitale Codierung (und

die verwendeten Spannungen werden digitale Spannungen

genannt), im Vergleich zur analogen Codierung (wie sie z.B. für

Audiosignale in einem Verstärker verwendet wird). Der größte Vor-

teil der digitalen Codierung ist, dass sich mit ihr Informationen

»exakt« übermitteln lassen. Eine analoge Spannung ist immer mit

Rauschen behaftet, das etwa durch die Umgebung erzeugt wird. Je

mehr eine analoge Spannung bearbeitet und übertragen wird, desto

stärker ist dieses Rauschen. Das lässt sich am besten mit analogen

Audioaufnahmen verdeutlichen: Eine Audiokassette oder eine

Schallplatte speichert analoge Informationen und wird mit der Zeit

und der Abnutzung immer schlechter. Je länger das benutzte Kabel

ist, das zum Anschluss des Abspielgeräts dient, desto schlechter

Elektrische Grundlagen

41

wird auch der Klang. Im Unterschied zu analogen Signalen lassen

sich digitale Signale wieder ohne Verlust verstärken. Wenn also

digitale Signale über lange Kabel gesendet werden, kann man sie

regelmäßig einlesen und wieder ausgeben. So ist es jetzt möglich,

über das Internet Leuten, die auf der anderen Seite des Globus

wohnen, ohne Verlust Fotos, Audioaufnahmen und Filme zu sen-

den. In einem deutlich kleinerem Maßstab wird diese Eigenschaft

in Chips benutzt, um Millionen von Transistoren zu verbinden,

ohne dass die ausgetauschten Spannungen am Ende vollends mit

Rauschen behaftet sind.

Die digitale Elektronik bildet die Grundlage für das »Rechnen« im

Physical Computing. Bei digitalen Signalen wird meistens kaum

Leistung übertragen (ein bisschen Strom wird immer noch in

Wärme umgewandelt, weswegen moderne Prozessoren auch sehr

schnell warm werden), sondern die Signale dienen rein der Kom-

munikation. Viele Sensoren und Aktoren bieten, obwohl sie intern

mit analogen Signalen und Werten arbeiten, eine digitale Schnitt-

stelle an, sodass sie sehr einfach anzuschließen sind. Der Königs-

baustein unter den digitalen Bauteilen ist der sogenannte Prozessor.

Er ist ein frei programmierbarer Computer, der sich in Schaltkreise

einbauen lässt. Hier wird zwischen Prozessor und Mikrocontroller

unterschieden. Erstere findet man etwa in Desktopcomputern und

Servern. Sie haben keine direkte Anbindung an die Umwelt, das ist

die Aufgabe weiterer Bausteine auf dem Mainboard. Bei einem

Mikrocontroller sind viele Schnittstellen (RS232, USB, Analog In,

PWM, IO-Ports) schon eingebaut, oft ist auch der Speicher direkt

integriert. Der Arduino-Prozessor hat eine interne Datenbreite von

8 Bit und ein paar Kilobyte Arbeitsspeicher. Er rechnet mit einem

Takt von 16 MHz.

Zusammenfassung der elektrischen Regeln

Diese ganzen Stromregeln lassen sich wie folgt zusammenfassen:

• Zwischen zwei Punkten in einem Schaltkreis liegt eine Span-

nung an.

• Zwischen zwei elektrisch verbundenen Punkten fließt ein

Strom.

• Der Fluss der Stroms hängt von der anliegenden Spannung

und dem Widerstand ab.

42

Kapitel 2: Physical Computing, elektrische Grundlagen und der Sprung ins kalte Wasser

• Seriell geschaltete Bauteile addieren ihren Widerstand.

• Parallel geschaltete Bauteile teilen den Strom entsprechend

ihrem Widerstand auf.

Es reicht meistens aus, diese Regeln zu benutzen, um die Strom-

und Spannungswerte für ein neues Bauteil zu berechnen. Bei schon

einmal verwendeten Bauteilen lassen sich meistens ältere Schalt-

kreise und Einstellungen wiederverwenden, sodass sich nach eini-

ger Zeit eine Art Routine einstellt. Bei einem neuen Bauteil muss im

dazugehörigen Datenblatt, das die elektrischen Eigenschaften des

Bauteils beschreibt, nachgeprüft werden, wie hoch die minimalen

und maximalen Strom-, Spannungs- und Leistungswerte sind.

Diese sind oft in einer Tabelle zusammengefasst.

Tipp

Es gibt im Internet viele hilfreiche Websites, die die Grundlagen

der Elektronik erklären. Besonders hilfreich sind z. B. die Websei-

ten http://www.elektronik-kompendium.de/ und http://mikrokon-

 troller.net/.

Schaltungen, Bauteile und Schaltbilder

Schaltungen bestehen aus einzelnen elektrischen bzw. elektroni-

schen Bauteilen, die miteinander über elektrische Leiter (Drähte)

verknüpft werden. Schon mit dem Anschließen einer Lampe an

eine Steckdose wird also eine, zugegebenermaßen recht einfache,

elektrische Schaltung hergestellt. Für komplexere Schaltungen ver-

wendet man heutzutage Platinen. Das sind Platten aus Glasfasern

und Epoxidharz, auf denen Kupferleiterbahnen dafür sorgen, dass

die Bauteile befestigt und verbunden werden. Das Mainboard eines

Computers ist ein gutes Beispiel für eine solche Platine, wenn auch

schon eine sehr große und komplexe.

Platinen sind nicht viel schwieriger zu entwerfen als Steckbrettauf-

bauten (siehe Kapitel 2 , Abschnitt »Steckbretter«). Hierfür werden

spezielle CAD-Programme eingesetzt. Es kann sinnvoll sein, die

Schaltung vorher zu testen, da es schwierig ist, eine fertige Platine

zu modifizieren. Deswegen werden beim Entwurf und für den

Heimgebrauch oft spezielle Platinen eingesetzt, die Lochrasterplati-

nen und Steckbretter genannt werden. Auf diesen Platinen ist es

leicht möglich, schnell Schaltungen aufzubauen und auch nach-

träglich zu verändern.

Schaltungen, Bauteile und Schaltbilder

43

Bauteile

Bauteile sind die einzelnen physikalischen Komponenten in einer

elektronischen Schaltung. Sie können zum einen rein elektrische

Bauteile sein, die bestimmte Eigenschaften haben, aber kein eigenes

variables Verhalten an den Tag legen. Diese Bauteile nennt man

 passive Komponenten, und zu ihnen gehören unter anderem Wider-

stände, Kondensatoren und Spulen. Zum anderen gibt es Bauteile,

die ihre Eigenschaften mechanisch ändern können. So kann zum

Beispiel ein elektrischer Kontakt mechanisch erstellt oder unterbro-

chen werden, wie es bei einem Schalter der Fall ist. Es ist auch mög-

lich, wie bei einem Potentiometer mechanisch den Widerstand des

Bauteils einzustellen. Andere Bauteile hingegen benutzen die elek-

trischen Eigenschaften von Halbleitermaterialen, um Signale elek-

tronisch zu verarbeiten. Diese Halbleiterbauteile reichen von der

einfachen Diode und dem LED über Transistoren bis hin zu Prozes-

soren in Desktopcomputern. Viele Halbleiterbauteile sind eigene

elektronische Schaltungen, die (meistens) in Silizium realisiert und

als ICs verpackt sind.

Jedes Bauteil kann es in einer Vielzahl von verschiedenen Versionen

und Bauformen zu kaufen geben. Es gibt bei Bauformen zwei

Hauptfamilien: bedrahtete Bauformen und SMD-Bauformen.

Bedrahtete Bauteile haben, wie ihr Name schon sagt, Drähte zum

Anschließen an weitere Komponenten. Dadurch sind sie recht ein-

fach von Hand zusammenzustecken oder zusammenzulöten, wes-

wegen sie für den Heimgebrauch besonders gut geeignet sind. In

diesem Buch werden nur bedrahtete Bauteile verwendet. Die

andere, mittlerweile extrem verbreitete Bauform ist die SMD-Bau-

form (surface mounted devices, was frei übersetzt so viel heißt wie

»Oberflächenbauteile«). Diese Bauteile haben sehr kurze Anschlus-

drähte, die direkt auf die Platine gelötet werden. Die SMD-Bauform

ist für die industrielle Fertigung bestimmt, und solche Bauteile las-

sen sich nicht angenehm von Hand zusammenschließen. Oft wer-

den Sensoren oder digitale Bausteine allerdings nur in SMD-

Bauform vertrieben. Um sie trotzdem einfach mit dem Arduino-

Board und anderen Schaltungen verbinden zu können, gibt es für

Bastler kleine Adapterplatinen, die SMD-Bausteine mit längeren

Drähten verbinden.

Nicht alle Bauteile des gleichen Typs verhalten sich auch gleich,

besonders wenn es sich um komplexere Sensoren oder Aktoren

handelt. In den sogenannten Datenblättern sind alle physikalischen

44

Kapitel 2: Physical Computing, elektrische Grundlagen und der Sprung ins kalte Wasser

Eigenschaften und sonstige Informationen zusammengefasst, die

für eine korrekte und vollständige Verwendung des entsprechenden

Bauteils nötig sind. Im Internet gibt es eine ganze Reihe von Daten-

blattsammlungen, die die meisten gängigen Bauteile umfassen. Die

Websites http://www.alldatasheet.com und http://www.datasheet-

 catalog.net/de/ stellen tausende von PDFs zur Verfügung, die von

den Herstellern dort hochgeladen wurden.

Diese unterschiedlichen Bauteile kann man bei vielen Distributoren

und Elektronikläden erwerben. Das Suchen und Bestellen von elek-

tronischen Komponenten kann schnell zu einem eigenen Sport

werden: Meistens gibt es nicht nur eine Version von einem Bauteil,

sondern gleich 15, die ähnliche Eigenschaften haben, sich aber

leicht voneinander unterscheiden. Hier lohnt es sich oft, bei ver-

schiedenen Läden und Distributoren nachzugucken, ob bestimmte

Bauteile vielleicht billiger zu erhalten sind, oder in einer sinnvolle-

ren Bauform oder mit besseren Eigenschaften. Zum Glück gibt es

mittlerweile, gerade für Arduino-Anfänger, Läden, die sich auf den

Hobbybastelbereich konzentrieren, wie z.B. http://bausteln.de/,

 http://elmicro.com/ und http://tinkersoup.de/. Dort lassen sich auch

viele verschiedene Arduino-Boards und -Shields (siehe Anhang A) , Adapterplatinen, interessante Sensoren und sogar fertige Projekte

zum Selbstbauen (sogenannte Kits, in denen alle Bauteile für ein

Projekt schon zusammengelegt sind) erwerben.

Schaltbilder

Schaltbilder sind eine Art »Sprache«, um Informationen über elek-

tronische Schaltungen auszutauschen. Sie werden verwendet, um

Schaltungen in abstrahierter und vereinfachter Form grafisch dar-

zustellen. So können Entwickler diese entwerfen und planen, ohne

eventuelle physikalische Notwendigkeiten wie die eigentliche

Kabelführung zu berücksichtigen.. Mit ihnen lassen sich vage

bestimmte Schaltungen definieren, es ist aber auch möglich, genau

jedes Bauteil zu spezifizieren. Viele elektronische Projekte im Inter-

net werden auf diese Weise erklärt. Im unteren Schaltbild wird zum

Beispiel beschrieben, wie zwei LEDs über ihren jeweiligen Vorwi-

derstand an eine Batterie anzuschließen sind. Die zweite LED ist

über einen Schalter getrennt aktivierbar (siehe Abbildung 2-5).

Schaltbilder sind Diagramme, die zeigen, wie einzelne Bauteile mit-

einander verknüpft werden. Jedes Bauteil wird durch ein Symbol

dargestellt. Ihre Darstellung variiert allerdings von Schaltbild zu

Schaltungen, Bauteile und Schaltbilder

45

Abbildung 2-5

LED-Schaltbild

Schaltbild (in den USA werden zum Beispiel Widerstände als Zick-

zack-Linien dargestellt, in Europa dagegen als kleine Kästchen).

Viele Bastler benutzen auch ihre eigenen Symbole um bestimmte

Bauteile zu zeichnen. Jedes dieser Symbole wird dann mit Strichen

mit anderen verbunden, und jeder dieser Striche steht für eine elek-

trische Verbindung. Die Bauteile werden meistens noch mit Namen

und Werten beschrieben (z.B. den Widerstandswerten einzelner

Widerstände, den Herstellernamen und den genauen Typbezeich-

nungen). Schaltbilder (oder Schaltpläne) können mit einer Reihe

von Programmen erstellt und bearbeitet werden (es ist natürlich

auch möglich, Schaltbilder auf eine Papierserviette zu zeichnen)

und greifen dabei auf einen Satz von meist genormten Symbolen für

die einzelnen Bestandteile zurück.

Tipp

Für den Heimbereich bieten sich zum Zeichnen von Schaltbil-

dern Programme an wie gEDA (eine Open-Source-Lösung, die

aus vielen einzelnen kleinen Programmen besteht), KiCad (das

auch frei ist) oder EAGLE (das für den Heimbereich frei ist). Es

reicht meistens allerdings, die Schaltung auf einem einfachen

Blatt Papier zu entwerfen.

GEDA: http://www.gpleda.org/

KiCad: http://www.lis.inpg.fr/realise_au_lis/kicad/

EAGLE: http://www.cadsoft.de/

Es kommt häufig vor, dass in einem Schaltbild Verbindungen

gezeichnet werden, die sich überkreuzen. Deswegen werden diese,

wenn sie auch wirklich zusammengeschaltet sind, mit einem klei-

nen Punkt gekennzeichnet, um zu verdeutlichen, dass es keine

46

Kapitel 2: Physical Computing, elektrische Grundlagen und der Sprung ins kalte Wasser

getrennten Verbindungen sind. Weiterhin werden oft benutzte

Spannungen in der Schaltung (meistens jene, die von der Stromver-

sorgung zur Verfügung gestellt werden) mit einem einzelnen Sym-

bol gezeichnet, sodass es nicht notwendig ist, jeden Baustein

immer mit der Stromversorgung zu verbinden. Die Masse (also die

Spannung 0 Volt) wird meistens mit einem umgekehrten T-Symbol

dargestellt, während die Spannungsversorgung (bei Arduino-Schal-

tungen meistens 5 Volt) mit einem Pfeil nach oben dargestellt wird.

Wie so oft sind diese Symbole aber von Schaltbild zu Schaltbild

unterschiedlich, und es ist wichtig, hier nicht Spannungen zu ver-

wechseln. Bei ICs wird die Spannungsversorgung oft gar nicht erst

mit eingezeichnet, sondern es wird davon ausgegangen, dass dem

IC auch Strom zugeführt wird.

In der unteren Abbildung ist diese Schaltung mit zwei LEDs und

Vorwiderständen dieses Mal mit eigenen Symbolen für die Span-

nungsversorgung gezeichnet.

Abbildung 2-6

Schaltbild mit Spannungs-

versorgungssymbolen

Nachdem eine Schaltung entworfen wurde, ist es Zeit, sie mit rich-

tigen Bauteilen zu realisieren. Das Schaltbild ist also sozusagen ein

Bauplan. Oft ist es nicht möglich, die Bauteile so anzuordnen, wie

sie auf dem Schaltbild vorkommen. Bei Platinen werden dazu oft

mehrere Schichten Kupfer benutzt, bei Steckbrettschaltungen wer-

den für die Verbindungen sowohl die vertikalen und horizontalen

Lochreihen des Steckbretts als auch einzelne gesteckte Drähte ver-

wendet. Die Bauteile müssen nicht so angeordnet werden wie auf

dem Schaltbild. Es ist allerdings sinnvoll, auch auf dem Steckbrett

oder der Platine Bauteile, die in einem Zusammenhang miteinander

stehen, nah beieinander aufzubauen. Wichtig ist, dass jede elektri-

sche Verbindung, die auf dem Schaltbild steht, auch im physikali-

schen Aufbau hergestellt wird.

Schaltungen, Bauteile und Schaltbilder

47

Schalter

Schalter sind mechanische Bauteile, die eine elektrische Verbin-

dung herstellen oder trennen können. Meistens werden durch die

physische Betätigung des Schalters zwei elektrische Leiter miteinan-

der verbunden. Es gibt allerdings auch magnetische Schalter, bei

denen die elektrischen Leiter durch einen Magneten aneinanderge-

zogen und so verbunden werden. Interessant sind auch sogenannte

»Ball Switches«, die den Kontakt über einen kleinen metallischen

Ball herstellen, der auf die elektrischen Leiter rollt, wenn der Schal-

ter gekippt wird. In Kapitel 7 wird ein kleiner Erschütterungssensor beschrieben, der auch als Schalter funktioniert: Ein kleiner Drahtring liegt lose auf zwei Kontakten und öffnet bei Erschütterungen

kurz den Stromkreis.

Schalter vertragen eine bestimmte anliegende Spannung und eine

bestimmte Menge Strom, der durch sie fließt. Bei den elektroni-

schen Schaltungen in diesem Buch werden sehr kleine Spannungen

und Ströme benutzt, sodass es hier bei den einsetzbaren Schaltern

keine Beschränkungen gibt. Deswegen ist es auch möglich, aus

allen möglichen elektrischen Leitern (z.B. Draht und Aluminiumfo-

lie) auch eigene interessante und innovative Schalter zu entwerfen.

Es gibt eine Unmenge verschiedener Schalter, die man käuflich

erwerben kann. Diese unterscheiden sich natürlich durch ihre

mechanische Bauform, also ihre Größe, ihr Aussehen, die Mate-

rialien, aus denen sie gebaut sind, und dadurch, wie sie an einem

Gehäuse angebracht werden. Für Entwicklungsschaltungen, die

z.B. auf einem Steckbrett zusammengebaut werden, ist es meistens

nicht so wichtig, welche Schalter eingesetzt werden. Soll eine Schal-

tung allerdings auf einer Platine gebaut (entweder auf einer richti-

gen Platine oder auf einer Lochrasterplatine) und später in ein

Gehäuse eingebaut werden, ist es wichtig, sich schon im Voraus

Gedanken über das fertige Gerät zu machen. Besonders muss dort

auf die Größe und Befestigung der Schalter geachtet werden, denn

nichts ist frustrierender, als im Nachhinein zu merken, dass alles

gar nicht in das vorgesehene Gehäuse passt. Es ist auch durchaus

möglich, die Komponenten zuerst rein mechanisch zusam-

menzusetzen, um zu sehen, ob auch alles seine Richtigkeit hat.

Bei Schaltern gibt es zwei unterschiedliche Funktionsweisen, näm-

lich Schalter und Taster. Bei einem Schalter wird meistens langfris-

tig eine elektrische Verbindung geschaltet, während bei einem

Taster nur ein Kontakt hergestellt wird, solange er betätigt wird.

48

Kapitel 2: Physical Computing, elektrische Grundlagen und der Sprung ins kalte Wasser

Wird er wieder losgelassen, wird der Kontakt wieder unterbrochen

(solche Taster nennt man »normally open« oder »n. o.«, also »im

Normalzustand offen«). Es gibt auch Taster, die ohne Betätigung

durch den Benutzer einen Kontakt herstellen und diesen erst beim

Betätigen unterbrechen. Diese nennt man »normally closed« oder

»n. c.«.

Weiterhin gibt es viele verschiedene Schalter, die sich durch die

Anzahl der durch sie einstellbaren Verbindungen unterscheiden. So

gibt es einfache, die nur eine elektrische Verbindung trennen oder

aufbauen können. Kompliziertere Schalter können aber z.B. paral-

lel zwei, drei oder mehr Verbindungen aufbauen und trennen.

Generell werden Schalter durch die Anzahl der verschiedenen her-

stellbaren Verbindungen (auf Englisch »poles«) und die Anzahl der

elektrischen Leitungen, die verbunden werden können (auf Eng-

lisch »throws«) beschrieben. In der folgenden Tabelle sehen Sie

eine Übersicht herkömmlicher Schaltertypen.

Tabelle 2-1

Schalterbezeichnung

Beschreibung

Schaltertypen

SPST

Dieser einfacher Schalter stellt eine Verbindung her oder trennt sie.

(Single Pole, Single Throw)

SPDT

Ein Eingang kann mit zwei unterschiedlichen Ausgängen verbunden

(Single Pole, Double Throw)

werden.

DPST

Zwei Verbindungen können parallel hergestellt oder getrennt wer-

(Double Pole, Single Throw)

den.

DPDT

Hier können zwei Eingänge parallel mit separaten Ausgängen ver-

(Double Pole, Double Throw)

bunden werden.

Abbildung 2-7

Schalter

Schaltungen, Bauteile und Schaltbilder

49

Widerstand

Ein Widerstand ist ein Bauteil, das elektrische Energie in Hitze

umwandelt. Dadurch begrenzt sich der Stromfluss. Der Wert eines

Widerstands wird in Ohm angegeben; anhand der Regeln, die in

den vorigen Abschnitten vorgestellt wurden, lässt sich dadurch die

Strombegrenzung berechnen. Widerstände sind kleine Bauteile, die

zwei Anschlüsse besitzen. In welcher Richtung sie eingesetzt wer-

den, spielt keine Rolle, allerdings sehr wohl ihre Größe. Da ein

Widerstand Energie in Hitze umsetzt, muss gewährleistet werden,

dass er diese Energie auch aushalten kann. Für Schaltungen in die-

sem Buch, in denen mit kleinen Strömen und kleinen Spannungen

gearbeitet wird, reichen meistens herkömmliche Widerstände mit

1/4 oder 1/8 Watt.

Widerstände werden aus verschiedenen Materialien hergestellt. So

gibt es etwa Kohleschichtwiderstände und Metallschichtwiderstände.

Diese haben unterschiedliche Eigenschaften; Kohleschichtwider-

stände sind z.B. billiger, aber nicht so präzise wie Metallschichtwider-

stände. Diese inhärente Genauigkeit von Widerstandswerten hat

dazu geführt, dass sie in verschiedene Werteklassen eingeteilt wer-

den. Diese sind standardisiert und werden als »E-Reihen« bezeichnet:

E-3 ist eine Reihe mit drei Werteklassen von sehr grober Toleranz, E-

6 hat sechs, die ein bisschen genauer sind, und so geht es weiter bis zu

E-192 für Hochpräzisionswiderstände. Es kann deswegen z.B. unan-

genehm sein, einen genauen Spannungswert zu berechnen, nur um

am Ende herauszufinden, dass man dazu einen Widerstand mit 25,98

Ohm und einen mit 1034 Ohm braucht, den es in dieser Form nicht

gibt (oder der nicht bezahlbar ist). In unseren Schaltungen, die meis-

tens mit digitalen Spannungen arbeiten, sind viele Widerstände als

Pull-ups oder als Schutzwiderstände eingesetzt, weswegen ihr ge-

nauer Wert nicht so wichtig ist.

Die Werte auf Widerständen sind durch einen Farbcode angege-

ben: Verschiedene Streifen auf ihrem Körper geben an, welchen

Widerstandswert in Ohm dieses Bauteil hat und mit welcher

Genauigkeit zu rechnen ist. In der folgenden Tabelle werden die

Farbcodes für Widerstände erläutert. Es gibt zwei verschiedene

Farbcodes für Widerstände. Im ersten werden vier Farbbänder

benutzt. Die ersten zwei geben den Widerstandswert an, das dritte

die Größenordnung (also den Wert, mit dem die zwei ersten Bän-

der multipliziert werden), während das vierte Band (das meistens

50

Kapitel 2: Physical Computing, elektrische Grundlagen und der Sprung ins kalte Wasser

ein bisschen abgesetzt von den anderen an einem Ende des Wider-

stands zu finden ist), die Toleranz angibt, also beschreibt, wie

genau der angegebene Wert zum tatsächlichen passt. Beim zweiten

Code werden fünf Farbbänder benutzt. Hier geben die ersten drei

den Widerstandswert an, das vierte ist der Multiplikator, und das

letzte Band gibt die Toleranz des Widerstands an.

Tabelle 2-2

Erstes

Zweites

Drittes

Farbe

Band

Band

Band

Multiplikator

Toleranz

Widerstandsfarbcodes

Schwarz

0

0

0

1 Ohm

-

Braun

1

1

1

10 Ohm

1,00%

Rot

2

2

2

100 Ohm

2,00%

Orange

3

3

3

1.000 Ohm

Gelb

4

4

4

10.000 Ohm

Grün

5

5

5

100.000 Ohm

0,50%

Blau

6

6

6

1.000.000 Ohm

0,25%

Violett

7

7

7

10.000.000 Ohm

0,10%

Grau

8

8

8

-

0,05%

Weiß

9

9

9

-

Gold

0,1

5,00%

Silber

0,01

10,00%

Es ist praktisch, Widerstände in kleine Kästchen oder Schubladen

zu sortieren und jeweils mit einem numerischen Wert zu versehen.

Dabei muss man aber sicherstellen, dass der angegebene Wert auch

tatsächlich dem realen entspricht. Eine andere Methode, um den

Widerstandswert eines Bauteils abzulesen, ist die Benutzung eines

Multimeters, was im entsprechenden Abschnitt erklärt wird.

Abbildung 2-8

Widerstand

Schaltungen, Bauteile und Schaltbilder

51

Variabler Widerstand

Abbildung 2-9

Potentiometer

Ein variabler Widerstand ist, wie sein Name schon sagt, einer, bei

dem der Wert eingestellt werden kann. Bekannte Beispiele für vari-

able Widerstände sind Potentiometer und Schieberegler. Ein Poten-

tiometer besteht aus einem speziellen Widerstand, an dem ein

sogenannter Schleifer angebracht ist, der sich durch die Drehung

entlang der leitenden Oberfläche bewegt. Dadurch vergrößert oder

verkleinert er auch den Widerstandswert und somit die Spannung,

die am Potentiometer anliegt. Ganz ähnlich wie Drehpotentiometer

funktionieren auch Schieberegler (oder »Fader«). Dort ist der

Schleifer nicht rund, sondern länglich, sodass der Regler bei einer

Bewegung den Widerstand verkürzt. Bekannte Anwendungen sind

Lautstärkeregler oder Crossfader auf Mischpulten. Im Arduino-

Bereich können Fader z.B. für die Steuerung von Licht oder Ton

verwendet werden.

Potentiometer und Schieberegler haben meistens drei Anschlüsse.

Die zwei äußeren sind an beiden Enden des zu manipulierenden

Materials angebracht, und der Widerstand zwischen ihnen verän-

dert sich nicht. Der dritte Anschluss liegt am Schleifer an und der

Widerstand von diesem Anschluss zu den beiden anderen variiert,

je nachdem, wie der Schleifer bewegt wird. Wenn an den beiden

äußeren Anschlüssen definierte Spannungen angebracht werden,

wird ein Spannungsteiler gebildet. Dadurch variiert die Spannung

am mittleren Anschluss zwischen den beiden äußeren Spannungen.

Dieser Wert lässt sich dann durch einen analogen Eingang am

Arduino auslesen.

Es gibt allerdings auch noch eine ganze Reihe anderer Bauteile, die

sich wie variable Widerstände verhalten (man nennt diese Bauteile

52

Kapitel 2: Physical Computing, elektrische Grundlagen und der Sprung ins kalte Wasser

auch resistive Sensoren). So gibt es lichtempfindliche Widerstände,

die ihren Wert ändern, je nachdem, wie viel Licht aus sie einfällt.

So einen Widerstand nennt man LDR (light dependent resistor)

oder auch Fotowiderstand oder Fotozelle. Thermistoren sind

Widerstände, die ihren Wert je nach Temperatur ändern. Druck-

sensoren und Flexsensoren sind Widerstände, die ihren Wert

ändern, je nachdem, wie viel Druck auf sie ausgeübt wird oder wie

stark sie gebogen werden. Wie Widerstände habe diese Bauteile

auch zwei Anschlüsse, und ihre Richtung ist nicht relevant. Oft

werden resistive Sensoren mit einem weiteren Widerstand an defi-

nierte Spannungen angeschlossen, um so einen Spannungsteiler

aufzubauen. Dadurch lässt sich ein resistiver Sensor wie ein Poten-

tiometer auslesen. Mehr Informationen zu resistiven Sensoren fin-

den Sie in Kapitel 7.

Kondensator

Einen Kondensator kann man als ein Speicherbauteil für elektrische

Ladung betrachten. Fließt Strom hinein, speichert dieser intern eine

Ladung. Wird die Spannung entfernt, leert sich der Kondensator

und liefert Strom, bis er keine Ladung mehr enthält. Dieses Entlee-

ren geschieht allerdings nicht sofort, sondern spielt sich über einen

gewissen Zeitraum ab, der von der Kapazität des Kondensators

(wie viel elektrische Ladung er aufnehmen kann, gemessen in

 Farad) und von der Menge des fließenden Stroms abhängt.

Dadurch können Kondensatoren z.B. eingesetzt werden, um sich

schnell verändernde Ströme zu begrenzen und »aufzuweichen«:

Fließen kurze Stromstöße, sammelt der Kondensator sie auf, wird

der Stromfluss kleiner, braucht er seine gespeicherte Ladung auf,

um den Strom aufrechtzuerhalten.

Farad ist eine sehr große Größe, weshalb die Kondensatoren in den

Arduino-Schaltungen meistens in Bereiche von Mikrofarads bis

Picofarads gehen. Kondensatoren gibt es sowohl in unpolarisierter

Bauform, bei der es keinen Einfluss hat, in welcher Richtung sie

angeschlossen werden, als auch in polarisierter Bauform. Bei die-

sen polarisierten Kondensatoren (meistens Elektrolytkondensato-

ren, kurz auch Elkos genannt) steht auf dem Gehäuse, welcher

Anschlusspin an die positive und welcher an die negative Seite

angeschlossen werden muss. Bei digitalen Schaltungen werden sie

oft eingesetzt, um die Spannungsversorgung für Bausteine zu glät-

ten. Sie können auch benutzt werden, um kurze Impulse, wie sie

z.B. aus Piezomikrofonen kommen, zeitlich zu verlängern, sodass

Schaltungen, Bauteile und Schaltbilder

53

ein Mikrocontroller Zeit hat, diese zu verarbeiten. Ein wichtiger

Einsatzbereich von Kondensatoren ist die Implementierung von

Filtern, die ein Signal in bestimmten Frequenzen abschwächen

oder verstärken. Wir verwenden einen Filter auf Basis eines Kon-

densators und eines Widerstands (ein sogenanntes RC-Netzwerk)

in Kapitel 10, in dem es um Musik mit dem Arduino geht.

Abbildung 2-10

Kondensatoren

Transistor und Relais

Abbildung 2-11

Transistoren

Transistoren und Relais (englisch Relays) sind Bauteile, die zum

Schalten von größeren Strömen verwendet werden. Im Gegensatz

zu ihren normalen, mechanischen Geschwistern werden Transisto-

ren und Relais allerdings elektronisch geschaltet. Wenn in ein

Relais ein kleiner Strom fließt, wird durch eine Spule ein Magnet-

feld erzeugt, das einen mechanischen Schalter schließt. Damit las-

sen sich elektrisch getrennte Netzwerke schalten. Sie werden oft

verwendet, um z.B. Bauteile mit Netzspannung zu betreiben. Relais

werden genauer im Abschnitt über Aktoren beschrieben.

Im Gegensatz zu Relais benutzen Transistoren die Eigenschaften

von Halbleitermaterialien (in den meisten Fälle Silizium), um

Ströme zu steuern. Sie werden oft für Bauteile verwendet, die grö-

ßere Ströme benötigen, etwa Motoren, Glühbirnen oder viele

LEDs.

54

Kapitel 2: Physical Computing, elektrische Grundlagen und der Sprung ins kalte Wasser

Abbildung 2-12

Relais

Dioden

Abbildung 2-13

Diode

Eine Diode funktioniert wie eine Einbahnstraße: Die Elektrizität

kann nur in eine Richtung fließen. Dioden haben zwei Anschlüsse,

Anode (+) und Kathode (–). Ein Strom kann nur von der Anode zur

Kathode fließen. Deswegen haben Dioden immer eine Richtung;

meistens ist die Kathode durch einen Strich auf dem Diodenge-

häuse gekennzeichnet. Dioden werden verwendet, um Signale zu

richten, wie im folgenden Bild gezeigt ist. Sie verhindern, dass z.B.

eine negative Spannung anliegt, indem sie diese kurzschließt. Im

Arduino-Prozessor sind an jedem Pin auch Schutzdioden ange-

schlossen, die sicherstellen, dass keine negative oder zu hohe Span-

nung angelegt werden kann.

Es gibt verschiedene spezielle Dioden, zum Beispiel Zener-Dioden,

die Strom ab einer bestimmten Spannung in der Sperrrichtung

durchlassen, sodass sie zur Spannungsbegrenzung und -regelung

verwendet werden können.

Abbildung 2-14

Invertierungsschutz mit einer

Diode

Schaltungen, Bauteile und Schaltbilder

55

Netzteil

Abbildung 2-15

Netzteile

Für die meisten Arduino-Projekte wird eine Gleichspannung (DC)

benötigt. Dazu können kleine Steckernetzteile oder die USB-Ports

verwendet werden. Für kleinere Projekte sind 200 bis 300 mA aus-

reichend. Werden viele LEDs, Lampen oder Relais eingesetzt, kann

der benötigte Strom natürlich viel höher sein, weswegen es ratsam

ist, gleich ein Netzteil zu beschaffen, dass 1.000 mA liefern kann.

Vorsichtig sollte man mit älteren Universalnetzteilen sein, deren

Regelung meist schlecht oder gar nicht vorhanden ist. Eine einge-

stellte Spannung kann ohne große Belastung durchaus 3 bis 5 Volt

größer als angegeben sein. Dem Arduino-Board macht das aller-

dings nichts aus, da hier noch ein Spannungsregler verbaut ist, der

diese Spannung anpasst.

Eine andere Variante sind die immer gebräuchlicher werdenden

Schaltnetzteile, die man an ihrem geringen Gewicht erkennen

kann. Sie bieten den Vorteil, ziemlich viel Strom liefern zu können,

ohne dabei nennenswert warm zu werden, können allerdings emp-

findliche Schaltungen stören.

Spannungsregler

Lineare Spannungsregler erzeugen aus der ursprünglichen eine

geregelte niedrigere Spannung. Dazu müssen am Eingang 2 bis 3

Volt mehr anliegen, als die Ausgangsspannung sein soll.

Häufig wird der Regler 7805 (5 Volt) verwendet. Er kann aus 7 bis

35 Volt eine geregelte Spannung von 5 Volt erzeugen. Je höher die

Eingangsspannung, desto besser muss die Kühlung sein; hier wird

empfohlen, ein kleines Stück Blech an den Regler zu schrauben.

56

Kapitel 2: Physical Computing, elektrische Grundlagen und der Sprung ins kalte Wasser

Auf dem Arduino-Board ist schon ein Spannungsregler montiert,

außerdem funktioniert der USB-Chip auch als Quelle für eine Span-

nung von 3,3 Volt. Die Spannung, die das Arduino-Board auf den

Spannungsversorgungspins liefert, ist also schon reguliert.

Steckbretter

Abbildung 2-16

Steckbrett

Steckbretter sind ein schneller Weg, um kleine Schaltungen auszu-

probieren. Sie bestehen aus einem oder mehreren Plastikbrettern,

die in regelmäßigen Abständen durchlöchert sind. In diese Löcher

lassen sich dann herkömmliche Bauteile (z.B. ICs in der DIP-Form,

bedrahtete Widerstände oder LEDs) und einzelne Drähte stecken.

Innerhalb des Bretts sind diese Löcher elektrisch verbunden. So las-

sen sich sehr leicht Schaltungen entwerfen: Zuerst werden die

benötigten Bauteile auf das Brett gesteckt und dann untereinander

mit Drähten verbunden.

Steckbretter sind allerdings nicht einheitlich aufgebaut, weshalb

man zuerst herausfinden sollte, wie die Stecklöcher intern verbun-

den sind. Im Normalfall gibt es oben und unten eine durchgehend

verbundene Reihe. Die obere wird mit 5 oder 3 Volt verbunden, die

untere mit Ground (GND). So kann man der Schaltung von jeder

Stelle aus die zwei Referenzspannungen zuführen.

Schaltungen, Bauteile und Schaltbilder

57

Wichtig ist, dass alle Drähte und Bauteile gut eingesteckt sind, weil

es sonst zu Kurzschlüssen und Unterbrechungen in der Schaltung

kommen kann. Besonders bei neuen Steckbrettern lassen sich

Drähte und andere verdrahtete Bauteile oft nur mit Schwierigkeit in

die Löcher hineindrücken.Deshalb ist es immer nützlich, eine

kleine Zange zur Verfügung zu haben, um hartnäckige Schaltungen

sauber aufzubauen. Ansonsten verbringt man viel Zeit mit unnöti-

ger Fehlersuche. Wegen ihrer Bauweise sind Steckbretter auch sehr

anfällig für Rauschen und Störsignale, sodass sich manchmal

bestimmte Sensoren oder Bausteine (besonders solche, die mit klei-

nen Spannungen oder hoher Geschwindigkeit arbeiten) falsch ver-

halten. Auch hier gilt die Regel, alle Verbindungen möglichst kurz

zu halten.

Ein weiteres Problem mit Steckbrettern ist, dass die Schaltungen,

die auf ihnen aufgebaut sind, recht schnell kaputt gehen. Ein Steck-

brett ist auch relativ groß und unhandlich, sodass es sich nicht ein-

fach transportieren lässt. Auch ein Gehäuse ist aus diesen Gründen

meistens nicht sehr praktisch. Deswegen werden Steckbretter vor

allem für Entwicklung und Prototypentwurf eingesetzt. Wenn eine

Schaltung auf dem Steckbrett funktioniert und später weiterver-

wendet werden soll, lohnt es sich, sie auf eine Lochrasterplatine zu

transferieren oder gleich eine Platine zu entwerfen (siehe auch in

den Abschnitten über Löten auf Lochrasterplatinen und Platinen in

diesem Kapitel).

Auf den meisten Darstellungen in diesem Buch wird ein Steckbrett

verwendet. Dazu werden einzelne Drähte von den Anschlusspins

des Arduino-Boards damit verbunden. Es gibt auch spezielle Ardu-

ino-Boards und Arduino-Shields, die ihr eigenes kleines Steckbrett

mitbringen, sodass sich direkt auf dem Board selbst kleine Schal-

tungen entwerfen lassen.

Kabel, Stecker und Buchsen

Zu den wichtigsten Bauteilen in elektronischen Schaltungen, die

oft nicht erwähnt werden, gehören Kabel, Stecker und Buchsen.

Kabel werden verwendet, um verschiedene Bauteile miteinander zu

verbinden. Das kann in Form von Leiterbahnen auf der Platine

geschehen, aber auch mit Drähten, die auf einer Lochrasterplatine

angelötet werden, oder mit Kabeln. Hiervon gibt es zwei unter-

schiedliche Arten. Die eine hat als Leiter einen einfachen Draht

und ist einfacher zu verwenden, weil sie sich zum Beispiel sehr

58

Kapitel 2: Physical Computing, elektrische Grundlagen und der Sprung ins kalte Wasser

leicht in Steckbretter stecken lässt und weil sie nach dem Biegen

ihre Form behält. Allerdings ist sie mechanisch nicht sehr belast-

bar, weil der einzige Draht in ihrem Kern sehr schnell brechen

kann, wenn man das Kabel bewegt.

Deshalb gibt es eine andere Sorte Kabel, die in ihrem Innern eine

Kupferlitze hat, die aus vielen kleinen einzelnen, biegsamen Dräh-

ten besteht. Diese Kabel sind deutlich robuster und werden oft

verwendet, um zum Beispiel Schalter und Taster mit einer Platine

zu verbinden oder Kabel über längere Distanzen zu verlegen. Es

gibt sie auch in mehradriger Ausführung, z.B. als Netzwerk-, Tele-

fon- und Druckerkabel. In einem mehradrigen Kabel sind mehrere

einzelne Litzenkabel zusammen verlegt, sodass sich z.B. mehrere

Datenleitungen mit einem einzigen Kabel verbinden lassen. Aller-

dings kann man Litze nicht einfach ins Steckbrett einstecken, son-

dern muss sie an eine Steckerleiste anlöten, die man dann in das

Steckbrett einbauen kann.

Eine praktische Alternative zu Steckbrettern sind Kabel mit Kroko-

dilklemmen, die sich gut dazu eignen, größere mechanische Bau-

teile miteinander zu verknüpfen, um Projekte, die viel Raum

brauchen, aufzubauen. Allerdings halten Krokodilklemmen nicht

besonders gut, sodass diese Art des Verkabelns wirklich nur kurz-

zeitig verwendet werden sollte, um dann z.B. durch robuste Stecker

ersetzt zu werden.

Zusätzlich zu Kabeln gibt es auch eine unendliche Anzahl verschie-

dener Stecker und Buchsen; viele Kabel sind auch schon mit pas-

senden Steckern versehen (alternativ kann man Stecker auch

anlöten oder mit einer sogenannten Crimpzange ancrimpen). Es

gibt sie in allen Formen und Größen, und sie werden verwendet,

um Platinen mit Strom zu versorgen und verschiedene Platinen

oder Bauteile miteinander zu verknüpfen, ohne dass jedes Mal eine

Verbindung gelötet werden muss.

Eine wichtige und beim Basteln häufig verwendete Steckerform

sind die sogenannten Pin- und Buchsenleisten, die meistens in

einem 2,54-mm-Raster verwendet werden. Pinleisten bestehen aus

einer oder zwei Reihen von Pins, die aus der Platine hervorstehen.

Sie werden verwendet, um Flachbandkabel aufzustecken oder

bestimmte Verbindungen mithilfe von Jumpern herzustellen. Auf

dem Arduino-Board gibt es eine doppelreihige Pinleiste (2x3), die

zum Programmieren des Arduino-Prozessors verwendet wird. Auf

älteren Arduino-Boards wie dem Arduino NG wird auch eine

Schaltungen, Bauteile und Schaltbilder

59

kleine Pinleiste in Verbindung mit einem Jumper benutzt, um die

Stromversorgungsquelle auszuwählen.

Das Pendant zu Pinleisten sind Buchsenleisten, wie sie auf dem

Arduino-Board verwendet werden, um die Eingangs- und Ausgangs-

pins des Prozessors mit der Außenwelt zu verbinden. Buchsenleis-

ten sind insbesondere für das Ausprobieren von Schaltungen auf

einem Steckbrett praktisch, weil sich die Drähte, die auf dem Steck-

brett verwendet werden, sehr leicht hineinstecken lassen. Allerdings

fallen diese Kabel dementsprechend auch schnell wieder aus den

Buchsen heraus, sodass hier ein bisschen Vorsicht geboten ist, wenn

der Aufbau bewegt wird.

Ein weiterer Vorteil der Buchsenleisten auf dem Arduino-Board ist,

dass es dadurch möglich ist, ein weiteres Board, das mit Pinleisten

versehen ist, aufzustecken. Dadurch sind sofort alle Pins des Ardu-

ino-Prozessors mit den Pins der Schaltung auf dem zweiten Board

verbunden, und der ganze Aufbau ist sehr solide. Es gibt eine ganze

Reihe von Erweiterungsboards für den Arduino, die »Shields«

(Schilde) genannt werden. Eine Auswahl dieser Shields wird in

Anhang A vorgestellt.

Abbildung 2-17

Kabel

Abbildung 2-18

Stecker

60

Kapitel 2: Physical Computing, elektrische Grundlagen und der Sprung ins kalte Wasser

ICs

ICs (integrated circuits, integrierte Schaltkreise), auch Chips

genannt, sind komplette Schaltungen, die in einem eigenen kleinen

Plastikgehäuse platziert werden und sich für spezielle Aufgaben in

einer Schaltung einsetzen lassen. ICs sind also ein Ersatz für Schal-

tungen, die man meistens auch separat aufbauen könnte; aber

durch die seit den 1960er Jahren immer weiter verbesserten und

verfeinerten Herstellungsmethoden ist es möglich, solche Schaltun-

gen auf dem Bruchteil eines Quadratzentimeters zu realisieren.

Integrierte Schaltkreise können sehr einfache Schaltkreise sein

(zum Beispiel eine Reihe von Transistoren zur Stromverstärkung,

die man Treiberbausteine nennt), aber auch hoch komplizierte

CPUs und Signalprozessoren. Auch der Arduino-Prozessor ist ein

solcher Baustein.

ICs gibt es in verschiedenen Bauformen; die meisten haben mittler-

weile die SMD-Bauform, weshalb sie nicht so einfach beim Auf-

bauen von Schaltungen auf der Steckplatine zu verwenden sind.

Dazu eignet sich die DIP-Bauform deutlich besser, weil diese sich

direkt auf der Steckplatine einstecken lässt. Alle ICs haben Pins, die

zur Stromversorgung angeschlossen werden sollen. Hier ist beson-

dere Vorsicht geboten, damit man die Stromversorgung nicht inver-

tiert (als GND an die positive Spannung anschließen und VCC an

die Masse), weil dadurch oft die Chips kaputtgehen. Zu jedem IC

gibt es vom Hersteller ein Datenblatt, das die Pinbelegung zeigt

(hier heißt GND auch oft Vss) und die Funktionsweise des Chips

erklärt. Weiterhin gibt es in jedem Datenblatt eine Tabelle, die

Grenzwerte und Sollwerte für verschiedene Größen wie maximalen

Strom, maximale Spannung und niedrigste und höchste Geschwin-

digkeit angibt. Oft ist es praktisch, im Arduino-Wiki unter http://

 arduino.cc/ zu suchen, ob es schon Beispielschaltungen zu einem

bestimmten Chip gibt (und vielleicht sogar schon eine Library, die

die Kommunikation mit dem Chip implementiert).

Wenn eine Schaltung auf einer Platine gebaut wird (oder auch auf

einer Lochrasterplatine), ist es bei DIP-Gehäusen sinnvoll, die

Chips auf einem Sockel einzubauen. Der Sockel wird auf die Platine

gelötet und der Chip dann nur in den Sockel eingesteckt. Mit einem

Schraubenzieher oder einer dünnen Zange (es gibt auch spezielle

Chipzangen) lässt er sich dann auch vorsichtig wieder herausneh-

men. Dadurch lassen sich defekte Chips auswechseln, ohne gleich

Schaltungen, Bauteile und Schaltbilder

61

eine neue Platine bauen zu müssen oder eine extensive Entlötaktion

durchzuführen.

In diesem Buch kommen nur wenige ICs zum Einsatz, und wenn

welche benutzt werden (z.B. der Ethernet-Controller in Kapitel 6), sind sie auf einem externen Shield angebracht. Es gibt allerdings

eine Reihe wichtiger Chips, die häufig praktisch eingesetzt werden.

Erwähnenswert sind hier sogenannte Shift-Register. Diese Bauteile

können über eine synchrone serielle Schnittstelle (also zwei Pins,

von denen der eine als Taktgeber benutzt wird und der andere zur

Datenübertragung) Daten empfangen und senden. Es gibt zwei

Arten von Shift-Registern: Solche, die als Ausgabe benutzt werden,

indem sie über die serielle Schnittstelle Daten empfangen und beim

Aktivieren eines sogenannten Latch-Signals an ihre Ausgänge legen,

und solche, die als Eingabe benutzt werden. Sie übertragen die

Daten, die an ihren Eingängen liegen, seriell an den Empfänger.

Dadurch kann man mehrere digitale Ausgänge oder Eingänge über

eine serielle Schnittstelle einlesen und spart sich so eine große

Anzahl an belegten Pins. Ein weiterer Vorteil von Shift-Registern

ist, dass man sie verketten kann. Es ist also möglich, über eine seri-

elle Schnittstelle beliebig viele von ihnen auszulesen oder zu schrei-

ben. Weit verbreitete Shift-Register sind z.B. das Ausgabe-Shift-

Register 74HC595 und die Eingabe-Shift-Register 74HC165 oder

CD4021. Ihre Verwendung ist im Arduino-Wiki unter http://www.

 arduino.cc/en/Tutorial/ShiftIn und http://www.arduino.cc/en/Tuto-

 rial/ShiftOut erklärt, und es gibt in der Arduino-Programmierspra-

che passende Funktionen, um diese Chips anzusprechen.

Ein sehr wichtiger Chip auf dem Arduino-Board ist der Mikrocont-

roller der AVR-Familie von Atmel. Dieser Chip enthält einen kom-

pletten kleinen Mikroprozessor, auf dem alle Arduino-Programme

ausgeführt werden. Das Arduino Duemilanove gibt es mit zwei ver-

schiedenen Versionen des AVR-Chips: eine Version mit Atmega168

(so heißt die genaue Bezeichnung des Chips) und eine mit

Atmega328. Die neue Version mit Atmega328 verfügt über ein biss-

chen mehr Speicher. Bei einem Arduino-Board mit Atmega168

kann man einfach einen neuen Atmega328-Chip mit Arduino-

Bootloader (siehe Kapitel 1) bestellen und den Atmega168 austauschen. Dazu muss nur der alte Chip zunächst vorsichtig mit einem

Schraubenzieher ausgehebelt werden, damit man den Atmega328

einstecken kann. Dabei muss man auf die Richtung achten: Auf der

Platine ist eine Darstellung des Chips mit einer kleinen Kerbe einge-

zeichnet, die auch auf dem eigentlichen Chip vorhanden ist.

62

Kapitel 2: Physical Computing, elektrische Grundlagen und der Sprung ins kalte Wasser

Abbildung 2-19

ICs

Zangen und Pinzetten

Es gibt eine Reihe sehr praktischer Werkzeuge für die Arbeit mit

Drähten, Kabeln und elektronischen Komponenten. Diese Werk-

zeuge kommen immer wieder zum Einsatz, weswegen es auch nicht

verkehrt ist, auf Qualität zu setzen und ein bisschen mehr auszuge-

ben. Mit guten Werkzeugen macht das Basteln deutlich mehr Spaß,

und das Ergebnis ist meistens auch weniger fehleranfällig.

Eine Zange, die oft zum Durchtrennen von Kabeln, Drähten und

Bauteilbeinchen benutzt wird, ist der Seitenschneider. Es gibt spezi-

elle kleine Seitenschneider zum Arbeiten mit elektronischen Schal-

tungen. Sie haben isolierte Griffe und Schneidekanten, die auf der

einen Seite gerade sind. Dadurch lassen sich Komponentenbeine

sehr nah an der Platine abschneiden und Drähte präzise trennen.

Beim Durchtrennen von Drähten und Bauteilbeinchen sollte immer

ein Finger die abzuschneidende Seite festhalten, damit diese nicht

durch den Raum fliegt und unter Umständen Menschen verletzt. Es

gibt auch spezielle Seitenschneider, die über eine kleine Metallkon-

struktion gleich die abzuschneidenden Teile fixieren. Weiterhin ist

es mit einem kleinen Trick auch möglich, mit dem Seitenschneider

Kabel schnell abzuisolieren. Dazu drückt man den Seitenschneider

nicht komplett zu, sodass nur die Hülle geschnitten wird, und zieht

dann die Ummantelung vom Kabel ab. Das erfordert ein bisschen

Übung, damit nicht die Litze oder der innere Draht beschädigt

wird, spart aber später immer einen Werkzeugwechsel.

Für genau diesen Vorgang gibt es die Abisolierzange, eine spezielle

Zange, mit der das Abisolieren präzise und wiederholbar durchge-

führt werden kann (das ist insbesondere dann praktisch, wenn sehr

viele Kabel abisoliert werden müssen). Für Bastelzwecke lohnt sich

eine kleine solche Zange für die dünnen Drähte, die auf einem

Steckbrett eingesetzt werden. Alternativ kann man auch schon fer-

tig abisolierte Drähte für Steckbretter benutzen (die man in ver-

schiedenen Farben und Größen kaufen kann).

Schaltungen, Bauteile und Schaltbilder

63

Weitere wichtige Werkzeuge sind Spitzzange und Pinzette, mit

denen man kleinere Komponenten platzieren kann. Oft ist das

Steckbrett ein bisschen widerspenstig und es ist notwendig, Drähte

und Komponenten mit einer dünnen Zange einzustecken. Weiter-

hin kann man mit einer Pinzette auch eingesteckte Kabel einfacher

herausziehen, ohne andere Kabel in Mitleidenschaft zu ziehen (was

bei größere Steckbrettprojekten meist ein Problem ist).

Abbildung 2-20

Zangen

Löten

Die meisten der Schaltungen in diesem Buch lassen sich ohne

Löten auf einem Steckbrett anbringen. Allerdings ist diese Art, Pro-

jekte aufzubauen, weder sonderlich stabil noch elegant oder ästhe-

tisch. Immer besteht die Gefahr, dass einzelne Kabel aus den

Löchern herausfallen, wenn z.B. am Arduino gezogen wird. Auch

das Steckbrett selbst hat oft nicht die gewünschten Dimensionen,

sodass es nicht möglich ist, die komplette Schaltung in ein

Gehäuse einzubauen oder im Rahmen einer Kunstinstallation an

einem Gegenstand zu befestigen. In all diesen Fällen ist es sinnvol-

ler, die Schaltung, sobald sie fertig und getestet ist, in eine endgül-

tige Form zu bringen, indem man sie auf eine Platine lötet. Das ist

64

Kapitel 2: Physical Computing, elektrische Grundlagen und der Sprung ins kalte Wasser

nur halb so wild, wie es klingt, und nach ein paar Versuchen stellt

sich schnell heraus, dass Löten sogar Spaß macht. Vor allem wer-

den dadurch die einzelne Projekte, die in diesem Buch vorgestellt

oder später eigens entwickelt werden, zu richtigen benutzbaren

und robusten Gegenständen, die immer wieder verwendet werden

können.

Im Internet gibt es eine große Gemeinde von Elektronikerinnen

und Elektronikern, die Schaltungen und Projekte entwickeln und in

Form von Schaltplänen und Bausätzen veröffentlichen. Mit Löt-

kenntnissen ist es dann sehr einfach, einen dieser Bausätze zu

bestellen, zu bestücken und zum Laufen zu bringen. Diese Bausätze

reichen von einfachen Blinkschaltungen (wie der Brainmachine von

Mitch Altman, unter http://makezine.com/10/brainwave/ zu finden

und auch in Kapitel 4 beschrieben, und dem Open Heart Kit von

Jimmie Rodgers, unter http://www.jimmieprodgers.com/openheart

zu finden) über Gadgets wie das T.V.-be-Gone (auch von Mitch

Altman, unter http://www.tvbgone.com/) bis hin zu komplizierten

Projekten wie der x0xbox (einem Nachbau der legendären TR-303

Groovebox von Ladyada), irrsinnig vielen verschiedenen Synthesi-

zermodulen (siehe auch Kapitel 10), Robotern, selbstfahrenden Autos und Ähnlichem. Das Löten eröffnet also eine riesige Welt an

Möglichkeiten.

Lochrasterplatinen

Die einfachste Art, eine Schaltung von einem Steckbrett auf eine

Platine zu bringen, ist die Benutzung einer Lochrasterplatine. Diese

gibt es in verschiedenen Formen. Sie bestehen aus einer Grund-

platte (meistens aus Epoxid, manchmal auch aus Karton), auf der

in regelmäßigen Abständen Löcher eingestanzt sind. Diese Löcher

sind von einer kleinen Kupferschicht umgeben und auf manchen

Platinen auch schon rudimentär verknüpft (in sogenannten Rails,

Verknüpfungen, die sich über das ganze Board ziehen). Dort lassen

sich Komponenten hindurchstecken, ähnlich wie bei einem Steck-

brett. Die Beinchen dieser Komponenten werden dann an die Kup-

ferschicht gelötet, siehe Abschnitt »Löten«.

Wie man sich leicht vorstellen kann, tauchen hier deutlich mehr

Probleme auf, als wenn eine Schaltung auf einem Steckbrett zusam-

mensetzt wird. Ist ein Bauteil schon angelötet, ist es nur schwer

wieder zu lösen. Weiterhin dürfen sich Drähte nicht kreuzen, weil

Löten

65

Abbildung 2-21

Gelötete Lochrasterplatine

es bei einer Berührung zu einem Kurzschluss zwischen zwei Leitun-

gen kommt. Benutzt man allerdings isolierte Kabel, die sich kreuz

und quer überschneiden, wird die Schaltung sehr schnell unüber-

sichtlich. Es ist auch möglich, dass man plötzlich feststellt, dass

eine bestimmte Leitung gar nicht ziehbar ist, weil es keinen Platz

mehr auf der Platine gibt.

Deswegen ist es sehr wichtig, sich im Voraus Gedanken zu machen,

wie die Bauteile angeordnet und miteinander verknüpft werden sol-

len. Es ist z.B. möglich, die Schaltung auf kariertem Papier zu

zeichnen und dort die Bauteile anzuordnen. Als Grundregel gilt,

dass alle Leitungen auf der Unterseite der Platine in vertikaler Rich-

tung und vereinzelte Verknüpfungen dann auf der Oberseite hori-

zontal mit einem weiteren Draht gezogen werden. Dadurch bleibt

die Schaltung übersichtlich, und es ist einfach, sie zu erweitern.

Dieses Vorgehen ähnelt dem eigentlichen Entwerfen von Platinen

und ist eine Kunst für sich. Übung macht den Meister, und nach

einigen Versuchen steht keiner Schaltung mehr die Platine im Weg!

Es ist auch möglich, ein richtiges Entwurfsprogramm für Platinen

zu verwenden (z.B. EAGLE, KiCad oder gEDA, siehe oben im

Abschnitt »Schaltbilder«).

Lötkolben und Lötzinn

Wenn der Entwurf für die Schaltung steht, ist es Zeit, ans Löten zu

gehen. Hierbei werden elektronische Bauteile mit geschmolzenem

Metall verbunden und auf eine Platine montiert (im Gegensatz zu

einem Steckbrett, wo die Bauteile nur eingesteckt und mit Drähten

verknüpft werden). Die Metallelemente der Platine (die Leitungen)

66

Kapitel 2: Physical Computing, elektrische Grundlagen und der Sprung ins kalte Wasser

und der Bauteile (die Drahtbeinchen) werden mit der Spitze des

Lötkolbens erhitzt, und ein drittes Metall (das man Lötzinn oder

Lot nennt) wird zum Schmelzen gebracht. Das geschmolzene

Lötzinn haftet an beiden Metalloberflächen (auf Platinen wird

meistens Kupfer verwendet) und erhärtet sich beim Kühlen, sodass

es Bauteil und Platine zusammenhält.

In diesem Abschnitt werden die verschiedenen Werkzeuge und Ver-

brauchsmaterialien vorgestellt, die beim Löten verwendet werden.

Das wichtigste Werkzeug ist natürlich der Lötkolben. Er besteht

aus einer kleinen Lötstation (es gibt auch Lötkolben, die direkt an

die Stromversorgung angeschlossen werden), mit der der Lötkol-

ben an- und ausgeschaltet wird, dem Kolben an sich, der aus einem

Griff und einem Heizelement besteht und über ein Kabel an die

Lötstation angeschlossen ist, und einer Lötspitze aus Metall, mit

der die eigentliche Lötarbeit durchgeführt wird.

Es gibt sehr viele Lötkolben, die man käuflich erwerben kann, je

nachdem, welche Eigenschaften gewünscht sind. Auf zwei Dinge

sollte geachtet werden: Zunächst die Leistung, die der Lötkolben

erbringen kann. Diese wird in Watt gemessen und beeinflusst, wie

schnell ein Kolben seine Lötspitze erhitzen kann. Die andere wich-

tige Eigenschaft ist, dass der Lötkolben über eine Temperaturrege-

lung verfügen sollte. Dadurch lässt sich die Temperatur der Spitze

einstellen und je nach benutzten Bauteilen und zu lötenden Flächen

(für größere Bauteile und Flächen wird mehr Leistung benötigt)

verändern. Besonders interessant sind Lötkolben mit automati-

scher Temperaturregelung, die die Leistung immer so anpassen,

dass die Lötspitze die gewünschte Temperatur hat. Für elektroni-

sche Schaltungen braucht man ein Lötkolben, der ungefähr 25 bis

45 Watt Leistung hat. Bei größerer Leistung besteht die Gefahr,

dass Bauteile und Platine beschädigt werden, und bei kleinerer

Leistung heizt der Kolben das Lötzinn nicht genug, was die Gefahr

schlechter Lötverbindungen erhöht.

Die Spitze des Lötkolbens ist praktisch gesehen der wichtigste Teil

des Lötkolbens. Es ist wichtig, eine gute Lötspitze auszusuchen

(aus Eisen, nicht aus Kupfer). Je dicker die Spitze ist, desto mehr

Hitze kann an die zu lötenden Bauteile übertragen werden, aber

umso vorsichtiger muss dann vorgegangen werden, um nicht

angrenzende Bauteile und Lötpunkte mit zu erhitzen. Mit einer

kleineren Spitze ist es zwar einfacher, präzise zu arbeiten, durch die

geringere Hitzeübertragung ist es allerdings schwieriger, gute Löt-

punkte zu erzeugen. Besonders wichtig ist, dass die Spitze nicht

Löten

67

oxidiert. Sonst überträgt sie keine Hitze mehr, und es wird sehr

schwer, sauber zu löten. Deswegen muss sie regelmäßig gesäubert

und anschließend mit Lötzinn geschützt werden (es wird ein biss-

chen Lötzinn auf der Spitze geschmolzen und dort gelassen). Säu-

bern kann man die Spitze mit einem kleinen nassen Schwamm

(allerdings nicht, wenn bleifreies Lötzinn verwendet wird) oder z.B.

mit Stahlwolle. Es kann vorkommen, dass nach einiger Zeit die Löt-

spitze, besonders wenn sie schlecht gepflegt wird, komplett oxi-

diert und nicht mehr zum Löten verwendet werden kann. Bei den

meisten Lötkolben lässt sich die Lötspitze austauschen; vor dem

Austauschen sollte die Spitze natürlich abgekühlt sein.

Abbildung 2-22

Lötkolben

Das zweite wichtige Element beim Löten ist das Lötzinn. Auch hier

gibt es eine große Menge verschiedener Arten, insbesondere seit in

Europa die ROHS-Regelung in Kraft getreten ist, die für die indus-

trielle Fertigung bleifreies Lötzinn vorschreibt. Im Hobbybereich ist

es allerdings immer noch möglich, mit bleihaltigem Lötzinn zu

arbeiten, was auch deutlich einfacher ist, denn bleifreies Lötzinn

hat einen deutlich höheren Schmelzpunkt und benötigt starke

Flussmittel. Diese sind schädlich und man kommt gerade beim

Handlöten leicht mit ihnen in Kontakt. Als Lötzinn für die Projekte

in diesem Buch und für weitere Hobbyelektronikprojekte sei nor-

males bleihaltiges 60/40-Lötzinn mit Flussmittelkern empfohlen.

Das bedeutet, dass 60% aus Zinn bestehen und 40% aus Blei.

Wegen der enthaltenen Flussmittel (die dazu verwendet werden,

die Metalle vor dem Verbinden zu säubern, um das Anhaften des

Lötzinns zu erleichtern) lässt sich damit sehr gut arbeiten. Verfüg-

68

Kapitel 2: Physical Computing, elektrische Grundlagen und der Sprung ins kalte Wasser

bar ist es in kleinen Drahtspulen mit verschiedenen Durchmessern.

Es ist empfehlenswert, eher dünnes Lötzinn zu nehmen, weil sich

dadurch die aufgetragene Menge einfacher kontrollieren lässt.

Praktisch sind zum Beispiel Spulen mit 0,5 mm Durchmesser.

Abbildung 2-23

Dritte Hand

Hilfreich beim Zusammenlöten von komplizierteren Schaltungen

ist eine kleine Tischzange, die man dritte Hand nennt. In ihren

Klemmen kann man zum Beispiel eine Platine einspannen, sodass

man Bauteile leichter einstecken, festhalten und anlöten kann. Es

ist auch möglich, damit einzelne mechanischen Komponenten fest-

zuhalten. Kleiner Tipp am Rande: Man kann auch Lötzinn so ver-

biegen, dass es von selbst auf der Tischoberfläche hält, sodass man

einfacher Komponenten anlöten oder Kabel verzinnen kann.

Löten

Der eigentliche Lötvorgang ist sehr einfach. Als Erstes muss ein

Bauteil durch die Löcher in der Platine (sei es auf einer Lochraster-

platine oder auf einer richtigen) gesteckt und dort festgehalten wer-

den. Das kann man entweder mit einer dritten Hand machen oder

einfach, indem man die Beinchen des Bauteils leicht verbiegt,

sodass es von selbst hängenbleibt. Im nächsten Schritt werden mit

dem Lötkolben in der einen Hand und mit dem Lötzinn in der

anderen das Beinchen und die Leitung auf der Platine erhitzt. Nach

ein oder zwei Sekunden ist die Stelle heiß genug, dass man das

Lötzinn anbringen und an die Lötspitze halten kann. Das Lötzinn

Löten

69

schmilzt sofort (wenn die Temperatur des Lötkolbens richtig einge-

stellt ist – ca. 300 Grad Celsius für bleihaltiges Lötzinn und 350 bis

400 Grad für bleifreies) und verteilt sich auf Platine und Beinchen.

Anschließend werden Lötkolben und Lötzinn entfernt, der Löt-

punkt kühlt ab, und das Bauteil ist mit der Platine verbunden. Der

erzeugte Lötpunkt sollte glatt und glänzend sein (bei bestimmten

bleifreien Lötzinnen sind die Lötpunkte allerdings immer grau und

matt) und das komplette Loch auf der Platine überdecken. Ist der

Lötpunkt matt und merkwürdig geformt, bildet er mit hoher Wahr-

scheinlichkeit eine kalte Lötstelle, die schlecht oder gar nicht leitet

und wahrscheinlich auch leicht durch mechanische Belastung

bricht.

Eine wichtige Regel für den Lötvorgang ist, dass weniger Lötzinn

besser ist. Es sollte immer nur so viel Lötzinn angebracht werden,

wie ausreicht, um eine stabile Verbindung herzustellen. Bei zu viel

Lötzinn besteht die Gefahr, dass sich ein kleines Lötkügelchen bil-

det, das unter Umständen nicht richtig leitet. Ein weiterer wichtiger

Punkt ist, dass der Vorgang schnell ausgeführt werden sollte. Die

verschiedenen Schritte sollten zusammen nicht mehr als fünf

Sekunden dauern. Je länger an einer Lötstelle geheizt wird, desto

mehr steigt die Wahrscheinlichkeit, dass sowohl Bauteil als auch

Platine beschädigt werden (gerade bei Lochrasterplatinen kommt

es vor, dass sich die Kupferschicht vom Platinenmaterial löst). Je

länger das Lötzinn erhitzt wird, desto weniger Flussmittel enthält es

(weil dieses sehr schnell verdampft). Wenn kein Flussmittel mehr

vorhanden ist, fließt das Lötzinn nicht mehr richtig und bleibt an

Lötkolben, Bauteil und Platine haften, sodass er sich nicht mehr

sauber verarbeiten lässt: Es kommt zu einer kalten Lötstelle. In die-

sen Fällen lässt sich das Problem durch Hinzufügen von Flussmittel

oder durch Entfernen des Lötzinns lösen (siehe nächster Abschnitt

»Entlöten«).

Nachdem ein oder mehrere Lötpunkte bearbeitet worden sind,

muss die Spitze des Lötkolbens gereinigt werden. Dazu kommt der

zuvor erwähnte Schwamm oder Stahlwolle zum Einsatz. Die Löt-

spitze sollte stets leicht von Zinn bedeckt und glänzend sein, um

Oxidation zu vermeiden.

Um Kabel und Drähte anzulöten, müssen die abisolierten Enden der

Kabel verzinnt werden. Bei Litze ist es praktisch, die einzelnen Kup-

ferdrähte zusammenzudrehen, sodass sie nicht abstehen. Anschlie-

ßend wird das Ende des Kabels leicht erhitzt und mit Lötzinn

bedeckt. Dadurch lässt sich ein Kabel leicht an einem Bauteil befes-

70

Kapitel 2: Physical Computing, elektrische Grundlagen und der Sprung ins kalte Wasser

tigen, weil das zuvor verzinnte Ende beim Aufheizen gleich angelö-

tet wird.

Um Leiterbahnen auf einer Lochrasterplatine herzustellen, wird oft

verzinnter Draht verwendet (mit Kupferlack bedeckter Draht funk-

tioniert nicht so gut, weil diese Lackisolierung erst weggebrannt

werden muss). Es ist wichtig, bei Drähten, die geknickt werden,

alle möglichen Kanten auf der Lochrasterplatine zu befestigen,

damit sich die Drähte nicht lösen oder verbiegen und so Kurz-

schlüsse erzeugen.

Entlöten

Trotz aller Vorsicht und Übung kommt es immer wieder vor, dass

ein Bauteil entweder falsch angelötet wird oder beim Löten ein Feh-

ler passiert, wenn zum Beispiel zwei benachbarte Lötpunkte aus

Versehen verbunden werden. In diesen Fällen muss die fehlerhafte

Stelle entlötet werden. Dazu gibt es verschiedene Möglichkeiten:

Bei einem Bauteil müssen alle Beinchen auf einmal entlötet werden,

damit es auch ausgesteckt werden kann. Im einfachsten Fall (wenn

z.B. die Beinchen nahe beieinander liegen) können alle Beinchen

auf einmal erhitzt werden, indem man den Lötkolben schräg hält

(dabei auf mögliche Verbrennungsgefahr achten!) oder noch mehr

Lötzinn auf die zu entlötenden Stellen gibt, damit alle Stellen ver-

bunden sind. Während eine Stelle erhitzt wird, kann man dann das

Bauteil entfernen (hier muss auch darauf geachtet werden, dass es

nicht zu Verbrennungen kommt, weil das Bauteil und besonders

seine Beine heiß sind). Geschwindigkeit ist dabei auch von Vorteil,

weil dadurch die Bauteile nicht beschädigt werden. Beim Heraus-

ziehen muss darauf geachtet werden, dass die Lötstellen auch wirk-

lich geschmolzen sind, da man sonst leicht die Platine beschädigen

kann, wenn sich Leiterbahnen bzw. Kupferringe von ihr lösen.

Systematischer kann man vorgehen, indem man Entlötlitze verwen-

det. Entlötlitze ist eine eng geflochtene Kupferlitze, die Lötzinn

aufsaugen und so von der Platine abtragen kann. Die zu entlötende

Stelle wird durch die Litze hindurch erhitzt, und das geschmolzene

Lötzinn wird von der Litze aufgesaugt. Wenn anschließend die

Lötstelle frei von Zinn ist, können die Bauteile entfernt werden.

Hier muss darauf geachtet werden, dass die Stellen wirklich sauber

und frei sind, weil sonst die Platine beim Herausziehen beschädigt

werden kann. Da die Litze aus Kupfer ist, wird auch sie sehr

schnell heiß.

Löten

71

Alternativ kann man auch eine sogenannte Entlötpumpe verwen-

den, um Lötzinn von der Platine abzutragen. Die Entlötpumpe

muss zuerst geladen werden, indem die interne Feder gespannt

wird. Anschließend wird die zu entlötende Stelle mit dem Lötkol-

ben erhitzt, die Entlötpumpe sehr nah darübergehalten und das

geschmolzene Lötzinn aufgesaugt, indem der Pumpentaster, der die

Feder auslöst, gedrückt wird. Dadurch wird das Zinn in die Pumpe

aufgenommen und von der Platine abgetragen. Beim nächsten

Aufladen der Pumpe wird das aufgesaugte Lötzinn nach außen

gepresst und muss entsorgt werden. Bei der Verwendung ist Vor-

sicht geboten, weil man mit ihr sehr leicht Platinen beschädigen

kann, wenn die Lötstelle nicht richtig erhitzt wurde.

Schließlich kann man z.B. für Chips oder mechanische Bauteile

auch mit einer Heißluftpistole, die auf 300 bis 350 Grad kalibriert

wird, großflächig entlöten. Die entsprechende Stelle wird mit der

Heißluft erhitzt, bis das Zinn schmilzt. Anschließend kann man

durch Umdrehen der Platine und leichtes Rütteln die Chips herun-

terfallen lassen. Bei diesem Vorgang können Chips schnell beschä-

digt werden, und der zu entlötende Bereich ist auch nicht sehr

präzise einzustellen. Auch wird die Platine bei dem Vorgang extrem

heiß, weshalb große Vorsicht geboten ist.

Sicherheit

Auch wenn Löten keine sonderlich gefährliche Aktivität ist, sollten

ein paar Sicherheitsregeln beachtet werden. Die wichtigste ist

natürlich, dass man den Lötkolben nicht an der Spitze berühren

sollte. Das klingt zwar selbstverständlich, ist aber in der Realität

doch nicht so einfach. Wie man auch schnell merkt, sind Metalle

besonders gute Hitzeleiter, sodass Bauteilbeinchen oder Drähte,

wenn sie mit dem Lötkolben erhitzt werden, schnell sehr heiß wer-

den und auch nicht sonderlich schnell abkühlen. Deswegen ist es

besser, beim Löten keinen direkten Kontakt zu erhitzten Metalltei-

len zu haben. Das gilt auch für Lötzinntropfen, die beim Löten

abfallen. Diese können auch nach Minuten noch extrem heiß und

geschmolzen sein. Beim Löten kommt es auch schnell zu kleinen

Spritzern von Flussmittel und Lötzinn, weswegen es wichtig ist,

eine Brille zu tragen, damit diese Spritzer nicht in die Augen gelan-

gen. Es ist natürlich auch sinnvoll, den PC nicht in der unmittelba-

ren Nähe des Lötkolbens zu verwenden, besonders wenn es sich

dabei um einen Laptop handelt: Zu schnell kann es passieren, dass

die heiße Spitze an die Tastatur kommt und eine Taste zum

72

Kapitel 2: Physical Computing, elektrische Grundlagen und der Sprung ins kalte Wasser

Schmelzen bringt oder im schlimmsten Fall sogar ein Loch in den

Monitor brennt.

Beim Löten entstehen auch Dämpfe, die auf Dauer nicht gesund

sind (besonders die Flussmitteldämpfe können allergische Reaktio-

nen auslösen). Deswegen ist es wichtig, auf eine gute Lüftung am

Lötplatz zu achten. Für viele Projekte reicht es schon, das Fenster

aufzumachen. Es ist aber auch möglich, eine kleine Rauchabzugs-

einrichtung, die den Rauch mit einem Ventilator abzieht, in der

Nähe des Lötplatzes aufzubauen. Dadurch werden die Dämpfe

abgezogen und gelangen nicht in Ihre Lunge. Man kann sich auch

eine solche Abzugseinrichtung selber mit einem kleinen Ventilator

bauen. Wenn bleifreies Lötzinn verwendet wird, ist eine solche

Abzugseinrichtung quasi unabdingbar, weil die verwendeten Fluss-

mittel viel aggressiver sind. Wegen dieser Chemikalien und des

Bleis im Lötzinn ist es wichtig, nach dem Löten gründlich die

Hände zu waschen.

Fehlersuche in elektronischen Schaltungen

Wie man beim Basteln schnell feststellen kann, wird ein Großteil

der Zeit beim Arbeiten an elektronischen Schaltungen und Projek-

ten damit verbracht, Fehler zu identifizieren, zu isolieren und korri-

gieren. Das klingt natürlich nicht sehr erholsam und erfüllend, aber

das Beheben eines Fehlers oder eines Problems ist eine sehr befrie-

digende Tätigkeit. Auch hier muss man allerdings mit System vor-

gehen, weil sonst schnell noch mehr Fehler eingebaut werden, bis

am Ende vom schönen ursprünglichen Projekt nur noch ein großes

Chaos übrig bleibt.

Häufige Fehlerquellen in Arduino-Projekten sind natürlich fehler-

hafte Schaltungen (weil z.B. ein bestimmtes Bauteil falsch ange-

schlossen wurde oder falsch angesprochen wird). Auch mechanische

und elektrische Probleme (z.B. Wackelkontakte oder fehlerhafte

Bauteile) können zu interessanten Ergebnisse führen. Da in Ardu-

ino-Projekten auch Software eine große Rolle spielt, können viele

Probleme von einem Fehler in der Programmierung stammen. Elek-

tronische Schaltungen und Mikrocontroller-Programme (also Pro-

gramme, die auf sehr kleinen Prozessoren laufen, die keinen

Bildschirm oder keine Tastatur haben) sind eine ganz eigene Welt.

Hier können obskure Probleme sehr wohl durch Fehler in der Soft-

ware verursacht werden, es ist aber umgekehrt auch möglich, dass

das scheinbar komplett zufällige Verhalten der Schaltung daher

Fehlersuche in elektronischen Schaltungen

73

rührt, dass ein Chip nicht mit Strom versorgt wird. Umso wichtiger

ist es also, bei der Fehlersuche systematisch und Schritt für Schritt

vorzugehen. In diesem Abschnitt werden einige Fehlerquellen vorge-

stellt sowie verschiedene Werkzeuge, mit denen sich Probleme in

elektronischen Schaltungen identifizieren lassen. Nach einiger Zeit

wird die Fehlersuche zu einer Selbstverständlichkeit, und es entwi-

ckelt sich allmählich eine Art Bauchgefühl dafür, welche Bauteile

sich falsch verhalten könnten, welche Softwarekonstrukte anfälliger

sind und welche dunklen Kräfte mal wieder Unheil stiften. Jeder

Bastler hat seine eigenen Kriegsgeschichten über den unheilbaren

Bug vom Sommer 1999 oder die gefürchtete asiatische Temperatur-

sensortransistorverstärkungsschaltung.

Der wichtigste Schritt bei der Fehlersuche wird hier gleich zuerst

verraten: tief durchatmen und eine Pause machen. Manchmal

reicht eine erholsame Nacht oder ein kleiner Spaziergang, um

plötzlich einen Fehler zu entdecken. Für die Autoren dieses Buchs

gibt es den »Point of no return«. Ab einer gewissen Uhrzeit (meis-

tens gegen 3 Uhr morgens) ist ein Punkt erreicht, an dem jeder Auf-

wand den Fehler nur noch schlimmer macht. Dann wird

beschlossen, den Arbeitsplatz ein bisschen aufzuräumen und am

nächsten Tag mit frischen Kräften weiterzumachen.

Der zweitwichtigste Schritt bei der Fehlersuche ist, die Schaltung

einer Testperson zu erklären (z.B. der Lebensgefährtin oder der

nächstbesten Person, die vorbeiläuft). Dabei ist es meistens relativ

unwichtig, wie gut sich diese Person mit dem Thema auskennt,

denn meistens wird beim Vortragen und Erklären des Problems die

Fehlerquelle sofort klar. Unter Programmierern wird dieser Vor-

gang »Rubberducking« genannt (von englisch »Rubber Duck«,

Plastikente), weil manche Programmierer sich eine Plastikente auf

den Bildschirm stellen und ihr, die nun wirklich keine Program-

mierexpertin ist, bei Fehlern im Programm die möglichen Ursachen

vortragen.

Die Fehlersuche kann man in verschiedene Bereiche aufteilen. Der

erste Bereich ist das Verstehen der Schaltung und der Software:

Hierbei sollte klar sein, wie die Schaltung funktioniert, welche

Spannungen an welcher Stelle anliegen sollten, wie diese sich ver-

ändern, wie jedes Bauteil funktioniert und wie die Software sich zu

verhalten hat. Bei Programmen sollte klar sein, welche Funktion

welche Auswirkungen hat, von wo sie wie oft aufgerufen wird, wel-

che Libraries verwendet werden, welche Variablen an welcher

Stelle geschrieben und gelesen werden und wie der generelle Pro-

74

Kapitel 2: Physical Computing, elektrische Grundlagen und der Sprung ins kalte Wasser

grammablauf gestaltet ist. Erst wenn die Schaltung richtig ver-

standen wurde, kann man beurteilen, ob Teilbereiche sich nicht so

verhalten, wie sie sollten, ob ein Bauteil seine Aufgabe nicht erfüllt,

oder ob es bei der Programmausführung zu Problemen kommt.

Deswegen ist es natürlich sinnvoll, Schritt für Schritt vorzugehen

und erst mit sehr einfachen Schaltungen und Projekten anzufangen,

bis man mit ihnen gut vertraut ist. Anschließend kann man darauf

aufbauend immer kompliziertere Projekte bauen.

Der zweite Bereich ist das Vereinfachen und Aufteilen des Projekts

in kleine Bereiche, die sich getrennt testen lassen. Besteht ein Pro-

jekt aus einem Temperatursensor, einer LED, einer Tastatur und

einer Servosteuerungsschaltung, ist es sinnvoll, jedes dieser Bauteile

und Schaltungen getrennt zu überprüfen. So ist gewährleistet, dass

keine Interaktion zwischen verschiedenen Bauteilen und Pro-

grammteilen Ursache des Problems ist. Durch diese Aufteilung

wird auch die Komplexität der Schaltung und der Software drama-

tisch reduziert. Ist etwa die LED falsch herum angeschlossen, lässt

sich das in einem separaten Test, bei dem man nur die LED an- und

ausschaltet, deutlich einfacher überprüfen, als wenn die LED theo-

retisch nur angeht, wenn die Temperatur über 50 Grad liegt. Bei

einer elektronischen Schaltung gibt es verschiedene Wege, die mög-

lichen Fehlerquellen in kleine Bereiche zu isolieren.

Der einfachste Schritt ist, die Software so zu verändern, dass nur

eine bestimmte Komponente angesprochen wird. Diese Testroutine

lässt sich am besten als neuer Sketch in der Arduino-Umgebung

schreiben. So kann für jede Teilschaltung (z.B. die LED, den

Temperatursensor, die Tastatur und die Servosteuerung in der obi-

gen Schaltung) getestet werden, ob sie funktioniert. Diese Test-

Sketches sollten so geschrieben werden, dass sie keine komplexe

Logik beinhalten (wie bei komplizierten Unterscheidungsfällen

oder einer Benutzerschnittstelle), sondern sie sollten der Reihe

nach verschiedene Funktionalitäten der untersuchten Schaltung

testen. Funktioniert die untersuchte Schaltung, kann man Schritt

für Schritt die weiteren Komponenten wieder mit in den Pro-

grammquellcode einbeziehen, bis die Schaltung nicht mehr funkti-

oniert. Ab dem Moment weiß man, wo das Problem zu suchen ist.

Wenn die mögliche Problemquelle identifiziert wurde, muss wieder

der erste Schritt »Verstehen« angewendet werden, um nachzuvoll-

ziehen, was fehlerhaft ist. Oft lohnt es sich auch, ein kleines Log-

buch zu führen, in das notiert wird, welche Fehlerquellen für

welche Probleme verantwortlich sind und wie sie zu beheben sind.

Fehlersuche in elektronischen Schaltungen

75

Oft passieren nämlich immer wieder dieselben Probleme, ohne dass

man sich im Eifer des Bastelns dran erinnern kann, was letztes Mal

verbessert wurde.

Um Komponenten in Software zu testen, kann man die Debugging-

methode »printf« anwenden. Dazu wird entweder die serielle

Schnittstelle oder eine andere Ausgabemöglichkeit wie ein Textdis-

play oder eine Reihe LEDs verwendet, um an bestimmten Stellen

im Programm Informationen auszugeben. So kann z.B. bei jedem

Durchlauf der Hauptschleife im Programm eine LED ein- und aus-

geschaltet werden. Leuchtet die LED konstant, lässt sich daraus

ableiten, dass das Programm irgendwo nach dem Anschalten hän-

gen geblieben ist. Durch Verschieben der Anschaltanweisung kann

man sich so Schritt für Schritt an die mögliche Fehlerquelle heran-

tasten. Es ist Vorsicht geboten bei komplizierten Ausgabemetho-

den, z.B. der seriellen Schnittstelle oder einem grafischen Display,

weil diese dann auch ein Teil des Problems werden können, wenn

sie z.B. zu lange bei der Ausführung brauchen oder andere Kompo-

nenten elektrisch beeinflussen.

Wenn die getesteten Komponenten immer noch nicht funktionie-

ren, ist es manchmal notwendig, die aufgebaute Schaltung auseinan-

derzunehmen, um sicherzustellen, dass nicht andere Komponenten

durch eine nicht erkannte Interaktion die Schaltung stören. Hier ist

es sinnvoll, vorsichtig, langsam und Schritt für Schritt vorzugehen.

Nach jeder Änderung der Schaltung sollte ein Testprogramm ausge-

führt werden, um nachzuprüfen, ob der Fehler verschwunden ist. Ist

das der Fall, dann war die letzte Veränderung wahrscheinlich die

Quelle des Fehlers. Deswegen ist es wichtig, immer nur eine Verän-

derung auf einmal zu machen, damit man anschließend feststellen

kann, was die Ursache war. Werden gleichzeitig fünf Funktionen

und drei Bauteile ausgetauscht, kann nicht mehr nachvollzogen

werden, was die Ursache des Problems war. Bei Software ist es oft

sinnvoll, Zwischenkopien des Programms bei Veränderungen zu

machen (und nicht große Blöcke auszukommentieren, weil das zu

einem schwer lesbaren und chaotischen Quelltext führt). Es gibt

besondere Programme, die genau diese Aufgabe übernehmen:

Source-Versioning-Systeme, die insbesondere für große Projekte

sinnvoll sind, im Rahmen von Arduino-Projekten oft jedoch ein bis-

schen zu umständlich sein können.

So kann man systematisch an die möglichen Fehlerquellen kom-

men. Allerdings bestätigt die Ausnahme die Regel, und manchmal

ist die Fehlerursache komplett woanders zu suchen. Solche Fälle

76

Kapitel 2: Physical Computing, elektrische Grundlagen und der Sprung ins kalte Wasser

lassen sich nie voraussehen, und sie machen lustigerweise auch

einen großen Teil des Spaßes aus. Wenn man nach acht Stunden

endlich die Fehlerquelle identifiziert hat, die über fünf Umwege

und drei Winkel an einer komplett anderen Stelle einen Fehler aus-

gelöst hat, fühlt man sich so erfolgreich wie Superman.

Häufige Fehlerquellen

In diesem Abschnitt werden einige Arduino-spezifische Fehlerquel-

len und Testvorgänge beschrieben. Als Erstes sollte immer sicher-

gestellt werden, dass das Arduino-Board mit Strom versorgt ist. Das

Board wird über USB an den Rechner angeschlossen. Die Power-

LED sollte hellgrün leuchten. Leuchtet sie nur schwach oder flim-

mert, gibt es ein Problem mit der Stromversorgung: Entweder der

USB-Port am Computer ist defekt oder das Kabel funktioniert nicht

richtig. Ist die Power-LED komplett aus, gibt es ein Problem mit

dem Computer, mit dem Kabel oder mit dem Board an sich. In die-

sen Fällen sollten ein anderes Kabel und ein anderer Computer

ausprobiert werden. Wenn das Board immer noch nicht angeht,

sollte es gewechselt werden.

Wenn der Arduino zum ersten Mal angeschlossen wird, sollte das

Testprogramm, das mitgeliefert wird, ausgeführt werden und die

L-LED regelmäßig blinken. Wenn sie das nicht tut, ist vermutlich

schon ein anderes Programm hochgeladen worden. Das richtige

Funktionieren des Prozessors und der LED kann überprüft werden,

indem das LED-Testprogramm hochgeladen wird (siehe Kapitel 1).

Lässt es sich nicht hochladen, kann das an einem Softwareproblem

auf der Computerseite liegen (das ist auch die wahrscheinlichste

Erklärung, keine Panik). Es sollte überprüft werden, ob die richtige

serielle Schnittstelle und das richtige Boardmodell in der Arduino-

Entwicklungsumgebung ausgewählt ist (siehe ebenfalls Kapitel 1).

Weiterhin kann man unter Windows im Gerätemanager und unter

Mac OS X im Programm System Profiler, das unter /Programme/

 Dienstanwendungen zu finden ist, nachprüfen, ob das Arduino-

Board tatsächlich als serielle Schnittstelle erkannt wird. Ist alles

korrekt eingestellt, sollte auch überprüft werden, ob die Arduino-

Entwicklungsumgebung die aktuellste Version ist.

Bei Schaltungen, die auf Steckbrettern aufgebaut werden, kann es

schnell zu kleinen elektrischen Fehlern kommen, weil die einge-

steckten Kabel leicht wieder herausrutschen können. Deswegen

sollte immer sichergestellt werden, dass alle Kabel richtig sitzen

Fehlersuche in elektronischen Schaltungen

77

und die abisolierten Enden sich nicht berühren. Weiterhin kommt

es manchmal auch vor, dass das Steckbrett an sich defekt ist, sodass

z.B. die horizontale Durchkontaktierung einzelner Stecklöcher

nicht mehr vorhanden ist oder im Gegenteil komplette Reihen

kurzgeschlossen sind. Wird ein elektrisches Problem vermutet,

sollte man ein bisschen an den Kabeln wackeln, um zu sehen, ob sie

vielleicht das Problem sind, und zur Not die Schaltung auf einem

anderem Bereich des Steckbretts aufbauen (oder auf einem kom-

plett anderem Steckbrett).

Die Erklärung für viele weitere Arduino-Fehler (insbesondere Soft-

ware- und Konfigurationsfehler) können Sie unter http://www.

 arduino.cc/en/Main/FAQ nachlesen. Weiterhin sei auf die Arduino-

Foren unter http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl hingewie-

sen, in denen viele hilfsbereite Arduino-Bastler und -Bastlerinnen

Projekte vorstellen und erklären und anderen Leute helfen. Die

Teilnehmer in den Arduino-Foren sind alle freiwillig dort und

möchten deshalb mit Respekt behandelt werden. Niemand ist ver-

pflichtet zu helfen und schon gar nicht, einfache Aufgaben wie etwa

das Googlen nach Informationen oder das Ausrechnen von Wider-

ständen für andere zu übernehmen. Als Regel guten Umgangs gilt

es, zunächst alle verfügbaren Anleitungen und Handbücher zu die-

sem Thema zu konsultieren und auch Suchmaschinen zu befragen.

Das Multimeter

Ein sehr wichtiges Werkzeug bei der Fehlersuche ist das Multime-

ter. Damit lassen sich verschiedenste elektrische Größen messen:

Strom, Spannung, Widerstand und Kontinuität. Bestimmte Multi-

meter erlauben auch das Messen von Kapazitäten und das Überprü-

fen und Verstärkungsmessen bei Transistoren (diese Funktionalität

ist allerdings oft nicht so wichtig). Es gibt analoge und digitale Mul-

timeter: Erstere stellen die gemessene Größe mit einer Nadelanzeige

dar und sind oft nicht sehr genau. Die meisten heutigen Multimeter

sind allerdings digital und zeigen die gemessenen Werte auf einem

LED-Display an.

Ein solches Gerät hat zwei Anschlüsse, an die sich Testspitzen

anschließen lassen. Eine (meistens schwarz) wird an den Masseste-

cker des Multimeters angeschlossen, während die andere (meistens

rot) an den V-Stecker angeschlossen wird. Oft besitzen Multimeter

zwei V-Stecker, von denen der eine für große Spannungen und

Ströme ausgelegt ist und bei normalen Arduino-Schaltungen nicht

78

Kapitel 2: Physical Computing, elektrische Grundlagen und der Sprung ins kalte Wasser

zum Einsatz kommt. Mit diesen Testspitzen kann man beliebige

Punkte in der Schaltung berühren (natürlich müssen diese Punkte

metallisch sein, damit auch ein Kontakt entsteht) und so elektri-

sche Größen messen. Es ist wichtig, dass höchstens mit einer Hand

eine der Testspitzen direkt berührt wird. Kommen beide Testspit-

zen in Kontakt mit dem Körper des Benutzers, wird seine Haut

gleich mitgemessen, was insbesondere bei Widerständen zu fal-

schen Ergebnissen führen kann.

Die gewünschte Funktionalität des Multimeters lässt sich meistens

über ein Drehrad einstellen. Zu den verschiedenen Größen (A für

Strom, V für Spannung, R oder Ohm für Widerstand) lässt sich

auch die gewünschte Größenordnung einstellen.

Abbildung 2-24

Multimeter

Elektrische Verbindungen überprüfen

Eine sehr praktische Funktion des Multimeters, die meistens mit

einem kleinen Lautsprechersymbol gekennzeichnet ist, ist das

Überprüfen der elektrischen Kontinuität, also ob zwei Punkte in

einer Schaltung kurzgeschlossen sind. Bei der Überprüfung der

elektrischen Kontinuität ist egal, welche der Testspitzen man

benutzt. So kann man z.B. überprüfen, ob ein Bauteil tatsächlich an

das Arduino-Board angeschlossen ist, indem man eine Testspitze

auf das relevante Beinchen des Arduino legt und das andere an eins

der Beinchen des Bauteils. Piept das Multimeter (manchmal wird

auch eine Lampe eingeschaltet), besteht zwischen beiden Punkte

Fehlersuche in elektronischen Schaltungen

79

eine elektrische Verbindung. So lassen sich auch Kurzschlüsse zwi-

schen zwei Punkten feststellen, die eigentlich nicht verbunden sein

sollten. Wenn also vermutet wird, dass irgendwo eine Leitung

getrennt ist oder ein Kurzschluss besteht, kann man das schnell mit

dem Multimeter nachprüfen. Auch fehlerhafte Lötpunkte lassen

sich so erkennen. Es ist oft sinnvoll, vor dem Anschließen einer

neuen Schaltung zu überprüfen, ob vielleicht ein Kurzschluss zwi-

schen Masse und Versorgungsspannung besteht.

LED und Diodenrichtung messen

Eine weitere praktische Funktion des Multimeters ist das Überprü-

fen von LEDs und Dioden. Meistens ist diese Funktion mit dem

Symbol einer LED gekennzeichnet. Die rote Testspitze muss an die

positive Seite der LED gebracht werden (die Anode, siehe Kapitel 3) und die schwarze Testspitze an die Kathode. Ist die LED richtig

angeschlossen und nicht defekt, wird sie leicht aufleuchten, weil

das Multimeter zum Testen der Dioden einen kleinen Strom fließen

lässt. Zusätzlich zeigt das Multimeter auf dem Display an, ob Strom

fließt (das kann von Multimeter zu Multimeter unterschiedlich

angezeigt werden). So kann man leicht überprüfen, in welche Rich-

tung eine LED angeschlossen werden muss. Ähnlich können auch

herkömmliche Dioden geprüft werden.

Widerstandswerte messen

Das Multimeter kann als Ohmmeter eingesetzt werden, um den

Widerstandswert von Widerständen zu messen. Beide Testspitzen

müssen an die Anschlüsse des Widerstandes gebracht werden.

Generell lassen sich Widerstände nur getrennt messen. Sind sie in

einer Schaltung eingebaut, wird der parallele Widerstand des Rests

der Schaltung auch mitgemessen, und der Ergebniswert ergibt nicht

viel Sinn. Die Ohmmeter-Funktionalität des Multimeters kann mit

dem Auswählen einer der Ohm-Größenordnungskategorien akti-

viert werden. Ist die Größenordnung des zu messenden Widerstan-

des unbekannt, kann man sich herantasten, indem man zunächst

die kleinste wählt.

Spannungen messen

Eine sehr wichtige Funktion zum Überprüfen von Schaltungen und

für die Suche nach Fehlern in einer Schaltung ist die Voltmeter-

Funktionalität des Multimeters. Ähnlich wie bei der Ohmmeter-

80

Kapitel 2: Physical Computing, elektrische Grundlagen und der Sprung ins kalte Wasser

Funktionalität lassen sich hier verschiedene Spannungsgrößenord-

nungen auswählen. Da aber Spannungen in einer Arduino-Schal-

tung meistens unter 5 Volt liegen, kann man die entsprechende

Größenordnung gleich auswählen. Die schwarze Testspitze sollte

meistens an die Masse der Schaltung angeschlossen werden. Wird

der Multimeter oft eingesetzt, kann man zum Beispiel ein Kabel mit

Krokodilklemme verwenden, um die Masse fest zu verbinden. Mit

der roten Testspitze lassen sich dann Spannungen an verschiedenen

Stellen in der Schaltung untersuchen. Wichtig ist zum Beispiel zu

überprüfen, ob jedes Bauteil an den vorgesehenen Pins auch mit der

richtigen Spannung versorgt wird. Ist die Spannung an dem gemes-

sen Punkt variabel, hängt die Anzeige von der Geschwindigkeit des

Multimeters ab. Genaue Variationen lassen sich mit einem Multi-

meter nicht messen (dazu sollte ein Oszilloskop verwendet werden,

siehe unten), man kann aber grob überprüfen, ob zum Beispiel

Daten über eine serielle Leitung übertragen werden. Wichtig ist

beim Messen einer laufenden Schaltung, dass mit den Testspitzen

des Multimeters keine Kurzschlüsse erzeugt werden. Es ist dazu

praktisch, die Testspitze möglichst vertikal über die zu messenden

Punkte zu halten.

Ströme messen

Eine weitere Funktionalität zum Messen von laufenden Schaltun-

gen, die allerdings nicht so oft verwendet wird wie die Voltmeter-

Funktionalität, ist die Amperemeter-Funktionalität zum Messen

von Strömen. Dafür muss das Multimeter allerdings in Serie mit der

zu messenden Leitung eingebaut werden. Die Leitung muss also

getrennt und das Multimeter sozusagen als »Verbindungskabel«

eingesetzt werden. Dazu sind Krokodilklemmen sehr praktisch.

Wenn das Multimeter in Serie angeschlossen und die Ampereme-

ter-Funktionalität ausgewählt sind, werden die gemessenen Ströme

auf dem Display angezeigt. Damit kann man zum Beispiel den

Strom zu einer LED messen, um sicherzustellen, dass er den maxi-

malen Wert nicht überschreitet.

Das Oszilloskop

Ein nützliches und aufschlussreiches Werkzeug, das allerdings

nicht sehr erschwinglich ist, ist das Oszilloskop. Ein Oszilloskop ist

eine Art grafischer Voltmeter, mit dem Spannungen nach Zeit

gemessen werden. So ist es möglich, den zeitlichen Verlauf einzel-

Fehlersuche in elektronischen Schaltungen

81

ner Spannungen anzuzeigen. Damit kann zum Beispiel die Breite

von PWM-Pulsen gemessen werden (siehe Kapitel 3) oder die Aus-

gangsspannung verschiedener analoger Sensoren. Alle Funktionen

des Voltmeters können damit übernommen werden, um z.B. zu

überprüfen, ob Taster richtig schalten, Kommunikationsproto-

kolle richtig implementiert werden und Taktsignale für verschie-

dene Chips schnell genug sind. Ein Oszilloskop ist ein extrem

wertvolles Werkzeug, um kompliziertere Schaltungen zu untersu-

chen und generell einen grafischen Eindruck von der Elektronik zu

bekommen.

82

Kapitel 2: Physical Computing, elektrische Grundlagen und der Sprung ins kalte Wasser

KAPITEL 3

In diesem Kapitel:

Workshop LED-Licht

• Erste Schritte

• Eine blinkende LED – das

»Hello World« des Physical

Computing

Nun soll also der erste Workshop beginnen, dessen Ziel es ist, eine

in allen Farben des Regenbogens leuchtende LED-Lampe zu

bauen. Natürlich geht es nicht darum festzulegen, welche Form

oder Farbe sie bekommen soll. Vielmehr wird dieses Kapitel hof-

fentlich genügend Anleitung geben, um im Anschluss ein eigenes

Licht programmieren zu können. Dieses kann aus einer oder meh-

reren Lichtquellen bestehen, die sich auch in ihrer Helligkeit ver-

ändern lassen, entweder durch Programmierung oder durch ein

Steuerungselement wie einen Schalter oder Drehknopf. Zudem

wird erklärt, wie man aus Rot, Grün und Blau Farben mischen

kann, um den Raum auch mehrfarbig zu erhellen. Am Ende des

Kapitels werden zusätzlich weitere Projekte beschrieben, die mit

Anleitungen aus dem Internet nachgebaut werden können. Auf

dem Weg durch das Kapitel werden die Grundlagen erläutert, die

zum Programmieren eines Arduino nötig sind. Dieser Workshop

richtet sich also auch an Leute, die soeben zum ersten Mal ein

Arduino-Board angeschlossen haben.

Erste Schritte

Um dieses Kapitel durchzuarbeiten, sind zum ersten Mal in diesem

Buch einige Bauteile nötig, nämlich

• vier LEDs (drei davon in Rot, Grün und Blau) und passende

100-Ohm-Widerstände,

• ein Taster,

• ein Schalter und

• ein Drehknopf.

83

Ein einfaches Arduino-Programm: Übersicht

Ein Arduino-Programm kann aus vielen miteinander verbundenen

Dateien bestehen, hat jedoch mindestens zwei Teile: das Setup und

die Hauptfunktion.

Setup

Der Setup-Teil des Programms ist gekennzeichnet durch die Funk-

tion setup():

void setup()

{

}

Zwischen die geschweiften Klammern werden nun alle Befehle

gesetzt, die vor dem Start des Hauptprogramms zum Einrichten des

Arduino benötigt werden, etwa die Festlegung einzelner Pins als

Ein- oder Ausgang.

Die Setup-Routine wird nur ein einziges Mal ausgeführt, wenn das

Board neu an eine Stromquelle (oder per USB an den Rechner)

angeschlossen oder neuer Code hochgeladen wird.

Loop

Die Funktion loop() wird auch als Hauptfunktion bezeichnet. Von

hier aus werden andere Bestandteile des Programms aufgerufen

oder Befehle abgearbeitet. Wie der Name schon verrät, läuft loop()

in einer Schleife, das heißt sie beginnt immer wieder von vorn,

sobald sie durchlaufen wurde. Ganz analog zur setup()-Funktion

sieht auch loop so aus:

void loop()

{

}

Eine blinkende LED – das »Hello World«

des Physical Computing

Beim Erlernen von Programmiersprachen ist es üblich, zuerst einen

einfachen Text auf dem Bildschirm auszugeben, um über die Spra-

che einen Gruß an die Welt hinaus zu senden. Auf dem Arduino

wird dieser Gruß mit Licht übermittelt, indem eine angeschlossene

LED zum Blinken gebracht wird. LEDs sind Licht aussendende

Dioden (light emitting diodes). Eine Diode ist ein Bauteil, das

84

Kapitel 3: Workshop LED-Licht

Strom nur in eine Richtung durchlässt, bei einer LED wird dabei

sichtbares oder unsichtbares Licht erzeugt.

Die Lichtfarbe einer LED hängt von ihrem Aufbau und den verwen-

deten Materialien ab. Lange Zeit war es nicht möglich, blaue und

weiße LEDs herzustellen. In vielen älteren Geräten gibt es daher

nur rote, grüne und gelbe LEDs. Durch neuere Technologien sind

mittlerweile fast alle Farben herstellbar. Trotzdem hat sich eine

Handvoll Farben etabliert. Mehr Informationen zu genauen Daten

verschiedener LEDs finden Sie im Anhang.

Hardware

LEDs besitzen ein langes und eines kurzes Beinchen, die Pins:

Anode und Kathode (kleine Merkhilfe: k urz = K athode). Sind die

Pins bereits abgeschnitten worden, etwa um sie irgendwo zu verlö-

ten, findet man die Kathode an der Seite, an der die LED leicht

abgeflacht ist. Die LED wird mit der Anode, also der positiven

Seite, mit dem 100-Ohm-Widerstand verbunden, und dieser wird

am Arduino-Pin 13 angebracht, die negative Seite wird an der

Masse (GND, zu englisch »ground«) angeschlossen.

Abbildung 3-1

Arduino-Board

Eine blinkende LED – das »Hello World« des Physical Computing

85

Die LED beginnt zu leuchten, wenn durch sie ein Strom von ca. 2

bis 20 mA fließt. Zu viel Strom ist schädlich für die LED und kann

sie im schlimmsten Falle sofort zerstören. LEDs dürfen immer nur

mit einem Vorwiderstand oder einer speziellen Schaltung betrieben

werden, damit der Strom nicht zu groß wird.

• U = Spannung der Batterie/des Arduino-Boards (5 Volt)

• Uled = Flussspannung der LED (siehe Datenblatt, 3 Volt ist für

die meisten LEDs ein guter Richtwert)

• I = der gewünschte Strom durch die LED (ein sicherer Wert ist

10 mA)

• R = der zu berechnende Widerstand

• R = (U-Uled) / I

Bei 5 Volt und einer LED mit einer Flussspannung von 3 Volt ergibt

sich für 20 mA ein Vorwiderstand von 100 Ohm.

Programmierung

Zunächst wird Pin 13 mit einer Variablen verbunden. Das

geschieht, um im weiteren Verlauf des Programms auf ledPin1

zurückgreifen zu können. So kann schnell der Pin geändert werden,

ohne dass das ganze Programm durchgearbeitet werden muss.

Zudem steht so keine 13 im Programmverlauf, sondern eine ver-

ständliche Bezeichnung, die beim Lesen oder nachträglichen Bear-

beiten des Codes behilflich ist.

Variablen können verschiedene Datentypen besitzen, je nachdem,

welche Inhalte in ihnen gespeichert werden. In diesem Fall wird

eine ganze Zahl (»Integer«) gespeichert, dem Variablennamen wird

bei der Initialisierung also der Typ int vorangestellt.

Im Setup wird dieser Pin als Ausgang definiert. Im Hauptteil wird

schließlich ein digitales Signal auf diesen Ausgang geschrieben.

HIGH lässt dabei Strom durch den Ausgang fließen, während LOW

diesen Stromfluss unterbricht. So leuchtet die LED oder erlischt.

Dazwischen wird der Programmablauf mit dem Befehl delay für 1.

000 Millisekunden, also eine Sekunde, unterbrochen – es wird

gewartet.

Hinweis

An jeder Stelle des Programms können Kommentare verfasst

werden. Sie werden mit // oder # markiert und beim Überset-

zen des Programms nicht berücksichtigt. Das erhöht die Ver-

ständlichkeit des Codes.

86

Kapitel 3: Workshop LED-Licht

int ledPin1 = 13; // LED an digitalen Pin 13 angeschlossen

void setup()

{

pinMode(ledPin1, OUTPUT); // setze digitalen Pin als Output

}

void loop()

{

digitalWrite(ledPin1, HIGH); // schalte LED ein

delay(1000); // warte eine Sekunde

digitalWrite(ledPin1, LOW); // schalte LED aus

delay(1000); // warte eine Sekunde

}

Aufgabe:

Eine zweite LED anschließen und beide wechselnd blinken lassen.

LEDs über Schalter/Taster steuern

Die digitalen Pins können auch als Eingabepins definiert werden. In

diesem Beispiel wird ein Schalter benutzt, um zwischen den beiden

LEDs hin- und herzuschalten. Dabei wird die if-else-Abfrage einge-

führt.

Taster und Schalter finden sich in jedem Haushalt: Entweder direkt

in der Wand, um das Licht ein-zuschalten, oder an Geräten, um

deren Funktionen einzustellen, zu starten oder zu stoppen.

Ein Schalter hat die zwei Stellungen Ein und Aus und verbleibt in

der zuletzt vom Benutzer gewählten Stellung.

Im Unterschied dazu springt ein Taster nach dem Loslassen sofort

wieder in den ungedrückten Zustand zurück. Er eignet sich also

nicht, um eine Lampe dauerhaft einzuschalten. Für die Verwen-

dung bei einer Klingel dagegen ist er ideal: Nach dem Betätigen soll

sie wieder aufhören zu schellen, der Taster springt zurück.

Schalter und Taster besitzen mindestens zwei Anschlüsse. Es gibt

sie aber in beliebig vielen Varianten:

• Mit drei Anschlüssen, als Umschalter (der mittlere Anschluss

wird wahlweise mit dem einen oder dem anderen Pin verbun-

den)

• Mit mehreren Schaltern

• Mit mehr als zwei Schaltstellungen (damit kann man verschie-

dene Aktionen mit einem einzigen Schalter auswählen)

Eine blinkende LED – das »Hello World« des Physical Computing

87

Abbildung 3-2

Das Schaltzeichen für einen Taster

Abbildung 3-3

Das Schaltzeichen für

einen Schalter

Abbildung 3-4

Verschiedene Schalter/Taster

Hardware

Um einen Schalter oder Taster mit dem Arduino abzufragen, wird

die eine Seite des Bauteils mit einem IO-Pin (in diesem Fall Pin 2)

und die andere mit GND verbunden.

Der Arduino erkennt an seinen IO-Pins hohe Spannungen (2–5

Volt) als eine 1 und kleinere Spannungen als eine 0. Ist der Taster/

Schalter gedrückt, wird der PIN des Arduino mit GND verbunden,

die gemessene Spannung ist also null.

88

Kapitel 3: Workshop LED-Licht

Abbildung 3-5

Schalteraufbau

Programmierung

Der Schalter wird, wie auch die LEDs, auf eine Variable gelegt. Im

Setup wird er als Eingang definiert:

pinMode(schalter, INPUT); // setze den digitalen Pin auf Input

Ist der Taster/Schalter nicht gedrückt, ist der Stromkreis unter-

brochen. Der IO-Pin hat dann keine Verbindung, weder mit GND

(0 Volt) noch mit VDD (5 Volt) – die vom Arduino gemessene

Spannung ist dann von vielen Umweltfaktoren abhängig und

schwankt zufällig hin und her. Um auch hier eine definierte Span-

nung an diesem PIN zu haben, wird ein sogenannter Pull-up-

 Widerstand eingesetzt, der den Spannungspegel nach oben zieht.

Dieser kann entweder als richtiger Widerstand mit einem Wert von

1.000–100.000 verwendet werden, oder man verwendet im Ardu-

ino bereits integrierte Pull-up-Widerstände. Je größer der Wider-

stand, desto stromsparender, aber auch umso anfälliger für

elektromagnetische Störungen wird unsere Schaltung.

Eine blinkende LED – das »Hello World« des Physical Computing

89

Die internen Pull-up-Widerstände werden mit

digitalWrite(schalter, HIGH);

eingeschaltet.

Im Hauptteil wird durch digitalRead die Eingabe gelesen. Nun

wird eine if-else-Abfrage benutzt. Sie steht für eine Verzweigung im

Programmablauf: Wenn der Strom durch den Schalter fließt, ist das

Eingangssignal mit GND verbunden, also LOW, und der zweite Pro-

grammblock wird ausgeführt, der durch die geschweiften Klam-

mern begrenzt ist. Ansonsten liegt am Eingang durch den Pull-up

ein HIGH-Signal vor, also wird der erste Programmblock ausgeführt.

Vergleiche in if-Abfragen werden dabei immer mit zwei Gleich-

heitszeichen vorgenommen. Wird das Gegenteil benötigt, steht !=

für »ungleich«.

int ledPin1 = 13; // LED an digitalen Pin 13 angeschlossen

int ledPin2 = 12; // LED an digitalen Pin 12 angeschlossen

int schalter = 2; // Schalter an digitalen Pin 2 angeschlossen

void setup()

{

pinMode(ledPin1, OUTPUT); // setze digitalen Pin als Output

pinMode(ledPin2, OUTPUT); // setze digitalen Pin als Output

pinMode(schalter, INPUT); // setze digitalen Pin auf Input

digitalWrite(schalter, HIGH); // setze pullup-widerstand

}

void loop() {

int val = digitalRead(schalter); // lies Input vom Schalter

if (val == HIGH) { // wenn der Wert von val gleich HIGH ist

digitalWrite(ledPin1, HIGH); // schaltet LED1 ein

digitalWrite(ledPin2, LOW); // schaltet LED2 aus

}

else {

digitalWrite(ledPin1, LOW);

digitalWrite(ledPin2, HIGH);

}

}

Vier LEDs nacheinander blinken lassen

Schließt man mehr als zwei LEDs an den Arduino an, wird es

schnell unübersichtlich: An jeder Stelle muss mehrfach der gleiche

Code geschrieben werden. Muss dieser Code nachträglich verän-

dert werden, treten schnell Probleme auf: Versteckt sich in einer

Zeile ein Fehler, müssen gleich mehrere ähnliche Zeilen angepasst

werden, um ihn zu korrigieren. Schnell wird dadurch auch eine der

duplizierten Zeilen übersehen. Generell gilt: Je kleiner der Pro-

90

Kapitel 3: Workshop LED-Licht

grammcode, desto einfacher ist er zu lesen und zu modifizieren,

und umso geringer ist auch die Gefahr, dass sich Fehler einschlei-

chen.

Im weiteren Verlauf dieses Beispiels wird erklärt, wie for-Schleifen

benutzt werden.

Setup

Vier LEDs werden an die digitalen Pins 10, 11, 12, 13 angeschlos-

sen, und ein Taster an Pin 2 (so wie der Schalter aus dem vorigen

Beispiel).

Programmierung

Ein Array (also eine Tabelle) fasst mehrere Variablen in einer

zusammen. Über sogenannte Indizes können die einzelnen Werte

dann als Elemente angesprochen werden.

Ein Array wird ähnlich wie eine Variable initialisiert. Mit

int led[4] = { 10,11,12,13};

werden die vier Werte 10, 11, 12 und 13 auf ein Array mit vier Ele-

menten gelegt. Da die Indizes bei 0 beginnen, ist der Wert von

led[0] nun also 10, der von led[1] 11 und so weiter.

Nun können diese Werte mit einer Schleife durchlaufen (»iteriert«)

werden. In diesem Fall wird for() zusammen mit einer Zählvari-

able i verwendet, die pro Schleifendurchlauf mit i++ um eins

erhöht wird.

Schleifen sind ein weiterer häufig benutzter Bestandteil von Pro-

grammiersprachen. Im Arduino-Hauptteil wird eine loop()-Schleife

verwendet, die unendlich lange weiterläuft (sofern kein Programm-

abbruch festgelegt wird). Hinzu kommt nun die for()-Schleife, der

drei Bestandteile hinzugefügt werden: Die Startbedingung (z.B.

»beginn bei null«), die Endbedingung (z.B. »zähl bis vier«) und die

Zählbedingung (z.B. »zähl immer eins dazu«).

Um Codezeilen zu sparen, wird die Zählvariable direkt in der

Schleife initialisiert:

for (int i = 0; i<4; i++) {

pinMode(led[i], OUTPUT);

}

Das bedeutet: Definiere i = 0, solange i kleiner als 4 ist, und erhöhe

i um 1 pro Schleifendurchlauf.

Eine blinkende LED – das »Hello World« des Physical Computing

91

Innerhalb der Schleife wird jeder der zuvor eingetragenen Pins als

Output festgelegt.

Funktionen

Um eine LED leuchten zu lassen, kann der Code der zweiten

Übung benutzt werden. Allerdings wäre dieser nun pro Schritt vier

statt bisher zwei Zeilen lang. Bei allen vier LEDs, die nacheinander

leuchten sollen, wären das also 16 Zeilen und nicht mehr vier. Zeit

für eine Vereinfachung!

Eine Funktion ist eine einzelne Einheit innerhalb eines Programms,

die fast überall aufgerufen werden kann. Sie erledigt selbstständig

eine Aufgabe und gibt, wenn gewünscht, einen Wert zurück. Je

nach Typ dieses Werts werden Funktionen und Variablen, also

Typen zugewiesen. Geben sie keinen Wert zurück, ist der Typ void.

Zudem nimmt eine Funktion Werte an, mit denen sie arbeiten soll

– sogenannte »Argumente«.

Um eine LED blinken zu lassen und die anderen auszuschalten,

muss der Funktion mitgeteilt werden, um welche LED es sich han-

delt. Gleichzeitig ist die Aufgabe der Funktion lediglich die Aus-

gabe von Signalen. Sie gibt also keinen Wert zurück.

Der Code

void setLED(int ledNr) {

}

deklariert eine Funktion setLED, die keinen Wert zurückgibt (also

void) und ein Argument vom Typ int annimmt. Das bedeutet, dass

dieser Funktion ein Wert mit dem Namen ledNr mitgegeben wird,

den diese Funktion nun verwenden kann. Dabei wird im Speicher

eine Kopie der Variablen angelegt und während der Funktion ver-

wendet. So kann die Funktion zwar mit dem Wert arbeiten, verän-

dert ihn aber nicht dauerhaft.

Nun wird jede LED durchlaufen und auf LOW gesetzt, sofern sie

nicht diejenige ist, die angeschaltet werden soll:

for (int i = 0;i<4;i++) {

if (i == ledNr) {

digitalWrite(led[i], HIGH);

}

else {

digitalWrite(led[i], LOW);

}

92

Kapitel 3: Workshop LED-Licht

Damit alles nach einem Durchlauf wieder von vorn beginnt, wird

nun eine weitere Funktion benötigt, die einen Zähler auf 0 zurück-

setzt, sobald sie 4 erreicht. Diese Funktion muss den Zähler, mit

dem sie arbeitet, wieder zurückgeben, sie ist also vom Typ int.

int setCount(int count) {

if (count == 3) {

count = 0;

}

else {

count++;

}

return count;

}

Hinweis

Noch einfacher ließe sich das Problem mit dem »Modulo«

lösen, dem Rest, der beim Teilen durch eine Zahl entsteht.

Erhöht man pro loop()-Durchlauf die Variable count um eins,

kann man setLED jederzeit mit setLed(count mod 4) oder

auch setLed(count % 4) aufrufen. Es wird immer eine Zahl

zwischen 0 und 3 übergeben.

Da der Taster sehr schnell abgefragt wird, soll sein Impuls nur dann

zu einem Lichtwechsel führen, wenn er gerade gedrückt wurde.

Dazu wird eine Variable oldVal eingeführt, auf die pro loop()-

Durchlauf der aktuelle Wert des Eingangs geschrieben wird. Nur

wenn diese sich im Vergleich zum vorigen Durchlauf ändert, wird

die Funktion setLED wirklich aufgerufen.

Das sieht nun also wie folgt aus:

int led[4] = { 10,11,12,13};

int oldVal = 0;

int counter = 0;

int taster = 2;

void setup() {

for (int i = 0; i<4; i++) {

pinMode(led[i], OUTPUT);

}

void setLED(int ledNr) {

for (int i = 0;i<4;i++) {

if (i == ledNr) {

digitalWrite(led[i], HIGH);

}

else {

digitalWrite(led[i], LOW);

}

}

}

Eine blinkende LED – das »Hello World« des Physical Computing

93

int setCounter(int counter) {

if (counter == 3) {

counter = 0;

}

else {

counter++;

}

return counter;

}

void loop()

{

int val = digitalRead(taster); // lies Input vom Taster

if (val != oldVal && val == HIGH) {

counter = setCounter();

setLED(counter);

delay(10); // warte ein wenig

}

oldVal = val;

}

Die Debounce-Bibliothek

Möchte man den Taster als Umschalter verwenden, kann es oft zu

mehrfachen Betätigungen kommen, selbst wenn man eine Abfrage

wie die obige einbaut. Gegen dieses sogenannte »Prellen« hilft die

Debounce-Bibliothek, mit der wir jetzt einen kurzen Ausflug in die

Welt der Libraries machen.

Viele Anwendungen rund um Arduino sind im Prinzip recht ein-

fach, benötigen aber hohen Programmieraufwand. Zum Beispiel

möchte man einen bestimmten Sensor eigentlich einfach nur ausle-

sen oder einen Motor nur mit einer bestimmten Geschwindigkeit

betreiben. Die Technik dahinter ist aber recht komplex und benö-

tigt verschiedene Signale und Voreinstellungen vom Arduino.

Bibliotheken fassen diese Funktionen zusammen. Denn wer einmal

die Arbeit gemacht hat, kann sie auch anderen zur Verfügung stel-

len und sie über eine sogenannte API benutzen lassen. Der Begriff

API steht für »Application Programming Interface« und ist quasi

das Tor zur Bibliothek: ein Satz von Funktionen, mit denen die

komplexeren Funktionalitäten der Bibliothek verwendet werden

können. Für den Arduino gibt es eine ganze Reihe von Bibliothe-

ken, die zum Teil die Programmierung einfacher machen, so wie

die Debounce-Bibliothek, um die es hier geht. Wichtiger sind aber

diejenigen Bibliotheken, die Bauteile und Geräte ansteuern können.

Auf der Arduino-Webseite finden Sie Listen von Bibliotheken,

genauso wie im Verzeichnis von http://www.freeduino.org.

94

Kapitel 3: Workshop LED-Licht

Unter Prellen oder »Bouncing« versteht man ein mechanisches Pro-

blem, das durch die Eigenschaft von Schaltern und Tastern hervor-

gerufen wird: Weil in diesen Bauteilen federnde Effekte auftreten,

öffnen und schließen sie sich beim Betätigen und Loslassen mehr-

mals, statt dass sofort ein elektrischer Kontakt zustande kommt.

Hiergegen hilft nur, dass nach einem Kontakt zunächst jede weitere

Eingabe vom Taster/Schalter für einige Millisekunden gesperrt

wird.

Bibliotheken werden mit dem Befehl include in den aktuellen

Sketch eingebunden. Damit sie beim Kompilieren auch gefunden

werden, muss der komplette Ordner mit der Bibliothek ins Ardu-

ino-Verzeichnis unter hardware\libraries kopiert werden. Nun kann

die Bibliothek auch in der Programmierumgebung über SKETCH →

IMPORT LIBRARIES eingefügt werden. Hat man die Debounce-Bibli-

othek von http://www.arduino.cc/playground/Code/Debounce her-

untergeladen, entpackt und in das entsprechende Verzeichnis

kopiert, bindet man sie mit

#import <debounce.h>

in den Sketch ein. Nun stehen drei Funktionen zur Verfügung, die

es bisher in der Arduino-Programmiersprache noch nicht gab:

read(), update() und write(). Diese Funktionen gehören zu einem

Objekt, das die aktive Bibliothek repräsentiert. Objekte sind Daten-

und Funktionssammlungen. Das heißt, sie beherbergen neben den

API-Funktionen auch weitere Funktionalitäten und Datenstruktu-

ren. Man kann ein Objekt also mit einer Küche vergleichen, in der

Essen vorbereitet wird. Dabei werden Herde und Öfen bedient,

Teig vorgehalten und einzelne Gerichte gestapelt, bis eine Bestel-

lung beisammen ist. Über eine oder mehrere Luken, Türen oder

Zettelsysteme spricht die Bedienung mit dieser Küche und tauscht

Informationen oder Nahrungsmittel aus. Dabei bleibt natürlich

auch nicht alles zwischen Küche und Bedienung. Vielmehr gibt es

einen Hinterausgang, über den neue Rohstoffe bestellt und geliefert

werden.

Ein Objekt ist dabei immer die Instanz einer sogenannten Klasse.

Das bedeutet, dass die importierte Bibliothek auch mehrfach ver-

wendet werden kann, beispielsweise wenn man mehrere gleiche

Geräte an einen Arduino hängen möchte. Klassen sind die eigentli-

chen Programmierkonstrukte, die im laufenden Betrieb zu Objek-

ten werden. Sie verfügen zusätzlich über besondere Funktionen.

Eine blinkende LED – das »Hello World« des Physical Computing

95

Der Konstruktor wird zum Beispiel aufgerufen, wenn das Objekt

instanziiert, also erzeugt wird. Im Falle des Debouncers wird nun

ein Objekt erstellt, dem 20 Millisekunden Debounce-Zeit einge-

räumt werden:

// verbinde Taster mit Pin 5

int taster = 5;

// erschaffe ein neues Objekt vom Typ "debounce" mit 20

// Millisekunden Debounce-Zeit, verbunden an Pin 5

Debounce debouncer = Debounce(20 , taster);

Im eigentlichen Programm können nun die oben erwähnten Funk-

tionen aufgerufen werden. Die Funktion update() prüft nach, ob

sich der Status geändert hat, und vermeldet das Ergebnis mit dem

Rückgabewert TRUE oder FALSE. Mit read() kann dann der derzei-

tige Pin-Status gelesen werden, man erhält also HIGH oder LOW

zurück. Um nun also die Informationen des Tasters korrekt zu

lesen, benötigt man

// Debouncer-Status updaten

debouncer.update();

// Wert über den Debouncer auslesen

int tasterVal = debouncer.read();

Die anderen Funktionen in der Biblitohek sind write() und inter-

val(). write() erlaubt das Senden eines digitalen Signals über den

Debouncer. Da der Pin schon festgelegt ist, wird als Argument nur

das Signal, also HIGH oder LOW, benötigt. Mit interval() lässt sich

schließlich das Debounce-Intervall ändern, ohne dass das Objekt

neu instanziiert werden muss.

Das gesamte Programm mit einer LED und der Debouncer-Biblio-

thek sieht also so aus:

#import <debounce.h>

// verbinde Taster mit Pin 5

int taster = 5;

// erschaffe ein neues Objekt vom Typ "debounce" mit 20

// Millisekunden Debounce-Zeit, verbunden an Pin 5

Debounce debouncer = Debounce(20 , taster);

int ledPin1 = 13; // LED an digitalen Pin 13

// angeschlossen

int schalter = 2; // Schalter an digitalen Pin 2

// angeschlossen

void setup()

{

pinMode(ledPin1, OUTPUT); // setze digitalen Pin als Output

pinMode(schalter, INPUT); // setze digitalen Pin auf Input

digitalWrite(schalter, HIGH);

}

96

Kapitel 3: Workshop LED-Licht

void loop() {

// Debouncer-Status updaten

debouncer.update();

// Wert über den Debouncer auslesen

int tasterVal = debouncer.read();

if (tasterVal == HIGH) { // wenn der Wert von tasterVal

// gleich HIGH ist

digitalWrite(ledPin1, HIGH); // schaltet LED1 ein

digitalWrite(ledPin2, LOW); // schaltet LED2 aus

}

else {

digitalWrite(ledPin1, LOW);

digitalWrite(ledPin2, HIGH);

}

}

Aufgabe:

Einen »Funkenhimmel« bauen, der so viele LEDs wie möglich

verwendet und sie zufällig blinken lässt.

Hinweis

Die Funktion random(13) gibt bei jedem Aufruf eine neue zufäl-

lige Zahl zwischen 0 und 12 zurück.

LEDs mit Pulsweitenmodulation

verschieden hell leuchten lassen

Bis zu diesem Punkt gab es für die LEDs nur die zwei Zustände HIGH

und LOW, also An und Aus. Das liegt daran, dass über den Arduino

keine unterschiedlichen Stromstärken ausgegeben werden können.

Das menschliche Auge hingegen lässt sich recht leicht austricksen.

Da es nur 25 Bilder pro Sekunde wahrnehmen kann, kommt Fla-

ckern in Frequenzen, die weit darüber liegen, nicht mehr als sol-

ches an. Vielmehr erscheint uns das Licht als heller oder dunkler, je

nach Häufigkeit des Flackerns. Der Arduino hat diese sogenannte

 Pulsweitenmodulation (PWM) auf sechs Pins direkt eingebaut.

Diese lassen sich nicht nur mit digitalWrite() ansprechen, son-

dern auch mit der Funktion analogWrite(), die nicht nur die Sig-

nale LOW und HIGH als Argumente annimmt, sondern 8 Bit

verarbeiten kann, also 255 unterschiedliche Werte.

Hardware

Eine LED an Pin 10 anschließen.

Eine blinkende LED – das »Hello World« des Physical Computing

97

Software

Die LED wird mit Pin 10 verbunden und als OUTPUT definiert. Das

Programm soll nun von 0 bis 255 zählen und pro Schritt ein »stär-

keres«, also schneller gepulstes Signal an den Ausgang senden.

Anschließend soll der Zähler wieder von 255 bis 0 laufen.

Dafür werden ein Zähler (counter) und ein Vorzeichenmarker

(changeMarker) initialisiert:

int counter = 0;

int changeMarker = 1;

Die Funktion changeCounter addiert nun pro Aufruf einmal change-

Marker zum counter. Erreicht der Counter den Wert 255 oder 0,

wird der changeMarker auf -1 bzw. 1 gesetzt:

int ledPin = 10

void setup() {

pinMode(ledPin, OUTPUT);

}

int counter = 0;

int changeMarker = 1;

int changeCounter() {

if (counter == 255) {

changeMarker = -1;

}

if (counter == 0) {

changeMarker = 1;

}

counter = counter + changeMarker;

return counter;

}

Nun steht einem pulsierenden Licht nichts mehr im Wege:

void loop()

{

counter = changeCounter();

analogWrite(led, counter);

delay(10); // ein bisschen warten ...

}

Beim genauen Hinsehen stellt man fest, dass das Licht nicht gleich-

mäßig pulsiert. Das liegt daran, dass das Auge das Licht nicht linear

wahrnimmt, also geradlinig, sondern als logarithmische Funktion.

Wenn die LED fast aus ist, sieht man kleinere Veränderungen sehr

stark; ist die LED fast ganz eingeschaltet, ändert sich praktisch gar

nichts mehr. Um diesem Umstand entgegenzuwirken, kann chan-

geCounter() zu einer aufwendigeren Version ausgebaut werden,

sodass der Logarithmus korrekt errechnet wird. Viel einfacher ist

98

Kapitel 3: Workshop LED-Licht

jedoch eine Wertetabelle, die uns diese Übersetzung abnimmt, sie

gilt für alle Projekte mit gedimmten LEDs. Für diesen Zweck rei-

chen 64 Werte aus, da die PWM mit ihren 256 Stufen keine weitere

Verfeinerung erlaubt:

int loga[64] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,

16, 18, 20, 22, 25, 28, 30, 33, 36, 39, 42, 46, 49, 53, 56, 60,

64, 68, 72, 77, 81, 86, 90, 95, 100, 105, 110, 116, 121, 127, 132,

138, 144, 150, 156, 163, 169, 176, 182, 189, 196, 203, 210, 218,

225, 233, 240, 248, 255};

Das Programm muss nun an zwei Stellen geändert werden. In der

Hauptfunktion wird

analogWrite(led, counter)

ersetzt durch

analogWrite(led, loga[counter]);

Schließt man vier LEDs an, verändert sich im Prinzip nicht viel. Um

die LEDs in einer Welle pulsieren zu lassen, benötigt man vier

Counter und vier Marker:

int counter[4] = {0,32,63,32};

int changeMarker[4] = {1, 1, -1, -1};

Das wird nun auch in die Funktion changeCounter() eingebaut, die

nun in der Lage ist, einen der vier Counter bzw. Marker zu verän-

dern. Zudem werden die ersten beiden Zeilen geändert, sodass die

Funktion nun wie folgt aussieht:

void changeCounter(int i) {

if (counter[i] == 63) {

changeMarker[i] = -1;

}

if (counter[i] == 0) {

changeMarker[i] = 1;

}

counter[i] = counter[i] + changeMarker[i];

}

So wird nun auch die Hauptfunktion verändert:

void loop()

{

for (int i = 0;i<4;i++)

{

changeCounter(i); // verändere den Counter der LED i

analogWrite(led[i], loga[counter[i]]);

// setze die neue Helligkeit der LED i

}

delay(10); // ein bisschen warten ...

}

Eine blinkende LED – das »Hello World« des Physical Computing

99

Aufgabe:

Den Taster wieder anschließen und die Lichtstärke damit regulie-

ren lassen.

Mach es bunt

Nun kann schon die erste Lampe gebaut werden, die mit Farbver-

läufen eine gemütliche Atmosphäre im Raum schafft. Dazu werden

drei LEDs in den Grundfarben Rot, Grün und Blau benötigt. Mit

diesen Farben lassen sich durch Mischung alle weiteren Farben des

sichtbaren Spektrums erzeugen, indem man jede LED mit einer

entsprechenden Helligkeit pulst. Die folgende Lampe wählt zufällig

Farben aus und dimmt sich langsam von der einen zur anderen und

weiter zur nächsten.

Hardware

Drei LEDs in den Grundfarben Rot, Grün und Blau werden über

einen passenden Widerstand (100 Ohm) mit dem Arduino verbun-

den. Welcher Widerstand genau benötigt wird und mit welcher

Eingangsspannung und Stromstärke die LEDs betrieben werden,

hängt von der Bauart ab. Genauere Daten können Sie dem Daten-

blatt entnehmen. Es gibt auch fertige RGB-LEDs, die mit sechs

Beinen ausgestattet sind und somit auf die gleiche Weise ange-

schlossen werden wie drei einzelne. Je nach Stromstärke müssen

die Leuchtdioden an einen anderen Stromkreis angeschlossen wer-

den, besonders wenn eine stärkere Leistung erwartet wird. Am

Ende dieses Kapitels wird unter dem Stichwort »Mehr Power«

erläutert, wie man das zum Beispiel mit Transistoren machen

kann. Das folgende Programm geht davon aus, dass die rote LED

an Pin 9, die grüne an 10 und die blaue an 11 angeschlossen ist.

Programmierung

Wie weiter oben beschrieben, werden drei LEDs in einer Tabelle

initialisiert und mit den passenden Pins verbunden. Auch die Loga-

rithmustabelle wird benötigt. Zudem braucht man zwei Tabellen,

die Quell- und Zielfarbwert speichern.

// PINs für die RGB-LED

int ledPin[3] = { 9, 10, 11};

// Startfarbe

100

Kapitel 3: Workshop LED-Licht

int sourceValue[3] = { 0, 0, 0};

// Zielfarbe

int targetValue[3] = { 0, 0, 0};

// Überblendposition

int currentPos = 0;

In der Setup-Funktion werden die beiden Farben mit zufälligen Wer-

ten initialisiert und die verwendeten PINs als Ausgang geschaltet.

void setup()

{

for (int i = 0; i < 3; i++) {

// Startfarbe zufällig wählen

sourceValue[i] = random(64);

// Zielfarbe zufällig wählen

targetValue[i] = random(64);

// LED-Pin = Ausgang

pinMode(ledPin[i], OUTPUT);

}

}

currentPos wird jetzt der Mittelwert nach der Formel farbe = start ×

 (128-currentPos) + ende × currentPos auf ihre entsprechende LED

geschrieben und die loop()-Funktion abgeschlossen:

void loop()

{

// für alle drei Grundfarben Mittelwert an der

// Stelle currentPos berechnen und ausgeben

for (int i = 0; i < 3; i++) {

int helligkeit = (sourceValue[i] * (128 – currentPos) +

targetValue[i] * currentPos)/128;

analogWrite(ledPin[i],helligkeit);

}

currentPos++;

if (currentPos > 128) {

for (int i = 0; i < 3; i++) {

sourceValue[i] = targetValue[i];

targetValue[i] = random(64);

}

currentPos = 0;

}

// 10ms warten.

delay(10);

}

Und fertig ist die Lampe! Nun kann damit experimentiert werden.

Mit Sicherheit finden sich viele Möglichkeiten, dieses Projekt zu

erweitern und anzupassen. Zum Beispiel könnte man eine weitere

RGB-LED anschließen und die aktuelle Farbe von einer zur ande-

ren wandern lassen.

Eine blinkende LED – das »Hello World« des Physical Computing

101

Helligkeit mit einem Drehknopf steuern

Zum Abschluss dieses Workshops soll nun die Helligkeit einer LED

mit einem Drehknopf gesteuert werden. Dazu wird ein sogenanntes

Potentiometer verwendet. Es besteht aus einem Metallstift, der auf

einer Fläche angebracht ist. Wird diese Fläche durch Drehen ent-

lang des Stiftes bewegt, verändert sich der Widerstand und es fließt

weniger Spannung an den Ausgang. Ein Potentiometer ist somit ein

sogenannter resistiver Sensor. Mehr Informationen über resistive

Sensoren finden Sie auch in Kapitel 7.

Die Messung erfolgt über den analogen Eingang, wobei das Signal

niemals genau ist. Abweichungen im Wert müssen bei der Pro-

grammierung berücksichtigt werden. Somit können nicht die vollen

1.024 Stufen ausgeschöpft werden, was angesichts von 256 mögli-

chen Helligkeitsstufen bei den pulsweitenmodulierten Digitalaus-

gängen allerdings kein Problem darstellt, zumal ohnehin nur die 64

Stufen aus der Tabelle verwendet werden sollen.

Hardware

An den Arduino wird zunächst eine LED an einen PWM-fähigen

Digitalausgang angeschlossen, in diesem Fall Ausgang 9. Zudem

wird ein Potentiometer mit dem mittleren Pin an den analogen Ein-

gang 0 angeschlossen, die anderen beiden Pins an GND und den 5-

Volt-Anschluss. Dabei kommt es darauf an, wie der Knopf gedreht

werden soll: Je nachdem, wie der Strom fließt (von links nach

rechts oder umgekehrt), muss auch gedreht werden, um die Span-

nung zu erhöhen oder zu senken.

Programmierung

Zunächst werden die beiden Pins festgelegt und im Setup als Ein-

bzw. Ausgang definiert. Zudem wird wieder die Tabelle für die Hel-

ligkeitsstufen verwendet.

int potPin = 0; // lege potPin als Pin 0 fest

int ledPin = 9; // lege ledPin als Pin 9 fest

int potiVal = 0; // eine Variable, um den Input zu speichern

int loga[64] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,

16, 18, 20, 22, 25, 28, 30, 33, 36, 39, 42, 46, 49, 53, 56, 60,

64, 68, 72, 77, 81, 86, 90, 95, 100, 105, 110, 116, 121, 127, 132,

138, 144, 150, 156, 163, 169, 176, 182, 189, 196, 203, 210, 218,

225, 233, 240, 248, 255};

void setup() {

pinMode(ledPin, OUTPUT); // initialisiere ledPin als Output

}

102

Kapitel 3: Workshop LED-Licht

Abbildung 3-6

Aufbau für PWM-LE

Nun können der analoge Eingang gelesen und das Signal gespei-

chert werden. Anschließend werden das Signal durch 16 geteilt und

der Ausgangswert anhand des oben erklärten Sinus berechnet.

Schließlich wird der entsprechende Wert in der Logarithmustabelle

auf den digitalen Ausgang geschrieben, die LED wird nun vom

Potentiometer gesteuert.

void loop()

{

int potiVal = analogRead(potPin); // lies analoges

// Eingangssignal

potiVal = potiVal / 16; // teile den Signalwert durch 16

analogWrite(led, loga[potiVal]); // schreibe den Tabellenwert

// auf den Ausgang

delay(10);

}

Flower Power

Nicht nur die Helligkeit kann mit einem Potentiometer geregelt

werden, sondern auch die Wunschfarbe, passend zum Abendkleid.

Eine blinkende LED – das »Hello World« des Physical Computing

103

Dazu verwenden wir den Quellcode von »Mach es bunt« in diesem Kapitel und verändern nur die Funktion loop(), sodass abhängig

von der Reglerstellung eine Farbe ausgewählt wird. Nun gibt es kei-

nen einfachen Weg durch alle Farben, es muss also ein bestimmter

Verlauf einprogrammiert werden. Die 1.024, die maximal vom

Potentiometer zurückgeliefert werden, teilen wir dazu in vier Teile

auf. Im ersten Teil dimmen wir von Rot nach Grün, im zweiten Teil

von Grün nach Blau, im dritten von Blau nach Rot, und mit dem

verbleibenden Teil dimmen wir nach Weiß. Durch die Logarith-

mustabelle benötigen wir Werte von 0–63 für jede Farbe, wir kön-

nen den Potentiometerwert also noch durch 4 teilen, um in jedem

Teilabschnitt 64 Punkte zu haben.

void loop() {

int potiVal = analogRead(potPin) / 4; // lies analoges

// Eingangssignal

if (potiVal < 64)

{

// fade Rot zu Grün

analogWrite(ledPin[0], loga[63-potiVal]);// Rot

analogWrite(ledPin[1], loga[potiVal]);// Grün

analogWrite(ledPin[2], loga[0]);// Blau

}

else if (potiVal < 128)

{

// fade Grün zu Blau

analogWrite(ledPin[0], loga[0]);// Rot

analogWrite(ledPin[1], loga[127 – potiVal)]);// Grün

analogWrite(ledPin[2], loga[potiVal – 64]);// Blau

}

else if (potiVal < 192)

{

// fade Blau zu Rot

analogWrite(ledPin[0], loga[potiVal – 128]);// Rot

analogWrite(ledPin[1], loga[0]);// Grün

analogWrite(ledPin[2], loga[191 – potiVal]);// Blau

}

else

{

// fade Rot zu Weiß

analogWrite(ledPin[0], loga[63]); // Rot

analogWrite(ledPin[1], loga[255-potiVal]);// Grün

analogWrite(ledPin[2], loga[255-potiVal]);// Blau

}

}

Mehr Power

Bis jetzt wurden nur sehr kleine LEDs mit dem Arduino gesteuert,

ein Pin kann nur ca. 20 mA Strom liefern. Bei einer 3-Volt-LED ent-

spricht das 0,06 Watt. Damit bekommt man natürlich kein Zimmer

erleuchtet.

104

Kapitel 3: Workshop LED-Licht

Für größere LED können Transistoren oder Mosfets (Metalloxid-

Halbleiter-Feldeffekttransistoren) verwendet werden, die schnell

genug sind, um auch PWM für das Dimmen der LEDs zu ermögli-

chen. Transistoren sind in der Lage, mit einem kleinen Signal auf

der einen Seite einen großen Stromkreis auf der anderen zu schalten.

Transistoren haben ihren Aufschwung in den 1960er Jahren erlebt,

als sie zum ersten Mal in Form von Feldeffekttransistoren auf Gal-

liumarsenid praktikabel genug wurden. Vorher hatte man Compu-

ter mit Vakuumröhren gebaut, die man günstig herstellen konnte

und die das einzige Schaltelement waren, das auch schnell genug

für diese Anforderungen war. Ein Transistor besteht aus drei

Anschlüssen: Basis, Emitter und Kollektor. Transistoren gibt es in

den beiden Polungen NPN und PNP. Ein NPN-Transistor als

Schalter ist am besten für die negative Seite der Last geeignet (LED,

Lampe, Motor usw.), PNP für die positive. Mehr Informationenen

zu Relais und größeren Stromstärken findet man unter anderem auf

der Arduino-Seite unter: http://www.arduino.cc/playground/uploads/

 Learning/relays.pdf s owie bei der New York University unter http://

 itp.nyu.edu/physcomp/Tutorials/HighCurrentLoads.

Abbildung 3-7

Transistorausgangsschaltung

Gesteuert wird der Transistor über den Stromfluss, der in die Basis

hineinfließt. Dabei muss der Basisanschluss mindestens 0,7 Volt

Eine blinkende LED – das »Hello World« des Physical Computing

105

höher liegen als der Emitter. Dazu wird die Basis über einen Wider-

stand von 1.000–10.000 mit dem Ausgangspin des Arduino ange-

schlossen. Der Emitter wird direkt mit GND verbunden, und an

den Kollektor kommt dann die eine Seite der Last, die andere Seite

wird mit 5V verbunden. Das Schöne an dieser Schaltung ist, dass

die Spannung auch viel größer sein kann, ohne dem Arduino zu

schaden (das Maximum entnehmen Sie bitte dem Datenblatt des

Transistors). Dadurch kann man viele LEDs in einer Reihe verbin-

den oder besonders starke LEDs verwenden, um den Raum hell zu

erleuchten.

Und nun wird losgebastelt

Nun sollte es möglich sein, eine Lampe zu basteln. In den letzten

Jahren sind LEDs immer günstiger und auch heller geworden,

sodass inzwischen auch Lampen erschwinglich sind, die einen gan-

zen Raum erleuchten können. Interessant ist das insbesondere,

wenn RGB-LEDs verwendet werden, die mit der oben gezeigten

Logarithmustabelle immerhin 262.144 Farben darstellen können.

Um noch weichere Farbübergänge zu erzeugen, müsste eine PWM

von mehr als 8 Bit verwendet werden. Ein weiterer Vorteil von

LEDs ist ihre Größe: Glühbirnen oder Leuchtstofflampen benöti-

gen recht viel Platz, während Leuchtdioden sehr klein sind und in

Tischtennisbälle, kleine Kästen, Flaschen und allerhand andere

Behältnisse passen. Doch Vorsicht: Auch LEDs können je nach

Stärke sehr heiß werden und müssen womöglich auf einen Kühl-

körper aufgebracht werden (die gibt es inzwischen auch im Fach-

handel, zum Beispiel in Onlineshops, die LEDs verkaufen). Man

kann aber auch einen CPU-Kühler aus einem alten PC verbauen.

Wichtig ist dabei allerdings, dass der Körper auch ausreichend groß

ist und man Wärmeleitpaste verwendet.

Mit den sechs PWM-fähigen Pins des Arduino können zwei RGB-

LEDs angeschlossen und entsprechend gepulst werden. Bringt man

diese Lichter in entsprechender Stärke an zwei Enden des Raumes

an oder lässt sie in entgegengesetzte Richtungen entlang einer

Wand leuchten, ergeben sich schöne und stimmungsvolle Effekte.

Diese Lampe lässt sich natürlich auch mit weiteren Sensoren aus-

statten. Möglich ist zum Beispiel ein Mikrofon, das an einen Tief-

passfilter angeschlossen wird und die Lampe pulsen lässt, wenn ein

Bass ertönt. Oder man nimmt einen passenden Gassensor, der das

Licht melden lässt, wenn die Konzentration eines bestimmten Stof-

fes in der Luft zu hoch wird. Eine entsprechende Anleitung finden

106

Kapitel 3: Workshop LED-Licht

Sie z.B. unter http://www.instructables.com/id/How-To-Smell-Pol-

 lutants/?ALLSTEPS.

Ein anderes mögliches Projekt könnte ein Lichtwecker sein, wie er

für viel Geld auch im Handel erhältlich ist. Dabei wird eine Lampe

ab einer festgelegten Uhrzeit allmählich immer heller, um Dämme-

rung und Sonnenaufgang zu simulieren. Einen solchen Wecker hat

zum Beispiel Mark Ivey gebaut und unter http://zovirl.com/2008/12/

 11/arduino-prototype-for-a-sunrise-alarm/ erläutert.

Ein gelungenes Beispiel ist die Milk Lamp von David Hayward, die

aus einer Reihe an der Decke hängender Milchlampen mit weißen

LEDs darin besteht. Beim Dimmen werden diese nicht wie gewohnt

heller und dunkler geregelt, sondern sie werden der Reihe nach ein-

und ausgeschaltet. Eine genaue Beschreibung des Projekts, das mit-

hilfe der Informationen aus diesem Kapitel auch nachprogrammiert

werden kann, finden Sie unter http://functional-autonomy.net/blog/

 ?p=442.

Eine blinkende LED – das »Hello World« des Physical Computing

107

KAPITEL 4

In diesem Kapitel:

LEDs für Fortgeschrittene

• LED-Matrix

• Animationen

• Interrupts

• Tamagotchi

• Brainwave und Biofeedback

Nun soll mit LEDs ein wenig mehr passieren, als nur Licht zu

machen. In diesem Kapitel wird es zunächst darum gehen, viele

LEDs zu steuern, wozu diese in einer sogenannten Matrix verschal-

tet werden. Damit soll dann eine kleine Art Tamagotchi selbst

gebaut werden. Den Abschluss macht eine Gehirnwellenmaschine,

die mit blinkendem Licht und Ton für Entspannung im Gehirn des

Benutzers sorgen soll.

LED-Matrix

Reichen die 14 digitalen Pins nicht aus, gibt es die Möglichkeit, mit

einer Matrix zu arbeiten. Dabei werden Reihen und Zeilen jeweils

an einen Pin angeschlossen und die einzelnen Elemente der Matrix

über eine Kombination der beiden angesprochen. Die einfachste

Darstellungsform ist natürlich, wenn diese Matrizes auch als solche

sichtbar sind, die LEDs also in Rechteckform angeordnet sind. Für

7x5 Bildpunkte benötigt man zwölf digitale Pins; damit kann man

kleine Piktogramme oder Laufschrift anzeigen. Oder man program-

miert kleine Spiele, die nicht mehr als diese 35 Punkte benötigen,

wie das bekannte Schlangenspiel, in dem eine sich bewegende

Schlange aus Punkten größer wird, wenn sie andere leuchtende

Bildpunkte auffrisst. Die wohl größte Matrix dieser Art wurde beim

Blinkenlights-Projekt konstruiert, das schon in Kapitel 1 erwähnt wurde: 18x8 Fenster eines Hochhauses dienten dabei als Bildpunkte eines Displays. Dort wurden kleine Animationen angezeigt,

die man mit einem eigenen Programm erschaffen und hochladen

konnte. Zudem war es möglich, mit einem Handy auf einer Num-

mer anzurufen und die Paddel eines Pong-Spiels mit den Tastentö-

109

nen zu steuern. In weiteren Varianten wurde das Projekt sogar noch

ausgebaut und 2008 wurde das Rathaus von Toronto in ein Display

von insgesamt 960 Bildpunkten verwandelt.

Im Alltag findet man solche LED-Matrizen zum Beispiel in den

Laufschrift-Displays, mit denen kleinere Geschäfte für aktuelle

Angebote werben. Es gibt aber zum Beispiel auch Gürtelschnallen,

auf denen man Laufschriften anzeigen kann. Diese können meist

direkt programmiert werden, es spricht aber auch nichts dagegen,

sie an einen Arduino anzuschließen. Neben kleinen Blinkprojekten

kann man solche Displays auch verwenden, um Informationen dar-

zustellen. Oft reichen die im Vergleich zu LC-Displays viel günsti-

geren LEDs aus.

Für den nun folgenden Workshop wurde eine Kingbright TA20-

11EWA LED-Matrix verwendet. Sie besteht aus sieben Reihen und

fünf Spalten; diese oder baugleiche LED-Matrizes sind für wenig

Geld in fast jedem Fachgeschäft und -Versand erhältlich. Natürlich

funktioniert das auch mit einzelnen LEDs, nur ist der Lötaufwand

dabei größer. Mit einer einfachen Google-Suche findet man das

entsprechende Datenblatt, unter anderem direkt beim Hersteller

Kingbright oder bei Alldatasheet.com (http://www.alldatasheet.

 com/datasheet-pdf/pdf/232968/KINGBRIGHT/TA20-11EWA.html).

Die Matrix ist in Deutschland unter anderem bei Reichelt (http://

 www.reichelt.de) erhältlich.

Die Funktionsweise ist recht einfach: Strom kann bei einer LED nur

von der Anode zur Kathode fließen. Wird also eine höhere Span-

nung an die Kathode als an die Anode angelegt, kann kein Strom

fließen, die LED bleibt dunkel. Schließt man die Anoden der LEDs

spaltenweise und die Kathoden zeilenweise an eine Spannungs-

quelle an, kann man einzelne Dioden individuell ansteuern, indem

man ein Signal auf eine Spalte gibt und einzelne Zeilen auf LOW

schaltet.

Würde man es dabei belassen, könnte man immer nur bestimmte

Muster anzeigen, denn ist eine Zeile auf LOW geschaltet, leuchten

alle LEDs in dieser Zeile bei entsprechendem Signal auf der Spalte

auf. Abhilfe schafft die Darstellung des gewünschten Bildes Zeile

für Zeile in einer schnell durchlaufenden Schleife, die für das Auge

den gleichen Effekt hat wie die in Kapitel 3 beschriebene Pulsweitenmodulation: Bei entsprechend schneller Wiederholung kann das

menschliche Auge kein Flackern mehr erkennen.

110

Kapitel 4: LEDs für Fortgeschrittene

Eine andere Form des LED-Displays ist das sogenannte Siebenseg-

 ment. Dabei handelt es sich um die von vielen Anzeigen bekannten

kastenförmigen Zahlenanzeigen, die aus sieben einzelnen Segmen-

ten (vier vertikal und drei horizontal) bestehen. Diese Displays kön-

nen nach dem gleichen Prinzip wie die Matrix programmiert

werden. Für den Arduino gibt es in den USA schon fertige Shields,

die für 49 Dollar mit einem solchen Display und einem Tempera-

tursensor ausgestattet sind. Wer den teuren Import nicht bezahlen

möchte, kann auch im hiesigen Elektronikfachhandel einzelne Dis-

plays beziehen, muss sie allerdings selbst anbringen.

Diese Anzeigen eignen sich besonders gut dazu, Sensordaten direkt

darzustellen. Man kann sie also zum Beispiel für ein eigenes Ther-

mometer oder einen Luftfeuchtigkeitssensor verwenden, oder man

bastelt sich einen Tacho fürs Fahrrad, wenn man auf ein LCD ver-

zichten möchte.

Hardware

Das Datenblatt zeigt für die Reihen eine Belegung für die Matrix-

Pins 9, 14, 8, 12/5, 1, 7 und 2 an. Die Spalten werden an 13, 3,

4/11, 10 und 6 angeschlossen. Zwei Pins sind damit doppelt

verfügbar, was beim Verlöten mehr Freiheiten erlaubt. In diesem

Beispiel werden die Reihen an die Arduino-Pins 1–7, die Spalten an

8–12 angeschlossen. Die Schaltung lässt sich am besten auf eine

Lochrasterplatine löten.

Abbildung 4-1

LED-Matrix, Lochrasterplatine

LED-Matrix

111

Abbildung 4-2

LED-Matrix, Lochrasterplatine

Software

Zunächst werden die Reihen in Arrays dargestellt und mit den ent-

sprechenden Pins verbunden:

// definiere Zeilen und Spalten als Array vom Typ uint8_t

uint8_t rows[7] = {1, 2, 3, 4, 5, 6, 7};

uint8_t columns[5] = {8, 9, 10, 11, 12};

void setup() {

for (int i = 0; i < 7; i++) {

pinMode(rows[i], OUTPUT);

}

for (int i = 0; i < 5; i++) {

pinMode(columns[i], OUTPUT);

}

}

Zudem wird eine Datenstruktur benötigt, die abbilden kann, was

die Matrix darstellen soll. Da die Elemente von Arrays nicht aus

Variablen bestehen müssen, können Arrays auch wiederum Arrays

enthalten. Man spricht von mehrdimensionalen Arrays, in diesem

Fall von zweidimensionalen. In unserem Projekt soll zunächst eine

Diagonale leuchten, die entsprechenden Werte des Arrays werden

also auf 1 gesetzt, der Rest auf 0. Eine genaue Beschreibung von

ein- und mehrdimensionalen Arrays finden Sie im Anhang.

// Definiere eine 7x5-Matrix. uint8_t ist eine vorzeichenlose

// 8-Bit-Integer-Variable. Setze das Muster so, dass eine

// Diagonale angezeigt wird.

uint8_t matrix[7][5] = {

{ 1, 0, 0, 0, 0},

{ 0, 1, 0, 0, 0},

{ 0, 1, 0, 0, 0},

{ 0, 0, 1, 0, 0},

{ 0, 0, 1, 0, 0},

{ 0, 0, 0, 1, 0},

{ 0, 0, 0, 0, 1},

};

112

Kapitel 4: LEDs für Fortgeschrittene

Nun muss die Matrix nur noch spaltenweise angezeigt werden.

Dazu wird eine Funktion showMatrix definiert, die aus einer Schleife

besteht. Für jede Spalte wird ein Schleifendurchlauf benötigt.

Zunächst werden alle Zeilenwerte für die entsprechende Spalte aus-

gegeben, indem der negative Wert des entsprechenden Matrixein-

trags als Signal geschrieben wird. Das geschieht durch den

sogenannten Negationsoperator, das Ausrufezeichen. Danach wird

die aktuelle Zeile eingeschaltet; die Funktion wartet eine Milli-

sekunde und schaltet sie danach wieder aus, um keinen Konflikt

mit der nächsten Zeile, also dem nächsten Schleifendurchlauf zu

produzieren.

void showMatrix() {

// durchlaufe alle fünf Spalten

for (int x = 0; x < 5; x++) {

// setze vorherige Zeile auf 0

// für jede Zeile setze den Wert der Matrix auf den

//entsprechenden Pin

for (int y = 0; y < 7; y++) {

digitalWrite(rows[y], !matrix[y][x]);

}

// setze aktuelle Spalte auf 1

digitalWrite(columns[x], 1);

delay(1);

// Lösche aktuelle Spalte

digitalWrite(columns[x], 0);

}

}

Nun muss diese Funktion nur noch in loop() aufgerufen werden,

um die Matrix anzuzeigen.

Aufgabe:

Die Werte der Matrix verändern und somit ein Muster anzeigen.

Animationen

Nun sollen nicht nur statische Muster angezeigt werden, sondern

eine kleine Animation. Das Setup soll zunächst gleich bleiben,

hinzu kommen einige Funktionen, um die Anzeige zu verändern.

Programmierung

Zunächst wird eine Funktion benötigt, die die Matrix löscht und

neu initialisiert. Es ist wichtig, die Matrix immer wieder komplett

Animationen

113

auf null zu setzen, weil es sonst möglich ist, dass alte Pixel ihren

Wert behalten. Um die Matrix zu löschen, wird eine geschachtelte

Schleife verwendet, um beide Dimensionen zu durchlaufen, also

die x- und die y-Achse der Matrix.

// setze die Matrix auf 0

void clearMatrix() {

// für jede Reihe

for (int x = 0; x < 7; x++) {

// für jede Spalte

for (int y = 0; y < 5; y++) {

// setze das Matrixelement auf 0

matrix[x][y] = 0;

}

}

}

Nun soll in jedem Durchlauf von changeMatrix eine weitere LED

angeschaltet werden. Dazu werden wiederum eine Schleife für die

Reihen und eine für die Spalten benötigt. In der Spaltenschleife

wird pro Durchlauf ein weiteres Matrixelement auf 1 gesetzt, die

Lichter gehen also nacheinander an. Anschließend wird die Matrix

angezeigt. Um diese Anzeige ein wenig zu verzögern, wird jeder

Schritt 50 Mal angezeigt und am Ende der Funktion showMatrix

eine zusätzliche Verzögerung von einer Millisekunde pro Reihe ein-

gebaut:

void loop() {

// setze die Matrix auf 0

clearMatrix();

// für jede Reihe

for (int x = 0; x < 7; x++) {

// für jede Spalte

for (int y = 0; y < 5; y++) {

// setze den Wert des aktuellen Elements auf 1

matrix[x][y] = 1;

// zeige die aktuelle Matrix 50 Mal an

for (int i = 0; i < 50; i++) {

showMatrix();

}

}

}

Aufgabe:

Eine Animation erstellen, bei der eine leuchtende Zeile von oben

nach unten wandert.

114

Kapitel 4: LEDs für Fortgeschrittene

Interrupts

Betrachtet man die Matrix genauer, die oben angesteuert wird, fällt

auf, dass die LEDs sehr instabil blinken. Manche sind heller als

andere, und wenn man genauer hinsieht, erkennt man manchmal

ein Flackern. Das liegt daran, dass beim Kompilieren noch viel

mehr Code hinzugefügt wird. Der Prozessor arbeitet also keines-

wegs nur die im Programm angegebenen Anweisungen ab.

Will man nun die Matrix parallel zu etwas anderem laufen lassen,

etwa während Sensoren abgefragt werden, verschlimmert sich das

Problem weiterhin. Abhilfe schaffen sogenannte Interrupts, die die

Prioritäten im Programmablauf verändern können. Interrupts unter-

brechen das Programm abhängig von externen Ereignissen wie

Timer (eine Art Wecker) oder wenn zum Beispiel Daten über die

serielle Schnittstelle angekommen sind. Nachdem der Interrupt sei-

nen Code ausgeführt hat, fährt das Programm dort fort, wo es auf-

gehört hat. Interrupts sind allerdings mit Vorsicht zu behandeln und

können besonders für Einsteiger reichlich komplex sein. Es emp-

fiehlt sich also, zunächst einige Erfahrung mit dem Arduino – oder

generell mit Programmierung – zu sammeln, bevor man sich daran

setzt.

Interrupts sind kein eigentlicher Bestandteil der Arduino-Program-

miersprache. Es wird also eine externe Library benötigt, die

Bestandteil des avr-Pakets ist, das wiederum schon bei der Pro-

grammierumgebung dabei ist. Mit

#include <avr/interrupt.h>

#include <avr/io.h>

werden die beiden nötigen Bibliotheken eingebunden.

Als Nächstes werden, wie schon zuvor, die Zeilen und Spalten der

Matrix auf die Pins gelegt. Dabei ist es wichtig, dass die Pins der

Reihen nicht verändert werden. Das hängt damit zusammen, dass

dann alle Pins auf einen Rutsch geschrieben werden können. Die

Funktion digitalWrite() wäre an dieser Stelle viel zu langsam.

uint8_t matrix_rows[7] = {

1, 2, 3, 4, 5, 6, 7};

uint8_t matrix_columns[5] = {

8, 9, 10, 11, 12};

Nun muss dem Arduino noch mitgeteilt werden, dass ein soge-

nannter Timer-Interrupt benötigt wird. Dazu werden ein paar

Werte in spezielle Register geschrieben. Diese starten einen inter-

Interrupts

115

nen Zähler, der das Programm dann regelmäßig unterbricht und

die Interrupt-Funktion aufruft.

unsigned char Matrix_SetupTimer2(){

// Timer2 Settings: Timer Prescaler /8, mode 0

// Timer clock = 16MHz/8 = 2Mhz or 0.5us

TCCR2A = 0;

TCCR2B = 0<<CS22 | 1<<CS21 | 1<<CS20;

// Timer2 Overflow Interrupt Enable

TIMSK2 = 1<<TOIE2;

}

Es folgt die eigentliche Interrupt-Funktion:

// Bildspeicher für die Matrix

// gefüllt mit einer diagonalen Linie zum Testen

uint8_t matrix[5] = {

2+64, 4+128, 8, 16, 32};

// aktuelle Spalte für die Interruptausgabe

uint8_t matrix_col;

// Timer2 Interruptfunktion / wird in regelmäßigen Abständen

// aufgerufen, ohne dass man sich darum kümmern muss

ISR(TIMER2_OVF_vect) {

// setze aktuelle Spalte auf 0

digitalWrite(matrix_columns[matrix_col], 0);

matrix_col++;

if (matrix_col >= 5) matrix_col = 0;

PORTD = ~ matrix[matrix_col];

// setze aktuelle Spalte auf 1

digitalWrite(matrix_columns[matrix_col], 1);

}

Hier passiert die eigentliche Arbeit: Als Erstes wird die zuletzt

aktive Zeile ausgeschaltet. Dann wird die nächste bestimmt und die

Daten dafür ausgegeben, und gleich danach wird diese Zeile dann

aktiviert.

Relativ ungewohnt für ein Arduino-Programm ist die Zeile, die mit

PORTD beginnt. PORTD ist eine acht Bit breite Speicherstelle im

Atmel (dem Arduino-Mikrocontroller), die direkt den Zustand der

Pins 0–7 beschreibt. Alle Werte, die dorthin geschrieben werden,

erscheinen direkt als HIGH- und LOW-Signal auf den entsprechenden

Pins. Eine Null würde zum Beispiel alle Pins auf null setzen. Eine 85

würde jeden zweiten Pin auf HIGH und alle anderen auf null setzen,

da die 85 binär geschrieben 01010101 entspricht.

Der Tildenoperator (~) hat hier die Aufgabe, alle Bits umzudrehen:

Aus Einsen macht er Nullen und umgekehrt. Das ist notwendig,

weil an diesen Pins ja die Kathoden der LEDs angeschlossen sind,

die leuchten, wenn die Kathode LOW = 0 ist, und nicht (wie man

zuerst erwarten würde) bei HIGH = 1. Im Programmiersprachenan-

116

Kapitel 4: LEDs für Fortgeschrittene

hang finden Sie noch mehr Informationen über Operatoren und ihr

Verhalten und ihre Verwendung. Um Operatoren zu verstehen,

sollten Sie sich also dort weiter informieren.

Das Schöne an dieser Lösung ist, dass alles, was in die Matrixvari-

able geschrieben wird, einfach dargestellt wird und man dann in

der Funktion loop() keine Einschränkungen mehr hat, die das

Timing der Matrix betreffen.

Buchstaben

Nun macht es keinen Spaß, Buchstaben und Symbole Pixel für

Pixel mit SetPixel(x,y) zu zeichnen; deshalb gibt es dafür eine

kleine Tabelle, die alle kleinen und großen Buchstaben und die

Zahlen enthält. Die Funktion DisplayChar() holt diese dann aus

dem Speicher und kopiert sie in die Variable matrix.

Damit können kleinere Texte und Symbole auf der LED-Matrix

ausgegeben werden.

void SetPixel(uint8_t x, uint8_t y)

{

matrix[x] |= _BV(y+1);

}

void ClrPixel(uint8_t x, uint8_t y)

{

matrix[x] &= ~_BV(y+1);

}

void ClrMatrix(void)

{

for(uint8_t x = 0; x <= 5; x++){

matrix[x] = 0;

}

}

static unsigned char __attribute__ ((progmem)) Font5x7[] = {

0x7E, 0x11, 0x11, 0x11, 0x7E,// A

0x7F, 0x49, 0x49, 0x49, 0x36,// B

0x3E, 0x41, 0x41, 0x41, 0x22,// C

0x7F, 0x41, 0x41, 0x22, 0x1C,// D

0x7F, 0x49, 0x49, 0x49, 0x41,// E

0x7F, 0x09, 0x09, 0x01, 0x01,// F

(....komplettes Listing auf der Webseite....)

};

void DisplayChar(uint8_t c)

{

for(uint8_t i = 0; i <= 4; i++)

{

matrix[i] = pgm_read_byte(&Font5x7[((c – 0x10) * 5) + i])

<< 1;

Interrupts

117

Hinweis

Die Daten für das Aussehen der Buchstaben werden im Flash-

speicher des Arduinos gespeichert, anders als beim Ramspei-

cher kann auf das Flash leider nicht direkt zugegriffen werden.

Dazu wird die Funktion pgm_read_byte(adresse) benötigt. Diese

bekommt als Parameter die Adresse, welche gelesen werden

soll, und liefert dann den Wert an dieser Stelle in Flash zurück.

Im ASCII-Zeichensatz (Das ist die Tabelle, die der Computer ver-

wendet, um Zahlen zu Buchstaben zuzuordnen) sind für uns

nicht alle Bereiche wichtig, die Tabelle fängt deswegen erst

beim 16ten Buchstaben an. Also wird als erstes 16 oder 0x10

(Hexadezimale Schreibweise) vom gewünschten Zeichen »c«

subtrahiert.

Da jeder einzelne Buchstabe aus 5 Bytes besteht, wird das

Resultat jetzt mit 5 multipliziert, das ist jetzt die Nummer des

ersten Eintrags in der Tabelle Font5x7 für den Buchstaben »c«.

Bei jedem der 5 Schleifendurchläufe (für einen Buchstaben)

erhöht sich i um eins, so das nach und nach alle 5 Bytes eines

Buchstabens verarbeitet werden.

Das Zeichen »&« vor dem Font5x7[...] bewirkt dabei, dass die

Adresse des Bytes innerhalb der Tabelle zurückgeliefert wird

um dann mit der Funktion pgm_read_byte das tatsächliche Byte

lesen zu können.

}

}

void loop() {

for (uint8_t i = 0; i < 32; i++)

{

DisplayChar('A'+i); // Zeige

Buchstaben an.

delay(500);

DisplayChar(0x10+i); // Zeige

Gesichter an.

delay(500);

}

}

Tamagotchi

Tamagotchis sorgten im Jahr 1997 für einen Ansturm auf Kaufhäu-

ser und Spielzeugläden in Deutschland und verschwanden dann

fast ebenso schnell in der Versenkung, wie sie gekommen waren.

Im Jahr 2004 wurde die Serie noch einmal aufgelegt, wenn auch mit

keinem zur Urversion vergleichbaren Erfolg in Deutschland. Ein

Tamagotchi ist ein kleines Plastikei mit einem LCD, auf dem ein

kleines Küken dargestellt ist. Dieses Küken gibt vor zu leben und

benötigt regelmäßig Wasser, Futter und Zuneigung. Nach und

nach entwickelt es eine eigene kleine Persönlichkeit, die individuell

118

Kapitel 4: LEDs für Fortgeschrittene

festlegt, wann das Tamagotchi um Aufmerksamkeit piepst. Die

neueren Versionen sind in der Lage, sich auch mit anderen zu ver-

binden und zum Beispiel zu heiraten. Die Grundidee bleibt aber die

gleiche: ein virtuelles Haustier, das nicht so anspruchsvoll ist wie

ein echtes und damit auch für diejenigen Kinder geeignet, deren

Eltern einem echten Lebewesen kein Risiko zumuten wollen. Hier

soll nun ein eigenes kleines Haustier gebaut werden, das die oben

beschriebene LED-Matrix verwendet. Um das Projekt von dem im

Handel verfügbaren Spielzeug abzuheben, soll es »Ardugotchi« hei-

ßen. Das Ardugotchi ist ein sehr glückliches Lebewesen; es ernährt

sich von Elektronen, braucht also nie gefüttert zu werden, freut sich

allerdings über Geräusche und Musik.

Hardware

Wir verbinden das Mikrofon wie auf der Zeichnung mit dem Tran-

sistor und dem Arduino-Board, damit das Ardugotchi auch etwas

hören kann. Ansonsten bleibt die Matrix aus den vorigen Projekten

bestehen.

Abbildung 4-3

Tamagotchi-Schaltung

Software

Zunächst kann der Programmcode des vorigen Beispiels übernom-

men werden, mit dem die Matrix angezeigt wird. Einige Bilder kön-

nen hineingeladen werden, die die verschiedenen Gefühlszustände

des Tierchens beschreiben. Sie sind bereits in der Zeichentabelle

enthalten und unter den Codes 0x10 bis 0x1f zu finden. Den kom-

pletten Code finden Sie auf der entsprechenden Buchseite bei http://

 arduinobuch.wordpress.com.

Tamagotchi

119

Die Spannung am analogen Eingang 0, an den das Mikrofon ange-

schlossen ist, wird eingelesen und mit dem Mittelwert der letzten

100 Messungen verglichen. Ist der Wert deutlich größer, so wechselt

das Ardugotchi seinen Gesichtsausdruck. Um Gesichter darstellen

zu können, enthält die Zeichentabelle 16 verschiedene Muster, sie

können mit DisplayChar(0x10+gesicht) angezeigt werden.

int laut;

int laut_mittelwert;

int sad;

int gesicht;

// Dieser Wert muss je nach verwendetem Mikrofon angepasst werden.

// Kleinere Werte machen den Ardugotchi dabei empfindlicher.

int schwelle = 50;

void loop() {

 laut = analogRead(0);

 // Mittelwert über die letzten gemessenen Werte, wobei der neue

 // jeweils 1/100 zählt.

 laut_mittelwert = (laut_mittelwert*99 + laut)/100;

 if ((laut – laut_mittelwert) > schwelle)

 {

 // nächstes Gesicht auswählen, am Ende wieder zum Anfang

 // springen

 gesicht++;

 if (gesicht > 15) gesicht = 1;

 // Mittelwert anpassen, damit nicht gleich wieder ein Peak

 // erkannt wird.

 laut_mittelwert = laut;

 // Den Zähler für die schlechte Laune wieder auf 0 setzen

 sad = 0;

 }

 // Hört das Ardugotchi lange genug kein Geräusch, soll es sich

 // einsam fühlen und ein entsprechendes Gesicht anzeigen.

 sad++;

 if (sad > 10000)

 {

 // den Wert auf 10000 begrenzen, sonst ensteht ein Überlauf

 sad = 10000;

 // Schlecht gelauntes Gesicht auswählen

 gesicht = 0;

 }

 DisplayChar(0x10+gesicht); // Zeige Gesichter an.

 // Geschwindigkeit auf 10x Sekunde begrenzen

 delay(100);

}

120

Kapitel 4: LEDs für Fortgeschrittene

Brainwave und Biofeedback

Da ein Teil der Kommunikation unserer Nervenzellen mit kleinen

Spannungsimpulsen funktioniert, können mit empfindlichen Elek-

troden am Kopf verschiedene Aktivitätslevel gemessen werden.

Diese Messung erlaubt allerdings keine genauere Auswertung. Man

kann sich das ungefähr so vorstellen wie wenn man anhand des

Geräuschpegels eines Stadions erkennt, dass ein Tor gefallen ist.

Interessant ist, dass die Aktivitätslevel in periodischen Wellen auf-

treten. Die Abstände dieser Wellen werden grob verschiedenen

Gehirnzuständen zugeordnet.

• Deltawellen weisen die niedrigste Frequenz auf (1–4 Hertz).

Sie werden zum Beispiel in der Tiefschlafphase emittiert, wenn

das Gehirn nicht träumt. Auch werden diese Wellen bei

Bewusstlosigkeit oder intuitivem, unbewusstem Verhalten

gemessen. In diesem Zustand wird das Gehirn nur bei starken

Reizen aktiv.

• Thetawellen liegen zwischen 4 und 7 Hertz und treten vor

allem in leichten Schlafphasen auf, aber auch bei unbewussten,

kreativen Denkprozessen oder Zuständen tiefer Entspannung

wie etwa Meditation.

• Alphawellen liegen im Bereich zwischen 8 und 13 Hertz. Ein

großer Teil dieser Wellen wird mit leichter Entspannung asso-

ziiert, zum Beispiel mit geschlossenen Augen. Das Gehirn ist

im Empfangsmodus, verhält sich aber passiv.

• Betawellen (14–30 Hz) sind der normale, aktive Zustand. Das

Gehirn ist wach und bei vollem Bewusstsein. Nachdenken und

Konzentration gehören ebenfalls dazu. Sie treten aber auch

zum Beispiel im REM-Schlaf auf.

• Als Gammawellen wird der Frequenzbereich über 30 Hertz

bezeichnet. Sie treten zum Beispiel bei starker Konzentration

und Lernprozessen auf, aber auch in Angst- und Stresszustän-

den. Gammawellen sind allerdings bislang nicht gut erforscht.

• Oft geschieht es nun, dass man selbst Entspannung sucht, aber

aufgrund der Hektik des Tages und der Umgebung nicht ruhig

genug wird, um von der aktiven Betawellenphase auf Alpha

herunterzukommen. Diesen Zustand kann man nun errei-

chen, indem man meditiert oder beispielsweise Yoga macht.

Man kann versuchen, diesen Zustand auch mit externen Mit-

teln wie Lichtimpulsen oder Musik herbeizuführen.

Brainwave und Biofeedback

121

Die Brain Machine

Die Theorie, die dieser Brain Machine zugrunde liegt, geht davon

aus, dass über das Auge aufgenommene Lichtblitze die Aktivitäts-

wellen im Gehirn verändern können. Treffen Lichtblitze mit 2,2

Hertz aufs Auge auf, werden vom Gehirn Deltawellen emittiert.

Natürlich bedeutet das nicht automatisch, dass das Gehirn in die-

sen Zustand fällt, nur weil es mit entsprechendem Licht bombar-

diert wird. Aber eine geschickte Programmierung und ein bisschen

Training können durchaus zu gewünschten Ergebnissen führen.

Eine interessante Ressource zu Gehirnforschung und verwandten

themen bietet Arvid Leyh unter www.nurindeinemkopf.de.

Abbildung 4-4

Im Folgenden soll nun eine Gehirnmaschine gebaut werden, die in

BrainMachine

der Lage ist, das menschliche Gehirn in einen Zustand der Entspan-

nung zu versetzen. Dabei sorgen an einer Brille angebrachte LEDs

für die Lichtimpulse. Zudem wird versucht, das Ergebnis mit

binauralen Klängen auf Kopfhörern noch zu steigern. Binaural

bedeutet wörtlich übersetzt »Zwei-ohrig«, man hört Unterschiedli-

ches auf beiden Ohren. Da wir so tiefe Frequenzen wie Deltawellen

nicht hören können, spielen wir einen höheren Ton, der vom rech-

ten zum linken Ohr genau um die gewünschte Frequenz auseinan-

derliegt. Die Überlagerung dieser zwei Töne erzeugt ein Pulsieren

in der gewünschten Frequenz.

Setup

Für die Brain Machine werden einige Bauteile benötigt, allem voran

eine Brille, um die LEDs vor dem Auge zu positionieren. Dafür

genügt eine einfache Schutzbrille aus dem Baumarkt. Um die Elek-

122

Kapitel 4: LEDs für Fortgeschrittene

tronik auf dieser Brille anzubringen, sollten Sie mit Silikonkleber

oder Heißkleber arbeiten. Zudem werden zwei helle rote LEDs,

passende Widerstände (siehe Kapitel 3), ein Kopfhörer und eine passende Klinkenbuchse benötigt.

Zunächst markiert man auf jedem Brillenglas einen Punkt, der

direkt vor den Augen sitzt. Dort wird anschließend ein Loch

gebohrt, durch das die LED gesteckt wird. Wenn die LED also

direkt in die Pupille zeigt, wird sie mit Klebematerial fixiert und

über einen Widerstand mit einem digitalen Arduino-Pin verbunden.

Als Nächstes muss die Klinkenbuchse korrekt angeschlossen wer-

den. Sie besteht aus drei Anschlüssen: Der äußerste ist für die

Masse, wird also mit GND verbunden. Die anderen beiden sind für

die Tonsignale. Bei der Brain Machine ist es unwichtig, welche Fre-

quenz auf welchem Ohr ertönt. Die Töne werden durch eine

schnelle Pulsweitenmodulation erzeugt, wobei es angenehmer sein

kann, sie noch ein wenig zu filtern, bevor sie auf den Kopfhörer

gegeben werden. Andernfalls kann das Ergebnis relativ schrill klin-

gen. Für den Tiefpass kann man einen Widerstand von 1.000 Ohm

und einen 100-nF-Kondensator verwenden.

Damit ist die Brain Machine im Grunde fertig. Für den ersten Test

Abbildung 4-5

BrainMachine-Schaltung

empfiehlt es sich, alles unberührt zu lassen; möchte man die Brille

Brainwave und Biofeedback

123

dann permanent verwenden, sollte man mit Schrumpfschläuchen,

Klebeband und Heiß- oder Silikonkleber alles so anbringen, dass es

stabil sitzt. Zum Schluss kann man die Brillengläser noch mit

Papier oder Pappe abdichten. Unter http://makezine.com/10/brain-

 wave können Sie ein passendes Muster herunterladen, das die Brille

ein wenig psychedelisch aussehen lässt.

Programmierung

Wie eingangs erwähnt, müssen für die verschiedenen Gehirnwellen

passende Frequenzen auf den LEDs und im Kopfhörer erzeugt wer-

den. Dazu werden zunächst die nötigen Pins deklariert:

int ledPin1 = 4; // LED rechtes Auge

int ledPin2 = 5; // LED linkes Auge

int speakerPin1 = 11; // Kopfhörer rechtes Ohr

int speakerPin2 = 3; // Kopfhörer linkes Ohr

volatile uint16_t sample1; // welches ist das nächste Sample aus

// der Sinustabelle

volatile uint16_t sample2; // die oberen 7 Bit zeigen in die

// Tabelle, die restlichen Bits sind

// Kommastellen

int diff = 5; // Differenz der beiden Töne in

// update-ticks

int tone = 500; // Frequenz der beiden Töne in

// update-ticks

int vol = 0; // aktuelle Lautstärke

int set_vol = 0; // gewünschte Lautstärke

Um Daten mit der Interrupt-Funktion auszutauschen, werden diese

in gemeinsam mit dem normalen Programm genutzte Variablen

geschrieben. diff gibt den Frequenzunterschied der beiden Tonka-

näle und die Pulsfrequenz der LED an. Der Maßstab dieser Variab-

len ist, um wie viel der Sample-Zähler 8.000 Mal pro Sekunde

erhöht werden muss, um die gewünschte Frequenz zu erreichen.

Diese Berechnung unternimmt eine gesonderte Funktion. Dadurch

braucht diese Berechnung nur bei einer Tonänderung durchgeführt

zu werden, was Rechenkapazität spart.

Schön weich klingende Töne erhält man mit einer Sinusfunktion.

Da das Berechnen eines Sinus viel Zeit beansprucht, wird hier eine

Vorberechnung auf dem PC verwendet, sodass die folgende Tabelle

exakt 128 Werte lang ist. Da die Sinusfunktion sich nach 2ð wie-

derholt, erhält man den Sinus einer Zahl, wenn man an der Stelle

 Zahl modulo 128 in der Tabelle nachschlägt. Modulo 128 bedeutet,

dass die Zahl durch 128 geteilt und der Rest zurückgegeben wird.

Das ist für einen Prozessor wiederum besonders einfach zu berech-

nen, es müssen nur alle Bits größer 128 weggelassen werden.

124

Kapitel 4: LEDs für Fortgeschrittene

//prog_uint8_t sintab[] = {

const unsigned char sintab[] PROGMEM = {

0x01,0x01,0x01,0x01,0x02,0x03,0x05,0x07,

0x09,0x0c,0x0f,0x12,0x15,0x19,0x1c,0x21,

0x25,0x29,0x2e,0x33,0x38,0x3d,0x43,0x48,

0x4e,0x54,0x5a,0x60,0x66,0x6c,0x73,0x79,

0x7f,0x85,0x8b,0x92,0x98,0x9e,0xa4,0xaa,

0xb0,0xb6,0xbb,0xc1,0xc6,0xcb,0xd0,0xd5,

0xd9,0xdd,0xe2,0xe5,0xe9,0xec,0xef,0xf2,

0xf5,0xf7,0xf9,0xfb,0xfc,0xfd,0xfe,0xfe,

0xfe,0xfe,0xfe,0xfd,0xfc,0xfb,0xf9,0xf7,

0xf5,0xf2,0xef,0xec,0xe9,0xe5,0xe2,0xdd,

0xd9,0xd5,0xd0,0xcb,0xc6,0xc1,0xbb,0xb6,

0xb0,0xaa,0xa4,0x9e,0x98,0x92,0x8b,0x85,

0x7f,0x79,0x73,0x6c,0x66,0x60,0x5a,0x54,

0x4e,0x48,0x43,0x3d,0x38,0x33,0x2e,0x29,

0x25,0x21,0x1c,0x19,0x15,0x12,0x0f,0x0c,

0x09,0x07,0x05,0x03,0x02,0x01,0x01,0x01

};

Diese Tabelle gibt es auch auf der Webseite zum Buch: http://ardu-

 inobuch.wordpress.com herunterzuladen.

Nun folgt schon die komplizierteste Funktion im Programm, die

Interrupt-Funktion: Sie wird von der Hardware automatisch 8.000

Mal pro Sekunde aufgerufen, hier werden die LEDs ein- und ausge-

schaltet und die Werte für die Töne ausgegeben.

ISR(TIMER1_COMPA_vect) {

// Zähler, um Lautstärkeänderung langsamer zu machen

static int timer1counter;

int wert;

// Wert an der Stelle sample1/512 aus der sinus-Tabelle lesen

wert = pgm_read_byte(&sintab[(sample1 >> 9)]);

// Wert mit der aktuellen Lautstärke multiplizieren

wert = (wert * vol) / 256;

// PWM-Hardware anweisen, ab jetzt diesen Wert auszugeben

OCR2A = wert;

// das Gleiche für das andere Ohr

wert = pgm_read_byte(&sintab[(sample2 >> 9)]);

wert = (wert * vol) / 256;

OCR2B = wert;

// berechnen der LED-Pulse in Abhängigkeit vom gespielten Ton

if (((sample1 & 0x8000) != 0) && ((sample2 & 0x8000) !=0)) {

PORTD |= _BV(5) | _BV(4); // LEDs einschalten

}

else {

PORTD &= !(_BV(5) | _BV(4)); // LEDs ausschalten

}

// nächstes Sample in der Sinustabelle abhängig vom gewünschten

// Ton auswählen

sample1 += tone;

sample2 += tone + diff;

Brainwave und Biofeedback

125

 // Lautstärke anpassen, wenn gewünscht (nur alle 50 Interrupts,

// damit es schön langsam passiert

timer1counter++;

if (timer1counter > 50)

{

timer1counter = 0;

if (vol < set_vol) vol++;

if (vol > set_vol) vol--;

}

}

Als Nächstes kommt die Funktion startPlayback(). Hier werden

die Interrupt-Funktion und die Timer des Arduino so eingestellt,

dass der Interrupt 8.000 Mal pro Sekunde aufgerufen wird und die

PWM-Ausgabe mit 62.500 KHz läuft.

void startPlayback()

{

pinMode(speakerPin1, OUTPUT);

pinMode(speakerPin2, OUTPUT);

// initialisiere den Timer 2 für die schnelle PWM zur

// Soundausgabe auf Pin 11 & 3

// verwende den internen Takt (Datenblatt Seite 160)

ASSR &= ~(_BV(EXCLK) | _BV(AS2));

// fast PWM mode (Seite 157)

TCCR2A |= _BV(WGM21) | _BV(WGM20);

TCCR2B &= ~_BV(WGM22);

// wähle die nicht invertierende PWM für pin OC2A und OC2B,

// am Arduino ist das Pin 11 und 3

TCCR2A = (TCCR2A | _BV(COM2A1) | _BV(COM2B1));

// keine Vorteiler, denn wir wollen es schnell (Seite 158)

TCCR2B = (TCCR2B & ~(_BV(CS12) | _BV(CS11))) | _BV(CS10);

// Startwert = 0, sonst gibt es ein hässliches Plopp-Geräusch

OCR2A = 0;

OCR2B = 0;

// initialisiere Timer 1 für 8.000 Interrupts/Sekunde

cli();

// set CTC mode (Clear Timer on Compare Match) (Seite 133)

TCCR1B = (TCCR1B & ~_BV(WGM13)) | _BV(WGM12);

TCCR1A = TCCR1A & ~(_BV(WGM11) | _BV(WGM10));

// kein Vorteiler (Seite 134)

TCCR1B = (TCCR1B & ~(_BV(CS12) | _BV(CS11))) | _BV(CS10);

// gewünschte Frequenz: 8.000 KHz

OCR1A = F_CPU / SAMPLE_RATE; // 16e6 / 8000 = 2000

// aktiviere den Interrupt für TCNT1 == OCR1A (Seite 136)

TIMSK1 |= _BV(OCIE1A);

// Startwerte

sample1 = 0;

sample2 = 0;

// globale Interrupts wieder einschalten

sei();

}

126

Kapitel 4: LEDs für Fortgeschrittene

Vieles in dieser Funktion muss man nicht unbedingt auf Anhieb

verstehen, in den meisten Fällen sind diese Hardwaredetails auf

dem Arduino in Bibliotheken versteckt. Hier hilft nur das Lesen des

Datenblatts vom verwendeten Mikrocontroller Atmega168 oder

Atmega328, das direkt bei www.atmel.com eingesehen werden

kann.

In der Setup-Funktion werden nur noch die Pins für die LEDs initi-

alisiert und die Funktion startPlayback aufgerufen.

void setup()

{

pinMode(ledPin1, OUTPUT);

pinMode(ledPin2, OUTPUT);

startPlayback();

}

Damit die gewünschte Tonhöhe und Hirnwellenfrequenz nicht in

der Einheit Timer Additions angegeben werden muss, gibt es diese

Hilfsfunktion:

// ändert die Ton und die LED-Frequenz

// ton (50-4.000 Hz)

// brainwave (0-30 Hz)

// volume (0-256);

void SetFreq(int ton, int brainwave, int volume)

{

tone = (128ul*512ul*ton)/8000;

diff = (128ul*512ul*brainwave)/8000;

set_vol = volume;

}

In der loop()-Funktion kann jetzt die Gehirnwellensequenz pro-

grammiert werden, im Beispiel eine Einschlafmeditation ohne Auf-

weckfunktion am Ende, also genau das Richtige, um nach einem

anstrengenden Tag einzuschlafen.

Als Erstes werden immer wieder gebrauchte Werte in Konstanten

gespeichert, danach folgt die Gehirnwellensequenz, die aber hier

auf Grund ihrer Länge nicht komplett abgedruckt ist.

float DELTA = 2.2; // tiefe Bewusstlosigkeit, Intuition und

// insight

float THETA = 6.0; // Unterbewusstsein, Kreativität,

// Tiefenentspannung

float ALPHA = 11.0; // Träumerisch, empfangsbereit und passiv

float BETA = 14.4; // bewusstes Denken, externer Fokus

int grundton = 200;

void loop()

{

SetFreq(grundton,0.7,0); // Einstimmung, langsames Pulsen ohne

// Ton

Brainwave und Biofeedback

127

 delay(10000); // Dauer 10 Sekunden

SetFreq(grundton,BETA,10); // BETA langsam lauter werden

delay(10000);

SetFreq(grundton,BETA,20);

delay(10000);

SetFreq(grundton,BETA,30);

delay(10000);

SetFreq(grundton,BETA,40);

delay(10000);

SetFreq(grundton,ALPHA,50); // 10 Sekunden Alphawellen

delay(10000);

SetFreq(grundton,BETA,60); // 20 Sekunden Betawellen

delay(20000);

// (.....) – der Rest findet sich wiederum im Listing auf der

// Webseite zum Buch

SetFreq(grundton,DELTA, 2); // Deltawellen immer leiser werden

delay(5000);

SetFreq(grundton,DELTA, 1); // Deltawellen immer leiser werden

delay(5000);

SetFreq(grundton,DELTA, 0); // Deltawellen immer leiser werden

delay(5000);

// ende

for (;;) ;

}

Den genauen Ablauf einer kompletten Brainwave-Session können

Sie auf der Website des Make Magazine sehen: http://makezine.

 com/10/brainwave/. Dort finden Sie auch weitere Informationen

über die Wirkungsweise dieser Gehirnwellenmaschine.

128

Kapitel 4: LEDs für Fortgeschrittene

KAPITEL 5

In diesem Kapitel:

Sprich mit mir, Arduino!

• Nach Hause telefonieren

mit der seriellen Konsole

• Automatisierung mit

Gobetwino

• Processing

Der Arduino ist beileibe keine einsame Insel, auf der nur einmal

Passagiere abgeladen werden, ohne dass sie die Außenwelt infor-

mieren können. Bleibt das Board mit einem USB-Kabel (oder in der

Bluetooth-Variante über Funk) mit einem PC verbunden, kann es

auch Daten zurücksenden. Das folgende Kapitel soll zunächst

erklären, wie einfache Statusmitteilungen über die serielle Konsole

an die Arduino-Entwicklungsumgebung gesendet werden können.

Anschließend wird die Kommunikation noch etwas ausgebaut: Die

Processing-Programmiersprache etwa besitzt eine Bibliothek, die es

sehr einfach macht, mit dem Arduino Daten auszutauschen. So

können das Board und seine angeschlossenen Sensoren oder Taster

benutzt werden, um Processing-Programme zu steuern.

Unter »digitaler Kommunikation« versteht man den Austausch von

Daten zwischen zwei oder mehr Geräten über eine festgelegte Ver-

bindung. Dabei bestimmt ein sogenanntes Protokoll alle Details.

Alle Kommunikationsteilnehmer müssen sich dabei genau an die-

ses Protokoll halten, damit die Daten auch korrekt verstanden und

weiterverarbeitet werden können. Protokolle können unterschiedli-

che Bereiche umfassen, und meistens werden mehrere Protokolle

zusammen verwendet. Zu diesem Zweck werden Netzwerke in

ihrem Aufbau nach Schichten getrennt, die im sogenannten Open

 Systems Interconnection Model, kurz OSI-Modell, festgeschrieben

sind. Diese Schichten bauen aufeinander auf und beschreiben die

komplette Kommunikation vom physischen Träger bis hin zu den

Datenpaketen. Im Folgenden werden wir eine serielle Verbindung

in ihren Grundzügen erklären.

Die unterste Schicht beschreibt, wie die beiden kommunizierenden

Seiten physisch miteinander verbunden sind, wie die entsprechen-

129

den Anschlüsse aufgebaut und wie viele Verbindungen nötig sind,

um Daten hin und her zu senden. Beim Arduino sind es eigentlich

zwei Verbindungen über die RX- und TX-Pins. Da viele Rechner –

insbesondere Laptops – keine RS232-Schnittstelle mehr besitzen,

wird diese über USB emuliert. Dabei sorgt ein USB-Controller

dafür, dass das entsprechende, deutlich kompliziertere USB-Proto-

koll verwendet werden kann. Die serielle Verbindung wird also

quasi darin eingebettet. Einer der besonderen Vorteile von USB

gegenüber einem seriellen Port (RS232), wie er in älteren Compu-

tern verwendet wurde, ist, dass an einem einzelnen Anschluss eine

Vielzahl von Verbindungen registriert werden kann. USB-Hubs

nutzen diese Technik zum Beispiel, um an die üblicherweise zwei

oder drei Steckplätze viele Geräte anzuschließen. Jedes weitere

Gerät, das sich am USB-Bus anmeldet, wird im Betriebssystem als

ein neues serielles Gerät festgestellt. Unter Windows können zum

Beispiel drei Geräte als COM8, COM9 und COM10 angesprochen

werden, Mac OS X würde sie als

/dev/tty.usbserial-5B21

/dev/tty.usbserial-5B22

/dev/tty.usbserial-5B24

auflisten. Es ist also kein Problem, mehrere Arduinos an einen

Rechner anzuschließen. In der Programmierumgebung können

diese dann unter TOOLS → SERIAL PORT ausgewählt werden, und in

Processing steht die Funktion Arduino.list() zur Verfügung (siehe

unten).

Darauf folgt die elektrische Schicht, die festlegt, mit welchen Span-

nungen die Daten übertragen werden, also wie viel Volt nötig sind,

um eine Kommunikation aufrechtzuerhalten.

Die dritte Schicht bezeichnet die Logik der Verbindung. Sie legt

fest, ob eine Zunahme der Spannung eine Null oder eine Eins

bedeutet. Bei der seriellen Verbindung wird ein 5-Volt-Signal als

eine Eins interpretiert, ein 0-Volt-Signal dementsprechend als eine

Null.

Die Datenschicht wiederum regelt das Timing der Bits, also wie

viele Signale in einem bestimmten Zeitabstand gesendet werden.

Das ist sehr wichtig, um die Daten auf der Gegenseite auch korrekt

interpretieren zu können. Zudem wird hier festgelegt, ob die Daten

einer Gruppe mit einer bestimmten Bitfolge gekennzeichnet oder

abgeschlossen werden. Die serielle Verbindung überträgt 9.600 Bit

pro Sekunde. Jedes Byte, also jedes Paket, enthält acht Bits und

wird jeweils mit einem Start- und einem Stop-Bit markiert. Diese

130

Kapitel 5: Sprich mit mir, Arduino!

Bits werden vom Arduino direkt verarbeitet und kommen hier

nicht weiter vor. Sollen viele Daten pro Sekunde verarbeitet wer-

den, ist es wichtig zu wissen, dass ein übertragenes Byte also eigent-

lich aus zehn Bit besteht, pro Sekunde also nicht mehr als 960 Bytes

(z.B. Buchstaben) übertragen werden können.

Die Anwendungsschicht beschreibt, wie die einzelnen Bytes zu ver-

stehen sind. Sowohl die Programmierumgebung (oder später die

Processing-Sprache) als auch das Arduino-Programm, das auf das

Board geladen wird, nehmen jeweils ein Byte an und verarbeiten es

anschließend.

Die Kommunikation mit dem Arduino Duemilanove geschieht

dabei über die digitalen Pins 0 und 1, die auch als RX und TX mar-

kiert sind. Nutzt man also die serielle Kommunikation, sollten

diese Pins nicht anderweitig belegt werden, da sonst seltsame Feh-

ler auftreten können. LEDs beispielsweise würden jedes Mal blin-

ken, wenn Daten über die serielle Verbindung gesendet werden.

Andersherum kämen auf dem PC Daten heraus, die nicht verarbei-

tet werden könnten, sobald auf dem Pin ein digitales Signal ange-

legt würde.

In diesem Kapitel wird nur die sehr einfach aufgebaute serielle Ver-

bindung behandelt. Wird zum Beispiel über Ethernet kommuni-

ziert, ist das Schichtenmodell deutlich komplexer, es bauen mehr

Protokolle aufeinander auf.

Nach Hause telefonieren

mit der seriellen Konsole

Der Arduino verfügt mit der beschriebenen seriellen Verbindung

über einen Rückkanal, kann also Ereignisse an die Arduino-IDE

zurückmelden. »Seriell« bedeutet dabei, dass die Daten bitweise

nacheinander übertragen werden. Als Konsole wird das schwarze

Fenster in der Arduino-Entwicklungsumgebung bezeichnet, das die

Statusmeldungen des Arduino anzeigt. Lädt man etwa ein Pro-

gramm auf das Board, wird dort wiedergegeben, ob alles in Ord-

nung war (z.B. »Binary sketch size: 1694 bytes (of a 14336 byte

 maximum)«) oder Fehler aufgetreten sind. Ist das USB-Kabel nicht

richtig verbunden oder enthält der hochzuladende Arduino-Sketch

Syntaxfehler, erscheint in der Konsole eine Reihe von roten Mel-

dungen, die über die Natur des Fehlers Auskunft geben sollen. Dar-

über hinaus gibt es noch eine Reihe weiterer Fehlerquellen, etwa

Nach Hause telefonieren mit der seriellen Konsole

131

wenn die Übertragung unterbrochen wurde. Aber auch wenn das

Programm einmal hochgeladen ist, kann der Arduino sich noch

melden, um beispielsweise Sensorwerte an den PC zu senden. Das

kann zum einen genutzt werden, um Daten weiterzuverarbeiten,

also z.B. zu speichern oder auf abnormale Messwerte zu reagieren.

Zum anderen können vom Arduino geschriebene Nachrichten aber

auch zur Fehlersuche verwendet werden.

Die serielle Verbindung arbeitet dabei standardmäßig mit 9.600

Baud. Als ein Baud wird die Einheit »ein Zeichen pro Sekunde«

bezeichnet. Da hier ein Zeichen einem Bit entspricht, könnte man

also auch »9.600 Bit pro Sekunde« sagen. Es gibt allerdings auch

Kommunikationswege, bei denen ein Zeichen aus mehreren Bits

besteht, indem das Signal moduliert wird.

Die serielle Konsole einrichten

Die serielle Konsole ist kein eigentlicher Bestandteil des Arduino.

Vielmehr muss die Bibliothek Serial verwendet werden, die aller-

dings in der Programmierumgebung schon vorhanden ist. Es ist

also nicht nötig, diese Bibliothek gesondert zu laden. Es reicht aus,

im Setup-Abschnitt eine Verbindung zu erstellen:

void setup() {

Serial.begin(9600); // öffne seriellen Port, setze Datenrate

// auf 9.600 Baud

}

Nun können ankommende Daten gelesen und ausgehende Daten

geschrieben werden. Zunächst sollen einfache Informationen in der

Konsole der Entwicklungsumgebung angezeigt werden. Das

geschieht mit der Funktion Serial.println(), die eine Zeile an den

angeschlossenen PC sendet, oder auch print(), das an die Daten

keinen Zeilenumbruch anhängt.

Die Funktionen können dabei vom Nutzer vorgegebenen Text ver-

arbeiten, z.B. so:

Serial.println("Hallo")

Oder sie verarbeiten Variablen:

int zahl = 10;

Serial.println(zahl);

Dabei kann einer Variable noch ihre Darstellungsform mitgegeben

werden, wenn die Zahl explizit in Dezimaldarstellung angezeigt

werden soll, oder in binärer oder hexadezimaler Form:

132

Kapitel 5: Sprich mit mir, Arduino!

int zahl = 10;

Serial.println(zahl, DEC); // sende "10" an den PC

Serial.println(zahl, BIN); // sende "1010" an den PC

Serial.println(zahl, HEX); // sende "A" an den PC

Der Testlauf für das Programm sieht so aus:

void loop() {

int zahl = 10;

Serial.println("Hallo");

Serial.println(zahl);

Serial.println(zahl, DEC);

Serial.println(zahl, BIN);

Serial.println(zahl, HEX);

Serial.println("-----------");

delay(10000);

}

Er bringt folgendes Ergebnis:

Abbildung 5-1

Serieller Monitor

Fehlersuche mit der seriellen Konsole

Oft geschieht es beim Programmieren, dass sich Fehler einschlei-

chen, die nicht mehr durch einfaches Durchlesen des Codes zu

beheben sind. Je komplexer der Code, desto anfälliger wird er, aber

auch gerade im Zusammenspiel mit Sensoren können beispiels-

weise unerwartete Werte auftauchen. Diese können eine if-Abfrage

dazu bringen, einen bestimmten Programmteil gar nicht auszufüh-

ren, obwohl die Programmierung es eigentlich vorgesehen hat.

In diesem Beispiel nehmen wir an, von einem Drehknopf wird

erwartet, dass er im »Aus-Zustand« eine Null sendet. Ist das der

Fall, wird eine LED angeschaltet, ansonsten nicht.

Setup

Wie schon in Kapitel 3 wird ein Drehknopf an den digitalen Pin 11

angeschlossen. Für die Kommunikation bleibt der Arduino per USB

mit dem Rechner verbunden.

int ledPin = 11;

int drehKnopf = 0;

Nach Hause telefonieren mit der seriellen Konsole

133

void loop() {

potiWert = analogRead(drehknopf);

if (potiWert == 0) {

digitalWrite(ledPin, HIGH);

}

else {

digitalWrite(ledPin, LOW);

}

}

Nun sei für dieses Beispiel angenommen, die LED flackere nun

gelegentlich, weil der Sensor nicht präzise arbeitet. Es kann recht

lange dauern, das herauszufinden. Sendet man nun den Wert des

Drehknopfs an die serielle Konsole und zeigt zudem an, welche

Verzweigung das Programm nimmt, kommt man viel schneller zu

einem Ergebnis:

void loop() {

potiWert = analogRead(drehknopf);

Serial.println(potiWert);

if (potiWert == 0) {

Serial.println("Poti ist auf null.");

digitalWrite(LED, HIGH);

}

else {

Serial.println("Poti ist nicht auf null.");

digitalWrite(LED, LOW);

}

delay(1000);

}

Nachrichten empfangen

Die serielle Konsole eignet sich nicht nur zum Senden von Nach-

richten, sondern kann in beide Richtungen kommunizieren. Somit

kann der Computer den Arduino auch steuern, nachdem das Pro-

gramm kompiliert und hochgeladen wurde. Das ist zum Beispiel

nötig, um eine volle Steuerung durch Processing zu ermöglichen.

Für den Empfang von Daten wird der TX-Pin genutzt, der bei der

Programmierung funktioniert wie die anderen Eingänge auch: Hat

man Serial initialisiert, kann man über die Funktion available()

prüfen, ob und wie viele Bytes von Daten an das Board gesendet

wurden. Die Funktion read() kann diese Daten nun byteweise aus-

lesen und z.B. in einer Variable speichern. In einem einfachen Bei-

spiel werden nun die Daten, die über den seriellen Port empfangen

wurden, gelesen und wieder über die Konsole ausgegeben:

134

Kapitel 5: Sprich mit mir, Arduino!

char incomingByte = 0; // Variable für die einkommenden Daten

void setup() {

Serial.begin(9600); // initialisiere seriellen Port auf

// 9.600 Baud

}

void loop() {

// wenn serielle Daten vorhanden sind

if (Serial.available() > 0) {

// lies das einkommende Byte

incomingByte = Serial.read();

// sende die Daten zurück an den PC

Serial.print("Empfangen: ");

Serial.println(incomingByte);

}

}

Um diese Daten zu senden, muss wieder einmal die serielle Konsole

in der Arduino-Programmierumgebung geöffnet werden. Über dem

schwarzen Ausgabefenster befindet sich eine kleine Textzeile mit

einem SEND-Button, der dafür genutzt werden kann.

Abbildung 5-2

Eingabezeile, Send-Button

Gibt man nun test ein, erscheinen die vier Buchstaben nacheinan-

der auf dem Bildschirm, da read() immer nur ein Byte auf einmal

empfängt und die darauf folgenden Bytes in einem so genannten

 Ringpuffer zwischenhält, der nach und nach ausgelesen werden

kann. Ein Ringpuffer ist eine Datenstruktur, die mehrere Elemente

(zum Beispiel Bytes) speichert und nach und nach bei jedem Aufruf

zurückgibt.

Abbildung 5-3

Empfangen im Monitor

Möchte man nun die gesamten Eingaben zusammen speichern,

benötigt man ein Array, das man langsam füllt.

Legt man also

char incomingByte[255] = {};

fest, kann man den einkommenden Text auch so abspeichern, um

ihn dann weiterzuverwenden, wenn man den Ringpuffer so lange

aufruft, bis er leer ist.

Nach Hause telefonieren mit der seriellen Konsole

135

 while (Serial.available() > 0) {

// lies das einkommende Byte

incomingByte[i] = Serial.read();

i++;

// ein wenig warten, damit das nächste Byte auch sicher

// übertragen wird

delay(3);

}

Möchte man nun auch das nächste Wort korrekt anzeigen, muss

das Array geleert werden, da sonst noch unerwünschte Zeichen

gespeichert sind. Das geschieht, indem das komplette Array durch-

laufen und alle Elemente mit NULL, also einem leeren Zeichen über-

schrieben werden:

for (int i=0; i<=255; i++) {

incomingByte[i] = NULL;

}

Steuerungseingaben

Jetzt können diese Eingaben verwendet werden, um zum Beispiel

die LED auf dem Arduino-Board einzuschalten. Dazu müssen Pin

13 als Ausgang definiert und die serielle Konsole initialisiert werden:

int ledPin = 13;

void setup() {

Serial.begin(9600); // initialisiere seriellen Port auf 9.600

// Baud

pinMode(ledPin, OUTPUT); // setze ledPin auf OUTPUT

}

Nun kann man beispielsweise die LED einschalten, sobald eine 1

empfangen wird. Eine 0 schaltet sie wieder aus:

void loop()

{

if (Serial.available() > 0) {

if (Serial.read() == '1') {

digitalWrite(ledPin, HIGH);

}

else if (Serial.read() == '0') {

digitalWrite(ledPin, LOW);

}

}

}

Dabei ist zu beachten, dass die Texteingabe in der Programmierum-

gebung als Buchstaben gesendet werden. Eine eingetippte »0« hat

in der dabei verwendeten ASCII-Tabelle den Wert 48. Es kann also

entweder mit 48 oder mit '0' verglichen werden, wobei der Compi-

ler '0' durch 48 ersetzt.

136

Kapitel 5: Sprich mit mir, Arduino!

Automatisierung mit Gobetwino

Gobetwino wurde vom Dänen Mikael Morup entwickelt, um sich

größere Mühen zu ersparen, wenn ein PC mit dem Arduino kom-

munizieren soll. Es erlaubt zum Beispiel, Mails oder Chatnachrich-

ten mit einer Ampel anzuzeigen. Nicht immer will man dafür das

teure Ethernet-Shield aus Kapitel 6 verwenden oder speziell eine Anwendung in Processing programmieren, wie es am Ende dieses

Kapitels beschrieben wird. Ist der Arduino bereits mit einem PC

über USB verbunden, kann man unter Windows das Programm

 Gobetwino verwenden, das die serielle Verbindung verwendet. Die

Software fungiert dabei als sogenannter Proxy, ein Vermittler, der

die serielle Kommunikation übernimmt. Er ist in der Lage, Kom-

mandos zu senden und zu empfangen. Diese können dann verwen-

det werden, um verschiedene Aufgaben abzubilden. So muss

Gobetwino nicht erst umständlich programmiert werden. Stattdes-

sen legt man über ein Drop-down-Menü fest, welche Aktionen

wann ausgeführt werden sollen. Gobetwino kann

• ein Programm starten (und wenn gewünscht auf das Beenden

warten),

• Daten vom Arduino zu einem Programm als Tastendrücke sen-

den,

• E-Mails mit Daten vom Arduino versenden,

• Dateien aus dem Internet herunterladen und Teile davon an

den Arduino senden,

• Daten aus dem Arduino in ein File schreiben (mit Timestamp)

und

• eingehende E-Mails überprüfen.

Das funktioniert recht einfach, indem im Gobetwino-Programm

mit einer Eingabemaske Funktionen angelegt werden. Dazu wählt

man den Funktionstyp aus einer Drop-down-Box aus und gibt die

dazu nötigen Parameter wie »Datei, in der Daten gespeichert wer-

den sollen« an. Das genügt, um den Gobetwino zu konfigurieren,

alles Weitere regelt das Programm von allein. Gobetwino können

Sie unter http://www.mikmo.dk/gobetwinodownload.html herunter-

laden. Neben dem kompletten Programm enthält das ZIP-Archiv

ein englischsprachiges Handbuch, in dem genau erklärt wird, wie

man neue Befehle anlegt.

Automatisierung mit Gobetwino

137

Damit Gobetwino erkennen kann, wo Nachrichten vom Arduino

anfangen und aufhören, sind diese in Rauten (#) eingeschlossen.

Nach dem ersten # kommt immer ein großes S und danach eine

Pipe (|); darauf folgt dann der groß geschriebene Kommandoname,

der in Gobetwino festgelegt werden kann. Nach einer weiteren Pipe

folgen die Parameter, die von eckigen Klammern umschlossen wer-

den und durch & getrennt sind.

Um zum Beispiel Messwerte in eine Logdatei zu speichern, genügt

folgende Zeile:

#S|LOGTEST|[877]#

In Gobetwino müssen dann nur noch das Kommando LOGTEST

angelegt und festgelegt werden, in welches File die Daten gespei-

chert werden sollen. Optional kann ein Zeitstempel hinzugefügt

werden.

Auf dem Arduino sieht der passende Code dann so aus:

int value = 877;

char buffer[5];

Serial.print("#S|LOGTEST|[");

Serial.print(value);

Serial.println("]#");

Wichtig ist in diesem Beispiel, dass die letzte Zeile println()

anstatt print() verwendet, wodurch ein Zeilenumbruch gesendet

wird, der Gobetwino das Ende der Nachricht signalisiert.

In Gobetwino kann man danach sehr schön sehen, wie diese Nach-

richt eingelesen und verarbeitet wird. Hier erkennt man dann auch,

wenn einmal etwas nicht ganz so läuft, wie es sollte.

Lebst du noch?

Wir wollen mit einem Ping die Erreichbarkeit unseres Webservers

überprüfen und im Fehlerfall eine rote Fahne mit einem Servomo-

tor (kurz: Servo) hissen. Das ist ein kleiner Motor aus dem Modell-

bauladen, den man in Geschwindigkeit und Position steuern kann.

Das ist notwendig, damit der Motor am Ende der Fahnenstange

auch wieder anhält. Die Fahnenstange kann man dabei wie eine

echte basteln: Auf der einen Seite ist eine Fahne an einem kleinen

Draht angebracht, der um eine Rolle gewickelt wird. Diese Rolle

wird dann vom Servo gedreht.

138

Kapitel 5: Sprich mit mir, Arduino!

Abbildung 5-4

Gobetwino-Aufbau

Hardware

Als Erstes wird der Servo angeschlossen. Ein Servo hat die drei

Anschlüsse GND (schwarz oder braun), VDD (rot) und SIGNAL.

GND wird mit GND auf dem Arduino-Board verbunden, VDD mit

5V und SIGNAL mit PIN9. Servos werden über kurze Impulse von

1–2 ms Dauer gesteuert, die sich mit ca. 50 Hz wiederholen. Die

Länge der Pulse ergibt die Position, die der Servo anfahren soll.

Automatisierung mit Gobetwino

139

Man kann sich vorstellen, dass die Pulsdauer ziemlich exakt sein

sollte, weil der Servo sonst hin- und her- ruckelt. Da ist es am bes-

ten, den PWM-Schaltkreis auf dem Arduino-Board zu verwenden,

der unterschiedlich lange Pulse erzeugen kann. Da das PWM-Signal

für PIN10 und PIN9 mit demselben PWM-Schaltkreis des Atmel

erzeugt wird, können beide PINs nur entweder für analogWrite()

oder Servo.write() verwendet werden.

Abbildung 5-5

Am Drehrad des Servos befestigt man jetzt noch die Fahne, und

Gobetwino-Schaltung

schon kann es losgehen mit dem Schreiben der Software.

140

Kapitel 5: Sprich mit mir, Arduino!

Software

Als Erstes werden ein paar globale Variablen und eine Instanz der

Servo-Klasse benötigt. Diese wird mit dem PIN9 des Arduino ver-

bunden, an dem der Servo angeschlossen ist.

#include <Servo.h>

Servo myservo; // erzeuge ein Servo-Objekt

int pos; // gewünschte Position des Servos

int serInStringLen = 25; // wie viele Zeichen darf eine

// Nachricht vom PC maximal lang sein

char serInString[serInStringLen]; // Speicherplatz für

// Nachrichten

void setup()

{

myservo.attach(9); // verbinde das Servo-Objekt mit Pin 9

Serial.begin(9600); // initialisiere RS23-Verbindung zum PC

delay(3000); // warte ein wenig

}

Für die Kommunikation mit dem PC ist es hilfreich, wenn es eine

Funktion gibt, die auf eine ganze Zeile Daten vom PC wartet, um

diese am Stück auswerten zu können. Zunächst wird geprüft, ob

die Zeit abgelaufen ist; ist das der Fall, beendet die Funktion sich,

allerdings nicht ohne an das Ende des String noch eine 0 zu schrei-

ben: Das ist das Zeichen dafür, dass ein String an dieser Stelle zu

Ende ist, andernfalls könnten spätere Funktionen darüber stolpern.

Dann wird mit Serial.available() geprüft, ob überhaupt Zeichen

vom PC aus gesendet worden sind; wenn ja, werden sie abgeholt

und in das String-Array gespeichert, sofern es kein Zeilenendzei-

chen (ASCII-Code 13) war.

void readSerialString (char *strArray, int serInLen, long timeOut)

{

// warte timeOut Milisekunden auf Daten

long startTime=millis();

int i = 0;

char ch;

while ((millis()-startTime < timeOut)) {

if (Serial.available()) {

ch = Serial.read();

if (ch == 13) {

strArray[i] = 0;

return;

}

strArray[i] = ch;

if (i < serInLen) i++;

}

strArray[i] = 0;

}

Automatisierung mit Gobetwino

141

In der loop()-Funktion wird nun regelmäßig über Gobetwino abge-

fragt, ob der Server erreichbar ist:

void loop()

{

Serial.println("#S|PING|[]");

readSerialString (serInString, serInStringLen, 10000);

int val = atoi(serInString);

if (val == 0) {

if (pos < 255) pos++;

} else {

if (pos > 0) pos--;

}

myservo.write(pos);

delay(100);

}

Dieser Code erwartet, dass in Gobetwino ein Kommando mit dem

Namen PING angelegt wird, das den zu überwachenden Server

anpingt. Es sendet dann eine 0, wenn alles okay ist, und eine –1,

wenn der Ping fehlschlägt. Als Reaktion darauf hebt oder senkt sich

dann unsere Fahne, sodass man immer auf den ersten Blick den

Zustand unseres Servers erkennen kann.

Dazu öffnet man Gobetwino und erzeugt über COMMANDS → NEW

COMMAND ein neues Kommando. Als Typ wählt man PING und

trägt die zu testende Adresse ein. Damit ist Gobetwino auch schon

so weit konfiguriert, dass das Projekt getestet werden kann.

Processing

Processing ist in vielerlei Hinsicht eines der Vorbilder für Arduino,

dessen Programmierumgebung und -sprache sehr ähnlich model-

liert sind. Wie Arduino wurde Processing entwickelt, um Schülern

und Studenten eine einfache Möglichkeit zu geben, programmieren

zu lernen und Ideen auszuprobieren, um zu schnellen Ergebnissen

zu gelangen. Und natürlich gibt es auch hier mittlerweile eine große

Anhängerschaft, vor allem unter Künstlern und Bastlern.

Dabei hat Processing zunächst rein gar nichts mit Physical Compu-

ting und Mikrocontrollern zu tun; vielmehr wurde es geschaffen,

um möglichst einfache Programmierung von Grafik zu ermögli-

chen. So läuft der Einstieg dort nicht über eine blinkende LED, son-

dern vielmehr über die Anzeige des Textes »Hello World« in einer

großen, bunten Schrift. Mittlerweile gibt es eine Vielzahl unter-

schiedlicher Projekte, die auf Processing basieren. Längst gibt es

Bibliotheken, die es sogar Bands wie R.E.M. ermöglichen, ihre Kon-

142

Kapitel 5: Sprich mit mir, Arduino!

zerte visuell zu untermalen oder eigene Musikvideos zu erschaffen.

Andere Module erlauben eine Nutzung, die noch viel weiter geht als

das Bespielen eines Bildschirms. Sounds werden gesteuert und

Daten visualisiert, zum Beispiel in Form eines Oszillators. Die Spi-

kenzie Labs verwenden Processing, um Signale auszuwerten und in

Midi umzuwandeln (siehe http://www.spikenzielabs.com/Spiken-

 zieLabs/Serial_MIDI.html). So kann aus dem Arduino ein Midi-

Controller gebaut werden, ohne entsprechende Bauteile zu benö-

tigen. Processing übernimmt die weitere Kommunikation mit

einem Midi-Programm. Das Augmentation-Blog (http://augmenta-

 tion.wordpress.com/) verwendet einen selbstgebauten Datenhand-

schuh und Arduino, um im Zusammenspiel mit Processing ein

selbstgebautes Motion-Capturing-System zu schaffen. Anders-

herum kann man zum Beispiel Processing verwenden, um einen

Arduino zu steuern. In diesem Fall wird Musik in Daten umgewan-

delt, die die Helligkeit von LEDs steuern (siehe dazu http://invalid-

 function.com/index.php/2009/03/arduino-controlled-music-lights/).

Auch wenn Processing auf Java basiert und somit einige Programm-

konstrukte deutlich anders sind als beim auf C++ basierenden

Arduino, gibt es einige Gemeinsamkeiten in der Sprache.

So werden die zum Programmablauf benötigten Teile ebenfalls in

einer Setup-Funktion geladen. Hier werden Variablen deklariert

und initialisiert und Elemente, die für das Programm nötig sind,

eingerichtet. Möchte man beispielsweise einen Text in einer ent-

sprechenden Größe und mit einer entsprechenden Schriftart anzei-

gen, legt man genau diese beiden Parameter in setup() fest:

void setup()

{

PFont font = loadFont("myfont.vlw");

textFont(font,20);

}

Nun sind alle Variablen festgelegt und können so in der Haupt-

funktion, die in Processing draw() heißt, verwendet werden. In die-

sem Beispiel wird die Funktion text() verwendet, um einen Text

anzuzeigen. Die beiden weiteren Parameter stellen die Position auf

der x- und y-Achse dar, also wird »Hello World!« auf Position 30:

50 in Schriftgröße 20 und der Schriftart myFont ausgegeben.

void draw()

{

text("Hello World!", 30,50);

}

Processing

143

Möchte man nun Arduino und Processing verbinden, benötigt man

zunächst Bibliotheken für beide Seiten. Beim Arduino ist diese

Bibliothek schon in der Programmierumgebung enthalten. Sie

nennt sich Firmata und kann mit #include <Firmata.h> ins Pro-

gramm eingebunden werden. Alternativ kann man das unter

SKETCH → IMPORT LIBRARY → FIRMATA tun. Unter FILE →

SKETCHBOOK → EXAMPLES → LIBRARYFIRMATA finden Sie den

gesamten passenden Firmata-Sketch, der alles kann, was in diesem

Workshop benötigt wird.

Lädt man diesen Beispielsketch auf das Arduino-Board, ist es konfi-

guriert, um mit Processing zusammenzuarbeiten. Dabei muss im

Prinzip keine weitere Programmierung auf dem Arduino vorgenom-

men werden. Wie das folgende Beispiel zeigt, kann Processing die

Pins des Arduino selbstständig steuern und so auch die Signale ver-

arbeiten.

Zunächst muss also die Arduino-Bibliothek in Processing einge-

bunden werden. Sie ist auf der Arduino-Website unter http://www.

 arduino.cc/playground/Interfacing/Processing erhältlich. Nachdem

sie heruntergeladen wurde, wird sie entpackt und der Ordner ardu-

 ino in den Ordner libraries der Processing-Programmierumgebung

kopiert.

Nun können im Processing-Sketch die beiden Bibliotheken serial

und arduino geladen und ein Arduino-Objekt erstellt werden:

import processing.serial.*;

import cc.arduino.*;

// initialisiere Arduino-Objekt

Arduino arduino;

Nun soll die LED 13 zum Blinken gebracht werden, wie auch

schon im ersten Workshop dieses Buches. Zunächst wird also die

Variable ledPin auf 13 gesetzt. Anschließend wird im Setup die

Verbindung hergestellt. Dazu wird die Funktion arduino.list()

verwendet, die alle verfügbaren seriellen Geräte auf diesem Com-

puter anzeigt. Wenn das Arduino-Board verbunden ist, sollte dort

eine passende serielle Verbindung in dieser Liste auftauchen. Hier-

bei wird nun angenommen, dass es sich um das einzige Gerät han-

delt und somit an Stelle 0 in der Liste befindet. Funktioniert

Arduino.list()[0] nicht auf Anhieb, empfiehlt es sich, in der Kon-

sole diese Liste auszugeben und die richtige Verbindung zu suchen.

Anschließend wird, wie schon bekannt, ledPin als Ausgang defi-

niert.

144

Kapitel 5: Sprich mit mir, Arduino!

void setup()

{

// falls Arduino nicht das erste serielle Gerät ist,

// die Kommentar-Slashes der nächsten Zeile entfernen und die

// Liste anzeigen lassen

// println(Arduino.list());

// initialisiere die Arduino-Verbindung

arduino = new Arduino(this, Arduino.list()[0]); // v2

// setze ledPin auf OUTPUT

arduino.pinMode(ledPin, Arduino.OUTPUT);

}

Auch der Rest des Programms verhält sich ähnlich wie schon im

Workshop 3: Nun kann die LED alle 1.000 Millisekunden blinken,

indem ein HIGH- bzw. LOW-Signal auf den entsprechenden Pin gesetzt

wird:

void draw()

{

arduino.digitalWrite(ledPin, Arduino.HIGH);

delay(1000);

arduino.digitalWrite(ledPin, Arduino.LOW);

delay(1000);

}

Processing mit einem Drehknopf steuern

Nun soll ein Drehknopf (also ein Potentiometer) dazu verwendet

werden, die Größe eines einfachen Kreises in Processing zu steuern.

Das Setup ist ebenfalls schon bekannt: ein Potentiometer wird mit

einem analogen Pin (in diesem Falle Pin 0) verbunden, der als ana-

loger Eingang nicht gesondert eingerichtet werden muss. Um den

Drehknopf später besser verwenden zu können, wird die Variable

int potiPin = 0 definiert.

Nun kann der Input dieses Knopfes mit arduino.analogRead(poti-

Pin); von Processing eingelesen werden. Für dieses Beispiel soll ein

Kreis eine Größe von 0 bis 100 Pixeln Durchmesser annehmen.

Dafür wird die Funktion ellipse() verwendet, die eine Ellipse

zeichnet, bei der beide Achsen gleich lang sind. Da der Drehknopf

1.024 Werte übermitteln kann, soll der Kreis alle 10 Werte (abge-

rundet) um einen Pixel anwachsen. Diese grobe Übersetzung hilft

auch, kleinere Ungenauigkeiten bei der Messung abzumildern,

denn die werden unweigerlich auftreten.

Damit Processing die Kreise nicht übereinanderlegt, muss zudem

pro Zeichenschritt der Bildschirm gelöscht werden. In diesem Fall

Processing

145

geschieht das, indem der Hintergrund mit background(204); in

Grau neu gezeichnet wird. Um ein wenig mehr Farbe hineinzubrin-

gen, wird der Kreis selbst in einem satten Rot gezeichnet (RGB-

Werte: 255, 0, 0).

Die fertige Draw-Routine sieht also wie folgt aus:

int potiPin = 0;

int potiVal = 0;

void draw() {

potiVal = arduino.analogRead(potiPin);

background(204);

fill(255, 0, 0);

ellipse(50, 50, floor(potiVal/10), floor(potiVal/10));

}

Let's Play – ein Spiel mit Lichtsensor

Zum Abschluss dieses Kapitels folgt nun ein kleines Processing-

Spiel, das über einen am Arduino angeschlossenen Lichtsensor

gesteuert werden soll. Dieser Sensor steuert einen kleinen Punkt

(oder Ball), der langsam auf der Horizontale durch den Bildschirm

fliegt. Fällt dabei mehr Licht auf den Sensor, fliegt der Ball nach

oben, wird es dunkler, senkt er sich. Auf dem Bildschirm wird nun

ein Bereich angezeigt, der durchflogen werden darf. Verlässt der

Ball diesen Bereich, ist das Spiel beendet, und die Punkte werden

angezeigt.

Setup

Ein Fotowiderstand wird an den analogen Eingang 0 des Arduino

angeschlossen.

Abbildung 5-6

Lichtsensor-Aufbau

146

Kapitel 5: Sprich mit mir, Arduino!

Programmierung

Zunächst werden alle Parameter des Spiels (also Durchmesser,

Fenstergröße und Startposition) festgelegt und die Bibliotheken

importiert:

import processing.serial.*;

import cc.arduino.*;

// initialisiere Arduino-Objekt

Arduino arduino;

// lege Fenstergröße fest

int windowWidth = 600;

int windowHeight = 400;

// horizontale Position

int x = 0;

// fand eine Kollision statt?

boolean collision = false;

// Durchmesser, Startzeit und Endzeit (für die Punktezahl)

int durchm = 20;

int startTime = 0;

int endTime = 0;

PFont fontA;

// Startposition und Startwert

int arduinoPos = 200;

boolean start = false;

// Pin für den Lichtsensor

int sensorPin = 0;

Anschließend werden in der Setup-Routine der Arduino initialisiert

und das Fenster gezeichnet. Zudem wird ein Font festgelegt, mit

dem am Ende des Spiels die Punktezahl angezeigt wird.

void setup() {

size(windowWidth, windowHeight); // Fenstergröße

background(0); // Hintergrundfarbe

createScene(); // Funktion, die den

// Tunnel zeichnet

// setze Font fest (muss im Datenverzeichnis liegen)

fontA = loadFont("Ziggurat-HTF-Black-32.vlw");

// initialisiere den Font und seine Größe (in Pixeln)

textFont(fontA, 16);

}

Als Nächstes werden Funktionen benötigt, um die »Kugel« (also

einen Kreis) und den Tunnel zu zeichnen. Aus Platzgründen läuft

dieser Tunnel nur schräg von links oben nach rechts unten. Natür-

lich können auch mit der Vertex-Funktion kompliziertere Level

gebaut werden.

// zeichne den Ball

void drawCircle(int x, int y) {

fill(255);

ellipse(x, y, durchm, durchm);

Processing

147

 noFill();

}

// zeichne den Tunnel mit drei Vertexen

void createScene() {

stroke(204, 102, 0);

fill(204, 102, 0);

// Oberes Feld

beginShape();

vertex(0, 0);

vertex(0, 100);

vertex(windowWidth,300);

vertex(windowWidth,0);

endShape(CLOSE);

// unteres Feld

stroke(204, 102, 0);

fill(204, 102, 0);

beginShape();

vertex(0, windowHeight);

vertex(0, 200);

vertex(windowWidth, 400);

vertex(windowWidth, windowHeight);

endShape(CLOSE);

// mittleres Feld

fill(125);

stroke(0);

beginShape();

vertex(0, 100);

vertex(windowWidth, 300);

vertex(windowWidth, 400);

vertex(0, 200);

endShape();

}

Schließlich wird noch eine Kollisionskontrolle benötigt. Eine Kolli-

sion findet statt, wenn die Kugel außerhalb des mittleren Feldes

fliegt. Das Feld ist dabei durch zwei schräge Geraden bestimmt.

Durch einfache Geometrie findet man heraus, dass die Gerade

genau proportional zum aktuellen x-Wert verläuft. Das Feld ist also

begrenzt durch x / Fensterbreite * Höhenunterschied + y-Anfangs-

 wert, also x/windowWidth*200+100. Zudem findet eine Kollision

statt, wenn die Kugel den rechten Rand des Fensters erreicht.

// prüfe, ob die Kugel eine der Linien berührt

boolean detectCollision(int x, int y){

// Ergebnis ist entweder wahr oder falsch

boolean result = false;

// wenn der Mittelpunkt der Kugel den rechten Rand berührt hat

if (x >= windowWidth-durchm/2) {

result = true;

148

Kapitel 5: Sprich mit mir, Arduino!

 }

// wenn die Kugel über der oberen Linie liegt

if (y < (((x/windowWidth) * 100)+100)) {

result = true;

}

// wenn die Kugel unter der unteren Linie liegt

if (y > (((x/windowWidth) * 100) + 200)) {

result = true;

}

return result;

}

Nun sind alle Voraussetzungen für das Spiel gegeben. Die Funktion

endGame() zeigt einen Text mit der Punktezahl an, die sich aus der

Dauer in Millisekunden ergibt, die das Spiel gelaufen ist. Die

Hauptfunktion lädt nun die Grafik und beginnt das Spiel nach

Druck der Taste S.

// Anzeige beim Ende des Spiels

void endGame(){

// berechne die Endzeit

endTime = millis();

// beende die Draw-Funktion

noLoop();

// zeige weißen Text an

fill(0);

text("your score: ", 50, 60);

// Punktezahl berechnen in Millisekunden seit Startzeit

text(endTime-startTime, 200, 60);

// Hier wäre noch platz für einen Restart-Knopf ;-)

}

// Hauptfunktion

void draw() {

// lies Arduino-Eingabe und wandle sie um

int arduino = Arduino.analogRead(sensorPin);

// wenn Taste S gedrückt wird, beginn und miss Startzeit

if(keyPressed) {

if (key == 's') {

start = true;

// miss Startzeit

startTime = millis();

}

}

// wenn das Startsignal gegeben wurde

if (start) {

// wenn keine Kollision geschehen ist

if (!collision) {

createScene();

stroke(0); // setz die Farbe für den Ball

drawCircle(x, arduino); // zeichne den Ball

collision = detectCollision(x, arduino); // prüf, ob es eine

// Kollision gab

Processing

149

 x++; // erhöhe die Ballposition

// wenn es eine Kollision gab

} else {

// rufe Endfunktion auf

endGame();

}

// wenn das Startsignal noch nicht gegeben wurde

} else {

// zeichne den Tunnel und den Ball

createScene();

drawCircle(0, arduino);

}

}

Nun ist das Spiel fertig zum Ausprobieren. Wahrscheinlich muss je

nach Lichteinfluss ein wenig mit den Werten des Sensors herum-

probiert werden, indem man sie zum Beispiel teilt. Nur so kann je

nach Sensor das Spiel auch bei der gewünschten Höhe der Hand

funktionieren, ansonsten kann es sein, dass die Kugel sich nur

innerhalb weniger Millimeter bewegt. Für mehr Spielspaß emp-

fiehlt es sich aber ohnehin, das Spiel ein ganzes Stück zu erweitern.

Aufgaben:

Ein Labyrinth basteln, sodass x- und y-Achse ab einem bestimm-

ten Punkt wechseln und die Kugel vertikal am Labyrinth entlang

nach unten fliegt.Überschreitet die Kugel also einen gewissen x-

oder y-Wert, wird ihre Richtung geändert.

Eine Reset-Funktion einbauen, die zum Beispiel auf Knopfdruck

das Spiel von vorn beginnen lässt.

Einen Piezo-Lautsprecher an den Arduino anschließen und bei

einer Kollision einen Ton ausgeben lassen.

Flusskontrolle

Ein Programm, dessen Ablauf stark von der Übertragung serieller

Daten abhängig ist, kann schnell ins Stocken geraten, wenn die

Kommunikation asynchron läuft. Obwohl klar ist, welche Daten

übertragen werden, kann es sein, dass zum Beispiel Daten vom

Arduino zu einem falschen Zeitpunkt an den PC gesendet werden.

Wenn zum Beispiel ein Processing-Programm Daten empfängt, die

schon vor einiger Zeit gesendet wurden, können diese schon längst

ungenau oder falsch sein. Möglicherweise hat der Arduino schon ein

zweites Byte gesendet, das nun im Ringpuffer hängen geblieben ist.

150

Kapitel 5: Sprich mit mir, Arduino!

Um dieses Problem zu vermeiden, wird eine Flusskontrolle ein-

gesetzt. Das bedeutet, dass der Datenfluss zeitweise unterbrochen

wird, damit der schnellere Sender keinen Datenüberfluss produ-

ziert. Beim Beispiel des Spiels wird der Arduino-Sensor direkt gele-

sen. Würden die Daten aber über eine serielle Verbindung

übertragen, etwa weil sie vorher zunächst verarbeitet werden müs-

sen, könnte es sein, dass eine schnelle Reaktion des Spielers

möglicherweise zu spät ankommt; eine Kollision würde nicht ver-

mieden, obwohl der Spieler es eigentlich geschafft hätte.

Nun könnte man den Arduino natürlich in seiner Sendefrequenz

beschränken, indem man ihm Pausen auferlegt. Viel sinnvoller ist

es aber, wenn er auf ein Signal von Processing wartet, um selbst

aktiv zu werden. Das Arduino-Programm wird also verändert,

sodass das Signal erst gesendet wird, wenn ein Byte von Processing

empfangen wurde. Die Sensorabfrage geschieht jedoch weiterhin

kontinuierlich, um die Reaktionszeit des Boards zu verringern:

void loop() {

// lies Sensor

sensor = analogRead(sensorPin);

// verarbeite Sensordaten ...

. . .

if Serial.available() > 0) {

int seriellesByte = Serial.read();

Serial.print(sensorInfo, HEX);

}

}

Das Processing-Programm muss nun erweitert werden, um vor dem

Empfang der Daten selbst ein Serial.print() abzusetzen. Das kann

eine Null oder auch ein Zeilenumbruch sein.

Serial.print('\r', BYTE);

arduinodaten = Serial.read();

Mangelnde Flusskontrolle führt häufig zu schwer erkennbaren Feh-

lern. Da die falschen Daten oft vom Menschen nicht bemerkt wer-

den, treten subtile Probleme auf, die nur spät oder gar nicht

entdeckt werden.

Weiter mit dem dynamischen Duo

Wie gezeigt wurde, erweitert Processing den Arduino und eröffnet

hervorragende Möglichkeiten. Viele Projekte verwenden diese Kom-

bination z.B., um Sensorinformationen zu visualisieren, ob nun in

ernsthaften Anwendungen oder für ästhetische Effekte. Andere nut-

zen den Arduino wiederum als Eingabegerät, um Drehknöpfe oder

Processing

151

Schieberegler an einen PC anzuschließen, oder – wie eben gesehen –

Spiele zu steuern. Bei der Entwicklung komplexerer Systeme, etwa

von Flugobjekten, können die durch Processing verarbeiteten Daten

auch dabei helfen, Fehler zu finden oder Feineinstellungen vorzu-

nehmen. So werden mögliche Probleme schon vermieden, bevor sie

auftreten und Schaden anrichten können. Man denke dabei zum

Beispiel an Beschleunigungs- und Neigungssensoren in einer Flug-

drohne, die bei falscher Konfiguration abstürzen würde. Auch in der

Wissenschaft wird Processing in Verbindung mit Mikrocontrollern

wie Arduino immer beliebter, um Versuchsreihen möglichst einfach

zu gestalten und sich so auf das Wesentliche zu konzentrieren.

Im folgenden Kapitel soll nun die Kommunikation des Arduino

nicht mehr nur über die serielle Schnittstelle geschehen. Mit einem

Ethernet-Shield, also einer »Netzwerkkarte«, die auf das Board

gesteckt wird, können Daten auch über das Internet übertragen

werden. Damit lässt sich ein Arduino-Projekt auch aus der Ferne

warten oder abfragen, was insbesondere dann sinnvoll ist, wenn es

das tägliche Leben in der eigenen Wohnung automatisieren soll,

auch während man gar nicht zu Hause ist.

152

Kapitel 5: Sprich mit mir, Arduino!

KAPITEL 6

In diesem Kapitel:

Arduino im Netz

• Hello World – ein Mini-

Webserver

• Sagś der Welt mit Twitter

• Fang die Bytes – Datalogger

Das Internet wird immer mehr zu einem ständigen Begleiter. So ist

es nicht verwunderlich, dass es vermehrt den Wunsch gibt, auch

ohne ständig laufenden Rechner Daten aus dem Internet zu emp-

fangen und über es zu versenden. Mit einem aufgesteckten Ether-

net-Shield kann Arduino auch ganz ohne PC online gehen. Das

schafft viele Möglichkeiten, um die physische Welt mit dem Netz

kommunizieren zu lassen. Vorstellbar sind z.B. Sensoren, die ihren

aktuellen Status bekannt geben und somit ihren Besitzer auch

unabhängig von seinem Aufenthaltsort informieren können. Das

folgende Kapitel erklärt zunächst den Ethernet-Shield und die ein-

fache Kommunikation über das Internet. Danach soll der Arduino

einfache Nachrichten über Twitter versenden.

Im in Kapitel 5 erwähnten Schichtenmodell basiert eine Internet-verbindung zunächst auf Ethernet. Die physikalische und logische

Schicht werden offiziell als »Bitübertragungsschicht« zusammenge-

fasst, was einen Teil von Ethernet ausmacht. Der andere Teil ist die

Datensicherungsschicht, die beschreibt, wie eine fehlerfreie Über-

tragung gewährleistet werden kann. Dazu werden die Daten in Blö-

cke eingeteilt und mit Folgenummern und Prüfsummen versehen.

In der Bitübertragungsschicht wird das Gerät über eine Hardware-

Adresse, die sogenannten MAC-Adresse, identifiziert. Diese Adresse

ist in der Regel vom Hersteller für jedes Gerät fest vorgegeben und

ändert sich auch dann nicht, wenn es seinen Standort wechselt und

sich zum Beispiel in einem anderen lokalen Netzwerk befindet oder

an einer anderen Stelle mit dem Internet verbunden wird. Diese

Hardware-Adresse besteht aus sechs hexadezimalen Zahlen, zum

Beispiel 00:11:43:8C:D3:91.

Über der Ethernet-Schicht sorgt das Internet Protocol (IP) für eine

Identifikation des Gerätes mithilfe der Netzwerkadresse. Netzwerk-

153

oder IP-Adressen dürften vielen Nutzern bekannt sein, die sich

schon einmal beispielsweise mit der Einrichtung ihres heimischen

PCs im lokalen Netzwerk beschäftigt haben. Um eine hierarchische

Ordnung zu erhalten, gibt es zusätzlich noch die Subnetz-Adresse,

die bestimmt, wie viele Geräte in einem Subnetz zusammengefasst

werden. In einem kleinen Heimnetzwerk ist das meistens die 255.

255.255.0, was bedeutet, es bis zu 256 Geräte fassen kann. Die IP-

Adresse selbst besteht aus vier Bytes. Dabei wird unterschieden

zwischen dem globalen Adressraum, der von der Internet Assigned

Numbers Authority vergeben wird, und lokalen Adressbereichen,

die für lokale Netzwerke reserviert sind und dort von jedem Nutzer

selbst gewählt werden können. Das bedeutet, dass zum Beispiel

eine Adresse, die mit 192.168 beginnt (z.B. die 192.168.0.1), nicht

vom gesamten Internet aus erreichbar ist. Dafür können mehrere

Netzwerke jeweils die gleichen Adressen besitzen. Im Gegensatz

dazu ist die Adresse 213.168.78.214 weltweit eindeutig und gehört

dem deutschen Webserver des O’Reilly Verlags.

Die Verbindung von einem Netzwerk in ein anderes übernimmt ein

sogenannter Router. Das sind für den Heimgebrauch meistens

kleine Geräte, die heutzutage über mehrere Ethernet-Kabelan-

schlüsse und ein WLAN-Modul verfügen und die Übersetzung vom

lokalen Netzwerk ins Internet übernehmen. Generell sind Router

Geräte, die das Internet in Subnetze einteilen und so die Verteilung

der Datenpakete übernehmen.

Die Übertragung von Daten übernehmen im Internet entweder das

TCP- oder das UDP-Protokoll. Das UDP-Protokoll sendet munter

Daten, ohne auf eine Antwort zu warten oder zu prüfen, ob sie auch

wirklich ankommen. Man spricht von einer zustandslosen Datenü-

bertragung. Bei UDP kann es vorkommen, dass Daten auf dem Weg

verloren gehen, was aber für bestimmte Daten nicht weiter wichtig

ist. Weil die Überprüfung nicht stattfindet, ist UDP schneller als

TCP. Letzteres basiert auf dem sogenannten Drei-Wege-Handshake.

Das bedeutet, dass jede Übertragung, also zum Beispiel die Ausliefe-

rung einer Website mit einem Anfrage-Paket (SYN) begonnen und

von der Gegenseite mit einem »Acknowledged« (ACK) quittiert

wird. Um diese Quittierung zu bestätigen, sendet sie zusätzlich noch

ein weiteres SYN, auf das schließlich ein weiteres ACK von der

Senderseite folgt. Meist geschieht diese Antwort in einem kombi-

nierten ACK/SYN-Paket. Der Abbau einer Verbindung sieht ähnlich

aus, statt SYN heißt das entsprechende Paket aber FIN.

Natürlich muss man im Internet kaum noch eine IP-Adresse einge-

ben, um sich mit einem bestimmten Rechner zu verbinden. Dafür

154

Kapitel 6: Arduino im Netz

sorgt das Domain Name System (kurz DNS), das Domainnamen

(wie etwa oreilly.de) in Adressen umwandelt. Da DNS-Abfragen

keine sensiblen Daten darstellen, werden dafür UDP-Pakete ver-

wendet. Für Physical-Computing-Projekte ist das DNS relativ

unwichtig (man sollte nur wissen, dass es existiert), weswegen es

hier nicht weiter behandelt wird. Umfassende Erläuterungen finden

Sie unter anderem in der Wikipedia.

Nun können weitere Protokolle die eigentliche Anwendung reprä-

sentieren. Das World Wide Web beispielsweise verwendet das

Hypertext Transport Protocol (HTTP), um Daten zwischen Web-

server und Browser auszutauschen, E-Mail läuft über die Protokolle

POP3 (oder IMAP) und SMTP. Damit ein Gerät mit einer IP-

Adresse eingehende Daten unterscheiden kann, werden sogenannte

Ports verwendet. Die Portnummer wird als Teil des TCP/IP-Paketes

versendet. HTTP läuft dabei standardmäßig auf Port 80 (bzw. 443

bei sicheren Verbindungen), das zum Versenden von Mails verwen-

dete SMTP auf 25.

Die unterschiedlichen Protokolle werden ineinander gekapselt. Ein

HTTP-Paket ist also Teil eines TCP-Paketes, das wiederum Teil

eines IP-Paketes ist. Dieses befindet sich schließlich in einem Ether-

net-Paket. Die Informationsdaten der einzelnen Bestandteile nennt

man dabei Header, im Gegensatz zu den Nutzdaten, die das eigent-

liche Paket ausmachen.

Manchmal kann es vorkommen, dass die Netzwerkverbindung

Fehler aufweist. Es ist besonders schwer, die Ursache des Problems

aufzuspüren, wenn ein Protokoll falsch implementiert ist. Ein

Browser würde zum Beispiel bei einem fehlerhaften HTTP-Proto-

koll nicht ausreichend Informationen liefern. Abhilfe schaffen hier

sogenannte Sniffer, mit denen man eine Ethernet-Verbindung über-

wachen und alle übertragenen Daten auswerten kann. Besonders

empfohlen sei hier das Open-Source-Projekt Wireshark (http://

 www.wireshark.org/).

Hardware

Zunächst wird der Ethernet-Shield mit dem Arduino-Board ver-

bunden, indem beide zusammengesteckt werden. Alle Pins sind

auch über den Shield zugänglich. Selbst die LEDs und der Reset-

Taste sind auf dem Ethernet-Shield noch einmal vorhanden, sodass

man sie bequem bedienen kann. Die Pins 10 bis 13 werden aller-

dings schon für den Ethernet-Controller verwendet und sollten

deshalb nicht für eigene Anwendungen eingesetzt werden, wäh-

Arduino im Netz

155

rend das Netzwerk benutzt wird (das könnte zu merkwürdigen

Effekten führen).

Abbildung 6-1

Ethernet-Shield

Der auf dem Board verbaute Chip Wiznet W1500 enthält einen

kompletten Ethernet- und IP-Stack für TCP und UDP. Das bedeu-

tet, dass er kein zusätzliches Betriebssystem benötigt, um mit dem

Internet zu kommunizieren. Er kann somit direkt mit dem Arduino

verwendet werden, bei der Programmierung muss man sich um

nichts mehr kümmern. Den weiteren Aufwand übernimmt die

Arduino-Ethernet-Bibliothek, die allerdings weder DNS noch

DHCP implementiert hat, sodass man derzeit noch auf statische IPs

zurückgreifen muss.

Software

In der Arduino-Entwicklungsumgebung und der Ethernet-Biblio-

thek ist bereits alles vorhanden, was man benötigt, um mit dem

Ethernet-Shield zu arbeiten.

Das Board kann mit Ethernet.begin(mac,ip[,gateway,subnet] initi-

alisiert werden. Die MAC-Adresse (oder Ethernet-ID) ist dabei die

physische Adresse des Boards, die in diesem Fall vom Nutzer selbst

festgelegt werden kann, da der Hersteller des Shield diese Adresse

nicht vergeben hat. Die IP-Adresse muss je nach Netzwerk gewählt

werden, in dem der Arduino eingesetzt wird. Befindet man sich in

einem unbekannten Netzwerk, sollte man über den PC den IP-

Adressbereich herausfinden und eine Adresse wählen, die mit

Sicherheit in keinem Konflikt mit anderen steht. Die meisten Heim-

156

Kapitel 6: Arduino im Netz

netzwerke haben einen Adressbereich von 192.168.xxx.xxx. Wählt

man eine eigene IP-Adresse, darf diese sich nur im letzten Byte, also

im letzten Abschnitt, von anderen unterscheiden; hat also der PC

etwa die Adresse 192.168.1.2 und der Netzwerkrouter 192.168.1.1,

so sind für den Arduino die Adressen 192.168.1.3 bis 255 möglich,

je nachdem, welche anderen Netzwerkgeräte sich noch im selben

Adressbereich befinden. Viel kann man allerdings nicht kaputt

machen, wenn man die Adressen ausprobiert, im Falle eines Kon-

fliktes funktioniert das Netz einzelner Geräte einfach nicht – dann

muss man eben umstellen.

Verwendet man mehrere Ethernet-Shields, sollte man darauf ach-

ten, dass sowohl MAC- als auch IP-Adresse unterschiedlich sind;

wenn man den einmal geschriebenen Code einfach nur auf andere

Arduino-Boards lädt, können besonders schnell Fehler auftreten.

Will man das Board mit dem Internet kommunizieren lassen, benö-

tigt man zusätzlich eine Gateway-Adresse. Diese ist in der Arduino-

Bibliothek schon voreingestellt, auf den aktuell eingestellten Netz-

werkadressbereich mit der Endung 1, also beispielsweise auf 192.

168.1.1. Sollte das nicht funktionieren, muss eine andere Adresse

eingestellt werden. Im Regelfall, also bei den heutzutage üblichen

Heimnetzwerken, ist das die Adresse des Netzwerkrouters. Meist

lässt sich auch diese über die Netzwerkinformationen des PCs her-

ausfinden. Nur selten ist es hingegen nötig, eine zusätzliche Subnet-

Adresse anzugeben. Diese ist im Normalfall auf 255.255.255.0 ein-

gestellt – für alle Heimnetzwerke der Standard. Nur in großen,

komplexen Netzwerken, kann dieses Subnet ein anderes sein. Sollte

der Ethernet-Shield in einer solchen Umgebung, etwa dem Netz-

werk einer Hochschule, eingesetzt werden, sollte man ein Gespräch

mit dem zuständigen Systemadministrator führen.

Hello World – ein Mini-Webserver

Zunächst soll der Arduino als kleiner Webserver fungieren – ein

guter Anfang für viele Projekte, die aus der Ferne gesteuert werden

sollen. Der Webserver erwartet Anfragen auf dem Datenport 80 und

sendet als Antwort zum Beispiel eine Webseite, die dann im Brow-

ser dargestellt werden kann. Über solch einen Webserver können

Einstellungen vorgenommen werden, indem etwa bestimmte Links

aufgerufen werden, die im Arduino wiederum Aktionen hervorru-

fen. Zudem kann dieser Webserver etwa Informationen über den

Zustand des Arduino oder seine angeschlossenen Sensoren liefern.

Hello World – ein Mini-Webserver

157

Zunächst wird ein leeres Projekt erzeugt und mit #include <Ether-

net.h> die Ethernet-Bibliothek eingebunden, damit alle benötigten

Befehle zur Verfügung stehen.

Zudem werden zur Initialisierung die MAC- und die IP-Adresse des

Boards (siehe oben) benötigt:

// MAC-Adresse des Arduino-Boards, 6 Bytes

byte mac[] = {0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };

// IP-Adresse des Arduino-Boards, 4 Bytes

byte ip[] = {192, 168, 1, 10 };

Dabei sollten Sie darauf achten, dass beide Adressen passen. Die IP-

Adresse muss ins lokale Netzwerk passen und darf dort keine Kon-

flikte erzeugen, also nicht identisch mit schon bestehenden Geräten

sein. Anschließend wird ein Serverobjekt erzeugt, das später die

Verbindungen auf Port 80, dem Standard-Port für Webserver,

annehmen kann. Das Objekt bietet eine Reihe von Funktionen, die

jederzeit abgerufen werden können.

Server server = Server(80);// Port-Einstellung (Standard 80)

In der Setup-Funktion wird zuerst zuallererst mit Ethernet.

beginn(mac,ip); die W1500-Hardware initialisiert. Danach wird

der Server gestartet:

server.begin(); // Server wartet nun auf Clients

Nun muss in der loop()-Funktion auf einkommende Verbindungen

geantwortet und HTML-Code zurückgesendet werden.

Dabei können nicht einfach rohe HTML-Daten über das Netz

geschickt werden. Vielmehr muss der Webserver die Daten in

HTTP verpacken. So verstehen Browser dieselbe Sprache wie Web-

server und wissen, wie welche Daten zu interpretieren sind und was

bei bestimmten Fehlermeldungen zu tun ist.

HTTP wurde 1989 am CERN von Tim Berners-Lee entwickelt, der

damit den Grundstein für das World Wide Web legte. Zudem schuf

er das Konzept von URLs, die eine eindeutige Lage jedes HTML-

Dokuments beschreiben. Eine URL besteht aus dem Protokoll

(http), dem Server, möglichen Unterverzeichnissen und dem Doku-

mentnamen, zum Beispiel http://www.oreilly.de/index.html. Zu-

dem können einer URL noch weitere Informationen übergeben

werden, wenn der Webserver in der Lage ist, diese zu interpretieren.

Wird eine URL im Browser eingegeben, sendet dieser eine Anfrage

an den passenden Server. Diese Anfrage beinhaltet den Anfragetyp

158

Kapitel 6: Arduino im Netz

(z.B. GET), den Servernamen, die Protokollversion und das ange-

fragte Dokument:

GET /index.html HTTP/1.1

Host: www.oreilly.de

Erreicht diese Anfrage den Webserver, sendet dieser eine Antwort

mit einem Code. War die Anfrage in Ordnung, ist dieser Code 200

 OK, aber es gibt eine ganze Reihe von anderen Möglichkeiten, etwa

wenn kein Ergebnis gefunden wurde (404 Not Found).

Zudem beinhaltet die Antwort beispielsweise Informationen über

den Webserver und das Betriebssystem, die Größe des zu übertra-

genden Dokumentes, dessen Sprache und Dokumenttyp und

Anweisungen, was nach Erhalt dieser Antwort zu tun ist.

HTTP/1.1 200 OK

Server: Apache/1.3.29 (Unix) PHP/4.3.4

Content-Length: (Größe von index.html in Bytes)

Content-Language: de (nach ISO 639 und ISO 3166)

Content-Type: text/html

Connection: close

(Inhalt von index.html)

Nun kann der Browser diese Daten empfangen und anzeigen. Der

kleine Arduino-Webserver kennt allerdings nur einen sehr kleinen

Teil von HTTP: Er liefert immer eine »200 OK«-Antwort und kann

auch keine URLs unterscheiden.

void loop() {

Client client = server.available(); // prüfen, ob Client Seite

// aufruft

if (client) { // Seitenaufruf durch User

// übertrage 200 OK-Code und identifiziere den Server als

// arduino

server.print("HTTP/1.0 200 OK\r\nServer: arduino\r\n");

// übertrage den Dateityp

server.print("Content-Type: text/html\r\n\r\n");

//übertrage Daten

server.print("<HTML><HEAD><TITLE>");

server.print("Arduino Board");

server.print("</TITLE>");

server.print("</HEAD><BODY>");

server.print("Hello World!
");

server.print("Arduino runs for ");

server.print(millis());

server.print(" ms.</BODY></HTML>");

//Datenübertragung zu Ende

delay(10); // kurz warten, um Daten zu senden

client.stop(); // Verbindung mit dem Client trennen

}

}

Hello World – ein Mini-Webserver

159

Wenn man nun einen Webserver startet und die URL http://192.

 168.1.10 öffnet, erscheint eine Webseite, die anzeigt, wie lange das

Board schon läuft. Die Funktion millis() zeigt dabei die Anzahl

Millisekunden seit dem Start des Programms.

Die Ausgabe könnte beispielsweise so aussehen:

Hello World!

Arduino runs for 14321 ms.

Dieser Webserver ist natürlich sehr einfach gestrickt. Er liefert auf

jede Anfrage die gleiche Antwort und kann deshalb auch nicht dazu

verwendet werden, Einstellungen im laufenden Arduino-Programm

vorzunehmen. Das Projekt Webduino (http://code.google.com/p/

 webduino/) bietet hier mehr Möglichkeiten. Die Bibliothek ist in der

Lage, komplexere Browseranfragen zu bearbeiten und Fehlercodes

zurückzusenden. Sie kann also als Webserver eingesetzt werden,

der alle Basisfunktionen versteht. Das sollte für fast alle Arduino-

Projekte ausreichend sein.

Sagś der Welt mit Twitter

Twitter ist ein Onlinedienst, auf dem Benutzer kurze Nachrichten

(»Tweets«) veröffentlichen können. Dabei ist die Nachrichten-

länge auf 140 Zeichen begrenzt. Jeder Nutzer erhält seine eigene

kleine Webseite unter http://www.twitter.com/nutzername. Zudem

kann jeder Nutzer angeben, welche anderen Nutzer er regelmäßig

lesen, wem er also »folgen« möchte. So entstehen Kommunikati-

onsnetzwerke, die ein wenig einem Chat ähneln, wobei sich die

einzelnen persönlichen Chaträume der Nutzer teilweise überlap-

pen. Dadurch, dass man mit @username auf die Tweets anderer

antworten kann, entsteht eine neue Form der Kommunikation und

Diskussion. Benutzte man jedoch lediglich die Webseite, würde

alles recht schnell unübersichtlich. Abhilfe schafft die Twitter-API,

eine Schnittstelle, über die es möglich ist, eigene Programme mit

Twitter zu verbinden. Inzwischen dürfte die Mehrzahl aller aktiven

Twitter-Nutzer ein solches Programm verwenden – zwei bekannte

davon sind Tweetdeck oder Tweetie. Diese Programme informie-

ren ihre Nutzer in regelmäßigen Abständen über neue Tweets.

Innerhalb von etwas mehr als zwei Jahren hat sich Twitter von

einem Nischenspielzeug für eingeweihte Web-Enthusiasten zu

einem Mainstream-Dienst entwickelt. Besonders bei Ereignissen

von weltweiter Bedeutung, etwa bei Katastrophen, Terroranschlä-

160

Kapitel 6: Arduino im Netz

gen oder auch Wahlen, wurden besondere Aktivitätssprünge ver-

zeichnet. Der Grund dafür dürften vor allem die Aktualität und die

Geschwindigkeit sein, mit denen sich Neuigkeiten so verbreiten.

Als etwa am 15. Januar 2009 ein Flugzeug im New Yorker Hudson

River notlanden musste, war das erste Bild bereits zwölf Minuten

lang verbreitet worden, als die ersten Nachrichtendienste die Mel-

dung aufschnappten. Bei den Protesten gegen das Wahlergebnis im

Iran wurde Twitter ein nahezu unverzichtbares Kommunikations-

mittel für die aufbegehrenden Studenten.

Diese Eigenschaften von Twitter lassen sich auch für Physical-Com-

puting-Projekte nutzen. So kann ein mit dem Internet verbundener

Arduino beispielsweise Daten von angeschlossenen Sensoren twit-

tern, um seinen Besitzer (oder wen auch immer diese Informationen

interessieren) zu benachrichtigen. Eines der bekanntesten Projekte

dieser Art ist Botanicalls, das die Feuchtigkeit von Pflanzenerde

misst und über Twitter meldet, wenn eine Pflanze gegossen werden

muss.

Dazu wird der Widerstand zwischen zwei in die Erde gesteckten

Abbildung 6-2

Twitter und Arduino

Drähten gemessen, der analog zur Trockenheit zunimmt. So kann

Sagś der Welt mit Twitter

161

der Arduino ab einem bestimmten Grenzwert einen Hilferuf über

Twitter absenden. Fertige Bausätze gibt es bei Botanicalls http://

 www.botanicalls.com/kits/ oder bei http://www.bausteln.de. Ein

ähnliches Projekt erklärt auch Mats Vanselow unter http://www.

 mats-vanselow.de/2009/02/08/arduino-lernt-twittern/.

Der Fantasie sind hier keine Grenzen gesetzt: Fast alles, was man

messen kann, kann auch in Tweets umgesetzt werden. Es gibt sogar

ein Projekt, bei dem ein Bürostuhl twittert, wenn der »Besitzer«

bestimmte Gase freisetzt. Wer daran Interesse hat, möge das Projekt

unter http://www.instructables.com/id/The-Twittering-Office-Chair/

nachlesen. Das Projekt in diesem Buch soll nicht ganz so exotisch

sein, wir wollen nur die Helligkeit im Zimmer vermelden lassen.

Geht das Licht aus, wird ein Tweet abgesendet, möglicherweise ein

Hinweis für Freunde, die nicht wissen, ob sie noch anrufen können.

Noch sinnvoller wird das Ganze, wenn man es in einem von mehre-

ren Menschen genutzten Raum einsetzt. Wenn jemand erwägt, ob

er noch ein gemeinsam genutztes Atelier, einen Vereinsraum oder

Jugendzentrum besuchen soll, freut er sich vielleicht über die Infor-

mation, ob in diesen Räumlichkeiten noch etwas los ist.

Hardware

An den Arduino werden ein LDR (Fotowiderstand) sowie ein wei-

terer Widerstand mit ca. 10.000–100.000 Ohm angeschlossen. Der

Fotowiderstand ändert seinen Widerstand von ca. 1–100 Mio Ohm

(MOhm) im Dunkeln zu 100–2.000 Ohm in der Sonne. Er wird an

die die PINs 5V und A0 angeschlossen, der andere Widerstand an

A0 und GND. So fungieren die Bauteile als Spannungsteiler, und

die Spannung an A0 wird von der Helligkeit am LDR verändert

(siehe Abbildung 6-3).

Software

Den Anfang machen wieder ein paar grundlegende Einstellungen,

die gegebenenfalls angepasst werden müssten. Da der Ethernet-

Shield keine DNS-Abfragen machen kann, muss die IP-Adresse von

Twitter von Hand eingetragen werden. Sollte Twitter seine IPs

ändern, muss diese Adresse angepasst werden.

Die Ethernet-Bibliothek wird beim Arduino-Programm mitgeliefert

und kann dort einfach unter SKETCH → IMPORT LIBRARY eingebun-

den werden:

162

Kapitel 6: Arduino im Netz

Abbildung 6-3

Aufbau des Twitter-Lichtsensors

#include <Ethernet.h>

byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };

byte ip[] = { 192, 168, 0, 10 }; // unsere IP/anpassen an

// das lokale Netzwerk

byte gateway[] = { 192, 168, 0, 1 }; // die IP des Routers

byte subnet[] = { 255, 255, 255, 0 };

byte server[] = { 128, 121, 146, 100 }; // IP von Twitter

(default: 128.121.146.100)

#define TWITTERURL "/statuses/update.xml" // URL zum Update-Skript

#define TWITTERUSERNAMEPW "geheim" // Base64 kodiert USERNAME:

// PASSWORT

Client client(server, 80);

void setup()

{

Ethernet.begin(mac, ip, gateway, subnet); // Ethernet

// initialisieren

Serial.begin(9600); // serielle Verbindung für Statusmeldungen

}

Zudem werden nun ein Twitter-Nutzername und -Passwort benö-

tigt. Ein entsprechendes Nutzerkonto kann schnell auf http://www.

 twitter.co m angelegt werden. Name und Passwort müssen durch

einen Doppelpunkt getrennt, Base64-kodiert und in der Konstante

 TWITTERUSERNAMEPW gespeichert werden. Die Base64-Wand-

lung kann man zum Beispiel online unter http://www.patshaping.de/

 projekte/kleinkram/base64.php durchführen. Allerdings gibt man

dort sein Twitter-Passwort in fremde Hände, und bei einer entspre-

chenden Suche findet man im Netz auch Downloadangebote mit

Software, die die Umwandlung auf dem Rechner erledigen kann,

ohne vertrauliche Daten durch die Gegend zu senden.

Sagś der Welt mit Twitter

163

Nun werden zwei Routinen benötigt: Eine zum Senden der Nach-

richt und eine, die die Antwort vom Twitter-Server empfängt und

an den seriellen Port leitet, damit sofort bemerkt werden kann,

wenn etwas nicht funktioniert.

void sendTwitterUpdate(char* tweet) // Nachricht an Twitter

// übermitteln

{

Serial.println("connecting...");

if (client.connect())

{

Serial.println("connected");

client.print("POST ");

client.print(TWITTERURL);

client.println(" HTTP/1.1");

client.println("Host: twitter.com");

client.print("Authorization: Basic ");

client.println(TWITTERUSERNAMEPW);

client.print("Content-Length: ");

client.println(9+strlen(tweet));

client.println("");

client.println("status=");

client.println(tweet);

Serial.println("twitter message send");

}

else {

Serial.println("connection failed");

}

}

void fetchTwitterUpdate() // Rückmeldung von Twitter auslesen

{

if (client.available())

{

char c = client.read();

Serial.print(c);

}

if (!client.connected())

{

Serial.println();

Serial.println("disconnecting.");

client.stop();

}

}

Es soll nur eine Nachricht getwittert werden, wenn der Lichtzu-

stand sich gerade verändert hat, also wird der aktuelle Zustand in

der Variable licht gespeichert, der letzte Zustand in old_licht. So

kann auf Veränderungen reagiert werden.

int licht = 1;

int old_licht = 1;

int val;

164

Kapitel 6: Arduino im Netz

void loop()

{

delay(30000);

val = analogRead(0); // den Wert vom Sensor lesen

if (val > 400) { licht = 1; } // diese Werte müssen empirisch

// ermittelt werden

if (val < 200) { licht = 0; }

if (old_licht != licht) {

old_licht = licht;

if (licht == 1) {

Serial.println("Hell!");

sendTwitterUpdate("Zimmer ist erleuchtet!"); // Nachricht

// versenden

}

else {

Serial.println("Dunkel!");

sendTwitterUpdate("alle Photonen aufgebraucht!");

// Nachricht versenden

}

}

fetchTwitterUpdate(); // eingehende Nachrichten durchleiten

}

Fang die Bytes – Datalogger

Viele Daten werden erst richtig interessant, wenn man sie über län-

gere Zeit sammelt und dann gemeinsam auswertet. Dafür kann

man das EEPROM des Arduino nutzen, auf dem in diesem Projekt

die Daten gespeichert und anschließend auf einer Webseite zur

Verfügung gestellt werden sollen. Ein EEPROM ist eine kleine Spei-

cherzelle, die ein paar wenige Daten (beim Arduino sind es 512

Byte) aufnehmen kann. Die einzelnen Bits werden dabei in speziel-

len Transistoren gespeichert, sogenannten Floating Gates. Im

Gegensatz zu den üblichen Transistoren können diese ihren

Zustand, also leitend oder nicht leitend, auch speichern, wenn kein

Strom anliegt. 512 Byte erscheinen auf den ersten Blick nicht viel,

andererseits sollte es für die meisten Daten durchaus reichen, vor

allem wenn man sie sorgfältig auswählt.

Für die Arduino-Programmiersprache sorgt die EEPROM-Biblio-

thek für das Beschreiben und Lesen des Speichers. Es gibt zwei

Funktionen: write() und read(). Um diese zu verwenden, muss die

Bibliothek mit #include <EEPROM.h> eingebunden werden. Da nur

sehr wenige Daten zur Verfügung stehen, wird kein Dateisystem

benötigt. Es können also keine Dateien oder Ordner abgelegt wer-

den, und die Daten sind auch nicht speziell markiert. Beim Lesen

Fang die Bytes – Datalogger

165

und Schreiben muss also bekannt sein, wohin und woher die Daten

kommen.

Um das Ganze zu demonstrieren, soll der Wert eines Lichtsensors

periodisch alle zehn Sekunden auf das EEPROM geschrieben wer-

den. Nach einer Minute wird dann ebenfalls alle zehn Sekunden

der eine Minute alte Wert über die serielle Konsole ausgegeben.

Das Setup dürfte recht klar sein:

// verwende EEPROM-Bibliothek

#include <EEPROM.h>

// initialisiere Pin, Zähler und serielle Konsole

int lichtPin = 0;

int i = 0;

void setup() {

Serial.begin(9600);

}

Nun kann der Wert ausgelesen und gespeichert werden. Der Input

des analogen Pins ist allerdings 10 Bit lang. Zunächst sollen aber

nur ein Byte lange Werte geschrieben werden. Entweder man ver-

wendet also für vier Werte fünf Bytes, was später noch erklärt wer-

den soll. Im einfacheren Falle genügt es, ungefähre Werte aus dem

Sensor zu speichern. Teilt man den aktuellen Wert durch vier,

erhält man die 8 Bit, die man bequem in einem einzelnen

EEPROM-Byte ablegen kann.

void loop() {

i++;

int lichtWert = analogRead(lichtPin);

lichtWert = lichtWert/4;

EEPROM.write(i, lichtWert);

if (i > 10) {

int ausgabeWert = EEPROM.read(i-10);

Serial.print(ausgabeWert, DEC);

}

delay(10000);

}

Nun fällt auf, dass der Speicher irgendwann voll sein wird. Es ist

also sinnvoll, nach 5.120 Sekunden wieder bei 0 zu beginnen. Man

fügt also am Anfang der loop()-Funktion Folgendes hinzu:

if (i == 512) {

i = 0;

}

Gleichzeitig ist es dann sinnvoll, einen der hohen Werte auszuge-

ben, wenn die Schleife gerade von vorn begonnen hat. Der Ausga-

beteil wird also ersetzt durch eine Funktion, die vom aktuellen

Zählerwert den passenden Ausgabewert ermittelt und schreibt:

166

Kapitel 6: Arduino im Netz

function ausgabe(int i) {

if (i < 10) {

i = abs(i-512);

}

else {

i = i-10;

}

int ausgabeWert = EEPROM.read(i);

Serial.print(ausgabeWert, DEC);

}

Da man nie weiß, welche Werte sich beim Start noch im EEPROM

befinden, sollte man zusätzlich zu Beginn alle Werte des Speichers

auf null setzen. Dazu werden alle Speicherplätze durchlaufen und

auf 0 gesetzt:

void deleteEEPROM() {

// durchlaufe jedes Byte des EEPROM und setze es auf 0

for (i = 0; i <512; i++) {

EEPROM.write(i, 0);

}

}

Angenommen, man benötigt doch die vollen 10 Bit des Sensor-

wertes, würde das bedeuten, dass ein Schreibvorgang immer volle

2 Bytes benötigt. 6 Bit pro Vorgang gingen verloren, bei gerade ein-

mal 512 Byte eigentlich kaum akzeptabel. Betrachtet man die

Werte bitweise, so erkennt man, dass vier Werte in fünf Bytes pas-

sen können. Dafür müssen sie lediglich umcodiert werden.

Die Funktionen bitRead() und bitWrite() können aus einer Vari-

able einzelne Bitwerte auslesen und schreiben. Geht man also den

Sensorwert bitweise durch und schreibt den Strom kontinuierlich

in Bytes, erhält man folgenden Code:

int bitPos = 0;

int currentByte = 0;

int currentBytePos = 0;

void loop() {

// lies Sensorwert ein

int sensorVal = analogRead(sensorPin);

// durchlaufe alle 10 Bits des Sensorwertes

for (int i = 0; i < 10; i++) {

// wenn das aktuelle Byte voll ist, also die Position im

// Byte 7 übersteigt

if (bitPos > 7) {

// springe auf das nächste Byte

currentBytePos++;

// schreibe das Byte an die aktuelle Byteposition

EEPROM.write(currentBytePos, currentByte);

// setze das Byte auf 0

sensorByte = 0;

Fang die Bytes – Datalogger

167

 // setze die Bitposition auf 0

bitPos = 0;

}

//

// lies das aktuelle Bit des Sensorwertes ein

// und schreibe es an die entsprechende Position im

// aktuellen Byte

bitWrite(currentByte, bitPos, bitRead(sensorVal, i));

// zähle Bitposition nach oben

bitPos++;

}

Um die Daten wieder aus dem EEPROM zu lesen, muss die Funk-

tion umgedreht werden. Da die Größe der Sensordaten (10 Bit)

bekannt ist, weiß man auch, welche Bits sich wo befinden, wenn

man den Anfangswert kennt. Beginnt man bei null, liest man also

zuerst die ersten beiden Bytes aus und liest und schreibt das erste

Byte vollständig sowie die niedrigsten 2 Bits des zweiten Bytes in

die Ausgabevariable. Dazu zählt man die aktuelle Bitposition sowie

die Position des Bytes. Die Bitposition wird in jedem Schritt nach

oben gezählt. Nach 8 Bits wird diese wieder auf 0 gesetzt und die

Byteposition um eins erhöht. Sind 10 Bytes durchlaufen, wird die

Variable ausgelesen und ausgegeben.

Zunächst wird eine Reihe weiterer Zählvariablen benötigt:

int readBytePos = 0;

int readBitPos = 0;

int outByte = 0;

Anschließend kann der folgende Programmteil gesetzt werden.

// lies aktuelles Byte aus dem Speicher

currentByte = EEPROM.read(readBytePos);

// durchlaufe die zehn zu schreibenden Bits

for (int i = 0; i < 10; i++) {

// schreib aktuelles Bit aus dem gelesenen Byte in ein

// Ausgabebyte

bitWrite(outByte, i, bitRead(currentByte, readBitPos));

// zähle Bitposition nach oben

readBitPos++;

// nach 8 Bits fange wieder von 0 an

if (readBitPos > 7) {

readBitPos = 0;

readBytePos++;

// lies neues aktuelles Byte aus dem EEPROM

currentByte = EEPROM.read(readBytePos);

}

}

Nicht selten kommt es vor, dass mehrere Sensordaten eines Pro-

gramms geschrieben werden sollen. Schreibt man nun in einem

168

Kapitel 6: Arduino im Netz

fort, ist es schwer, die Daten auseinanderzuhalten. Wählt man den

gleichen Zähler, überschreiben sich die Daten gegenseitig. Hier

empfiehlt es sich, das EEPROM aufzuteilen und zum Beispiel eine

Gruppe in die ersten 256 Bytes und die zweite dahinterzusetzen.

Dabei sollte der Speicher je nach Bedürfnis aufgeteilt werden. Benö-

tigt der eine Wert zum Beispiel nur 4 und der andere 8 Bit, sollte

man die Trennung beim 128. Byte vornehmen, um gleich viele

Werte zu speichern.

Ein anderes Problem ist natürlich der Speicherplatz. Neben dem

eben erklärten Ausnutzen aller verfügbaren Bits kann man sich

natürlich auch überlegen, in welchen Abständen die Daten gespei-

chert werden sollen. Bei einem Temperatursensor, der nur die

Raumtemperatur aufzeichnen soll, genügt womöglich auch ein

Speichervorgang alle paar Minuten, bei anderen Werten sollte es

vielleicht jede Sekunde passieren. Wenn nur die letzten Werte

benötigt werden, kann man natürlich auch von vorn beginnen,

wenn der Speicher voll ist, und die alten Daten überschreiben.

Dazu sollte man sich natürlich in einer Variable merken, wo der

aktuellste bzw. jüngste Wert liegen.

Sie sollten dabei beachten, dass das EEPROM nur eine begrenzte

Anzahl von Schreibzyklen verträgt. Die im Datenblatt angegebenen

 >100.000 Schreibzyklen können schnell erreicht werden, wenn

man zum Beispiel an einer Stelle im EEPROM abspeichert, welches

der nächste freie Platz zum Schreiben ist, da dieser Wert ja nach

jedem Schreibvorgang aktualisiert werden muss. Speicherte man

jede Sekunde einen Messwert, würde man diese Grenze schon nach

etwas mehr als einem Tag erreichen! Es kann natürlich in Wirklich-

keit viel, viel länger dauern, bis etwas passiert, da die Hersteller hier

sehr konservative Werte angeben, allerdings ist es noch viel besser,

gleich beim Algorithmus anzusetzen, um ein Vielfaches der Lebens-

dauer zu erhalten. Dabei sollte darauf geachtet werden, dass alle

Speicherzellen ungefähr gleich oft beschrieben werden.

Gerade bei Messwerten kann oft darauf verzichtet werden, eine

Null zu speichern; der Unterschied zur Eins bei einem 10-Bit-Mess-

wert beträgt nur 0,01%, bei 8 Bit nur 0,4%, damit ist der Wert

kaum relevant und die Messung kann vernachlässigt werden. Der

aktuelle Messwert wird dann an die erste Stelle im EEPROM

gespeichert, die gleich null ist, die nächste Stelle wird dann auf null

gesetzt, sodass der nächste Zugriff zuverlässig seine Stelle findet. So

kann auch gleich ein sogenannter Ringpuffer implementiert wer-

den: Wenn das nächste Byte außerhalb der EEPROM-Größe liegt,

Fang die Bytes – Datalogger

169

wird stattdessen das erste gelöscht. So hat man immer die zum Bei-

spiel 512 letzten Messwerte zur Verfügung.

Durch diesen Trick kann jetzt die Lebensdauer des EEPROM bei

sekündlichem Speichern auf fast ein Jahr verlängert werden. Reicht

auch dieser Wert nicht aus, kann es eine Lösung sein, die Batterie-

spannung regelmäßig zu messen und die Werte erst dann aus dem

RAM ins EEPROM zu verschieben, wenn die Spannung unter einen

bestimmten Wert fällt. Bei geschickter Programmierung reicht

dafür auch ein etwas größerer Kondensator an der Betriebsspan-

nung, sodass gerade noch genug Zeit bleibt, alle Werte zu sichern.

Dafür sollte diese Routine dann aber über einen Interrupt gestartet

werde, damit der Zeitpunkt nicht verpasst wird.

Die einfachste Möglichkeit ist, einfach seltener zu messen, oder

eventuell sekündliche Messwerte nur im RAM zu speichern und

daraus berechnete Durchschnittswerte der letzten Minute ins

EEPROM zu übertragen.

170

Kapitel 6: Arduino im Netz

KAPITEL 7

In diesem Kapitel:

Sensoren

• Sensoren

• Aktoren

• Elektronischer Würfel

Dieses Kapitel beschäftigt sich näher mit verschiedenen Sensoren

und Aktoren. Dabei werden zunächst die häufigsten verwendeten

Bauteile erläutert und ihre möglichen Einsatzgebiete erklärt. Damit

wird eine Grundlage für die darauf folgenden Workshops geschaf-

fen, in denen zum Teil eigene Bauteile gebastelt, zum anderen die

hier beschriebenen Sensoren und Aktoren eingesetzt werden.

Sensoren

Die wohl wichtigste Rolle beim Physical Computing spielen ne-

ben immer günstigeren Mikrocontrollern vor allem die verschie-

denen Sensoren. Ob sie nun selbst angelötet werden, mit einem

Steckbrett an den Arduino angeschlossen, oder ihren Weg über ei-

nen der zahllosen Shields nehmen, die verschiedenen Zwecke die-

nen: Ohne Sensoren ist ein Arduino-Board kaum etwas wert. Hier

werden die wichtigsten Sensorenarten und ihre Ausprägungen

vorgestellt, wobei dieses Kapitel längst nicht alle einzelnen Bau-

teile umfassen kann. Weitere Informationen finden Sie unter an-

derem im Tutorial-Bereich auf der Arduino-Website (http://www.

 arduino.cc/playground/Learning/Tutorials) oder in der ausführli-

chen Zusammenfassung bei Freeduino (http://www.freeduino.org).

Schalter und Taster

Schalter und Taster wurden schon detailliert in Kapitel 3 vorgestellt. Von den hier vorgestellten Sensoren sind sie diejenigen,

deren Funktionsweise am einfachsten ist: Ist der Schalter oder Tas-

ter »eingeschaltet«, fließt Strom, ansonsten ist der Stromkreis

unterbrochen.

171

Schalter und Taster werden in der Regel mit dem einen Pin an einen

digitalen Arduino-Pin und mit dem anderen an GND angeschlos-

sen. Bei mehrstufigen Schaltern werden natürlich auch mehrstufige

Pins verwendet. Fließt der Strom, liegt am digitalen Eingang eine 1

an, ist der Stromkreis unterbrochen, ist das Ergebnis eine 0. Bei

Schaltern und Tastern empfiehlt es sich, einen Pull-up-Widerstand

zu verwenden (siehe Kapitel 3).

Die Anwendungen von Schaltern und Tastern sind dabei sehr viel-

fältig. So könnte eine LED-Leuchte beispielsweise mit einem Schal-

ter durch verschiedene Modi wechseln oder auch nur ein- und

ausgeschaltet werden. Ein Taster wiederum eignet sich vor allem

zur Eingabe, etwa bei kleinen Spielen, die damit gesteuert werden.

Auch für ein Wecker-Projekt könnte man einen Taster verwenden,

um Uhr- und Weckzeit einzustellen.

Dreh- und Schieberegler

Im folgenden Abschnitt geht es um Bauteile, die in der Lage sind,

für den Benutzer quasi stufenlose Eingaben an den Arduino zu sen-

den. Dabei handelt es sich um Dreh- und Schieberegler, die je nach

Einstellung eine unterschiedliche Spannung an den Ausgang lassen.

Die analogen Input-Pins des Arduino sind in der Lage, bis zu 10 Bit,

also Eingaben von 0 bis 1.023 zu verarbeiten. Je nach Verwendung

empfiehlt es sich jedoch, diese Werte zu teilen (durch 4 oder sogar

8). Damit können die Messungen ein wenig fehlertoleranter wer-

den, da die Eingaben aus analogen Bauteilen niemals konstant bei

einem Wert liegen.

Potentiometer

Potentiometer sind auch als Drehknöpfe oder Drehregler bekannt

und die wohl meisten verbreiteten Bauteile aus der Gruppe der stu-

fenlosen Regler. Sie gehören zur Klasse der resistiven Sensoren, also

derjenigen, bei denen die Spannung durch den Widerstand verän-

dert wird.

Potentiometer gehören, ähnlich wie die vorhin beschrieben Schalter

und Taster, zu den am häufigsten eingesetzten Steuerelementen.

Drehknöpfe gibt es in allen möglichen Formen: als Lautstärkeregler

einer Stereoanlage oder um die Temperatur eines Herdes zu steuern,

aber auch in zahlreichen Physical-Computing-Projekten. Sie können

die Frequenz oder Helligkeit von LEDs steuern oder als Eingabemit-

tel für Processing verwendet werden, um dort zum Beispiel Formen

und Farben einer Animation einzustellen und live zu verändern.

172

Kapitel 7: Sensoren

Joystick

Eine besondere Variante des Potentiometers ist der Joystick. Ein

Joystick ist in der Lage, sich in zwei Achsen und somit alle Richtun-

gen zu bewegen. Dabei nutzt er pro Achse ein Potentiometer,

sodass er nur an zwei analoge Pins des Arduino (sowie an 5V und

GND) angeschlossen werden muss. Gerade um bewegliche Objekte

mit dem Arduino zu steuern, sind Joysticks sehr sinnvoll. So kön-

nen zum Beispiel zwei Joysticks eine Fernbedienung für einen

Roboter oder eine Flugdrohne bilden. Oftmals werden dabei auch

nicht nur einfache Bauteile aus dem Elektronikfachhandel verwen-

det, sondern Computerjoysticks, deren Anschlüsse an den Arduino

gelötet werden, oder der Controller der Nintendo Wii, die soge-

nannte Wiimote bzw. der Nunchuck-Teil. Der Vorteil dabei ist,

dass gleichzeitig noch eine Menge anderer Sensoren dabei sind, die

beim Nunchuck direkt und bei der Wiimote über Bluetooth ange-

sprochen werden können.

Ribbon Controller und Touchpads

Unter einem Touchpad versteht man eine Fläche, die die Position

eines oder mehrerer Finger feststellen und die Daten darüber wei-

tervermitteln kann. Pads mit nur eine Achse nennt man auch Rib-

bon Controller. Diese werden vor allem in der Musik eingesetzt

und sind unter anderem auf Synthesizern zu finden.

Dabei gibt es zwei grundsätzliche Ausprägungen dieser Pads: resis-

tiv und kapazitiv. Erstere verwenden eine leitende Oberfläche,

deren Widerstand durch die Position des Fingers verändert wird.

Ähnlich wie bei den vorher beschriebenen Potentiometern liegt

somit auch mehr oder weniger Spannung am Ausgang an, sodass

ein Wert ermittelt werden kann.

Kapazitive Touchpads bestehen üblicherweise aus einer vertikalen

und einer horizontalen Anordnung von Elektroden, die ein Gitter

bilden. Die Oberfläche des Touchpads ist dabei eine isolierende

Schutzschicht, die verhindert, dass die Finger direkt mit den Elek-

troden in Berührung kommen. Da der menschliche Körper und

damit auch die Finger selbst wie eine Elektrode funktionieren,

verändert sich die Kapazität der einzelnen Elektroden, wenn ein

Finger das Pad berührt. Ein Schaltkreis darunter kann diese Ände-

rungen messen und als veränderte Spannung weitergeben.

Touchpads finden außerhalb von Laptops vor allem in der Musik

Anwendung. So kann ein Pad zum Beispiel für Midi-Eingaben ver-

Sensoren

173

wendet werden; mithilfe eines Arduino könnte man so teure

Musikhardware selbst bauen. Aber auch für kleine Spiele auf dem

Arduino – selbst mit einem Display – oder unter Processing gibt es

einige Möglichkeiten, ein Touchpad einzusetzen.

Resistiver Touchscreen

Ein resistiver Touchscreen besteht aus einer leitfähig beschichteten

Glasscheibe, über der sich eine leitfähige Kunststofffolie befindet.

Auf der Folie sind viele ganz kleine Abstandhalter aufgedruckt

(normalerweise ein Epoxidsiebdruck), sodass im Normalfall die

Folie keinen Kontakt zur Glasscheibe hat. Drückt man mit einem

Finger oder Stift auf die Folie, entsteht eine leitfähige Verbindung,

und der Ort dieser Verbindung kann über die Widerstandswerte

gemessen werden. Dazu hat eine leitfähige Schicht zwei horizontale

und die andere zwei vertikale Anschlüsse. Zuerst wird durch Anle-

gen einer Spannung an die horizontale Schicht auf dieser ein Span-

nungsverlauf (wie bei einem Potentiometer) aufgebaut, über die

beiden vertikalen Anschlüsse kann dann die Position in horizonta-

ler Richtung gemessen werden. Danach wird das Verfahren umge-

dreht und die vertikale Richtung vermessen.

Dafür ist es ganz praktisch, dass die analogen Eingänge des Ardu-

ino-Boards auch als Ausgänge verwendet werden können. An vier

dieser Ein-/Ausgänge kann direkt ein 4-Wire-Touchscreen ange-

schlossen werden.

Größere und langlebigere Touchscreens werden oft in 5-Wire-

Technik ausgeführt, sie haben also fünf Anschlüsse. Die leitfähige

Kunststofffolie wird hier nur als Messeingang verwendet, und die

Potentiale werden mit den vier Elektroden auf der Glasplatte reali-

siert. Dadurch kann die Beschichtung auf der Folie viel dicker und

niederohmiger ausgeführt werden, und Widerstandsschwankungen

in der Folie verändern nicht den Messwert.

Allen resistiven Touchscreens ist gemeinsam, dass sie keine Multi-

touch-Funktion unterstützen, da man nur einen Berührungspunkt

messen kann.

Lichtsensoren

Nach den mehr oder weniger mechanischen oder elektromechani-

schen Sensoren folgen nun jene, die auf optische Impulse wie etwa

Helligkeit reagieren können.

174

Kapitel 7: Sensoren

Fotowiderstand

Ein Fotowiderstand oder LDR (light dependent resistor) besteht

aus einer Halbleiterschicht, deren Widerstand mit zunehmender

Lichtstärke abnimmt. Die Schicht besteht dabei meist aus Cadmi-

umsulfid (CdS), dessen Leitfähigkeit durch den inneren fotoelektri-

schen Effekt zunimmt. Schließt man diesen Sensor nun an den

Arduino an, kann man Werte von 0 (völlig dunkel) bis 1.023 (sehr

hell) messen. In diesem Buch werden zweimal LDR eingesetzt: um

über Twitter zu melden, ob das Licht im Raum an ist, und für ein

kleines Spiel im Zusammenhang mit Processing. Möglich wäre

auch eine selbstregulierende Lampe, die die aktuelle Helligkeit

misst und versucht, sie auf einem Level zu halten. Eine solche

Lampe würde bei Sonnenuntergang langsam angehen. Um festzu-

stellen, ob sie auch wieder ausgeht, müsste langsam herunterge-

dimmt und ab einem gewissen Schwellenwert erneut geprüft

werden. Reicht die Helligkeit aus, bleibt die Lampe auf diesem

Niveau, ist es zu dunkel, wird sie wieder heller gestellt. Andererseits

könnte der Sensor natürlich auch außen angebracht und so von der

Lampe getrennt werden. Weitere Möglichkeiten sind die Verwen-

dung von MAX/MSP zusammen mit einem Arduino und einem

Fotowiderstand, um elektronische Musikinstrumente zu steuern,

oder der Einsatz eines LDR, um einen kleinen Roboter zu lenken.

Light Intensity IC

Ein nicht ganz günstiger Schaltkreis zur Lichtintensitätsmessung ist

der TSL230R-LF von Taos. Dabei liegt der große Vorteil in der line-

aren und vermessenen Ausgangsfunktion. Der Schaltkreis gibt

abhängig von der gemessenen Helligkeit unterschiedlich lange

Impulse aus. Laut Datenblatt ist die Länge der Impulse definiert als

0,77 KHz/W. Damit ist also eine echte Helligkeitsmessung möglich.

Eine ausführliche Referenz findet sich im Blog von Roaming Drone

unter http://roamingdrone.wordpress.com/2008/11/13/arduino-and-

 the-taos-tsl230r-light-sensor-getting-started/. Diese Adresse findet

sich, wie alle Adressen in diesem Buch und weitere Aktualisierun-

gen im Blog zum Buch, unter http://arduinobuch.wordpress.com.

Fototransistor

Ein Fototransistor ist, wie der Name schon sagt, eine spezielle

Form des Transistors. Bei entsprechendem Lichteinfall lässt er

einen Stromfluss zu. Dabei ist er viel lichtempfindlicher als eine

Diode, da er gleichzeitig als Verstärker wirkt. Das wohl bekannteste

Sensoren

175

Arduino-Projekt, das einen Fototransistor einsetzt, ist eine Schal-

tung, um Gewitterblitze zu fotografieren. Dabei ist der Transistor

schnell genug, um im Falle eines hellen Blitzes in der Natur den

Auslöser zu betätigen. Eine passende Schaltung ist sehr einfach,

wenn die Kamera eine elektrische Auslöseverbindung besitzt. Diese

wird an einen digitalen Ausgangspin angeschlossen, der Transistor

an einen analogen Eingang. Misst man nun konstant die Licht-

werte, kann man bei einem ausreichend starken Anstieg ein digita-

les Signal an den Auslöser geben, sodass die Kamera ein hoffentlich

gutes Foto eines Blitzes machen kann.

Eine Dokumentation dieses Projekts findet sich im Netz unter

 http://www.glacialwanderer.com/hobbyrobotics/?p=16.

Lichtschranke

Mithilfe eines handelsüblichen Lasers und einer Fotodiode lässt

sich eine einfache Lichtschranke basteln. Dabei wird der Laser so

ausgerichtet, dass sein Licht direkt auf die Fotodiode fällt. Wird

das Licht des Lasers unterbrochen, sodass es nicht mehr auf die

Diode fällt, fällt das Signal stark ab, und der Arduino ist in der

Lage, dies zu verarbeiten. In der Fotografie gibt es weitaus mehr

Gelegenheiten, Fotos in möglichst kurzer Zeit auszulösen, als nur

bei Blitzen. Eine Lichtschranke ist etwa in der Lage, Tropfen in

einer Flüssigkeit zu erkennen und eine entsprechende Fotografie

auszulösen. Natürlich lassen sich so auch einfache Alarmsysteme

basteln, die vermelden, wenn eine bestimmte Schranke durch-

kreuzt wurde, oder man misst die Geschwindigkeit eines Objektes,

indem man den Zeitabstand zwischen der Durchquerung zweier

Schranken berechnet.

Beschleunigungssensoren

Beschleunigungssensoren messen, wie ihr Name schon verrät, die

aktuelle Beschleunigung in eine oder mehrere Richtungen. Im Fol-

genden werden Drei-Achsen-Beschleunigungssensoren vorgestellt,

die direkt an den Arduino angeschlossen werden können, sowie

weitere Bauteile und Geräte, die einen solchen Sensor beinhalten.

Einfache Beschleunigungssensoren

Moderne Beschleunigungssensoren wie der ADXL320 und der

ADXL330 von SparkFun basieren auf sogenannten mikroelek-

trisch-mechanischen Systemen oder MEMS und werden aus Sili-

176

Kapitel 7: Sensoren

zium hergestellt. Diese Sensoren bestehen aus wenige Mikrometer

breiten Siliziumstegen und einer ebenfalls aus Silizium bestehenden

Masse. Bei einer Beschleunigung lenkt diese Masse aus und führt zu

einer Kapazitätsänderung zwischen ihr und einer Bezugselektrode.

Dabei besteht der gesamte Messbereich nur aus etwa einem pF

(picoFarad, Billionstel Farad). Diese Änderungen können nicht auf

das Arduino-Board übermittelt werden, sondern werden direkt auf

dem Halbleiterbaustein verarbeitet. Der ADXL wird nun an drei

analoge Pins und an 5V angeschlossen, damit die Beschleunigungs-

werte gelesen werden können. Möchte man nun wissen, wie viel G

(Einheit für Beschleunigung) ein bestimmter Wert bedeutet, muss

man diesen anhand einer Tabelle umrechnen. Diese erhält man aus

dem Datenblatt.

Beschleunigungssensoren können auch verwendet werden, um

Neigung festzustellen. Das ist beispielsweise bei einer Flugdrohne

nützlich, die nicht nur von Wegpunkt zu Wegpunkt fliegen, son-

dern sich dabei auch stabil in der Luft halten soll. Natürlich eignen

sich solche Sensoren auch für Spielereien wie das bekannte Mur-

melspiel, das z.B. in Processing implementiert werden kann. Der

Sensor steuert das Brett, auf dem die Murmel liegt, die nun durch

ein Labyrinth finden muss, ohne in eines der Löcher zu fallen.

Wiimote

Als Nintendo Ende 2006 die Wii-Konsole auf den Markt brachte,

sorgte das nicht nur in Spielerkreisen für Aufruhr. Grund dafür war

die Technik, die im Wiimote-Controller und dem angeschlossenen

Nunchuck verbaut ist und einzeln im Elektronikfachhandel viel

teurer ist als in der weißen Hülle.

Freundlicherweise hat Nintendo sich aber nicht darauf beschränkt,

diese Daten verschlüsselt an die Wii zu senden. Vielmehr wird

Bluetooth eingesetzt, um alle nötigen Informationen zu funken; der

Nunchuck benutzt ein serielles Protokoll. Dafür gibt es inzwischen

Bibliotheken, sodass vor allem Beschleunigungssensor und Joy-

stick des Nunchuck, aber auch der daran angebrachte Knopf aus-

gelesen werden können. Nunchucks sind im Handel für 19,95

Euro erhältlich. In Kapitel 10 wird ein Nunchuck an den Arduino angeschlossen und als MIDI-Kontroller verwendet. Ein ausführliches Tutorial zur Verwendung mit dem Arduino findet sich unter

 http://www.windmeadow.com/node/42.

Die wohl nächstliegende Verwendung des Nunchuck liegt in der

Kontrolle von Motoren. Kleine Servos können Roboter antreiben,

Sensoren

177

aber auch andere Geräte wie etwa eine Webcam. Dank Knopf, Joy-

stick und Neigungssensor gibt es aber noch unzählige andere Ein-

satzgebiete. So findet sich im Internet beispielsweise ein Bastler, der

seine Espressomaschine mit einem Nunchuck ausgestattet hat, um

die verschiedenen Parameter wie Druck und Hitze einzustellen und

schließlich mit der Produktion des perfekten Espresso zu beginnen.

Gyroskop

Ein Gyroskop ist ein schnell rotierender Kreisel, der sich in einem

beweglichen Lager dreht, z.B. in einem Käfig. Aufgrund der Dreh-

impulserhaltung behält der Kreisel auch seine Lage im Raum, wenn

der Käfig geneigt wird. Dadurch können Drehungen und Neigun-

gen im Raum gemessen werden. Das Gyroskop kann also als Kom-

pass dienen, um den richtigen Weg nach Norden anzuzeigen –

selbst an den Polen, wo ja magnetische Kompasse versagen. Zudem

liefert es echte Neigungsmesswerte, selbst wenn es sich bewegt.

Beschleunigungssensoren können einen Winkel zur Schwerkraft

nämlich nur dann korrekt messen, wenn sie sich im Ruhezustand

befinden.

Elektronische Gyroskope werden heute ähnlich wie Beschleu-

nigungssensoren als MEMS aufgebaut. Allerdings ist darin kein

sich drehender Kreisel mehr vorhanden, sondern eine vibrierende

Masse, deren Auslenkung bei Drehungen gemessen werden kann.

Beispiele dafür sind der ADXRS300 und der ADXRS610 von Ana-

log Devices. Um eine stabile Lage in der Luft zu halten, benötigen

beispielsweise Quadrokopter drei Gyroskope. Sie werden aller-

dings zusätzlich von einem Beschleunigungssensor unterstützt,

damit sich Messfehler nicht aufaddieren und den Hubschrauber

zum Umkippen bringen.

Abstandssensoren

Es gibt viele Methoden, mit denen sich der Abstand von einem

Objekt zum Sensor messen lässt. Das reicht von recht einfachen

Mitteln wie einem kapazitiven Sensor bis hin zu Radar und Ultra-

schall. Im Folgenden werden die häufigsten Methoden beschrieben.

Ein kapazitiver Sensor zum Selbstbauen

Ein kontaktloser kapazitiver Sensor basiert, wie sein Name schon

beschreibt, auf der elektrischen Eigenschaft der Kapazität. Sie

178

Kapitel 7: Sensoren

beschreibt die Fähigkeit eines Objektes, elektrische Ladungen zu

speichern. Der Sensor zeigt an, wie zwei leitfähige Schichten (zum

Beispiel Metallplatten), die durch eine nicht leitfähige getrennt sind

(z.B. Luft), auf eine angelegte Spannungsdifferenz reagieren. Das

wohl bekannteste Einsatzgebiet dieser Eigenschaft ist der Konden-

sator. Die Kapazität hängt von der Fläche und der Entfernung der

leitfähigen Objekte ab.

Ein solcher Sensor lässt sich einfach selbst basteln, indem auf der

einen Seite eine Antenne (ein Draht oder ein Stück Aluminiumfolie)

verwendet wird, die mit dem Arduino verbunden ist. Die andere

Seite kann zum Beispiel die Hand oder der Körper des Benutzers

sein, da auch diese leitfähig sind.

Kapazitive Sensoren verwenden eine Wechselspannung, die immer

wieder an einem Ende des Sensors angebracht wird. Diese Span-

nung erzeugt wiederum einen elektrischen Strom, der von der

Kapazität abhängt, also vom Abstand zwischen Draht und Hand. Je

größer und näher die Handfläche, desto mehr Strom wird erzeugt,

natürlich auch in Abhängigkeit von der Form der Antenne. So las-

sen sich mit einem großen Stück Folie empfindlichere Bewegungen

messen als mit einem kurzen Stück Draht. Wenn aber z.B. nur ein

kleiner Bereich empfindlich auf Näherung reagieren soll, ist der

Draht praktischer. Hier gilt wie so oft der Grundsatz »Probieren,

Probieren, Probieren!«

Ein kapazitiver Sensor wird jeweils an zwei Arduino-Pins ange-

schlossen Der eine ist der Sendepin, der die Wechselspannung des

Sensors erzeugt. Er wird regelmäßig von 0 auf 1 gesetzt und erzeugt

so eine ständig wechselnde Spannung. Über einen relativ hoch-

ohmigen Widerstand wird er an den Empfangspin angeschlossen.

In diesem Setup verwenden wir einen Widerstand von 5 Megaohm,

es sind aber Werte von ca. 1–10 Megaohm möglich. Je nach Wider-

stand ist der Sensor mehr oder weniger empfindlich, es ist hier also

nicht notwendig, den genauen Wert von 5 Megaohm einzusetzen.

An den Empfangspin wird die Antenne angeschlossen. Dazu lässt

sich entweder ein langes Stück blanker Draht verlöten oder ein

Stück Alufolie, das um etwas Draht gewickelt ist. Möglich sind

auch leitende Gegenstände (wie ein Kochtopf), die mit dem Pin ver-

bunden werden. Wichtig ist, dass der Antennengegenstand elek-

trisch leitend ist. Mit der Entfernung der Antenne zu anderen

leitenden Gegenständen, die mit der Erde verbunden sind (z.B. der

menschliche Körper des Benutzers oder eine Heizung) lässt sich die

Sensoren

179

Kapazität am Empfangspin verändern. Zusammen mit dem Wider-

stand, der Sende- und Empfangspin verbindet, wird ein soge-

nanntes RC-Netzwerk gebildet. RC steht für resistor und

 capacitator, also Widerstand und Kondensator. Diese beeinflussen,

wie schnell eine Spannungsänderung am Ausgang des Netzwerks

widergespiegelt wird. Wenn also der Arduino den Sendepin von 0

auf 1 schaltet, bestimmt die Kapazität an der Antenne, wie schnell

diese Veränderung am Empfangspin ankommt. Misst man nun die

Zeit, lässt sich die Entfernung des menschlichen Körpers bestim-

men. Verwendet man mehrere Sensoren, kann man sogar die Posi-

tion berechnen.

Natürlich kann man solche Sensoren auch für wenig Geld kaufen.

In jedem Falle kann die Spannung analog ausgelesen und verarbei-

tet werden.

Hall-Sensor

Ein Hall-Sensor nutzt den nach dem Physiker Edwin Hall benann-

ten Effekt, der das Auftreten von elektrischer Spannung in einem

stromdurchflossenen Leiter beschreibt, wenn dieser sich in einem

stationären Magnetfeld befindet. Die Spannung fällt dabei senk-

recht sowohl zur Stromfluss- als auch zur Magnetfeldrichtung am

Leiter ab und wird Hall-Spannung genannt. Dieser Sensor ist also

kein Abstandssensor im eigentlichen Sinne, kann aber zum Beispiel

als Schalter verwendet werden, ohne dass ein mechanischer Kon-

takt entstehen muss. Er kann aber auch verwendet werden, um

Magnetfelder zu erkennen und ihre Stärke zu messen. Wenn

Strom- und Magnetfeldstärke bekannt sind, funktioniert er auch

als Metalldetektor. Ein recht einfaches Projekt (http://mekonik.

 wordpress.com/2009/03/02/my-first-arduino-project/), das einen Hall-

Sensor verwendet, ist ein Elektromagnet, der durch die Regelung

mittels Arduino ein magnetisches Objekt in der Luft schweben las-

sen kann. Dabei misst ein Hall-Sensor die Stärke des Feldes und der

Arduino reguliert es, sodass das Objekt nicht zu nahe kommt oder

aus dem Feld herausfällt. Andererseits kann der Hall-Sensor zum

Beispiel auch benutzt werden, um die Geschwindigkeit eines Venti-

lators zu messen.

Reed-Relais

Das Reed-Relais schaltet einen Stromkreis, je nachdem, ob sich ein

magnetisches Feld in der Nähe befindet oder nicht. Es besteht aus

zwei Kontakten, die in einem Glaskörper so eingeschmolzen sind,

dass sie sich durch ein externes Magnetfeld anziehen können. Je

180

Kapitel 7: Sensoren

nach Beschaffenheit schließen oder öffnen sie sich, wenn eine mag-

netische Spule oder ein Dauermagnet in die Nähe kommt. Fällt das

Magnetfeld ab oder unterschreitet es eine bestimmte Schwelle, wird

dieser Effekt beendet. Die wohl bekannteste Anwendung ist ein

Tachometer am Fahrrad, bei dem der Magnet am Rad und das

Reed-Relais am Rahmen angebracht sind. Weil der Reifenumfang

bekannt ist, kann man dann die Geschwindigkeit und die zurück-

gelegte Strecke des Rades berechnen, indem man die Zeit zwischen

zwei Kontakten misst. Natürlich kann ein solcher Schalter auch an

einer Tür angebracht werden, um festzustellen, ob sie geöffnet oder

geschlossen ist. Das Ergebnis lässt sich dann digital mit dem Ardu-

ino auslesen.

Sonar

Das Sonar kennt man aus U-Booten (bzw. den entsprechenden Fil-

men), wo es zur Ortung von fremden Gegenständen und Booten in

der Umgebung verwendet wird. Ein Sonarsensor kann aber auch

dazu verwendet werden, den Abstand von einem Objekt zum Sen-

sor zu messen. Das geschieht, indem ein Ultraschallsignal ausge-

sendet und die Zeit gemessen wird, bis das Echo zurückkommt. Ein

Beispiel für einen solchen Sensor ist der Ping))) von Parallax Inc.

(http://www.parallax.com/Store/Sensors/ObjectDetection/tabid/176/

 ProductID/92/List/1/Default.aspx?SortField=ProductName,Product-

 Name). Er ist in der Lage, Objekte in einer Entfernung von 2 cm bis

zu 3 m zu orten. Die Messung übernimmt allerdings das daran

angeschlossene Arduino-Board. Es setzt zunächst den mit dem Sen-

sor verbundenen Pin als Output fest und sendet dann ein Signal

und anschließend den Pin auf Input. Nun kann es die Zeit messen,

bis ein Signal auf dem Pin anliegt, und diese Zeit in Entfernung

umwandeln, da Schall sich in der Luft nahezu konstant bewegt.

Laut Datenblatt sind das 1.130 Fuß (344,424 Meter) pro Sekunde,

also 34,442 Zentimeter pro Millisekunde.

Infrarotsensor

Natürlich lässt sich auch mit Licht die Position relativ zu einem

Objekt bestimmen. Dafür werden Infrarotwellen gemessen, die

vom Sensor ausgesandt werden. Das angepeilte Objekt reflektiert

die Lichtwellen, die in einem bestimmten Winkel wieder auf dem

Sensor auftreffen. Diese Messung samt Abstandsberechnung nennt

man Triangulation. Für einfache Projekte empfiehlt sich zum Bei-

spiel der IR Range Finder GP2D12 von Sharp, der für ca. 14 Euro

im Elektronikfachhandel erhältlich ist. Er kann Objekte in einer

Entfernung zwischen 10 und 80 Zentimetern erkennen.

Sensoren

181

Temperatursensor

Temperatur lässt sich auf viele verschiedene Arten durch die

Anwendung unterschiedlicher physikalischer Prinzipien messen.

Am häufigsten sind Widerstandssensoren. Kaltleiter erhöhen ihren

Widerstand, wenn die Temperatur zunimmt, während Warmleiter

ihn senken. Auf der anderen Seite gibt es auch Halbleitersensoren,

die – je nach Bauweise – zur Temperatur proportionalen Strom

oder Spannung liefern.

Feuchtigkeitssensor

Grundsätzlich gibt es zwei verschiedene Arten von Sensoren, um

Feuchtigkeit zu messen: Hygrometer, die die Luftfeuchtigkeit

anzeigen können, und Messgeräte für die Messung der Feuchtigkeit

in verschiedenen Stoffen (z.B. Tensiometer für die Bodenfeuchtig-

keit).

Die interessanten Hygrometer sind vor allem jene, die die absolute

Luftfeuchtigkeit messen können. Um die relative Luftfeuchtigkeit

und den Taupunkt zu messen, gibt es ebenfalls Verfahren, die hier

aber keine Rolle spielen.

Um die absolute Luftfeuchtigkeit zu messen, wird ein wasseranzie-

hendes Material verwendet. Seine Eigenschaften verändern sich bei

zunehmender Luftfeuchtigkeit. Bei elektrischen Hygrometern ist

das ein Polymer, dessen Widerstand oder Kapazität sich verändern

kann.

Kompass

Kompasse bestehen nicht notwendigerweise aus einer runden Mes-

singdose mit Glasdeckel und einer magnetischen Nadel. Mit dem

HMC6352 von Honeywell ist beispielsweise ein magnetischer Sen-

sor verfügbar, der auch an den Arduino angeschlossen werden

kann. Um die beiden Achsen auszulesen und somit die horizontale

Lage des Sensors zu bestimmen, empfiehlt es sich, die Wire-Biblio-

thek zu verwenden, die auf der Website des Arduino-Projektes

(http://www.arduino.cc/en/Reference/Wire) dokumentiert ist. Eine

andere Bibliothek samt Beispiel finden Sie unter http://rubenlaguna.

 com/wp/2009/03/19/arduino-library-for-hmc6352/.

Ein Kompass kann als günstige Methode der Lagebestimmung in

einem Roboter eingesetzt werden, wenn man diesem einen be-

182

Kapitel 7: Sensoren

stimmten Pfad mitgeben will. Man kann damit natürlich auch ein

multifunktionales Gerät basteln, das etwa mit einem Display und

weiteren Sensoren ausgestattet ist und als günstige Hilfe bei Aktivi-

täten in der Natur fungiert, etwa beim Bergwandern.

Allerdings sollte man Eisen in der Nähe des Sensors vermeiden, da

dieser sonst unweigerlich falsche Werte anzeigt. In gewissen Gren-

zen kann dieser Effekt aber weggerechnet werden.

Mikrofone

Mikrofone wandeln Schallwellen in elektrische Wellen um, sodass

man diese messen kann. Das Prinzip besteht immer aus einer Mem-

bran, die sich durch die Druckwellen in der Luft verformt. Diese Ver-

formung kann über verschiedene Mechanismen gemessen werden.

Dynamisches Mikrofon

Ein dynamisches Mikrofon ist die Umkehrung eines Lautsprechers:

Die von den Schallwellen bewegte Membran verschiebt die daran

angebrachte Spule innerhalb eines Magneten, wodurch in der Spule

Ströme induziert werden. Tatsächlich kann man einen Lautspre-

cher auch als Mikrofon verwenden. Vorteilhaft ist dabei, dass

dynamische Mikrofone nicht so leicht übersteuert werden wie Elek-

tret-Kondensatormikrofone (kurz: Elektretmikrofone), was beson-

ders für Lichtorgel-Anwendungen im Bereich der Lautsprecher

wichtig ist.

Der Ausgang eines dynamischen Mikrofons ist zu schwach, um

direkt vom Arduino gemessen zu werden; er muss mit mehreren

Transistoren oder einem Operationsverstärker verstärkt werden.

Elektret- und Kondensatormikrofone

Beim »normalen« Kondensatormikrofon bilden zwei elektrisch leit-

fähige Platten einen Kondensator. Der Abstand der Platten, und

damit die Kapazität, wird vom Schalldruck verändert. Um diese

Veränderung messen zu können, legt man eine hohe Spannung

über einen Widerstand an den Platten an, und die veränderte Kapa-

zität beeinflusst dann die Spannung am Kondensator. Ein Elektret-

mikrofon benötigt diese Spannung nicht, da das Elektret zwischen

den beiden Platten »vorgespannt« ist: Es wird bei der Fertigung

unter einer hohen Spannung abgekühlt, sodass die Elektronen in

diesem Zustand verbleiben.

Sensoren

183

Piezoelektrisches Mikrofon

Der Piezoeffekt beschreibt die Erzeugung einer elektrischen Polari-

sation bei Festkörpern, wenn sie verformt werden. Wird also auf

einen piezoelektrischen Sensor mechanisch eingewirkt, verändert

sich die Spannung auf der Oberfläche des Sensormaterials. Umge-

kehrt kann ein piezoelektrischer Aktor sich verformen, wenn Span-

nung angelegt wird.

Das piezoelektrische Mikrofon reagiert auf Druckveränderungen in

der Luft. Eine Membran folgt den Schwankungen des Schalls. Sie

ist mit einem piezoelektrischen Element gekoppelt, das durch den

Druck minimal verformt wird und so elektrische Spannungs-

schwankungen auslöst. Als Mikrofon ist ein Piezo nicht die beste

Wahl, da die Tonqualität höhenlastig ist. Als Sensor kann es zum

Beispiel in Verbindung mit einem Tiefpass-Filter eingesetzt werden,

um Bassimpulse an den Arduino zu melden. Damit können z.B.

Animationen in Processing gesteuert oder LEDs gepulst werden,

um eine entsprechende Atmosphäre zur Musik zu schaffen. Oder

man nutzt es, um Geräusche zu melden, etwa für eine Alarmanlage.

Einer der Autoren dieses Buches nutzt eine Schaltung mit Piezomi-

krofon, um eine Tonaufnahme zu starten, sobald er wieder einmal

im Schlaf zu reden anfängt.

Biometriesensor

Im eigentlichen Sinn gibt es keine biometrischen Sensoren, aller-

dings können Temperatur-, Spannungsdifferenz-, Druck- und

Kraftsensoren dazu verwendet werden, biometrische Zustände zu

messen.

Fingerabdrucksensor

Fingerabdrücke werden heutzutage nicht mehr nur in Science-Fic-

tion-Filmen verwendet, um beispielsweise Schlüssel zu ersetzen.

Viele Notebooks und auch elektronische Türsysteme besitzen sol-

che Scanner. Diese sind nicht hundertprozentig sicher, sollten also

nicht in hoch sensiblen Einrichtungen verwendet werden. Für den

Gebrauch in der heimischen Umgebung, in der kaum damit gerech-

net werden dürfte, dass das System für kriminelle Machenschaften

missbraucht wird, sind sie allerdings geeignet, wenn auch derzeit

noch etwas teuer. Für 70 bis 100 Euro kann man einen passenden

Sensor für den Arduino erstehen.

184

Kapitel 7: Sensoren

EEG

Die Elektroenzephalografie, bei der Gehirnaktivität gemessen

wird, war lange Zeit teuren Geräten in Krankenhäusern und For-

schungseinrichtungen vorbehalten. So wurden wissenschaftliche

Erkenntnisse gesammelt und klinische Diagnosen durchgeführt.

Mittlerweile werden solche EEG-Geräte aber in einfachen Versio-

nen selbst gebaut, zum Beispiel im Projekt OpenEEG (http://

 openeeg.sourceforge.net/). Die bekannteste Anwendung ist das

BrainPong, eine Version des berühmten Tennis-Computerspiels,

dessen Paddel durch die Gedanken des Spielers gesteuert werden.

Nach kurzem Training ist der Computer in der Lage, verschiedene

aktive Gedanken (wie etwa »oben« oder »unten«) zu unterschei-

den. Dabei werden Elektroden auf dem Kopf angebracht, die die

vom Gehirn ausgesandten elektromagnetischen Wellen messen.

Weil diese Wellen je nach Aktivität in unterschiedlichen Bereichen

emittiert werden, kann man sich mit mehreren Elektroden ein

räumliches Bild davon verschaffen.

Gasdrucksensor

Der Druck in einer Leitung oder einem Gefäß kann über die Verfor-

mung einer Membran gemessen werden. Der dabei gemessene

Wert entspricht dann immer der Differenz der Drücke an den zwei

Seiten der Membran (Differenzdrucksensor). Die physikalische Ein-

heit für Druck ist dabei Pascal (Pa). Fast alle Differenzdrucksenso-

ren funktionieren entweder resistiv (ändern also ihren Widerstand)

oder kapazitiv (ändern ihre Kapazität). Solche Sensoren werden

zum Beispiel im in Kapitel 1 beschriebenen Bierbrauprojekt eingesetzt, wo der Druck im Brautank reguliert werden muss. Sie eignen

sich aber auch, um große Mengen an Flüssigkeit zu regulieren oder

beispielsweise Wasserschläuche zu steuern. So kann ein Gas-

drucksensor am Ende eines Schlauches, der in eine Wasserzisterne

getaucht wird, denn aktuellen Wasserstand messen.

Kraftsensor

 Piezoelektrische Sensoren nutzen den gleichnamigen Effekt, um aus

der Verbiegung eines Kristalls eine Spannung zu erzeugen. In einem

Feuerzeug schlägt ein Federmechanismus auf einen Piezokristall.

Die dabei erzeugte Spannung ist groß genug, um das Gas zu ent-

zünden. EnOcean stellt mit diesem Effekt drahtlose Lichtschalter

Sensoren

185

her, die ihre Energie für das Funksignal nur aus dem Betätigen des

Schalters gewinnen. Da die vom Piezokristall abgegebene Span-

nung aber proportional zur Änderung der Kraft ist, die auf den

Kristall einwirkt, können nur Veränderungen gemessen werden.

Man kann damit also keine Waage bauen, aber zum Beispiel Drum-

pads für ein elektronisches Schlagzeug.

 Resistive Sensoren basieren auf Dehnungsmessstreifen (DMS), die

bei Verformung ihren elektrischen Widerstand verändern. Wird

der DMS in die Länge gezogen, verringert sich die Leiterbahnbreite,

und der Widerstand steigt. Dieses Prinzip würde auch mit einem

normalen Draht funktionieren, was aber aus zwei entscheidenden

Gründen nicht praktikabel ist: Die Widerstandsänderung ist sehr

klein, und normaler Kupferdraht würde sich nicht mehr zusam-

menziehen, nachdem die aufgebrachte Kraft wieder verschwunden

ist. Fast alle elektrischen Waagen funktionieren mit DMS-Senso-

ren. Auch im Brückenbau, in Kraftwerken usw. werden sie einge-

setzt, um frühzeitig Verformungen zu erkennen.

 Kapazitive Drucksensoren enthalten einen Kondensator, der durch

die aufgebrachte Kraft verformt wird, wodurch sich seine Kapazität

ändert. Diese Änderung ist dann ein Maß für den Druck.

Der einfachste Anwendungsfall für einen Drucksensor ist natürlich

eine Art Tastatur, die mehr als nur einen An/Aus-Wert übergeben

muss. Einfache Sensoren können zum Beispiel in Kleidung einge-

näht werden, um festzustellen, wenn der Träger umarmt wird oder

hinfällt. Sicherlich kennen Sie den »Hau den Lukas« von Jahr-

marktbesuchen. Unter einer Gummimatte und einem Holzbrett

könnte der Drucksensor so die Hammerschläge messen, die der

Arduino dann auf einer langen Linie von LEDs visualisiert. Ein

anderes Beispiel sind Klopfsensoren; ein Drucksensor auf einer Tür

kann diese nach dem richtigen Klopfsignal öffnen.

Biegungssensor

Biegungssensoren verhalten sich ähnlich wie piezoelektrische Kraft-

messer. Sie verändern also ihren Widerstand, wenn sie mechanisch

verändert werden – in diesem Fall gebogen. Diese Sensoren können

beispielsweise in Kleidung eingearbeitet werden und bieten so die

Möglichkeit eines einfachen Motion-Capturing. Auch wenn die

Präzision wahrscheinlich nicht ausreicht, um damit filmreife 3-D-

Modelle zu steuern, gibt es diverse Projekte damit: Die Designer

Mika Satomi und Hannah Perner-Wilson nutzen selbstgebaute

186

Kapitel 7: Sensoren

Neopren-Sensoren (erklärt unter http://www.instructables.com/id/

 Neoprene-Bend-Sensor-IMPROVED/) für eine interaktive Tanzper-

formance. An verschiedenen Stellen in die Kleidung einer Tänzerin

eingearbeitete Biegungssensoren steuern über ein Funksignal

Instrumente, die die Darbietung mit Klängen untermalen. Dieses

Projekt findet sich auf der Webseite der Designer unter http://www.

 instructables.com/id/Puppeteer_Motion_Capture_Costume/.

Ein anderes Projekt nutzt einen Biegungssensor, um eine heliotrope

Pflanze zu steuern. Diese Pflanzen neigen sich stets nach der Sonne,

sodass ihre Blätter sich im Tagesverlauf von Osten nach Westen

drehen und am Morgen wieder Richtung Osten stehen. Das

genannte Projekt misst die Neigung der Pflanze und dreht sie um

180 Grad, sobald sie einen bestimmten Grenzwert überschritten

hat. So richtet sich der Stamm wieder auf und beginnt erneut seine

Dehnungsübungen. Dieses Projekt ist auf der Webseite des Make

Magazine unter http://blog.makezine.com/archive/2006/12/bend_

 sensor_hel.html beschrieben.

Aktoren

Aktoren sind allgemein Elemente, die eine physikalische Eingangs-

größe in eine andersartige Ausgangsgröße umwandeln. In der Welt

des Physical Computing ist diese Eingangsgröße natürlich Elektrizi-

tät. Die möglichen Ausgangsgrößen sind so unterschiedlich, wie die

Physik vielschichtig ist, und reichen von Licht und Ton bis hin zu

Wärme und Bewegung. Die gängigsten Aktoren werden hier nun

kurz vorgestellt.

LEDs

Glühlampen und Leuchtstoffröhren sind zwar sehr hell, können

aber nur schwer geregelt werden. Sie reagieren nur langsam und

sind zudem groß und damit nur begrenzt einsetzbar. LEDs sind,

wie in Kapitel 3 beschrieben wurde, Dioden, die binnen Mikrosekunden einen Lichtimpuls abgeben können. Die fortschreitende

technische Entwicklung macht es inzwischen möglich, auch Licht-

dioden mit sehr hohen Helligkeitswerten herzustellen, sodass die

LED langsam auch die privaten Haushalte erobert. Weitere Vorteile

neben den schon erwähnten sind, dass LEDs im Durchschnitt viel

länger halten und über eine deutlich höhere Lichtausbeute pro

Watt verfügen. Waren LEDs lange Zeit nur in weißer und roter

Farbe erhältlich (andere Farben wurden über einen entsprechenden

Aktoren

187

Plastiküberzug erzeugt), gibt es mittlerweile auch grüne und blaue

Leuchtdioden und Kombinationen aller drei Grundfarben (Rot,

Grün und Blau), die gemeinsam auf einen Chip montiert sind.

Kapitel 3 erklärt ausführlich, wie LEDs mit dem Arduino angesteuert und durch Pulsung in ihrer sichtbaren Helligkeit verändert wer-

den können. Am Ende des Kapitels gibt es zudem eine Liste

interessanter LED-Projekte.

Motoren

Kleine Motoren sind der Antrieb für alle Projekte im Bereich der

Robotik. Sie können aber auch benutzt werden, um beispielsweise

Lampen auszurichten oder Sensoren in eine gewünschte Position

zu bringen. Im normalen Gebrauch unterscheidet man zwischen

drei Arten: Gleichstrom-, Servo- und Schrittmotoren.

Gleichstrommotoren

Die günstigsten und einfachsten Motoren basieren auf einer oder

mehreren magnetischen Spulen, die um eine Welle gefasst werden.

Liegt Spannung an diesen Motoren an, bringt das Magnetfeld die

Welle zum Rotieren. Ein normaler Gleichstrommotor kann dabei

nur schwer gesteuert werden. Er bietet keinerlei Rückkopplung,

sodass dem Benutzer weder die Position noch die Geschwindigkeit

genau bekannt sind. Für präzise Operationen, wie etwa die Steue-

rung eines Fluggerätes oder die Drehung eines Objektes um wenige

Grad, eignet er sich also nicht; kann man aber darauf verzichten,

ist der Gleichstrommotor aufgrund seines Preises natürlich zu

empfehlen.

Servomotoren

Benötigt man ein Feedback vom Motor, um seine Geschwindigkeit

genau regeln zu können, empfiehlt sich ein Servomotor. Diese

Motoren sind durch die Rückkopplung außerordentlich präzise,

allerdings auch entsprechend teuer. Ein Servomotor besteht aus

einem Gleich- oder Wechselstrommotor, enthält zusätzlich einen

Rückkopplungsmechanismus, meist auf Basis einer Lichtschranke

oder eines Potentiometers. So ist er in der Lage, genaue Geschwin-

digkeiten und sogar Positionen einzustellen. Die kleine Variante der

Servomotoren sind die Modellbauservos. Diese können sich nur

um ca. 180° drehen, haben aber ein einfaches digitales Interface,

können also ohne weitere Bauteile mit dem Arduino verwendet

188

Kapitel 7: Sensoren

werden. Für Roboteranwendungen werden diese gerne so modifi-

ziert, dass die Rückkopplung entfällt. Dafür erhält man dann für

wenig Geld einen Motor mit integrierter Geschwindigkeitsrege-

lung. Diese sind im Modellbaufachhandel für bezahlbares Geld

erhältlich.

Abbildung 7-1

Servomotor

Schrittmotoren

Ein Schrittmotor basiert auf einem drehbaren Motorteil (Rotor) mit

einer Welle, das sich in einem magnetischen Feld befindet. Dieses

Feld ist in Schritte unterteilt, sodass der Rotor sich um einen oder

mehrere dieser Schritte drehen kann. Dadurch kann man im Prin-

zip Geschwindigkeit und auch Position bestimmen. Allerdings gibt

es keinerlei Rückmeldung über mögliche Schrittverluste. Während

ein Servomotor seine Position wieder einnimmt, wenn er beispiels-

weise durch einen Finger angehalten wurde, ist der Schrittmotor

dazu nicht in der Lage. Zudem kann es bei großen Leistungen zu

Problemen kommen. Dafür ist er deutlich preisgünstiger.

Der Arduino selbst ist nicht in der Lage, Motoren zu steuern, da er

ja nur über digitale Ausgänge verfügt und ein Motor nicht einfach

angeschaltet werden kann. Hier hilft ein Motor-Driver wie der

L293 oder der SN754410NE. Unter http://www.ladyada.net/make/

 mshield/ oder auch http://www.nkcelectronics.com/freeduino-ardu-

 ino-motor-control-shield-kit.html findet man Shields für den Ardu-

ino, über die Richtung und Geschwindigkeit des Motors gesteuert

werden können. Der Shield von Ladyada.net verwendet dabei

8-Bit-Werte für die Geschwindigkeit und wird über eine der

Aktoren

189

Bibliotheken angesteuert, die auf der Website heruntergeladen

werden können. Der Driver von nkelectronics.com verwendet

Pulsweitenmodulation und wird nur über ein entsprechendes ana-

logWrite() angesprochen. Welchen man nun kauft, oder ob man

sich dank verfügbarer Board-Layouts selbst einen Shield baut,

hängt vom Verwendungszweck und dem Preis ab, den man zu zah-

len bereit ist.

Relais

Oft möchte man einen Arduino verwenden, um Stromkreise zu

schalten, die sich weit über der Betriebsspannung des Boards von 5

Volt bewegen. Das ist natürlich zunächst ein Problem, weil starke

Ströme dem Board erheblichen Schaden zufügen können. Um bei-

spielsweise Glühbirnen anzuschalten, werden die vollen 220 Volt

aus der Steckdose benötigt. Abhilfe können hier Relais schaffen.

Das sind Schalter, die durch einen elektronischen Impuls einen

weiteren Stromkreis schalten können. Ein mechanisches Relais

arbeitet meist nach dem Prinzip des Elektromagneten. Liegt Strom

in einer Spule an, zieht diese einen mechanischen Anker an, der als

Schalter im zweiten Stromkreis fungiert. Diese Relais eignen sich

vor allem, um zum Beispiel Geräte im Haushalt anzuschalten. Wie

wäre es mit einem Kaffeewecker, der durch den Duft frischen

Espressos auf sich aufmerksam macht, oder mit einem Lichtschal-

ter, der unter einer Fußmatte neben dem Bett angebracht ist und

den Raum beleuchten lässt, sobald man aufsteht?

Neben diesen mechanischen Relais gibt es auch eine Reihe anderer;

dazu zählen auch Transistoren bzw. Halbleiterrelais, auch wenn

diese streng genommen keine Relais sind. Diese können zum Bei-

spiel recht einfach verwendet werden, um leistungsfähige LEDs zu

schalten (siehe Kapitel 1 und 3), da Transistoren im Gegensatz zur Mechanik auch schnell genug sind, um die nötige Pulsung zu leisten.

Ein Relais wird – ähnlich wie eine leistungsfähige LED – immer

über einen Transistor an den Arduino angeschlossen. Dabei sollte

man die Diode nicht vergessen, sonst kann die Induktivität des

Relais den Transistor beschädigen.

Solenoide

Ein Solenoid ist eine Zylinderspule, die magnetische Kräfte entwi-

ckelt, wenn Spannung angelegt wird. Diese kann etwa um einen

190

Kapitel 7: Sensoren

Metallstift gewickelt werden, oder aber zum Beispiel als Ventil

funktionieren.

Die Metallstiftvariante des Solenoids besteht aus einem bewegli-

chen Stift, der genau in der Mitte der Spule platziert wird. Wird auf

dieser Spule Spannung angelegt, treibt die magnetische Kraft diesen

Metallstift nach außen. Dieser Impuls ist stark genug, um den Sole-

noid als Aktor zu verwenden. So gibt es Projekte, die daraus ein

Trommelkonzert machen. Entweder hämmert der Solenoid direkt

auf verschiedene Gegenstände, um so unterschiedliche Töne zu

erzeugen, oder er treibt wiederum einen Holzstock an, der bei-

spielsweise auf eine Trommel schlägt. Oder man setzt ihn ein, um

selbst als musikalisch unbegabter Mensch aus einem Glockenspiel

schöne Melodien ertönen zu lassen. Dieser Solenoid benötigt viel

Strom; ein Anschluss über einen Transistor wie in Kapitel 3

beschrieben ist also dringend erforderlich.

Das Solenoid-Ventil eignet sich, um genaue Mengen von Flüssig-

keiten oder Gasen abzugeben. Dazu muss man nur wissen, mit wel-

cher Geschwindigkeit sich welche Menge des gewünschten Stoffes

durch einen vom Solenoid abgeschlossenen Schlauch oder ein Rohr

bewegt. Schließt man dieses Ventil nun über eine entsprechende

Schaltung an den Arduino an, ergeben sich viele Möglichkeiten,

nicht nur für den wissenschaftlichen Bereich. So könnte man etwa

selbst als Hobbyfilmer eine günstige und leicht zu steuernde Regen-

maschine bauen. Oder man verwendet zusätzlich einen Feuchtig-

keitssensor, um Pflanzen vollautomatisch zu bewässern. Natürlich

eignet sich ein solches Ventil auch für einen Roboter, der in der

Lage ist, perfekte Cocktails zu mixen, weil er immer die korrekte

Menge einer Zutat abgibt, sofern es sich dabei nicht um Limetten

oder gestoßenes Eis handelt. Angesteuert werden sie wie Relais mit

einem Transistor.

Elektronischer Würfel

Nun soll ein elektronischer Würfel gebaut werden. Dieser besteht

aus einem elektronischen Display, das die gewürfelte Zahl darstellt,

sowie einem Taster, der den Würfel anstößt. Anschließend wird

mit einem Piezo-Lautsprecher noch ein entsprechender Ton ausge-

geben.

An Material werden dafür sieben LEDs, sieben Widerstände 470R,

eine Lochrasterplatine und ein piezoelektrischer Sensor benötigt.

Elektronischer Würfel

191

Auf den folgenden Bildern sind neun LEDs zu sehen, allerdings

sind die zwei LEDs oben und unten in der Mitte nicht weiter ange-

schlossen. Sie können also weggelassen werden.

Abbildung 7-2

Würfelaufbau, Lochrasterplatine

oben

Setup

Die mittlere LED wird mit einem 470R-Widerstand mit Pin 11 ver-

bunden. Die beiden LEDs oben links und unten rechts mit Pin 10,

die LEDs unten links und rechts mit Pin 9 und die verbleibenden

zwei LEDs mit Pin 8.

Abbildung 7-3

Würfelaufbau,

Lochrasterplatine unten

Es wäre einfach, einen Taster zu verwenden, um den Würfel seine

Zahl wählen zu lassen. Viel näherliegend für den Benutzer ist es

192

Kapitel 7: Sensoren

aber, zu schütteln, um zum Ergebnis zu gelangen. Dazu wird ein

Erschütterungssensor aus den von den Widerständen und LEDs

übrig gebliebenen Anschlussdrähten gebaut, indem ein Ring gebo-

gen und die Enden verlötet werden. Dieser Ring kommt über zwei

nach außen umgebogene Drähte (damit der Ring nicht abfallen

kann) an GND und Pin 12.

Wird die Schaltung bewegt oder geschüttelt, bewegt sich der kleine

Drahtring und öffnet und schließt dabei den Kontakt zwischen die-

sen beiden PINs; die Eingabe kann verwendet werden, um den

Würfel zu steuern.

Abbildung 7-4

Rüttelsensor

Software

Zunächst werden die sieben LEDs in einem leeren Worksheet ange-

bunden (wie auch in Kapitel 3 erklärt), dann wird Pin 12 mit dem Erschütterungssensor als Eingang definiert und mit einem HIGH-Signal für den internen Pull-up-Widerstand belegt.

Nun kann durch einzelne HIGH- und LOW-Signale herausgefun-

den werden, wie sich mit dieser Schaltung alle benötigten Augen-

bilder eines Würfels abbilden lassen. Das Ergebnis wird in eine

eigene Funktion geschrieben.

Dabei kann das Konstrukt switch() {.. case …} verwendet werden.

Es erlaubt wie if...else bedingte Sprünge, kann aber abhängig

von einem Wert aus mehreren Verzweigungen wählen:

void display(int num)

{

switch(num)

{

Elektronischer Würfel

193

 case 0:

digitalWrite(led1Pin, LOW);

digitalWrite(led2Pin, LOW);

digitalWrite(led3Pin, LOW);

digitalWrite(led4Pin, LOW);

break;

case 1:

digitalWrite(led1Pin, HIGH);

digitalWrite(led2Pin, LOW);

digitalWrite(led3Pin, LOW);

digitalWrite(led4Pin, LOW);

break;

und so weiter...

Dieser Code ist allerdings wenig elegant, zieht er sich doch in die

Länge und wiederholt sich dabei in großen Teilen. Mit ein wenig

Nachdenken kommt man allerdings auf einige Gesetzmäßigkeiten:

LED1 ist immer an, wenn num nicht durch 2 teilbar ist (1, 3, 5).

LED2 ist immer an, wenn num > 1 ist (2, 3, 4, 5, 6).

LED3 ist immer an, wenn num > 3 ist (4, 5, 6).

LED4 ist nur bei num = 6 an.

Also kann das Ganze durch Folgendes ersetzt werden.

// zeigt eine Zahl von 0 bis 6 auf den Würfel-LEDs an

void display(int num)

{

if ((num % 2) == 0) {

digitalWrite(led1Pin, LOW);

} else {

digitalWrite(led1Pin, HIGH);

}

if (num > 1) {

digitalWrite(led2Pin, HIGH);

} else {

digitalWrite(led2Pin, LOW);

}

if (num > 3) {

digitalWrite(led3Pin, HIGH);

} else {

digitalWrite(led3Pin, LOW);

}

if (num == 6) {

digitalWrite(led4Pin, HIGH);

} else {

digitalWrite(led4Pin, LOW);

}

}

Der Erschütterungssensor verhält sich wie ein Taster. Je nachdem,

wie der Drahtring liegen bleibt, ist unbekannt, ob der Stromkreis

194

Kapitel 7: Sensoren

im Ruhezustand offen oder geschlossen ist. Deshalb wird über-

prüft, ob der Zustand sich geändert hat, und nur ein Signal regist-

riert, wenn das der Fall ist.

int getTaster(void)

{

taster = digitalRead(tasterPin);

if (taster != taster_old)

{

taster_old = taster;

return 1;

}

return 0;

}

Die Funktion getTaster() liefert also nur dann eine 1 zurück, wenn

sich der Erschütterungssensor bewegt hat.

Steht der Würfel still, so soll der Wurf erst gestartet werden, wenn

viele Male in kurzer Zeit so eine Veränderung gemessen worden ist,

andernfalls würde der Würfel schon auf leichtes Anstoßen des

Tisches reagieren. Dazu wird eine Zählvariable benutzt: taster_

entprellen wird bei jedem Ereignis um 20 erhöht; tritt nichts ein,

wird eins abgezogen. Erst wenn diese Zahl größer als 1.000 ist, soll

der Wurf gestartet werden.

void loop() // Hauptschleife

{

// warten auf einen Tastendruck zum Starten des Würfels

taster_entprellen = 0;

while(taster_entprellen < 1000)

{

taster_entprellen += getTaster()*20;

if (taster_entprellen > 0) taster_entprellen--;

delay(1);

}

Die Variable speed bestimmt die Geschwindigkeit, mit der sich der

Würfel dreht. Sie wird nun willkürlich auf 100 gesetzt und der

Wurf gestartet. Dabei wird eine do...while-Schleife verwendet.

Diese läuft mindestens einmal durch, maximal so lange, bis eine

bestimmte Bedingung erreicht wird. Setzt man die while-Bedingung

an den Anfang der Schleife, kann es passieren, dass die Schleife

nicht ausgeführt wird, im Falle des Würfels soll aber zumindest ein-

mal eine neue Zahl ermittelt werden.

// nun wird der Würfel gestartet

// setzen der Würfelgeschwindigkeit auf hoch

speed = 100;

do

{

Elektronischer Würfel

195

// immer, wenn der Taster seinen Zustand wechselt,

// Geschwindigkeit wieder hochsetzen

if (getTaster() == 1)

{

speed += 10;

}

// Würfel um eins weiterzählen

// wenn größer als 6, wieder auf 1 setzen

num++;

if (num > 6) num = 1;

// anzeigen

display(num);

// ein bisschen warten; je groeßer "Speed", desto weniger

// wird gewartet

delay(1000/speed);

Speed--; // langsam langsamer werden.

}

while (speed > 1);

// der Würfel ist stehen geblieben

}

Piezolautsprecher

Der Würfel soll nun einen Piezolautsprecher erhalten, um beim

Wurf einen passenden Ton auszugeben.

Abbildung 7-5

Piezo

Piezoelektrische Elemente sind Bauteile, die beim Anlegen von

Spannung ihre Form verändern oder bei einer Veränderung ihrer

Form Spannung erzeugen. Piezolautsprecher gehören in die erste

Kategorie: Liegt eine hohe Spannung an, können sie Ton ausgeben.

Die möglichst hohe Spannung wird erreicht, indem der Piezo gleich

an zwei Ausgangspins angeschlossen wird. Diese werden dann

immer gegensätzlich geschaltet. In unserem Beispiel werden die

196

Kapitel 7: Sensoren

beiden Variablen piezo1 und piezo2 mit den Pins 6 und 7 verbun-

den und als Ausgang definiert.

In der Würfel-Displayfunktion werden nun bei jedem Hochzählen

von num die beiden Pins umgeschaltet, der Piezo gibt ein leises Kna-

cken von sich.

if ((num % 2) == 0)

{

digitalWrite(piezo1, LOW);

digitalWrite(piezo2, HIGH);

} else {

digitalWrite(piezo1, HIGH);

digitalWrite(piezo2, LOW);

}

Diese Schaltung kann dann in ein kleines Gehäuse gebaut werden,

wenn man den Arduino mit einer Batterie ausstattet.

Elektronischer Würfel

197

KAPITEL 8

In diesem Kapitel:

Automation

• Alles hört auf mein

Kommando

• DMX

• Barlicht

• RF-Steckdosen

• Gespensterschreck

Alles hört auf mein Kommando

In diesem Kapitel geht es darum, Gegenstände wie Lampen, Hei-

zung, Ventilatoren und Rollläden mit dem Arduino anzusteuern.

Wie in Kapitel 1 und 2 angesprochen kann zur Beeinflussung von größeren Spannungen und Strömen ein Relais, Transistor oder

Triac verwendet werden. Allerdings kann man dabei nicht vermei-

den, dass man mit gefährlichen Spannungen hantieren muss.

Aus diesem Grund konzentrieren wir uns hier auf zwei ganz andere

Methoden. Erstens DMX, ein weit verbreitetes Protokoll zur

Ansteuerung von Scheinwerfern auf Bühnen und Diskotheken.

Noch etwas universeller, aber mit mehr Bastelei verbunden: das

Ansteuern von Funksteckdosen. Diese können für wenig Geld im

Baumarkt um die Ecke oder beim Discounter erworben werden.

Einige Projekte sollen hier kurz vorgestellt werden, um die ganze

Bandbreite der Möglichkeiten zu zeigen und die Fantasie anzuregen.

Buzzer to DMX

Für eine Quizshow werden an den Arduino mehrere Knöpfe (Buz-

zer) angeschlossen. Wird einer davon betätigt, sendet der Arduino

über DMX den Befehl, den Kandidaten zu beleuchten. Leider sind

z. Zt. auf der Webseite (http://benjaminschneider.ch/?p=10) weder

Quellcode noch Schaltpläne vorhanden.

Specdrum

Lichtsäulen, die interaktiv von einer Trommelgruppe gesteuert

werden. Sensoren in den drei Trommeln erkennen die einzelnen

199

Schläge. Je nach Tonhöhe werden über DMX verschiedene Farben

zu RGB-Scheinwerfern in großen, matten Plastiktrommeln gesendet.

 http://www.tangibleinteraction.com/blog/prototype_specdrum

Forcefield Interactive

Mittels verschiedener RFID-Karten kann das »Lichtfeld« dieser

Installation beeinflusst werden. Ein einzelner Arduino kontrolliert

hier 192 Lichtstäbe. Die Farbmuster basieren hauptsächlich auf Per-

linrauschen und den Daten der RFID-Karten der Besucher. Zusätz-

lich können mitgebrachte Gegenstände mittels eines Farbsensors

abgescannt werden (http://blogs.driversofchange.com/emtech/2009/

 01/forcefield_interactive.html).

DMX

DMX ist ein Standard zur Steuerung von Scheinwerfern in der Ver-

anstaltungs- und Bühnentechnik. Er ersetzte die davor übliche

Ansteuerung mit 0-10V Signalen. Bei diesen Systemen benötigte

man zu jedem Scheinwerfer ein eigenes Kabel. Bei 30 oder mehr

Scheinwerfern kann man sich vorstellen, wie die Rückseite des

Lichtmischpults ungefähr ausgesehen haben mag. Dafür war aber

auch nur ein beliebiges Multimeter notwendig, um den Zustand

jedes Kabels inklusive der übertragenen Daten zu kontrollieren.

DMX ersetzt alle diese Kabel durch ein einziges, und die analogen

Signale werden digital übertragen. Bis zu 512 einzelne Geräte kön-

nen in einer langen Kette hintereinander an diesen Bus angeschlos-

sen und darüber gesteuert werden. An jedem kann, meistens über

ein sogenanntes Mäuseklavier, eine individuelle Adresse eingestellt

werden. Benötigt ein Gerät, z.b. ein LED-DMX-Scheinwerfer, meh-

rere Parameter (rot, grün, blau) so belegt dieser drei aufeinander

folgende Adressen. Der nächste Scheinwerfer muss also drei Adres-

sen weiter hinten anfangen. Die meisten LED-RGB-Scheinwerfer

belegen fünf oder sogar sechs Adressen, weil dort noch weitere Son-

derfunktionen vorhanden sind. So kann ein DMX-Bus mit seinen

512 Adressen rund 80–100 dieser Scheinwerfer kontrollieren.

Für rund 30 € stellen diese Scheinwerfer eine einfache und kosten-

günstige Möglichkeit dar, Haus und Hof effektvoll zu beleuchten.

Da DMX für sehr lange Kabel entworfen wurde, werden die Daten

symmetrisch übertragen. Das bedeutet, es gibt zwei Datenleitun-

gen. Ist die eine auf »High« geschaltet, wird die andere auf null

200

Kapitel 8: Automation

gesetzt und umgekehrt. Dadurch werden abgestrahlte Störungen

weitgehend unterbunden, und der Empfänger kann eingestrahlte

Störungen dadurch entfernen, dass er nur auf die Differenz der bei-

den Leitungen horcht. Da eine Störung auf beide Leitungen wirkt,

verschwindet diese beim Differenzbilden wieder. Für ganz kurze

Kabel und nur ein bis zwei Busteilnehmer könnte man dieses Signal

auch mittels zwei Pins des Arduinos erzeugen. Besser ist es aber,

dafür ein geeignetes IC zu verwenden. Dafür kann man den MAX-

485 oder den günstigeren SN75176 einsetzen.

Wer dabei nicht löten möchte, kann ein DMX Shield einsetzen

(http://www.freeduino.de/wiki/arduino-dmx-shield).

Protokoll

Das DMX-Protokoll basiert wie RS232 auf asynchronen (also ohne

extra Taktleitung) übertragenen Bytes mit Start- und Stopbits. Die

Geschwindigkeit ist mit 250kbit/s festgelegt. Das bedeutet damit

auch, dass nur ca. 40–45 Änderungen pro Sekunde übertragen wer-

den können, wenn alle 512 Adressen auf dem Bus belegt sind. Für

normale Scheinwerfer ist das aber schnell genug.

Alle Daten werden in Paketen, sogenannten Frames, übertragen.

Damit die DMX-Teilnehmer den Beginn eines solchen erkennen

können, sendet der Master mindestens 88 μs lang eine Null auf

den Bus. Durch die Stopbits kann dieser Zustand während einer

normalen Übertragung niemals auftreten, so dass der Beginn eines

Frames zweifelsfrei festgestellt werden kann.

Danach folgt als Erstes das Startbyte, das immer Null und für die

spätere Erweiterung vorgesehen ist. Es folgen die entsprechenden

Bytes, die immer mit der Adresse Null beginnen. Das heißt, ein

DMX-Empfänger wartet auf den Start eines Frames und die darauf

folgende Null. Dann ignoriert er so viele Bytes auf dem Bus, wie es

seiner Adresse entspricht. Die dann folgenden Bytes sind die für ihn

bestimmten Daten.

Software

Von http://tinker.it gibt es eine schöne Bibliothek für das DMX-

Protokoll. Diese kann unter http://code.google.com/p/tinkerit/wiki/

 DmxSimple heruntergeladen werden. Wie schon von anderen Bibliotheken bekannt, werden die Dateien in das Verzeichnis [Arduino-

Verzeichnis]/hardware/libraries/DmxSimple entpackt. Nach dem

DMX

201

Neustart der Arduino-Software kann die Bibliothek dann verwen-

det werden. Sie muss dann auch im Library-Menü auftauchen.

Mit #include <DmxSimple.h> wird die Bibliothek eingebunden

(alternativ über das Menü) .

void setup() {

DmxSimple.usePin(3); // Hier muss der Pin angegeben werden an

// welchem das DMX

// Interface angeschlossen ist. Meistens

// ist das PIN3.

}

void loop() {

int brightness;

for (brightness = 0; brightness <= 255; brightness++) {

DmxSimple.write(1, brightness); // Setze DMX Kanal 1

delay(10); // ein wenig warten, damit es nicht zu schnell wird.

}

}

Bei manchen Geräten kann es vorkommen, dass sie nur funktionie-

ren, wenn alle im Gerät vorhandenen Adressen auch beschrieben

werden.

Barlicht

In diesem Projekt wird eine Thekenbeleuchtung für eine Bar

gebaut. Je nach Länge der Theke besteht diese aus 1 bis 32 einzel-

nen DMX-LED-RGB-Scheinwerfern, die in einer Reihe von der

Decke herab die Bar beleuchten. Solche Scheinwerfer können ab

35 EUR z.B. bei www.thomann.de bezogen werden. Die Grundidee

bei allen abgespielten Animationen sollte dabei sein, dass der Gast

nie im Dunkeln sitzt, und anders als bei einem Discolicht sind eher

langsame, weiche Übergänge sinnvoll.

Hardware: Mehrere DMX-Scheinwerfer, die über das entspre-

chende Kabel und das DMX-Shield mit dem Arduino verbunden

werden.

Je nach Modell des verwendeten Scheinwerfers benötigt dieser 3

bis 6 DMX-Adressen. Bei mehr als einem Scheinwerfer werden die

Adressen so verteilt, dass sie sich nicht überschneiden. Bei Schein-

werfern mit 6 Adressen/Gerät z.B.: 0, 6, 12. Dabei kann es auch

sinnvoll sein, den 6er-Abstand bei Geräten mit kleinerem Adressbe-

reich einzuhalten, weil dann in der Software alle Scheinwerfer mit

dem gleichen Schema angesprochen werden können.

202

Kapitel 8: Automation

#include <DmxSimple.h>

const int AnzahlScheinwerfer = 4;

int color[AnzahlScheinwerfer+1][3];

int update = 0;

void setup() {

DmxSimple.usePin(3); // Hier muss der Pin angegeben werden an

// welchem das DMX

// Interface angeschlossen ist. Meistens

// ist das PIN3.

// Beim Start alle Scheinwerfer aus.

for(int i = 0; i <= AnzahlScheinwerfer; i++) {

color[i][0] = 0; // Rot

color[i][1] = 0; // Gruen

color[i][2] = 0; // Blau

}

}

void loop() {

// Immer wenn update = 0 ist, denken wir uns eine neue Farbe aus.

if (update == 0) {

color[0][0] = random(0,256); // Rot

color[0][1] = random(0,256); // Gruen

color[0][2] = random(0,256); // Blau

}

// Beim letzen Scheinwerfer anfangen und jeweils die Farbe

// leicht an den Vorgänger angleichen, dadurch fließen die

// Farben durch die Scheinwerfer-Reihe

for(int i = AnzahlScheinwerfer; i > 0; i--) {

// Farbberechnung getrennt für Rot,Grün,Blau durchführen.

// jeweils 63 Teile alte Farbe + 1 Teil neue Farbe (vom nächst-

// kleineren Nachbarn) geteilt durch 64 als neue Farbe annehmen.

color[i][0] = (63*color[i][0] + color[i-1][0])/64; // Rot

color[i][1] = (63*color[i][1] + color[i-1][1])/64; // Gruen

color[i][2] = (63*color[i][2] + color[i-1][2])/64; // Blau

DmxSimple.write(i*6+0, color[i][0]); // Setze DMX Kanal rot

DmxSimple.write(i*6+1, color[i][1]); // Setze DMX Kanal gruen

DmxSimple.write(i*6+2, color[i][2]); // Setze DMX Kanal blau

}

// Zähler erhöhen, damit wir nach 10 eine neue Farbe setzen

update++;

if (update > 100) update = 0;

delay(100); // ein wenig warten, damit es nicht zu schnell wird.

}

Barlicht

203

Wie in den Kommentaren beschrieben, wird alle 10 Sekunden der

imaginäre Scheinwerfer 0 mit einer zufälligen Farbe geladen. Zehn

mal pro Sekunde wird jetzt immer ein Vierundsechzigstel der Farbe

an den Nachbarscheinwerfer weitergereicht, sodass ein fließender

Farbverlauf erreicht wird.

RF-Steckdosen

In Bau- und Supermärkten werden immer wieder günstige Sets von

Funksteckdosen angeboten. Damit können Lampen und andere

Geräte im ganzen Haushalt kontrolliert werden, ohne dabei mit

230V in Berührung zu kommen oder neue Kabel verlegen zu müs-

sen. Damit folgende Modifikationen durchgeführt werden können,

sollte im dazugehörigen Sender ein HX2262, PT2262 oder LP801-

IC werkeln. Das ist z.B. bei den Sets von Intertechno oder Unitec

der Fall, die man in vielen Baumärkten bekommt.

Protokoll

Die ICs HX2262 und PT2262 gibt es in zwei verschiedenen Baufor-

men. Bei den 18poligen ICs ist der Pin 17 und bei den 20poligen

der Pin 19 der Datenausgang zum eigentlichen Sendemodul. Bei

dem von Intertechno verwendeten LP801 ist es der Pin 1. Wer die

gesendeten Daten also genauer ansehen möchte, sollte hier sein

Oszilloskop anschließen. Aus den Datenblättern und den Beobach-

tungen im Oszilloskop erhält man folgendes Datenprotokoll:

Alle Daten bestehen entweder aus einem kurzen Puls (25%) und

einer langen Pause (75%) oder einem langen Puls (75%) und einer

kurzen Pause (25%). Die erste Variante bezeichnen wir ab hier als

»0«, die zweite als »1«.

Um möglichst viele verschiede Steckdosen mit diesem IC schalten

zu können, hat sich der Hersteller einen interessanten Trick ausge-

dacht: Alle Eingänge können entweder mit Masse (0), oder mit der

Betriebsspannung (1) verbunden werden, zusätzlich können diese

aber auch unbeschaltet gelassen werden (F). Dadurch kann jeder

Eingang drei verschiedene Zustände annehmen.

Bei nur zwei Möglichkeiten (0/1) hätte man bei zwölf Eingängen

2^12 Möglichkeiten, was 4096 Kombinationen entspricht. Hier

sind es aber drei (0/1/F), also 3^12, also 531441 Möglichkeiten.

Wie können aber 3er-Zustände mittels Nullen und Einsen übertra-

gen werden? Für jeden Eingang werden einfach zwei Bits nach fol-

gender Tabelle gesendet:

204

Kapitel 8: Automation

Eingang

Daten

Datenausgang

Masse (0)

00

kurzer Puls, lange Pause, kurzer Puls, lange Pause

Betriebsspannung (1)

11

langer Puls, kurze Pause, langer Puls, kurze Pause

Offen (F)

01

kurzer Puls, lange Pause, langer Puls, kurze Pause

Es werden bei jedem Tastendruck so lange Telegramme gesendet,

bis der Taster wieder losgelassen wird. Minimal müssen mindes-

tens zwei identische Telegramme empfangen werden, damit der

Schaltvorgang durchgeführt wird. Das soll Störungen vermeiden.

Ein Telegramm besteht aus den Daten der 12 Eingangspins und

einer abschließenden »0«, auf die 32 Takte Pause folgen.

Hardware

Am GND des Senders (da, wo der Minuspol der Batterie ange-

schlossen ist) wird eine Leitung angelötet, welche mit GND vom

Arduino verbunden wird. Der Pin 2 des Arduino wird dann Pin 17

(18polige Bauform) oder Pin 19 (20polige Bauform) des HX2262

verbunden (Pin 1 bei den Intertechno Sendern).

Abbildung 8-1

Abbildung 8-2

RF-Steckdosen

205

Software

Als Erstes brauchen wir die RF-Bibliothek von http://randysimons.

 com/overige/browsable/433MHz/ArduinoRemoteSwitchLibrary.7z

(Kopie bei arduinobuch.wordpress.com) welche ins Verzeichnis

Arduino/libraries/RemoteSwitch entpackt wird.

Das wichtigste beiliegende Beispiel ist das Show_received_code-

Script. Es ist eigentlich zur Verwendung mit einem Empfänger und

zum Decodieren von eingehenden Funksignalen gedacht.

Da aber an dem hier verwendeten Pin 2 des Arduino nicht nur von

uns Daten in das Funkmodul eingespeist werden können, sondern

auch die zu sendenden Daten bei jeder Betätigung eine Knopfes auf

der Fernbedienung herauskommen, können wir uns damit anse-

hen, welche Codes mit welcher Datenrate gesendet werden.

Nachdem der Code in den Arduino geladen und der Sender mit dem

Pin 2 des Arduinos verbunden ist, sollte in der seriellen Konsole

(»serial monitor«, letzter Button oben rechts im Arduinofenster) bei

jedem Tastendruck auf der Fernbedienung Folgendes zu sehen sein:

Code: 26, period duration: 362us.

Code: 24, period duration: 362us.

Code: 4400, period duration: 362us.

Code: 4398, period duration: 362us.

Code: 1484, period duration: 362us.

Code: 1482, period duration: 362us.

Code 26 entspricht also der ersten Taste der Fernbedienung, Code 24

der zweiten und so weiter. Die 362us sind ein Maß für die Sendege-

schwindigkeit der jeweiligen Fernbedienung. Alle diese Daten benö-

tigen wir, wenn wir vom Arduino aus Schaltbefehle senden wollen.

Für das Senden von Kommandos ist die Funktion RemoteSwitch::

sendTelegram(code,sendPin) zuständig. Allerdings ist der hier ver-

wendete Code anders aufgebaut als bei der Empfangsfunktion.

Hier hilft die Funktion SendCode, die die benötigten Umwandlun-

gen vornimmt.

void SendCode(unsigned long code, int period) {

// Datenformat:

// pppppppp|prrrdddd|dddddddd|dddddddd (32 bit)

// p = Geschwindigkeit (9 bit unsigned int

// r = Wiederholungen als 2log. r = 3 bedeutet 2^3=8 mal senden.

// d = Code

code |= (unsigned long)period << 23;

code |= 3L << 20; // 3L = 8 mal wiederholen

// 4L = 16 mal wiederholen

RemoteSwitch::sendTelegram(code,sendPin);

}

206

Kapitel 8: Automation

Ein einfaches Beispiel:

void loop() {

// Steckdose A1 an

SendCode(24,362);

delay(5000); // 5 Sekunden warten

// Steckdose A1 aus

SendCode(26,362);

delay(5000); // 5 Sekunden warten

}

Gespensterschreck

Nicht nur Gespenster, sondern auch Diebe und Einbrecher lassen

sich mit unregelmäßig ein- und ausgeschalteten Lichtern vertrei-

ben. Mittels einfacher Zeitschaltuhren lässt sich das zwar auch rea-

lisieren, man müsste dann aber beim Verlassen des Hauses immer

daran denken, sie auch alle zu aktivieren.

Hardware

Zusätzlich zum Arduino werden eine oder mehrere Funksteckdo-

sen-Sets benötigt. Wie unter Hardware beschrieben wird der Sender

der Funksteckdosen modifiziert und mit dem Arduino verbunden.

Abbildung 8-3

Software

Als Erstes benötigen wir eine Tabelle mit allen vorhandenen Steck-

dosen und deren zugehörigen Ein- und Ausschaltcodes. (Der auf-

Gespensterschreck

207

merksame Leser wird hier erkennen, dass der Code für AUS bei der

Intertechno-Fernbedienung immer um zwei kleiner ist als der dazu-

gehörige Code für EIN. Es würde also genügen, nur einen der bei-

den zu speichern, allerdings wäre der Code dann auf genau diese

Fernbedienung festgeschrieben.)

int anzahlSteckdosen = 3;

unsigned long steckdosen[][2] = {

{26,24}, // Steckdose 1 (an/aus)

{4400,4398}, // Steckdose 2 (an/aus)

{1484,1482} // Steckdose 3 (an/aus)

};

Mit der Hilfe der Funktion random(max) werden jetzt beliebige

Steckdosen an- oder ausgeschaltet. Zwischen den Schaltvorgängen

wird jeweils 15 Minuten gewartet, damit es realistisch aussieht.

void loop() {

// zufällig eine Steckdose auswählen.

int steckdose = random(anzahlSteckdosen);

// zufällig entweder an oder aus senden.

int aktion = random(2);

SendCode(steckdosen[steckdose][aktion],period);

// 15 Minuten warten

for (int i = 0; i < 15; i++) {

delay(60*1000); // 1 Minute warten

}

}

Die Erweiterung, dass nur Funksignale gesendet werden, wenn ein

zusätzlicher Helligkeitssensor, am Arduino angeschlossen, Dunkel-

heit meldet, sei dem geneigten Leser als Übung überlassen.

Referenzen

 http://randysimons.com/overige/browsable/433MHz/

RF-Bibliothek

 http://www.mikrocontroller.net/topic/124084

Intertechno-Funksteckdosen per AVR steuern

 http://avr.börke.de/ARCTECHsteckdosen.htm

ARCTECH-Funksteckdosen

 http://avr.börke.de/Funksteckdosen.htm

Die Ansteuerung von Funksteckdosen

 http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1216065789

Arduino & HT2262

208

Kapitel 8: Automation

KAPITEL 9

In diesem Kapitel:

Wearable Computing

• Programmierbare

Kleidung

• Wearable

Komponenten

• Di e iPod-Steuerun g

im Mantel

Das folgende Kapitel behandelt einen kleinen Exkurs in die Welt

des Wearable Computing. Gleichzeitig soll erklärt werden, wie ein

Arduino mit einem iPod oder iPhone kommunizieren kann. Als

praktisches Beispiel wird eine tragbare Fernbedienung für einen

iPod oder ein iPhone gebaut. Im Folgenden wird das iPhone nicht

mehr gesondert erwähnt, da es keinen für das Projekt relevanten

Unterschied gibt.

Programmierbare Kleidung

Der Trend zur programmierbaren Kleidung hat in den letzten

Monaten stark zugelegt. Gab es bei der Erstellung der ersten Auflage

dieses Buches nur sehr wenige Ressourcen und war Elektronik zum

Anziehen eher ein Nischenthema, gibt es nun eine ganze Reihe von

Webseiten, die sich damit befassen. Unter dem Schlagwort Wea-

rable Computing werden zwei grundsätzliche Bestandteile zusam-

mengefasst: Zum einen Elemente wie Fäden und Stoffe, die auch in

herkömmlicher Kleidung vorkommen. Diese gibt es auch in leiten-

den Varianten und werden als solche in erster Linie in der Industrie

eingesetzt, oder zum Beispiel bei Fechtanzügen. Leitende Fäden

können zum Beispiel von Sparkfun erstanden werden, hier gibt es in

Deutschland einige Händler wie http://www.watterott.com.

Leitende Stoffe sind schwieriger und oft nur über die USA zu bezie-

hen. Sachdienliche Hinweise hierzu nehmen wir gerne auf der

Website zum Buch, http://arduinobuch.wordpress.com, entgegen.

Zum anderen besteht das Wearable Computing aus klassischer

Elektronik, die oftmals angepasst wurde, damit sie besonders gut in

209

Kleidung vernäht werden kann. Die Firma Sparkfun hat in Zusam-

menarbeit mit Leah Buchley (http://web.media.mit.edu/~leah/Lily-

 Pad/) das LilyPad entworfen, ein Arduino-Board, das sich durch seine Eigenschaften besonders gut in Kleidung einarbeiten lässt.

Inzwischen ist unter diesem Label eine ganze Reihe an Komponen-

ten entstanden. Dazu gehören LEDs, Temperatursensoren oder

Schalter. Eine ganze Bandbreite dieser Produkte wird unter http://

 www.tinkersoup.com angeboten.

Im Internet findet man mittlerweile eine große Reihe an interessan-

ten Projekten, die Kleidung und Computer verbinden. Am häufigs-

ten dürfte dabei die LED vorkommen. Jacken, T-Shirts und

Kleider, die dank Elektronik leuchten, haben schon eine recht lange

Tradition und sind nicht erst seit dem Aufkommen von LilyPad

und Co. aufgetaucht. Ein besonders interessantes Projekt, das

LEDs verwendet, ist eine Jacke für Radfahrer, die Leah Buchley auf

ihrer Seite beschreibt. Zeigt man eine Richtung an, leuchtet ein

Pfeil in die entsprechende Richtung. Besonders im Dunklen eine

sinnvolle Sache. Die koreanische Künstlerin Joo Youn Paek schuf

2006 eine Klanginstallation, die durch das Öffnen und Schließen

verschiedener Reißverschlüsse gesteuert werden konnte.(http://itp.

 nyu.edu/~jyp243/jy/ziporch.htm)

Laura Bioffi, eine Studentin aus Kopenhagen, strickte einen Hand-

schuh, der zusammen mit einem LilyPad in der Lage ist aufzuzeich-

nen, wann immer einem Kommilitonen die Hand gegeben wird.

Abbildung 9-1

T-Shirt mit LilyPad

Madeleine und Chris Ball entwarfen ein T-Shirt, das die Anzahl

ungelesener E-Mails visualisiert. Dazu wurde die LilyPad-Platine

mit einer Bluetooth-Erweiterung verbunden, die damit über ein

Handy die Zahl der ungelesenen E-Mails abrufen kann. Um bis

zu 127 ungelesene EMails visualisieren zu können, wird die

210

Kapitel 9: Wearable Computing

Anzahl binär dargestellt: http://blog.printf.net/articles/2010/03/

 30/email-counting-tshirt.

Andere Projekte basieren auf nützlicheren Konzepten, wie etwa

Vibrationsmodulen, die Menschen mit Gleichgewichtsstörungen

helfen sollen, ihre Balance zu halten. Eine besonders umfangrei-

che Website, die sowohl viele Tipps zum Selbermachen bietet als

auch regelmäßig interessante Projekte vorstellt, ist http://www.

 talk2myshirt.com.

Wearable Komponenten

LilyPad

Das LilyPad ist ein abgespeckter Arduino, speziell für das Vernähen

in Wearable-Projekten konzipiert. Da der ganze Programmierteil

des Arduinos fehlt, kann ein vorhandener Arduino Hilfe leisten. Im

Prinzip verwendet man dessen TX- und RX-Pins, muss jedoch auch

beachten, dass man den Mikrocontroller vorher vom Board ent-

fernt hat. Eine genaue Anleitung findet man unter http://web.media.

 mit.edu/~leah/LilyPad/01_computer_attach.html. Oder noch einfa-

cher verwendet man das dazu passende FTDI-Breakeout Board,

welches direkt mit dem LilyPad bezogen werden kann.

Abbildung 9-2

LilyPad (Abbildung mit freund-

licher Genehmigung von

Sparkfun Electronics)

Wearable Komponenten

211

Leitender Faden

Einer der wichtigsten Bestandteile von Elektronik in Stoffform ist

der leitende Faden. Er besteht meistens aus metallisch (mit Silber)

bedampften Trägerfäden. Je nach verwendetem Metall und

Schichtdicke erhält man unterschiedliche Widerstände und Halt-

barkeit gegenüber Waschen und Brechen. Gewöhnlich liegt der zu

erwartende Widerstand bei ca. 0,5 Ohm pro Zentimeter. Zu lange

Leitungen, gerade für etwas stromhungrige Bauteile wie LEDs kön-

nen ein Problem darstellen. Dem kann durch mehrfache Fäden

abgeholfen werden. Leitender Faden kann inzwischen bei einigen

Elektronik-Fachhändlern bezogen werden. So führt zum Beispiel

Watterott Elektronik zwei verschiedene Sorten leitenden Faden.

Sparkfun führt auch eine stetig wachsende Zahl von Wearable-

Komponenten.

Abbildung 9-3

Leitender Faden (Abbildung mit

freundlicher Genehmigung von

Sparkfun Electronics)

Leitender Stoff

Für großflächige Kontakte und mehrlagige Konstruktionen ist leit-

fähiger Stoff eine interessante Sache. Allerdings ist er sehr schwer

zu bekommen. Eine Quelle ist der Fechtturnierbedarf. Dort werden

sogenannte Elektrowesten verwendet, um Treffer des Gegners

erkennen zu können. Diese sind aus leitfähigem Stoff hergestellt.

212

Kapitel 9: Wearable Computing

Leitender Schaumstoff

Viele Elektronikkomponenten werden zum ESD-Schutz (das sind

Beschädigungen durch elektrostatische Aufladung) auf schwarzem

oder rosa Schaumstoff ausgeliefert. Je nach Hersteller ist die Leitfä-

higkeit aber leider sehr verschieden, von wenigen 100 Ohm bis zu

mehreren Megaohm. Mit diesem Schaumstoff lassen sich z.B.

Drucksensoren bauen, indem man diesen Schaumstoff zwischen

zwei Stoffschichten vernäht, die jeweils einen leitfähigen Faden

enthalten. Je stärker man auf sie eindrückt, desto niederohmiger

werden sie. Diese Veränderung kann mit einem PullUp als Analog-

signal vom Arduino gelesen und verarbeitet werden.

LEDs

Ganz normale bedrahtete LEDs lassen sich, nachdem man die

Anschlussdrähte zu kleinen Ösen gebogen hat, mit leitendem

Faden vernähen. Besonders kleine SMD-LEDs integrieren sich gut

in Kleidungsstücke (Sie reißen nicht so leicht ab wie ihre großen

Schwestern, wenn sie an den Anschlüssen mit kleinen Ösen aus

Draht versehen werden. Passend zur LilyPad-Platine gibt es von

Sparkfun bereits vorgefertigte kleine LED-Platinen, die ebenfalls

Ösen zum Vernähen haben.

Abbildung 9-4

LilyPad-LED (Abbildung mit

freundlicher Genehmigung von

Sparkfun Electronics)

Beschleunigungssensor

Ebenfalls bei Sparkfun gibt es einen Beschleunigungssensor zum

Annähen. Damit kann man zum Beispiel die Armpositionen mes-

sen oder Bewegungsmuster erkennen, um dann verschiedene LED-

Muster abzuspielen oder einfach nur einen Tagesablauf aufzu-

zeichnen.

Wearable Komponenten

213

Abbildung 9-5

LilyPad-Beschleunigungssensor

(Abbildung mit freundlicher Geneh-

migung von Sparkfun Electronics)

Lautsprecher

Ein kleiner magnetischer Lautsprecher, gerade laut genug, um den

Träger auf wichtige Zustände und Meldungen aufmerksam zu

machen.

Abbildung 9-6

LilyPad-Lautsprecher (Abbildung

mit freundlicher Genehmigung von

Sparkfun Electronics)

Stromversorgung

Verschiedene Batteriefächer können einen Arduino oder ein Lily-

Pad mit Strom versorgen. 3 AA- oder AAA-Batterien/Akkus reichen

dabei für ein LilyPad aus. Ein Arduinoboard benötigt etwas mehr

Spannung, da darauf ein einfacher Spannungsregler verbaut ist.

Dieser benötigt mindesten ca. 7V um den Arduino mit 5V zu ver-

sorgen. Ohne diesen Regler läuft auch das Arduinoboard mit 3 Bat-

terien. Sind diese nicht mehr ganz voll, kann der Mikrocontroller

unter Umständen aber nicht mehr richtig arbeiten. Sparkfun bietet

214

Kapitel 9: Wearable Computing

eine Lösung mit nur einer Batterie, hierbei wird die Spannung mit-

tels eines Schaltreglers von 1,5V auf 5V erhöht.

Abbildung 9-7

LilyPad-Batteriehalterung

(Abbildung mit freundlicher Geneh-

migung von Sparkfun Electronics)

Die iPod-Steuerung im Mantel

Um die grundlegenden Prinzipien des Wearable Computing zu

erläutern, soll im Folgenden nun eine Jacke, ein Mantel oder ein

anderes geeignetes Kleidungsstück mit einer einfachen Steuerung

für den iPod ausgestattet werden.

Materialien

Neben dem Arduino (wenn möglich einem LilyPad) werden die

typischen Utensilien zum Nähen benötigt. Also eine Nähnadel oder

Nähmaschine, leitender Faden oder sehr dünner Draht, metallene

Textil-Druckknöpfe und Schaumstoff. Für die Verbindung mit dem

iPod oder iPhone (was natürlich ebenfalls vorhanden sein sollte)

benötigt man einen iPod-Dock-Konnektor. Außerdem ist es sinn-

voll, gleich daran zu denken, dass man das Kleidungsstück, nennen

wir es hier »die Jacke«, auch unabhängig von einem Netzteil betrei-

ben möchte. Ein Batteriefach für 3 AA- oder AAA-Batterien kann

dabei sehr hilfreich sein.

Technik

Wie oben schon erwähnt, lohnt es sich bei Wearables-Projekten

über den Kauf eines »LilyPad« nachzudenken. Diese Arduino-

Board ist rund, flach und klein, sodass es besonders gut in einem

Kleidungsstück versteckt werden kann. Angeblich ist es waschbar,

auf jeden Fall eignet es sich jedoch besonders gut, um leitenden

Faden anzuknüpfen, weil die Pins mit Löchern versehen sind.

Die iPod-Steuerung im Mantel

215

Druckknöpfe: Der wohl denkbar einfachste vernähbare Schalter ist

ein einfacher, metallener Druckknopf. Solche Knöpfe sind in jedem

Kurzwarenladen oder Kaufhaus erhältlich, meist in 12er-Packun-

gen für unter 3 Euro. Da beide Teile des Knopfes leitend sind, ist

das Prinzip einfach: ist er offen, so fließt kein Strom, wird er

geschlossen, so entsteht auch ein Stromkreis.

Abbildung 9-8

Druckknopfschalter

Abbildung 9-9

Druckknopfschalter plus LED

216

Kapitel 9: Wearable Computing

Schaumstofftaster: Aus Schaumstoff können einfache Taster gebaut

werden. Da sich der Schaumstoff wieder in seine Ausgangsposition

zurückbewegt, nachdem er gedrückt wurde, kann er als Abstand-

halter zwischen zwei leitenden Schichten verwendet werden.

Drückt man ihn zusammen, schließt sich der Stromkreis, lässt man

los, weitet sich der Taster wieder, es fließt kein Strom mehr.

Abbildung 9-10

Vorbereitete Stelle für den Taster

Abbildung 9-11

Abstandhalter aus Schaumstoff

oder anderem dicken Stoff.

Die iPod-Steuerung im Mantel

217

Abbildung 9-12

Vorbereiteter »Deckel« mit

leitfähigem Faden in der Mitte

zur Kontaktierung

Abbildung 9-13

Fertiger Tasterstapel mit

Anschlussfaden.

Abbildung 9-14

Fertiger Taster mit LED

218

Kapitel 9: Wearable Computing

iPod/iPhone: Das Dock des iPods enthält einen Stecker mit 30 Pins

mit unterschiedlichen Funktionen, darunter auch die Möglichkeit

den iPod fernzusteuern. Eine genaue Belegung kann unter http://

 pinouts.ru/PortableDevices/ipod_pinout.shtml gefunden werden.

iPod-Dock-Konnektoren können bei einigen Anbietern, etwa Tin-

kersoup, gekauft werden und haben den Vorteil, dass alle Pins ver-

lötet werden können. Sieht man sich den Stecker eines iPod-USB-

Kabels an, stellt man fest, dass nur einige Pins tatsächlich verlötet

sind. Es ist allerdings nicht auszuschließen, dass es, etwa bei eBay,

Kabel von anderen Anbietern gibt, die man verwenden kann. Für

dieses Projekt sind die Pins 1, 12 und 13 relevant. Sie stellen die

TX- und RX-Verbindungen der seriellen Schnittstelle zum iPod

dar. Im verlaufe dieses Projektes wird auch das Protokoll erläutert,

mit dem der iPod ferngesteuert werden kann.

Nähen: Im Rahmen dieses Buches sind wir leider nicht in der Lage,

einen detaillierten Exkurs in die Kunst des Nähens zu bieten. Im

Internet gibt es jedoch hervorragende Tutorials, die jede mögliche

Technik und jeden Stich genau erklären. Hier sei zum Beispiel auf

 http://sewingtutorials.blogspot.com/ verwiesen; aber auch auf der

Webseite von Burda Moden (http://www.burdafashion.com) gibt es

gut gemachte Videos. Der Einfachheit halber wird im Folgenden

nur von »Nähen« gesprochen. Ob dies mit der Nähmaschine oder

per Hand geschieht, bleibt dem Leser selbst überlassen. Allerdings

gilt Folgendes zu beachten, wenn man leitenden Faden in der Näh-

maschine verwenden will. Dieser neigt dazu, sich sehr schnell zu

verdrehen. Deshalb empfiehlt es sich, den leitenden Faden als

Unterfaden einzunähen. Dazu wird er auf die Unterfadenspule

einer Nähmaschine gerollt und ein einfacher, dünner Faden von

oben durch die Nadel geführt. Die beiden Fäden werden ineinander

verschlungen, sodass der dünne Faden den leitenden auf dem Stoff

festzurrt. Eine genaue Anleitung findet man unter anderem unter

 http://www.burdastyle.de/videos/how-tos/tutorial-ober-und-unter-

 faden_aid_1543.html

Aufbau: Dieses Projekt hat den Anspruch, vollständig waschbar zu

sein. Um zu verhindern, dass das Board, sei es nun LilyPad oder ein

anderes, zu großer Belastung ausgesetzt wird, und auch um Korro-

sion am iPod-Konnektor zu vermeiden, empfiehlt es sich, eine

Tasche für all die Elektronik zu nähen. Packt man so viel Elektronik

wie möglich, vor allem Board und Batteriefach, in diese Tasche,

kann man alle Pins über leitenden Faden und Druckknöpfe auf die

äußere Seite der Tasche verbinden. Die Tasche kann also jederzeit

Die iPod-Steuerung im Mantel

219

komplett aus dem Kleidungsstück genommen werden und muss

nicht mitgewaschen werden.

Play-Knopf: Der wohl einfachste Teil dieses Projektes ist ein Play/

Pause-Knopf. Hier dient ein Druckknopf, der auf der einen Seite mit

einem Pin, auf der anderen mit GND verbunden wird. Der Arduino

wird später so programmiert, dass er ein »Play«- oder »Pause«-Kom-

mando an den iPod sendet, sobald der Knopf geschlossen oder

geöffnet wird.

Lautstärke: Das Fernbedienungsprotokoll des iPod kennt nur die

Kommandos »Lautstärke erhöhen« und »Lautstärke verringern«.

Es ist also leider nicht möglich, den aktuellen Status festzuhalten.

Für dieses Projekt empfehlen sich deshalb zwei Taster. Hierzu

wird, wie in Abbildung 9-11 dargestellt, ein Stück Schaumstoff zwischen zwei leitende Stoffschichten genäht. Für diese Schichten

reicht es, leitenden Faden einzunähen, wobei die eine Schicht mit

dem GND-Pin des Arduino, die andere mit einem beliebigen digita-

len Pin verbunden wird. In den Schaumstoff wird ein fingergroßes

Loch geschnitten, durch das sich die beiden Schichten verbinden

können, sobald man mit einem Finger darauf drückt.

Aufbau: Hat man die Einzelteile zusammen, kann man einen ersten

Aufbau versuchen: Der Druckknopf und die beiden Taster werden

mit einem Arduino verbunden. Die beiden TX/RX-Pins des Ardu-

ino werden mit den Pins 12 und 13 des iPod-Konnektors verlötet,

zusätzlich muss der GND des Arduinos mit einem der GND-

Anschlüsse des iPod-Konnektors verbunden werden. Nun kann

mit der Programmierung begonnen werden. Zunächst soll der

Druckknopf als Schalter fungieren. Der entsprechende Pin wird

also auf »Input« gesetzt, und in der loop()-Funktion kontinuier-

lich ausgelesen.

Programmierung

Zunächst empfiehlt es sich, den iPod einmal ohne die selbst gebas-

telten Sensoren anzusteuern. So kann sichergestellt werden, dass

die serielle Verbindung fehlerlos funktioniert. Hierzu wird zunächst

die Bibliothek Serial eingebunden. Anschließend wird im setup()

eine serielle Verbindung mit 19200 Baud gestartet. Die Verbin-

dung läuft nur mit dieser Geschwindigkeit. Anschließend können

Kommandos an den iPod gesendet werden. Diese Kommandos fol-

220

Kapitel 9: Wearable Computing

gen dem iPod Accessory Protocol, das unter anderem unter http://

 ipodlinux.org/wiki/Apple_Accessory_Protocol dokumentiert ist.

header

2

0xFF 0x55

länge

1

länge des modus + kommando + parameter

modus

1

der Modus, auf den sich das Kommando bezieht

kommando

2–4

das zwei bis vier Byte lange Kommando

parameter

0..n

optionaler Parameter, je nach Kommando

checksum

1

0xXX - (8 bit additive checksum) (0x100 - (summe aller länge/

modus/kommando/parameter bytes) & 0xFF)

Die Modi beziehen sich dabei auf verschiedene Möglichkeiten, mit

dem iPod zu kommunizieren. In unserem Falle geht es um die ein-

fache Fernbedienung (Simple Remote), die im Vergleich zu anderen

Protokollen (etwa Nike+) vollständig entschlüsselt ist. Die wich-

tigsten Kommandos finden sich in einer verkürzten Tabelle (siehe

Tabelle unten) – für eine erweiterte Liste, die den Rahmen dieses

Buches sprengen würde, empfiehlt sich der oben angegebene Link.

Kommando

Funktion

0x00 0x00

Button Released

0x00 0x01

Play/Pause

0x00 0x02

Vol+

0x00 0x04

Vol-

0x00 0x08

Skip >>

0x00 0x10

Skip <<

0x00 0x80

Stop

0x00 0x00 0x01

Play (kein Pause)

0x00 0x00 0x02

Pause (kein Play)

Für dieses Projekt werden vier Kommandos benötigt: 0x00 0x00

0x01 für Play, 0x00 0x00 0x02 für Pause und 0x00 0x02 bzw 0x00

0x04 für Vol+ und Vol-. Diese Kommandos benötigen keine weite-

ren Parameter, also ist dieser Teil 0. Das Längen-Byte des Komman-

dos wird also je nachdem auf 3 oder 4 gesetzt. Für die Checksumme

empfiehlt es sich, eine eigene kleine Funktion zu schreiben, wenn

man mehr als nur ein paar Befehle benötigt:

int checkSum(int* cmd) {

int sum = 0;

for(int i=2; i<=cmd[2]+2;i++) {

sum += cmd[i];

Die iPod-Steuerung im Mantel

221

 }

int checksum = 0x100 - (sum & 0xFF);

return checksum;

}

Für den Play-Pause-Befehl gilt demnach zum Beispiel die Checksum

FA, die man sich per Serial.print(checksum, HEX) auch ausgeben

lassen kann.

So muss man sich keine Gedanken mehr um die benötigte

Checksum machen und kann ein einfaches Kommando an den

iPod schicken. Zu Anfang sollte stets ein »Button release«-Kom-

mando gesendet werden, um zu signalisieren, dass kein Knopf auf

dem iPod (oder auf dem Kleidungsstück) gedrückt ist:

int buttonRelease[] = {0xFF, 0x55, 0x03, 0x02, 0x00, 0x00,0xFB};

Diese Tabelle kann nun nach und nach gesendet werden:

for (int i = 0; i < 8; i++) {

Serial.print(buttonRelease[i],BYTE);

}

Nun können auch die anderen Kommandos in solche Tabellen

geschrieben werden: Hierzu wird eine Funktion genommen, die als

Eingabe die einzelnen Parameter nimmt und die entsprechende

Tabelle zurückgibt. Da verschiedene Kommandos aus einer unter-

schiedlichen Anzahl Bytes bestehen, empfiehlt es sich, diese Infor-

mation dem Array, welches das Kommando speichert, mitzugeben.

In diesem Falle wird einfach die ohnehin später benötigte Längen-

information genutzt, sodass das Kommando ohne Checksum so

aussieht:

int buttonPlay[] = { 0xFF, 0x55, 0x04, 0x02, 0x00,0x00, 0x01};

Nun kann eine Funktion »sendCommand« geschrieben werden, die

das entsprechende Kommando zusammenbaut und gleich versendet:

void sendCommand(int* cmd) {

int cs = checkSum(cmd); //Checksum bauen

for(int i = 0;i<=cmd[2]+2;i++) {

Serial.print(cmd[i], BYTE); // alle Bytes des Kommandos

übermitteln

}

Serial.print(cs, BYTE); //Checksum übermitteln

}

Nun kann alles zusammengefügt werden:

#include <Bounce.h>

// IPod Befehle

int buttonRelease[] = {0xFF, 0x55, 0x03, 0x02, 0x00, 0x00};

222

Kapitel 9: Wearable Computing

int buttonPlayPause[] = {0xFF, 0x55, 0x03, 0x02, 0x00, 0x01};

int buttonPlay[] = {0xFF, 0x55, 0x04, 0x02, 0x00,0x00, 0x01};

int buttonPause[] = {0xFF, 0x55, 0x04, 0x02, 0x00,0x00, 0x02};

int buttonVolPlus[] = {0xFF, 0x55, 0x03, 0x02, 0x00, 0x02};

int buttonVolMinus[] = {0xFF, 0x55, 0x03, 0x02, 0x00, 0x04};

int buttonVolRelease[] = {0xFF, 0x55, 0x03, 0x02, 0x00, 0x00};

// Arduino Pins für Taster und Play/Pause Switch

int volPlusPin = 2;

int volMinusPin = 3;

int playPausePin = 4;

int ledPin = 13;

int playStatus;

// Die Bouncezeit auf 500ms festlegen, damit

// zufällige Berührungen nichts bewirken.

Bounce bouncePlusPin = Bounce(volPlusPin, 500);

Bounce bounceMinusPin = Bounce(volMinusPin, 500);

Bounce bouncePlayPausePin = Bounce(playPausePin, 500);

void setup() {

Serial.begin(19200);

// Eingänge

pinMode(volPlusPin, INPUT);

pinMode(volMinusPin, INPUT);

pinMode(playPausePin, INPUT);

// Ausgang für LED

pinMode(ledPin, OUTPUT);

// Pull-Ups einschalten, dann brauchen wir keine

// externen Widerstände.

// Taster und Schalter werden mit GND verbunden.

digitalWrite(playPausePin, HIGH);

digitalWrite(volMinusPin, HIGH);

digitalWrite(volPlusPin, HIGH);

}

void sendCommand(int* cmd) {

int cs = checkSum(cmd);

for(int i = 0;i<=cmd[2]+2;i++) {

Serial.print(cmd[i], BYTE);

}

Serial.print(cs, BYTE);

}

int checkSum(int* cmd) {

Die iPod-Steuerung im Mantel

223

 int sum = 0;

for(int i=2; i<=cmd[2]+2;i++) {

sum += cmd[i];

}

int checksum = 0x100 - (sum & 0xFF);

return checksum;

}

void loop() {

if (bouncePlayPausePin.update()) {

// Druckknopf geöffnet -> Pull-Up macht den Eingang HIGH

if (bouncePlayPausePin.read() == HIGH) {

// Musik aus

sendCommand(buttonPause);

sendCommand(buttonRelease);

playStatus = 0;

}

else {

// Druckknopf geschlossen -> Pin = GND/LOW

// Musik an

sendCommand(buttonPlay);

sendCommand(buttonRelease);

playStatus = 1;

}

}

if (bouncePlusPin.update()) {

// Taster gedrückt = GND/LOW

if (bouncePlusPin.read() == LOW) {

sendCommand(buttonVolPlus);

sendCommand(buttonRelease);

}

}

if (bounceMinusPin.update()) {

// Taster gedrückt = GND/LOW

if (bounceMinusPin.read() == LOW) {

sendCommand(buttonVolMinus);

sendCommand(buttonRelease);

}

}

if (playStatus == 1) {

// Ist der Ipod in Betrieb, soll die LED blinken

digitalWrite(ledPin,(millis()/256) % 2);

} else {

// LED aus

digitalWrite(ledPin,LOW);

}

}

224

Kapitel 9: Wearable Computing

Tipps & Tricks

Der etwas lose Aufbau mit leitendem Draht und vielen nur verkno-

teten Kontaktstellen kann manchmal zu unerwarteten Ergebnissen

führen. Meistens kann das mit einem Voltmeter oder Durchgangs-

prüfer einfach gefunden werden. Besonders hilfreich ist es da, in

der Software das zu beobachtende Signal mittels einer LED (z.B. bei

einem normalen Arduino Pin 13 mit der eingebauten LED) wieder

auszugeben. Dann kann man das Stoffobjekt bewegen und knaut-

schen, um den Fehler hervorzurufen, und hat mittels der LED eine

direkte Beobachtungsmöglichkeit.

Bei Tastern und ähnlichen Kontakten hilft die Debounce-Biblio-

thek, zu kurze Signale von zufälligen Berührungen zu ignorieren.

Wenn eine Funktionalität wirklich nur willentlich ausgelöst wer-

den soll, hilft eine Kombination von mehreren Tastern/Sensoren

die entweder gleichzeitig oder in einer bestimmten Reihenfolge

gedrückt werden müssen, damit eine Reaktion ausgelöst wird.

Ein Taster könnte z.B. alle anderen Taster für 5 Sekunden freischal-

ten. Wobei das nicht für alle Situationen ausreichend ist, zum Bei-

spiel wenn ein größerer Gegenstand alle Taster betätigt. Da hilft

dann nur eine komplexere Sequenz von Tastendrücken und das

konsequente Abbrechen, sobald dabei eine Taste falsch oder zu

lange gedrückt wurde – ähnlich wie man das von der Tastensperre

beim Mobiltelefon kennt.

Die iPod-Steuerung im Mantel

225

KAPITEL 10

In diesem Kapitel:

Musik-Controller mit Arduino

• Musik steuern mit

dem Arduino

• Das MIDI-Protokoll

• Die MidiDuino-

Bibliothek

• Ein MIDI-Zauberstab

• MIDI-Input

Musik steuern mit dem Arduino

Die zwei letzten Kapitel dieses Buches befassen sich mit elektroni-

scher Musik in ihren unterschiedlichen Ausprägungen. Die elektro-

nische Musik mit ihrer relativ kurzen Geschichte ist einer der

Pionierbereiche des 20. Jahrhunderts und hat eine lange Tradition

selbstgebauter Instrumente.

Die ersten Einsätze von Elektronik im musikalischen Bereich waren

imposante Maschinen wie das Telharmonium von Thaddeus

Cahill, das 1897 entwickelt wurde.

Abbildung 10-1

Telharmonium

Diese Mischung aus mechanischen Klangerzeugern und elektroni-

scher Steuerung, die man elektromechanische Klangerzeugung nennt,

227

lässt sich bis zum heutigen Tage verfolgen, mit faszinierenden Gerä-

ten wie z.B. den Instrumenten von Godfried-Willem Raes von der

Logos Foundation aus Belgien, der herkömmliche Instrumente

modifiziert und automatisiert, sodass sie sich elektronisch steuern

lassen.

Allgemein bekanntere elektronische Musikinstrumente sind kom-

plett elektronische Klangerzeuger, die man Synthesizer nennt.

Diese benutzen elektronische Schaltungen, um verschiedenste

Klänge zu erzeugen und zu verändern. Eins der ersten dieser elek-

tronischen Instrumente war das Theremin, 1919 vom russischen

Physikprofessor Leon Theremin erfunden. Die erste Theremin-Auf-

führung fand 1920 in St. Petersburg am Physikalisch-Technischen

Institut statt. Bekannt ist das Theremin vor allem aus der Filmmu-

sik, wo es seit den ersten Horror- und Science-Fiction-Filmen für

Soundeffekte eingesetzt wurde, unter anderem in Danny Elfmans

Soundtrack zum Film »Charlie und die Schokoladenfabrik« aus

dem Jahr 2005.

Das Theremin war das erste ganz ohne Berührung spielbare Instru-

ment: Über zwei Antennen lassen sich Lautstärke und Tonhöhe

getrennt steuern. In diesem und dem nächsten Kapitel werden wir

mit einem Arduino und ein paar Drähten ein Theremin bauen.

Ein Thereminbausatz war das erste Produkt, das Bob Moog in den

1950er Jahren vertrieb. Bob Moog wurde später bekannt als Erfin-

der und Entwickler eines der ersten weit verbreiteten Synthesizer.

Der von Bob Moog entwickelte Synthesizer war ein modularer Syn-

thesizer: Er bestand aus vielen kleinen einzelnen elektronischen

Modulen, die jeweils eine bestimmte Aufgabe erfüllten. So konnte

eins dieser Module zum Beispiel einen Ton in einer bestimmten

Höhe erzeugen, ein zweites Klangsignale aus verschiedenen Quel-

len zusammenmischen und ein drittes Steuerparameter erzeugen,

die einem bestimmten Hüllkurvenverlauf entsprachen.

Modulare Synthesizer sind heutzutage immer noch sehr beliebt und

weit verbreitet, gerade weil sie ihrem Benutzer so viel kreative und

technische Freiheit lassen. Im Vergleich zu digitalen Synthesizern,

die einen Prozessor und digitale Algorithmen verwenden, um Klänge

zu erzeugen, werden analoge Synthesizer oft als »wärmer« empfun-

den, weil die vielen Ungenauigkeiten in der elektronischen Schaltung

und den einzelnen Komponenten einen sich immer wieder leicht ver-

ändernden Klang erzeugen, der deswegen auch »menschlicher«

klingt. Es gibt mittlerweile auch viele Module für modulare Synthesi-

228

Kapitel 10: Musik-Controller mit Arduino

zer, die digital ihre Klänge erzeugen. Viele dieser Module (analoge

und digitale) lassen sich mit herkömmlichen elektronischen Kompo-

nenten in einer relativ kurzen Zeit bauen, und es gibt viele Seiten im

Internet, die Bausätze und Anleitungen anbieten. Sehr empfehlens-

wert ist Ray Wilsons Seite http://www.musicfromouterspace.com, die

z.B. einen kompletten Synthesizer zum Selbstbauen anbietet.

Dieses Konzept von einzelnen kleinen Modulen, die man zusam-

menstecken kann, hat eine gewisse Ähnlichkeit mit dem Arduino

und seinen verschiedenen Erweiterungsmodulen, und so ist es

nicht überraschend, dass die Arduino-Plattform benutzt wird, um

analoge modulare Synthesizer zu steuern und zu ergänzen. Hier sei

z.B. auf das ModularDuino-Projekt hingewiesen, das den Arduino

als Klangerzeugermodul in einem modularen Synthesizer einsetzt.

Lange Zeit war die elektronische Musik vor allem ein Bereich für

moderne klassische Komponisten. Diese Pioniere entwickelten

durch ihre kompositorischen Ansätze und mit Einsatz von Oszilla-

toren, Radios und Bandgeräten viele der Techniken, die später auch

in herkömmlichen Synthesizern und elektronischen Musikgeräten

zum Einsatz gekommen sind. Parallel zur akademischen Musik

wurden in den Studios von Radiosendern, z.B. beim BBC Radio-

phonic Workshop, neue Klangkonzepte entwickelt und umgesetzt.

Schnell wurden Module und Geräte gebaut, die es möglich mach-

ten, musikalische Kompositionen elektronisch zu speichern, abzu-

spielen und zu modifizieren: Diese Geräte wurden Sequencer

genannt. Auf den ersten, analogen Sequencern konnte man mithilfe

einer Reihe von Potentiometern verschiedene Steuerwerte einstel-

len und in einer Sequenz wiederholen. Diese Steuerwerte konnten

z.B. Tonhöhen sein oder Lautstärken, aber auch Filtereinstellungen

und andere Klangparameter. Dadurch ließen sich relativ einfach

kurze melodische Fragmente eingeben und verschiedene rhythmi-

sche Muster einstellen, die immer wiederholt wurden: Es war nicht

mehr notwendig, Noten einzugeben, sondern man konnte kom-

plette Stücke elektronisch erstellen, und zwar so leicht wie auf

einem Klavier.

Parallel zu den Entwicklungen in der analogen Elektronik wurden

die Computer immer schneller und kleiner, und viele Komponisten

und Musiker begannen, sie einzusetzen, um Musik zu schreiben

und zu erzeugen. Das erste Musikprogramm wurde schon 1951

geschrieben, konnte allerdings nur einfache Melodien spielen.

Angesichts des Computers, auf dem dieses Programm lief, mit sei-

Musik steuern mit dem Arduino

229

nen Röhren und seinem Quecksilberspeicher, war das schon eine

beachtliche Leistung. Ähnliche Melodien können wir auch mit dem

Arduino generieren, wie es in Kapitel 11 gezeigt wird. Mit wachsen-dem Speicher und fortschreitender Miniaturisierung war es jedoch

bald möglich, Computer zu benutzen, um komplette musikalische

Werke zu speichern und zu bearbeiten, mit sogenannten Sequen-

cerprogrammen (die im Vergleich zu analogen Sequencern digital

ihre Parameter speichern und darum viel umfangreichere Editier-

möglichkeiten boten).

Mit den größeren Speichern wurde es Computern auch möglich,

digital Musik aufzunehmen und wieder abzuspielen. Das digitale

Speichern von Klängen, das Sampling, war geboren. Diese Klanger-

zeugungsmöglichkeit veränderte in den 1980er Jahren mit Hip-Hop

das Gesicht der populären Musik. Auch auf dem Arduino ist es dank

dem WaveShield von LadyAda möglich, Klangsamples abzuspielen.

Abbildung 10-2

Arduino WaveShield

Mittlerweile sind Heimcomputer so leistungsstark, dass man auf

ihnen problemlos Dutzende, wenn nicht Hunderte von digitalen

Synthesizern laufen lassen kann. Diese Synthesizer nennt man auch

virtuelle Instrumente (virtual instruments), weil sie keine eigenstän-

digen Geräte sind. Im Endeffekt entsprechen sie aber von Aufbau

und Klangeigenschaften her eigenständigen Hardwaresynthesizern.

Es gibt mittlerweile eine ganze Reihe an Musikprogrammen, die die

Möglichkeiten des Computers, Programme auszuführen und zu

230

Kapitel 10: Musik-Controller mit Arduino

speichern, voll ausnutzen. Diese Programme bieten dem Benutzer

eine Schnittstelle, mit der er selbst seine eigenen Synthesizer und

Sequencer programmieren kann. Manche dieser Programme sind

eigentlich Softwareentwicklungsumgebungen, in denen Programme

auf herkömmliche Weise als Textdatei geschrieben und dann aus-

geführt werden (ein bisschen wie in der Arduino-Umgebung, nur

dass anstelle von Anweisungen, die die Hardware steuern, hier

Anweisungen zur Verfügung stehen, die Musiknoten spielen oder

Klangparameter verändern).

Um diese ganzen Geräte und Computer miteinander zu verbinden

(sodass ein Sequencer ohne Probleme einen beliebigen Synthesizer

ansteuern kann), wurde der MIDI-Standard im Jahre 1981 entwi-

ckelt. MIDI ist ein Kommunikationsprotokoll, das den Austausch

symbolischer musikalischer Information zwischen verschiedenen

elektronischen Instrumenten ermöglicht. »Symbolisch« heißt in

diesem Kontext, dass keine Audiodaten ausgetauscht werden, son-

dern kurze Nachrichten, die eine symbolische Bedeutung tragen.

So können von einem MIDI-Keyboard aus Noten und zusätzliche

Parameter, wie Tastenanschlagsgeschwindigkeit oder ob das Pedal

gedrückt ist, an einen Synthesizer übermittelt werden. Auch ein

Sequencer kann MIDI-Informationen speichern und abspielen und

so z.B. für Hintergrundharmonien oder komplette Lieder einge-

setzt werden. Das MIDI-Protokoll unterstützt auch die Synchroni-

sierung von unterschiedlichen Geräten, sodass mehrere Sequencer

gleichzeitig eingesetzt werden können, ohne dass sie den Takt ver-

lieren und die so erzeugte Musik wie eine Blaskapelle nach dem

Dorffest klingt. MIDI hat sich schnell durchgesetzt und ist auch

heutzutage, 25 Jahre später, immer noch die erste Wahl, um elek-

tronische Musikinstrumente zu verbinden.

Wegen der vielen Parameter, die man auf Synthesizern einstellen

kann, wurden Geräte entwickelt, die nur zur Steuerung von ande-

ren MIDI-Geräten verwendet werden und oft keine Gemein-

samkeiten mehr mit herkömmlichen Instrumenten haben. Diese

Geräte nennt man MIDI-Controller. Ein typisches Beispiel für

einen solchen MIDI-Kontroller ist ein Gerät, das dem Musiker

Drehknöpfe zur Verfügung stellt. Jeder dieser Drehknöpfe ist mit

einem bestimmten Parameter auf dem gesteuerten Synthesizer ver-

knüpft. In gewissem Sinne ist auch ein MIDI-Keyboard ein MIDI-

Controller, und so gibt es auch Controller, die eine Gitarre nach-

bauen, oder Controller, die wie ein Saxophon funktionieren (wie

der EWI-4000), nur eben keinen Klang erzeugen, sondern MIDI-

Daten. Wenn man aber das Konzept ein bisschen weiter verfolgt,

Musik steuern mit dem Arduino

231

lassen sich beliebige Sensoren zu einem MIDI-Controller umbauen,

und genau das ist einer der Bereiche, in dem der Arduino glänzend

zum Einsatz kommt.

Besonders interessant sind Geräte, die sich von dieser starren

Auftrennung in Klangerzeuger, Sequencer und Controller verab-

schieden und all diese Aspekte unter einem übergreifenden Kon-

zept kombinieren. Ein besonders interessantes und mittlerweile

weit verbreitetes Gerät ist der Monome von der Firma selben

Namens (http://monome.org/). Das ist ein Musikcontroller, der aus

64 beleuchteten Tastern besteht (es gibt auch Versionen mit 128

und 256 Tasten). Diese 64 Tasten sind in einer 8-mal-8-Matrix

angeordnet. Unter jeder Taste befindet sich eine LED, die durch-

scheint. Der Monome wird an einen Computer angeschlossen und

steuert dort die Software MAX/MSP, wofür es spezielle Patches

gibt. Das Gerät an sich sendet nur gedrückte Tasten über eine

USB-Schnittstelle und empfängt vom Computer Kommandos, um

die LEDs an- und auszuschalten. Durch diese recht schlichte

Oberfläche sind allerdings innovative und intuitive Steueroberflä-

chen möglich. Der Künstler Daedalus, der an der Entwicklung des

Monome beteiligt war, benutzt die Oberfläche, um einzelne musi-

kalische Loops (kurze, sich wiederholende Audiosamples) zu star-

ten und zu verändern.

Der Monome-Controller ist komplett quelloffen: Monome stellt

auf seiner Website die Schaltpläne und den Quellcode der Software

zur Verfügung. Dadurch ist um den Monome-Controller, der nur in

kleinen Stückzahlen (und auch als Bausatz) verkauft wird, eine

große Gemeinschaft interessierter Musiker und Programmierer ent-

standen, die das Produkt weiterentwickeln. Aus dieser Gemein-

schaft heraus wurde ein Selbstbauklon des Controllers entwickelt,

der auf Arduino und 4-mal-4-Button-Pads von Sparkfun basiert.

Abbildung 10-3

Monome-Controller

232

Kapitel 10: Musik-Controller mit Arduino

In diesem Kapitel wird das MIDI-Protokoll genauer vorgestellt, und

es wird gezeigt, wie ein Arduino benutzt werden kann, um MIDI-

Daten zu senden und zu empfangen. Damit ist es möglich, her-

kömmliche MIDI-Controller zu bauen (also Controller, die haupt-

sächlich Taster, Schieberegler und Drehknöpfe verwenden), die

genau an die Wünsche des Musikers angepasst sind (siehe

Kapitel 7). Es ist aber auch möglich, alle Sensoren, die wir bis jetzt an den Arduino angeschlossen haben, zu benutzen, um Synthesizer

zu steuern oder Musik zu erzeugen. Letztendlich ist es auch mög-

lich, auf dem Arduino MIDI-Daten zu empfangen und weiterzuver-

arbeiten, um z.B. Klänge zu erzeugen, indem in der realen Welt

Aktoren angesteuert werden.

Das MIDI-Protokoll

Das MIDI-Protokoll ist ein asynchrones serielles Protokoll (siehe

Kapitel 5), das getrennte Kabel für die Sende- und die Empfangs-richtung verwendet. MIDI-Geräte verfügen also meistens über eine

Eingangsbuchse (MIDI IN) und eine Ausgangsbuchse (MIDI

OUT). MIDI-Kabel verwenden einen DIN-5-Stecker, und die dazu-

gehörigen Buchsen lassen sich problemlos auf ein Steckboard ste-

cken. MIDI-Geräte bieten oft einen sogenannten THRU-Anschluss

an, der Daten, die am MIDI-IN anliegen, spiegelt. Dadurch ist es

möglich, mehrere Synthesizer hintereinander anzuschließen, um sie

von demselben Keyboard oder Sequencer aus anzusprechen. Frü-

here Computer hatten entweder von Haus aus eingebaute MIDI-

Schnittstellen (wie der Atari 1024 ST, der bis ins 21. Jahrhundert

hinein eine beliebte Computermusikplattform war) oder boten

diese an der Soundkarte an (über den Joystick-Port). Mittlerweile

ist es allerdings üblich, einen USB- oder Firewire-MIDI-Adapter zu

verwenden, um MIDI-Geräte an Heimcomputer anzuschließen.

Das MIDI-Protokoll kann man auch komplett ohne physikalische

Schnittstelle verwenden, wenn man unterschiedliche Musikpro-

gramme auf einem Rechner verwendet. Diese benutzen dann virtu-

elle MIDI-Ports, die nur intern im Computer existieren.

In diesem Kapitel werden Projekte vorgestellt, die MIDI-Daten ent-

weder senden oder empfangen. Das heißt, dass diese Projekte ohne

weitere MIDI-Hardware oder MIDI-Software nicht viele Auswir-

kungen haben werden. Falls ein Hardware-Synthesizer oder ein

Hardware-Sequencer zur Verfügung steht, lässt sich dieser über

herkömmliche MIDI-Kabel und die unten beschriebenen Schaltun-

gen direkt an den Arduino anschließen. Es ist allerdings auch mög-

Das MIDI-Protokoll

233

lich, mit dem Computer MIDI-Daten zu erzeugen und direkt über

die USB-Schnittstelle an den Arduino zu übermitteln. Dazu muss

auf dem Betriebssystem der Fluss, der über die serielle Schnittstelle

gesendet wird, als MIDI interpretiert und an den MIDI-Stack im

Computer übergeben werden. Dazu kann unter Mac OS X die Ard-

rumo-Software benutzt werden, die es frei herunterzuladen gibt

(http://code.google.com/p/ardrumo/). Unter Windows kann die Soft-

ware s2midi benutzt werden, die es ebenfalls frei unter http://www.

 memeteam.net/2007/s2midi/ gibt. Für beide Plattformen können Sie

auch das Programm Serial-Midi benutzen, das Sie unter http://

 www.spikenzielabs.com/SpikenzieLabs/Serial_MIDI.html finden.

MIDI-Nachrichten

Das MIDI-Protokoll ist ein binäres Protokoll (Nachrichten werden

als numerische Werte übertragen, nicht als Zeichenketten), das auf

8-Bit-Werte aufbaut. Allerdings wird in jedem übertragenen Wert

das oberste Bit als Statusbit benutzt: Ist es gesetzt, handelt es sich

nicht um einen numerischen Wert, sondern signalisiert, dass es sich

um einen Befehl handelt und nicht um normale Daten. Dieses Sta-

tusbit vereinfacht die serielle Kommunikation sehr (siehe Kapitel 6, um mehr über serielle Protokolle zu erfahren): Es reicht zu erkennen, ob das erste Bit gesetzt ist, um zu wissen, ob ein empfangenes

Byte ein Befehl oder ein numerischer Wert ist. Dadurch kann man

auch problemlos MIDI-Kabel ein- und ausstecken, ohne dass sich

Geräte neu synchronisieren müssen. Werden am Anfang unbe-

kannte Daten empfangen, reicht es, bis zum nächsten Byte mit

gesetztem Statusbit zu warten.

Bei Befehlbytes codieren die untersten 4 Bits den MIDI-Kanal. Die-

ser Kanal ist eine virtuelle Aufteilung des MIDI-Kabels in 16

getrennte Kabel. Jedes angeschlossene Gerät wird auf seinen eige-

nen Kanal konfiguriert und reagiert nur auf Nachrichten, die in den

unteren 4 Bits des Befehlbytes diesen Kanal codiert haben. Dadurch

ist es möglich, Noten nur an einen bestimmten Synthesizer zu schi-

cken, auch wenn mehrere über eine MIDI-THRU-Kette angeschlos-

sen sind (es kann auch sein, dass unterschiedliche Einheiten eines

einzelnen Synthesizers auf verschiedenen Kanälen reagieren). Oft

sind Synthesizer jedoch auf den Omnikanal eingestellt; reagiert ein

Synthesizer also auf die falschen Nachrichten oder gar nicht, lohnt

es sich nachzuprüfen, auf welchem Kanal MIDI-Nachrichten

geschickt werden und welche Kanaleinstellungen auf dem Synthesi-

zer aktiv sind.

234

Kapitel 10: Musik-Controller mit Arduino

Wenn ein Computer benutzt wird, um MIDI-Daten zu empfangen

und zu senden (heutzutage meistens über einen USB-Adapter oder,

falls der Computer über eine professionelle Soundkarte verfügt,

über die Soundkarte), ist es oft nützlich, einen sogenannten MIDI-

 Sniffer zu benutzen, um solchen Problemen auf die Schliche zu

kommen. Unter Windows ist die Software MIDI-OX zu empfehlen,

die es auch erlaubt, virtuelle MIDI-Geräte zu erstellen, um verschie-

dene MIDI-Programme untereinander zu verknüpfen. MIDI-OX

kann unter http://www.midiox.com/ heruntergeladen werden. Unter

Mac OS X ist die Software Midi Monitor zu empfehlen, die unter

 http://www.snoize.com/MIDIMonitor/ heruntergeladen werden kann.

Diese Sniffer-Programme zeichnen MIDI-Kommunikation auf, deko-

dieren die einzelnen Befehle, die aufgenommen wurden, und zeigen

sie in lesbarer Form an. Besonders nützlich ist das beim Debuggen

von MIDI-Programmen, die auf dem Arduino laufen, weil in sol-

chen Fällen die normale serielle Schnittstelle nicht mehr funktio-

niert, da sie als MIDI-Schnittstelle verwendet wird und auf eine

Geschwindigkeit eingestellt ist, die nicht standardmäßig erkannt

wird.

Wegen der Kennzeichnung von Befehlbytes über das obere Status-

bit können nur numerische Werte übertragen werden, die 7 Bits

lang sind, also Werte von 0 bis 127 (deswegen kommt es in Com-

putersoftware und in Synthesizern auch oft vor, dass Parameter-

werte nur von 0 bis 127 gehen). Es gibt drei Gruppen von MIDI-

Nachrichten: normale, Echtzeit- und exklusive MIDI-Nachrichten.

Die erste Gruppe umfasst die am häufigsten gebrauchten MIDI-

Nachrichten. Nachrichten mit Befehlbyte 0x80 und 0x90 werden

benutzt, um Noteninformationen zu übertragen. Wird auf einem

MIDI-Keyboard eine Taste angeschlagen, wird eine Note On-Nach-

richt erzeugt, die die Tonhöhe der angeschlagenen Taste enthält

sowie die Geschwindigkeit, mit der diese Taste angeschlagen wurde

(falls das Keyboard über Anschlagsdynamik verfügt). Wird die

Taste wieder losgelassen, wird eine Note Off-Nachricht geschickt.

(Mittlerweile benutzen die meisten Keyboards allerdings eine Note

 On-Nachricht mit einer Anschlagsgeschwindigkeit von 0).

Zwischen diesen beiden Nachrichten können beliebige weitere

Nachrichten über die MIDI-Verbindung übertragen werden. Wie

man sich leicht vorstellen kann, kann es bei intensiver Datenüber-

tragung (wenn z.B. viele Daten aus einem Sequencer gesendet wer-

den) zu Verzögerungen kommen, da die MIDI-Verbindung nur eine

begrenzte Geschwindigkeit hat. Es ist daher unter Umständen

Das MIDI-Protokoll

235

wichtig, separate MIDI-Verbindungen zu verwenden, wenn viele

Daten an mehrere Synthesizer übertragen werden sollen. Die Note

 On- und Note Off-Nachrichten sind wahrscheinlich die am häufigs-

ten vorkommenden MIDI-Nachrichten.

Eine weitere MIDI-Nachricht ist die Controller Change-Nachricht,

die benutzt wird, um beliebige Parameter zu steuern. Sie wird zum

Beispiel verwendet, um die Lautstärke, die Filteröffnung und wei-

tere Syntheseparameter zu steuern. Welche Controllerwerte an wel-

che Parameter auf einem MIDI-Gerät gebunden sind, lässt sich in

den jeweiligen Handbüchern nachschlagen. Die meisten MIDI-

Controller, die nicht nur Noten senden, verwenden Controller

 Change-Nachrichten, um ihre Informationen zu übermitteln. Bei

einem Blasinstrument-Controller werden z.B. der Luftdruck und

die gedrückten Ventile als Controller Change-Nachrichten übermit-

telt. Bei Controllern, die Potentiometer oder Encoder verwenden,

lässt sich meistens die Controllernummer jedes einzelnen Dreh-

knopfes einzeln zuweisen, sodass sich der Benutzer eine eigene

Kontrolloberfläche für sein gesteuertes MIDI-Gerät zurechtlegen

kann. Es können wegen der Beschränkungen des MIDI-Protokolls

nur bis zu 128 Parameter gesteuert werden. Jeder dieser Parameter

kann auf einen Wert von 0 bis 127 gesetzt werden.

Weitere MIDI-Nachrichten, die eher instrumentenspezifische Auf-

gaben übernehmen, sind die Program Change-Nachricht, mit der

verschiedene »Programme« (also Einstellungen) auf Synthesizern

aufgerufen werden, sowie die Key Pressure- und Channel Pressure-

Nachrichten, die bei Keyboards den Tastendruck übermitteln.

Diese Nachrichten werden wir in diesem Kapitel nicht verwenden.

 Echtzeit-MIDI-Nachrichten sind eine spezielle Klasse von MIDI-

Nachrichten, die meistens nur ein Byte lang sind (mit gesetzten Sta-

tusbit) und hauptsächlich zur Temposynchronisation von MIDI-

Geräten eingesetzt werden. Echtzeit-MIDI-Nachrichten, die nur ein

Byte lang sind, können jede beliebige Nachricht unterbrechen und

sind meistens sehr zeitkritisch. Wenn zwei MIDI-Geräte unterein-

ander synchronisiert werden sollen, übernimmt eins dieser Geräte

die Rolle des Timing Master (also »Zeitchef«), während das andere

Gerät die Rolle des Timing Slave übernimmt. Der Timing Master

bestimmt das generelle Tempo und kann auch anhand der Start-,

 Pause- und Stop-Nachrichten das Abspielen steuern. Der Timing

Master schickt regelmäßig kurze Echtzeitnachrichten (die Zeit-

 Ticks) an den Timing Slave, und der Slave synchronisiert sich auf

diese regelmäßigen Nachrichten. Die MidiDuino-Library, die wir in

236

Kapitel 10: Musik-Controller mit Arduino

diesem Kapitel verwenden, unterstützt sowohl die Slave- als auch

die Master-Seite der Synchronisation. Allerdings sind für die kor-

rekte Slave-Synchronisation einige Eingriffe in das Arduino-System

notwendig, weswegen wir uns in diesem Kapitel auf die Master-

Rolle beschränken.

 Systemexklusive Nachrichten schließlich sind spezielle Nachrichten,

die benutzt werden, um beliebige Daten über MIDI auszutauschen.

Binäre Daten können als Sysex-Nachrichten übermittelt werden.

Eine Sysex-Nachricht fängt mit der speziellen Nachricht 0xF0 an,

die gefolgt wird von einer beliebigen Anzahl weiterer binärer

Datenbytes (allerdings muss bei diesen Bytes das oberste Bit auf 0

gesetzt sein, weil sie ja sonst als Befehlbyte erkannt werden).

Das Erkennen von einkommenden MIDI-Nachrichten ist eine recht

komplizierte Angelegenheit, die von der MidiDuino-Library über-

nommen wird. Die Library kann alle Tricks von MIDI bearbeiten

und so alle MIDI-Nachrichten richtig erkennen.

MIDI an den Arduino anbinden

Elektrisch betrachtet, ist die serielle Schnittstelle ein Stromkreis.

Das heißt, dass Bits nicht als Spannungen übertragen werden, wie

es sonst üblicherweise vorkommt, sondern dass Stromfluss eine

»1« signalisiert und kein Strom eine »0«. Um Stromflüsse wieder

in Spannungen zu konvertieren, damit der Arduino die übertrage-

nen Bits korrekt interpretieren kann, wird ein Optokoppler einge-

setzt. Ein Optokoppler ist ein Chip, der intern eine LED und

einen Fotowiderstand enthält. Der Eingangsstrom bringt die LED

zum Leuchten, und der empfangende Fotowiderstand schaltet

einen Transistor, sodass auf der Ausgangsseite eine Spannung

geschaltet wird. So lassen sich Informationen ohne elektrische Ver-

bindung übertragen (die Übertragung geschieht optisch, daher der

Name Optokoppler). Dadurch lassen sich Grundschleifen vermei-

den, die dann vorkommen, wenn mehrere Geräte, die physikalisch

voneinander entfernt sind und deswegen oft unterschiedliche Mas-

senpotentiale haben, über ein Kabel verbunden werden. Dadurch

kommt es manchmal zu einem Brummen, wenn diese an einen Ver-

stärker angeschlossen sind, was natürlich in einem musikalischen

Kontext nicht erwünscht ist. Die Schaltung, um von einem Arduino

aus MIDI zu empfangen, ist allerdings sehr einfach und lässt sich

mit einem Optokoppler (hier hat sich der 6N138 bewährt), zwei

220-Ohm-Widerständen und einer Diode bauen.

Das MIDI-Protokoll

237

Abbildung 10-4

Schaltbild MIDI-Input

Abbildung 10-5

Schaltung MIDI-Input und

MIDI-Output

Um MIDI-Daten von einem Arduino aus zu senden, ist es nur not-

wendig, den seriellen Ausgangspin TX (Pin 2 auf dem Arduino-

Board) über einen 220-Ohm-Widerstand an Pin 5 der MIDI-Buchse

zu führen, und Pin 2 der MIDI-Buchse über einen weiteren 220-

Ohm-Widerstand an 5V zu verbinden.

Da die MIDI-Schnittstelle direkt an die serielle Schnittstelle des

Arduino angeschlossen wird, kommt es auf dem RX-Pins zu einer

»elektrischen Kollision«. Deswegen ist es notwendig, vor dem

Hochladen eines neuen Sketches den RX-Pin freizustellen, weil

sonst von der USB-Seite keine Daten empfangen werden können.

Kommt eine Timeout-Fehlermeldung beim Hochladen, bedeutet

das, dass der RX-Pin noch an den Optokoppler angeschlossen ist.

238

Kapitel 10: Musik-Controller mit Arduino

Abbildung 10-6

Schaltbild MIDI-Output

Die MidiDuino-Bibliothek

In diesem Kapitel wird die MidiDuino-Bibliothek verwendet, die

Sie unter http://ruinwesen.com/mididuino herunterladen können.

Diese Bibliothek wurde von einem der Autoren dieses Buches

geschrieben und wird ständig weiterentwickelt. Beim Schreiben

dieses Buches wird die erste Version 0.1 der Bibliothek verwendet.

In der ZIP-Datei der Bibliothek sind verschiedene kleine Bibliothe-

ken zu finden, die alle in den Ordner hardware/libraries der Ardu-

ino-Installation kopiert werden müssen.

Die MidiDuino-Bibliothek besteht aus zwei großen Teilen. Der

erste ist der MidiUart-Teil, der sich um die serielle Schnittstelle

kümmert. Dieser Teil wird auch verwendet, um MIDI-Nachrichten

zu senden. Der zweite Teil ist der eigentliche MIDI-Stack, der ein-

kommende Nachrichten von der seriellen Schnittstelle liest und

analysiert und daraus einzelne Nachrichten erkennt und an ver-

schiedene Callback-Funktionen weiterreicht. Callback-Funktionen

sind Funktionen aus dem Sketch, die als Argument an den MIDI-

Stack übergeben und automatisch aufgerufen werden.

In diesem ersten Sketch verwenden wir den MidiUart-Teil, um in

regelmäßigen Abständen Noten über MIDI zu schicken. Statt die

serielle Schnittstelle mit Serial.init() zu initialisieren, wird diese

mit dem Aufruf MidiUart.init() initialisiert. Wenn MIDI mit den

früher erwähnten Seriell-nach-MIDI-Konvertierungsprogrammen

S2midi oder Ardrumo verwendet wird, muss als zusätzliches

Argument an MidiUart.init() noch die serielle Geschwindigkeit

angegeben werden, ansonsten wird die standardmäßige MIDI-

Geschwindigkeit von 31.250 Bps verwendet. Dadurch, dass MIDI-

Daten binär direkt über die serielle Schnittstelle gesendet werden,

kann die Serial-Bibliothek nicht mehr verwendet werden, um

Die MidiDuino-Bibliothek

239

Daten in die serielle Konsole auszugeben. Stattdessen kann einer

der MIDI-Sniffer verwendet werden, um bestimmte Debug-

Nachrichten zum Beispiel als Noten oder Kontrollnachrichten zu

übertragen.

Wenn die USB-Schnittstelle verwendet wird, um direkt MIDI-

Daten an den Computer zu übermitteln (mithilfe von Ardrumo

oder S2Midi), muss die serielle Schnittstelle allerdings auf eine der

Standardgeschwindigkeiten umgestellt werden. Diese Geschwin-

digkeit (z.B. 9.600 Bps oder 112.500 Bps) kann man einfach als

Argument an MidiUart.init() übergeben.

Nachdem die serielle Schnittstelle mit MidiUart.init() initialisiert

wurde, kann sie verwendet werden, um einzelne MIDI-Nachrich-

ten zu übertragen. In diesem ersten Sketch werden Noten mit den

Funktionen MidiUart.sendNoteOn() und MidiUart.sendNoteOff()

gesendet. Diese Funktionen kriegen im Fall der Note On-Nachricht

als Parameter einen MIDI-Kanal, eine Notenhöhe und eine

Anschlagsgeschwindigkeit. Der Parameter MIDI-Kanal ist optio-

nal: Wenn er nicht angegeben wird, wird der Defaultwert Midi-

Uart.currentChannel verwendet. Um den Default-Kanal zu ändern,

reicht ein einfaches Zuweisen an die Variable MidiUart.cur-

rentChannel.

// Einbinden der MidiDuino-Library

#include <MidiUart.h>

#include <Midi.h>

MidiClass Midi;

void setup() {

// Initialisieren der MIDI-Schnittstelle

MidiUart.init();

// Wenn Ardrumo oder S2Midi verwendet werden, wird stattdessen

// MidiUart.init(9600);

// verwendet

}

void loop() {

// Zuerst Senden einer Note On-Nachricht

MidiUart.sendNoteOn(100, 100);

delay(200);

// Dann senden einer Note Off-Nachricht

MidiUart.sendNoteOff(100);

delay(2000);

}

Dieses Programm lässt sich leicht um Kontrollnachrichten ergän-

zen, die mit der MidiUart.sendCC()-Funktion gesendet werden.

240

Kapitel 10: Musik-Controller mit Arduino

Diese Funktion nimmt als Parameter einen optionalen MIDI-Kanal,

die Parameternummer und den Parameterwert. So lässt sich die

loop()-Funktion aus dem vorigen Sketch um Kontrollnachrichten

erweitern.

void loop() {

// Zuerst Senden einer Note On-Nachricht

MidiUart.sendNoteOn(100, 100);

MidiUart.sendCC(5, 100);

delay(200);

// Dann Senden einer Note Off-Nachricht

MidiUart.sendNoteOff(100);

MidiUart.sendCC(5, 10);

delay(2000);

}

Ein MIDI-Zauberstab

In diesem Sketch verwenden wir einen Beschleunigungssensor, um

MIDI-Daten zu erzeugen. Das Prinzip des Beschleunigungssensors

wurde schon in Kapitel 7 erläutert. In diesem Sketch verwenden wir den Nunchuck-Kontroller einer Wii-Konsole von Nintendo, weil

das die billigste und einfachste Methode ist, an einen Beschleuni-

gungssensor zu kommen. Für einen Preis von ungefähr 20 EUR

bekommt man einen Dreiachsen-Beschleunigungssensor, einen

Joystick und zwei Taster. Der Controller versendet diese Daten

über einen digitalen synchronen seriellen Bus, den man i2c nennt.

Dieser Bus ist weit verbreitet und wird von vielen verschiedenen

Schaltungen und Chips verwendet. Die Wire-Bibliothek, die bei

Arduino mitgeliefert wird, übernimmt alle Kommunikationsaufga-

ben, sodass der Anschluss des Nunchuck an das Arduino-Board

leicht gelingt.

Um den Nunchuck zu verbinden, kann man Drähte in die einzel-

nen Pins des Anschlusskonnektors stecken und diese an den Ardu-

ino anschließen. Von vorn gesehen, ist der linke obere Pin die

Clock-Leitung, der rechte obere Pin GND, der linke untere VCC

und der rechte untere die Datenleitung. Die Wire-Bibliothek ver-

wendet die analogen Pins 4 und 5 als Kommunikationsschnittstelle,

und in diesem Sketch werden die analogen Pins 2 und 3 als Strom-

versorgungspins verwendet. GND wird an den analogen Pin 2

angeschlossen, VCC an den analogen Pin 3, Data an den analogen

Pin 4 und Clock an den analogen Pin 5. In der folgenden Abbildung

wird der Anschluss gezeigt.

Ein MIDI-Zauberstab

241

Abbildung 10-7

Nunchuck-Pinbelegung

Der Code zum Einlesen der Nunchuck-Daten ist relativ lang und

wird hier deshalb nicht komplett abgebildet. Als Erstes müssen in

der Setup-Routine sowohl der MIDI-Stack als auch die Wire-Ver-

bindung zum Nunchuck initialisiert werden. An den Nunchuck

wird dann auch gleich ein Initialisierungsbefehl geschickt.

#define pwrpin PORTC3 // analoger pin 3

#define gndpin PORTC2 // analoger pin 2

void nunchuckInit() {

// Initialisierung der Stromversorgungspins

DDRC |= _BV(pwrpin) | _BV(gndpin);

PORTC &=~ _BV(gndpin);

PORTC |= _BV(pwrpin);

delay(100);

// Initialisieren der Wire-Bibliothek und des Nunchuck

Wire.begin();

Wire.beginTransmission(0x52);

Wire.send(0x40);

Wire.send(0x00);

Wire.endTransmission();

}

void setup () {

MidiUart.init();

nunchuckInit();

}

Die Nunchuck-Daten werden in der Funktion nunchuckReadData()

eingelesen und in nunchuckParseData() analysiert und decodiert.

242

Kapitel 10: Musik-Controller mit Arduino

int nunchuckReadData(byte outbuf[]) {

nunchuckSendZero();

delay (30);

Wire.requestFrom (0x52, 6); // request data from nunchuck

int cnt = 0;

while (Wire.available ()) {

outbuf[cnt] = nunchukDecodeByte(Wire.receive ());

cnt++;

}

return cnt;

}

byte nunchukDecodeByte(byte x) {

x = (x ^ 0x17) + 0x17;

return x;

}

void nunchuckSendZero() {

Wire.beginTransmission(0x52); // transmit to device 0x52

Wire.send(0x00); // sends one byte

Wire.endTransmission(); // stop transmitting

}

int joystick[2] = { 0 };

int oldJoystick[2] = { 0 };

byte joystickCC[2] = { 108, 109 };

int accel[3] = { 0 };

int oldAccel[3] = { 0 };

byte accelCC[3] = { 4, 5, 6 };

int button[2] = { 0 };

int oldButton[2] = { 0 };

byte buttonNote[2] = { 60, 62 };

void nunchuckParseData(byte outbuf[]) {

joystick[0] = outbuf[0];

joystick[1] = outbuf[1];

accel[0] = outbuf[2] << 2;

accel[1] = outbuf[3] << 2;

accel[2] = outbuf[4] << 2;

button[0] = bitRead(outbuf[5], 0);

button[1] = bitRead(outbuf[5], 1);

for (int i = 0; i < 3; i++) {

accel[i] += bitRead(outbuf[5], i + 2) * 2 + bitRead(outbuf[5],

i + 3);

}

}

Ein MIDI-Zauberstab

243

Die Ergebnisse des Auslesens werden in den Tabellen joystick[],

 accel[] und button[] abgelegt, die anschließend in der Funktion nun-

chuckSendMidi() ähnlich wie beim Code im Miniaturcontroller in

MIDI-Nachrichten konvertiert werden.

void nunchuckSendMidi() {

for (int i = 0; i < 2; i++) {

if (abs(oldJoystick[i] – joystick[i]) >= 2) {

MidiUart.sendCC(joystickCC[i], map(joystick[i], 0, 255, 0,

127));

oldJoystick[i] = joystick[i];

}

}

for (int i = 0; i < 3; i++) {

if (abs(oldAccel[i] – accel[i]) >= 7) {

int value = map(accel[i], 300, 800, 0, 127);

MidiUart.sendCC(accelCC[i], constrain(value, 0, 127));

oldAccel[i] = accel[i];

}

}

for (int i = 0; i < 2; i++) {

if (oldButton[i] != button[i]) {

if (button[i] == 0) {

MidiUart.sendNoteOn(buttonNote[i], 100);

} else {

MidiUart.sendNoteOff(buttonNote[i]);

}

oldButton[i] = button[i];

}

}

}

Mit dieser einfachen Schaltung lässt sich also leicht ein umfassen-

der MIDI-Controller mit Joystick, Tastern und Beschleunigungs-

sensoren bauen.

MIDI-Input

In diesem Sketch wird die MidiDuino-Bibliothek benutzt, um

MIDI-Daten einzulesen. Wenn ein Notenanschlag vom Arduino

erkannt wird, wird eine LED geschaltet. Dazu müssen die Daten

der seriellen Schnittstelle eingelesen und an den eigentlichen MIDI-

Stack übergeben werden, der bis jetzt nicht verwendet wurde. Das

Erkennen der Noten wird von diesem Teil übernommen. Die

Kopplung an den Sketch erfolgt über sogenannte Callback-Funktio-

 nen. Das sind Funktionen, die mit dem MIDI-Stack registriert auf-

gerufen werden, sobald eine bestimme Nachricht erkannt wurde.

244

Kapitel 10: Musik-Controller mit Arduino

In diesem Sketch werden zusätzlich zur MIDI-Schaltung, die an die

Pins TX und RX angeschlossen ist, noch zwei LEDs an Pin 10 und

12 angeschlossen. Vor dem Programmieren muss die RX-Leitung

zum MIDI-Board kurz getrennt werden, damit der Arduino den

Sketch auch empfangen kann.

Beim Empfangen von CC-Nachrichten wird die Helligkeit der zwei-

ten LED auf den empfangenen CC-Wert gesetzt. So lassen sich

durch das Anschließen von herkömmlichen MIDI-Controllern

Parameter von Arduino-Sketchen steuern, ohne dass Potentiometer

oder andere Steuerungsoberflächen angeschlossen werden müssen.

Das ist besonders in Verbindung mit Licht- oder Soundschaltungen

sehr praktisch, weil robuste kommerzielle Controller verwendet

werden können.

Das Registrieren der Callback-Funktionen geschieht über die Auf-

rufe an Midi.setOnNoteOnCallback(), Midi.setOnNoteOffCallback()

und Midi.setOnControlChangeCallback(). Die Callback-Funktio-

nen im Sketch bekommen als Argument die binäre empfangene

MIDI-Nachricht.

// Einbinden der MidiDuino-Library

#include <MidiUart.h>

#include <Midi.h>

MidiClass Midi;

// Die erste LED ist an Pin 10 angeschlossen.

int ledPin = 13;

// Die zweite LED ist an Pin 11 angeschlossen.

int ledPin2 = 11;

void setup() {

// Initialisieren der MIDI-Schnittstelle

MidiUart.init();

// Setzen der LED-Pins auf Ausgang

pinMode(ledPin, OUTPUT);

pinMode(ledPin2, OUTPUT);

// Beim Erkennen einer Note On-Nachricht wird onNoteOnCallback

// aufgerufen.

Midi.setOnNoteOnCallback(onNoteOnCallback);

// Beim Erkennen einer Note Off-Nachricht wird onNoteOffCallback

// aufgerufen.

Midi.setOnNoteOffCallback(onNoteOffCallback);

// Beim Erkennen einer Control Change-Nachricht wird

// onControlChangeCallback aufgerufen.

Midi.setOnControlChangeCallback(onControlChangeCallback);

}

void loop() {

MIDI-Input

245

 // Überprüfen, ob MIDI-Daten empfangen wurden

if (MidiUart.avail()) {

// Einlesen des empfangenen MIDI-Bytes

byte c = MidiUart.getc();

// Übergeben an die MIDI-Library, damit diese die Daten

// erkennt

Midi.handleByte(c);

}

}

// Wenn eine eingehende Note On-Nachricht von der MIDI-Library

// erkannt wurde, wird diese Funktion aufgerufen.

void onNoteOnCallback(byte msg[]) {

// Die Helligkeit der LED wird auf die Tonhöhe gesetzt.

analogWrite(ledPin, map(msg[1], 0, 127, 0, 255));

}

// Wenn eine eingehende Note Off-Nachricht von der MIDI-Library

// erkannt wurde, wird diese Funktion aufgerufen.

void onNoteOffCallback(byte msg[]) {

// Ausschalten der LED

digitalWrite(ledPin, LOW);

}

// Wenn eine eingehende Control Change-Nachricht von der

// MIDI-Library erkannt wurde, wird diese Funktion aufgerufen.

void onControlChangeCallback(byte msg[]) {

// Prüfen, ob es sich um CC Nummer 1 handelt

if (msg[1] == 1) {

// Helligkeit der zweiten LED auf den CC-Wert setzen

analogWrite(ledPin2, msg[2]);

}

}

Es ist also sehr einfach, mit der MidiDuino-Bibliothek MIDI-

Schaltungen auf dem Arduino zu bauen. Die MidiDuino-Biblio-

thek bietet auch eine sehr angenehme Schnittstelle für die Zeitsyn-

chronisation und das Sequencen von MIDI-Daten, sodass mit ihr

eigenständige Musikinstrumente und Musiksequencer gebaut wer-

den können.

246

Kapitel 10: Musik-Controller mit Arduino

KAPITEL 11

In diesem Kapitel:

Musik mit Arduino

• Töne aus dem Arduino

• Erster Sketch: Töne mit

langsamer PWM

• Zweiter Sketch: Angenehme

Klänge mit schneller PWM

• Dritter Sketch: Steuerung von

Klängen

• Vierter Sketch: Berechnungen

in einer Interrupt-Routine

• Fünfter Sketch: Musikalische

Noten

Töne aus dem Arduino

In diesem Workshop kommt die volle Rechenkraft des Arduino

zum Einsatz, um Töne zu generieren. Es werden zuerst einfache

Klänge erzeugt, um dann später musikalische Noten zu berechnen

und so den Arduino in einen Synthesizer zu verwandeln. Als Letz-

tes wird der Arduino so programmiert, dass er automatisch Melo-

dien und Rhythmen generieren kann. Es werden zwei Aspekte der

elektronischen Musik beleuchtet: auf der einen Seite Klanger-

zeugung und Klangmodifizierung, auf der anderen algorithmische

Musik (also die Beeinflussung von Tönen, Melodien, rhythmischen

Mustern und harmonischen Reihenfolgen durch programmierte

Regeln).

Sogar ein kleines Bauteil wie der Arduino kann dazu verwendet

werden, musikalische Klänge und Geräusche zu erzeugen. Einige

Projekte sollen hier kurz vorgestellt werden, um die ganze Band-

breite der Möglichkeiten zu zeigen und die Fantasie anzuregen.

Pump up the Volume!

Die beiden Stuttgarter Künstler Daniel Dihardja und Frank Arnold

verwenden Handluftpumpen, die mithilfe von Piezo-Sensoren an

einem Arduino angebracht werden. Diese Sensoren messen den

Luftdruck, die Signale werden dann am PC in Klänge umgewandelt.

Diese interaktive Soundinstallation namens Soundbeats erforscht

ganz neue Bereiche der Klangerzeugung und soll, so die Initiatoren,

die körperliche Tätigkeit des Pumpens mit der eigentlich unkörper-

lichen Musik verbinden. Das Ergebnis ist durchaus hörenswert, wie

247

ein Video auf der Projektwebsite unter http://xciba.de/pumpbeats

zeigt. Dort heißt es: »Aus der Symbiose von Pumpe und Computer

entsteht eine fruchtbare Bedeutungserweiterung beider Komponen-

ten. »Pumpbeats« spielt demzufolge mit der Verbindung einer ›alten

Kunst‹ (= Musik) und den neuen Medien.«

Eine Harfe aus Licht

Eines der spektakulärsten Arduino-Projekte ist die Laserharfe von

Stephen Hobley (http://www.stephenhobley.com/build/): Ein Laser-

scanner sendet zehn Strahlen vom Boden an die Decke und sorgt

mit passendem Nebel für grüne Saiten aus Licht. Hält nun der Har-

fenspieler eine Hand in das Licht, wird das von einem Sensor

erkannt, der den daraus resultierenden Wert in ein MIDI-Signal

verwandelt; ein Synthesizer sorgt dafür, dass Sounds entstehen. In

der ersten Version der Harfe wurden noch Reflektionssensoren ein-

gesetzt, um die Position der Hand zu messen. Da sich das aber als

sehr kompliziert und unpräzise herausstellte, hat der Erfinder die

Infrarotkamera einer Wiimote so modifiziert, dass sie die Frequenz

eines grünen Lasers erkennen kann. So kann nun die Hand genauer

geortet werden, die damit auch die Tonhöhe auf einem einzelnen

Strahl moduliert.

Diver Sequencer

Der Diver Sequencer ist eine Halbkugel, auf der vier Drehregler

angebracht sind. Ein Arduino gibt nun in regelmäßigen Abständen

vier Töne nacheinander ab. Diese einzelnen Töne können durch die

Drehregler bestimmt werden, indem die Frequenz moduliert wird.

Zusammen mit der Geschwindigkeit, die ebenfalls gesteuert wer-

den kann, ergibt sich also ein kleiner Sequencer, mit dem sich

rhythmische wiederkehrende Tonfolgen erzeugen lassen. Diese

Töne sind allerdings relativ rau, sodass die blinkende Halbkugel

mit ihren Knöpfen wohl mehr Aufsehen erregen dürfte als das, was

sie produziert. Mehr über das Projekt können Sie sich unter http://

 bDruzed.com/2009/04/08/diver-sequencer-on-acid/ ansehen.

Klimpern bis zum Stubenarrest

So manche Eltern bereuten in den 1980er Jahren recht schnell, dass

sie ihrem Kind eines dieser kleinen elektronischen Klaviere gekauft

hatten, mit denen japanische Firmen den Markt überschwemmten.

Die bunten Plastikgeräte, die nervig piepsende Töne von sich

248

Kapitel 11: Musik mit Arduino

gaben, konnten für stundenlange Begeisterung und blank liegende

Nerven gleichzeitig sorgen. Wohl im Gedanken an diese Zeiten ist

Pocket Piano Shield (http://www.critterandguitari.com/home/store/

 arduino-piano.php) entstanden, ein Aufsatz für den Arduino, mit

dem genau solche Minisynthesizer selbst gebaut werden können.

Und möglicherweise eignet sich dieses Gerät nicht nur für die musi-

kalische Früherziehung, sondern kann Kindern auch gleichzeitig

die Welt der Elektronik und Programmierung näherbringen.

Komponenten

Die Anzahl zusätzlicher Komponenten ist bewusst klein gehalten.

Verwendet werden eine Stereoklinkenbuchse zum Anschluss eines

Kopfhörers, ein Potentiometer (10.000 Ohm logarithmisch) und

ein Widerstand (1.000 Ohm) zum Einstellen der Lautstärke, sowie

zwei 1 mikro-Farad- Folienkondensatoren zum Filtern des digitalen

Ausgangs aus dem Arduino. Für steuerbare Sketche werden zwei

weitere Potentiometer (linear, von 5.000 Ohm bis 100.000 Ohm)

und zwei Taster eingesetzt.

Warnung

In diesem Workshop kann es schnell zu lauten und unkontrol-

lierten Tönen kommen, die sowohl das menschliche Gehör als

auch angeschlossene Lautsprecher oder Kopfhörer beschädi-

gen können. Schließen Sie keine hochwertigen Lautsprecher

an die Schaltung und tragen Sie gegebenenfalls Hörschutz

(oder halten Sie eine Hand auf dem Lautstärkeregler).

Schaltungsaufbau

Der Ausgangspin 9 des Arduino wird verwendet, um Klänge zu

erzeugen. Dazu sind eine Kopfhörerbuchse, ein Widerstand, ein

Potentiometer und zwei Folienkondensatoren notwendig. Der

Widerstand wird eingesetzt, um allzu hohe Lautstärken zu verhin-

dern, während das Potentiometer benutzt wird, um die Lautstärke

generell einzustellen. Das Potentiometer ist ein logarithmisches

Potentiometer, das im Bereich kleiner Widerstandswerte eine grö-

ßere Auflösung hat. Der Grund dafür ist, dass das menschliche

Gehör Lautstärke logarithmisch empfindet, wodurch es möglich

ist, sowohl leichtes Getröpfel als auch einen Düsenjäger zu hören.

Die Folienkondensatoren werden sowohl als Entkopplungskon-

densator (siehe Kasten »Elektronische Klangerzeugung«) wie auch als Tiefpassfilter eingesetzt.

Töne aus dem Arduino

249

Abbildung 11-1

Schaltplan (ohne Steuerung)

Elektronische Klangerzeugung

Das menschliche Ohr ist eines der genauesten

sind, nennt man unipolare Spannungen.) Wei-

Sinnesorgane. Es kann minimale Tonhöhenun-

terhin können konstante Spannungen (die sich

terschiede erkennen, was auch die Anforde-

nicht verändern) Lautsprecher beschädigen,

rungen an den Arduino deutlich erhöht. Klang

weil ihre Membran sich dauernd in Bewegung

im Raum wird durch eine Veränderung des

befinden muss. Um solche Beschädigungen zu

Luftdrucks erzeugt, z.B. durch die vibrierende

vermeiden, werden

Membran eines Lautsprechers oder Kopfhörers.

Entkopplungskondensatoren eingesetzt, die

Eine periodische Veränderung des Luftdrucks

konstante Spannungen herausfiltern. Eine will-

(durch eine Klangwelle) nimmt das mensch-

kommene Nebenwirkung ist, dass so ein Kon-

liche Gehirn als Tonhöhe war. Je schneller die

densator auch eine sich verändernde unipolare

Luft vibriert, desto höher ist die wahrgenom-

Spannung in eine bipolare umwandelt.

mene Tonhöhe.

Die Ausbreitung der Kopfhörer- oder Lautspre-

chermembran lässt sich über eine Spannung

steuern (die meistens von einen Verstärker ver-

stärkt wird, um auch große Membranen bewe-

gen zu können). Je höher die Spannung, desto

größer die Ausbreitung der Membranen. Diese

Spannungen werden als analoge Spannungen

Abbildung 11-2: Klangerzeugung

bezeichnet, weil sie eine große Menge von

Werten annehmen können, z.B. von – 5 V bis

Anschaulich heißt das, dass das Audiosignal 0

+ 5 V (also –5 V, – 4,8 V, 3 V, 3,1123 V usw . . .).

Volt wird, wenn es lange gleich bleibt, und

Digitale Spannungen können nur zwei Werte

sonst um 0 Volt herumpendelt.

annehmen, die »An« oder »Aus« signalisieren.

Weiterhin bewegt sich die

Lautsprechermembran sowohl nach vorn als

auch nach hinten (vom Ruhezustand aus gese-

hen), sodass Audiosignale meistens als

bipolare Spannungen übermittelt werden, die

sowohl negativ als auch positiv sein können.

(Spannungen, die nur negativ oder nur positiv

Abbildung 11-3: Bipolare Signale und Entkopplung

250

Kapitel 11: Musik mit Arduino

Der Arduino ist ein digitaler Mikrocontroller: Er kann keine analo-

gen Spannungen erzeugen, wie sie für die Erzeugung von Musik

notwendig sind (siehe Kasten »Elektronische Klangerzeugung«).

Die digitalen Ausgangsspannungen des Arduino (0 und 5 Volt)

müssen also in analoge Spannung konvertiert werden. Hier wird

wieder die Pulsweitenmodulation eingesetzt (Kapitel 3). Ein zweiter Kondensator wird verwendet, der die harten Kanten des PWM-Signals filtert. Die PWM wird mit einer sehr hohen Frequenz angewen-

det (62.500 Hertz) und dann relativ hart gefiltert (die hohen

Frequenzen werden abgeschnitten). Dadurch bleibt nur noch der

Mittelwert der PWM übrig. Da die PWM so schnell ist, ist sie aller-

dings nicht von Menschen hörbar, sodass der Kondensator nur

fakultativ ist.

Testweise kann man den Tiefpassfilterkondensator aus der Schal-

tung entfernen, um die hohen Frequenzen der PWM zu hören (die

sind allerdings so hoch, dass man sie als Mensch kaum hört).

Dieser Weg ist immer noch relativ grob aufgelöst und ungenau,

sodass meistens in Synthesizern ein Digital-Analog-Wandler zum

Einsatz kommt. Ein DA-Wandler ist ein dedizierter Baustein, der

ein digitales Signal in ein analoges Signal umwandelt. Jede Sound-

karte besteht zum Beispiel aus mehreren DA- und AD-Wandlern

(um Eingangssignale aufzunehmen, z.B. von einem Mikrofon).

Erster Sketch: Töne mit langsamer PWM

In diesem ersten Sketch kommt die hauseigene Pulsweitenmodula-

tion von Arduino zum Einsatz, um Klänge zu erzeugen. Pin 9 ist der

Audioausgang, der an den Kopfhörerausgang angeschlossen ist.

#define AUDIO 9 // Definieren des Audioausgangspins

void setup() {

pinMode(AUDIO, OUTPUT); // der Audiopin ist ein Ausgangspin

}

int time = 200; // die Zeit zwischen steigender und fallender

// Flanke

void loop() // die Arduino-Hauptschleife

{

analogWrite(AUDIO, 255); // hohe Flanke auf Audioausgang

delayMicroseconds(time); // Länge der Flanke = time in

// Mikrosekunden

analogWrite(AUDIO, 0); // tiefe Flanke auf Audioausgang

delayMicroseconds(time); // Länge der Flanke = time in

// Mikrosekunden

}

Erster Sketch: Töne mit langsamer PWM

251

Als Erstes wird hier Pin 9 als Ausgang definiert. In der Hauptrou-

tine wird mit analogWrite() der Pulsweitenmodulationswert auf

dem Ausgangspin bestimmt. Durch Verändern des Wertes der

Variablen time können verschiedene Tonhöhen erzeugt werden.

Es können auch interessantere elektronische Geräusche erzeugt

werden, indem z.B. die Frequenz in einer Schleife verändert wird.

void loop() {

// in dieser Schleife wird time von 0 bis 2000 hochgezählt

{

analogWrite(AUDIO, 255); // hohe Flanke auf Audioausgang

delayMicroseconds(time); // Länge der Flanke = time in

// Mikrosekunden

analogWrite(AUDIO, 0); // tiefe Flanke auf Audioausgang

delayMicroseconds(time); // Länge der Flanke = time in

// Mikrosekunden

}

}

Man kann auch die Zeit immer zufällig wählen lassen:

void loop() {

int volume = random(0, 255); // jede Note bekommt eine zufällige

// Lautstärke

int time = random(1, 2000); // und eine zufällige Tonhöhe

// jede Note wird für 50000 Mikrosekunden gehalten (ungefähr)

for (unsigned int i = 0; i < 50000; i += time) {

analogWrite(AUDIO, volume); // hohe Flanke am Audioausgang

delayMicroseconds(time); // Länge der Flanke = time in

// Mikrosekunden

analogWrite(AUDIO, 0); // tiefe Flanke am Audioausgang

delayMicroseconds(time); // Länge der Flanke = time in

// Mikrosekunden

}

}

Zweiter Sketch: Angenehme Klänge

mit schneller PWM

Normalerweise läuft die Pulsweitenmodulation auf dem Arduino

mit 500 Hz. Das heißt, dass der höchste Ton, den der Arduino

erzeugen kann, im unteren Bereich des menschlichen Gehörs liegt.

Dadurch klingen viele der Klänge seltsam und unangenehm, weil

die Frequenz zu niedrig ist, um »glatte« analoge Spannungen zu

erzeugen. Die PWM-Frequenz des Arduino vermischt sich mit der

Frequenz, die erzeugt werden soll. Im nächsten Schritt wird die

PWM modifiziert, damit sie anstatt mit 500 mit 62.500 Hertz läuft,

was deutlich ansprechendere Klänge ermöglicht.

252

Kapitel 11: Musik mit Arduino

Um die PWM-Frequenz zu erhöhen, müssen spezielle Register des

Arduino-Prozessors geschrieben werden. Diesen Teil kann man

eigentlich getrost überspringen; wer es jedoch ganz genau wissen

will, kann in der technischen Dokumentation von Atmel auf http://

 www.atmel.com/dyn/products/product_card.asp?PN=ATmega328P

nachlesen, wie die PWM-Einheit funktioniert. Um die Frequenz

des PWM-Ausgangs auf Pin 9 und Pin 10 auf 62.500 Hz zu erhö-

hen, müssen folgende Zeilen in die setup()-Funktion eingefügt

werden.

TCCR1A = _BV(WGM10) | _BV(COM1A1);

TCCR1B = _BV(CS10) | _BV(WGM12);

Weiterhin wird nicht mehr die Funktion analogWrite() verwendet,

um den PWM-Wert zu setzen, sondern es wird gleich das Hard-

wareregister gesetzt (wie schon in Kapitel 4 bei der LED-Matrix angewandt). Um den Code lesbar zu halten, wird eine Funktion

definiert.

void writeAudio(uint8_t val) {

OCR1A = (val);

}

Warnung

Obwohl die schnelle Pulsweitenmodulation die Qualität des

Klangs erheblich verbessert, sind Steckboards, wie sie mit Ardu-

ino verwendet werden, keine gute Grundlage, um Hi-Fi-Klänge

zu erzeugen. Das Rauschen auf solchen Boards ist sehr stark.

Deutlich bessere Ergebnisse lassen sich erreichen, indem die

Schaltung auf einem kleinen Protoboard zusammengelötet

und in einem abschirmenden Metallgehäuse befestigt wird.

In diesem ersten Sketch mit schneller PWM wird nur ein einzelner

statischer Ton erzeugt. Es wird ein Zähler hochgezählt, der von 0

bis 1.024 geht. Da die PWM-Breite nur von 0 bis 255 geht, wird

dieser Wert durch 4 geteilt, bevor er mit der Funktion writeAudio()

ausgegeben wird. Dadurch wird eine Sägezahn-Wellenform er-

zeugt, weil die erzeugte analoge Spannung immer von 0 bis 5 Volt

geht und dann wieder zurück auf 0 fällt. Die Geschwindigkeit, mit

der diese Spannung hochgezählt wird, bestimmt auch die Tonhöhe.

Diese lässt sich in der Variablen inc einstellen.

int audioPin = 9; // Definition des Audio-Ausgangspins

// Funktion zum Setzen des PWM-Wertes, dazu wird das PWM-Register

// OCR1A verwendet

void writeAudio(uint8_t val) {

OCR1A = (val);

}

Zweiter Sketch: Angenehme Klänge mit schneller PWM

253

// In der Initialisierungsroutine werden der Audioausgangspin als

// Ausgang definiert und die deutlich schnellere PWM konfiguriert.

void setup() {

pinMode(audioPin, OUTPUT);

TCCR1A = _BV(WGM10) | _BV(COM1A1);

TCCR1B = _BV(CS10) | _BV(WGM12);

}

// In dieser Hauptschleife wird eine Sägezahn-Wellenform erzeugt,

// indem der PWM-Wert (also die analoge Ausgangsspannung) alle 20

// Mikrosekunden hochgezählt wird.

void loop() {

int inc = 20;

// Hochzählen der Spannung für die analoge Wellenform

for (unsigned int j = 0; j < 1024; j += inc) {

// Die PWM-Breite geht nur von 0 bis 255, also wird die

// Variable j durch 4 geteilt. Dass j bis 1.024 geht,

// ermöglicht einen größeren Raum an Tonhöhen.

writeAudio(j / 4);

// kurz warten, damit die Töne nicht zu hoch sind

delayMicroseconds(20);

}

}

Dritter Sketch: Steuerung von Klängen

In diesem Abschnitt wird der Arduino-Klangerzeuger um externe

Steuerungsmöglichkeiten ergänzt. Zum Einsatz kommen ein Tas-

ter, der an den digitalen Eingang 4 angeschlossen wird, und ein

Potentiometer, das an den analogen Eingang 0 angeschlossen wird.

Der Ton soll in diesem Sketch nur erklingen, wenn ein Taster

gedrückt wird. Der Taster wird in der Hauptroutine abgefragt, und

der Arduino erzeugt nur dann eine Wellenform, wenn der digitale

Wert am Tastereingang LOW ist. Weiterhin wird die Frequenz der

erzeugten Wellenform an gleichmäßigen Intervallen zufällig neu

gesetzt. Der Frequenzbereich (also die Höhe der zufälligen Töne)

wird durch das Potentiometer gesteuert, das an den analogen Ein-

gang 0 angeschlossen ist.

int audioPin = 9;

void writeAudio(uint8_t val) {

OCR1A = (val);

}

// Der Taster wird an den digitalen Eingang 4 angeschlossen.

int buttonPin = 4;

void setup() {

// Hier wird der Tastereingang definiert.

pinMode(buttonPin, INPUT);

// restliche Initialisierung wie üblich

pinMode(audioPin, OUTPUT);

254

Kapitel 11: Musik mit Arduino

 TCCR1A = _BV(WGM10) | _BV(COM1A1);

TCCR1B = _BV(CS10) | _BV(WGM12);

}

int inc = 2; // Zähler zum Einstellen der Tonhöhe

void loop() {

// Die äußere Schleife ist dazu da, Noten im regelmäßigen

// Abständen zu ändern.

for (int i = 0; i < inc * 5; i++) {

// Erzeugen der Sägezahnwellenform, von 0 bis 1024

for (int j = 0; j < 1024; j += inc) {

// Wenn der Taster gedrückt ist, wird die Wellenform auch

// ausgegeben.

if (digitalRead(buttonPin) == LOW) {

writeAudio(j / 4);

// sonst wird der Ausgang auf stumm gestellt

} else {

writeAudio(0);

}

delayMicroseconds(20);

}

}

// Nach Ablaufen der äußeren Schleife wird hier eine neue

// Tonhöhe zufällig eingestellt. Der Bereich, aus dem die neue

// Frequenz gesetzt wird, wird durch das Potentiometer

// eingestellt.

int tieferTon = analogRead(0) / 16;

inc = random(tieferTon, tieferTon + 10);

}

Vierter Sketch: Berechnungen

in einer Interrupt-Routine

Im Gegensatz zu blinkenden oder gedimmten LEDs, bei denen es

nur grob auf zeitliche Genauigkeit ankommt, ist es bei der Klanger-

zeugung enorm wichtig, das Zeitverhalten sehr genau zu berech-

nen. Kleinste Abweichungen führen zu einem Synthesizer, der

verstimmt klingt. Weiterhin lässt sich feststellen, dass der Steue-

rungsprogrammcode eng mit dem Code zum Erzeugen der Wellen-

formen verknüpft ist, was schnell unhandlich wird. Im nächsten

Sketch wird ein weiterer technischer Trick eingeführt, um die

Berechnung der Wellenform von der Hauptschleife zu trennen.

Bis jetzt wurde die zeitliche Synchronisation der Wellenform mit-

hilfe der Funktionen delay() und delayMicroseconds() implemen-

tiert. Diese Funktionen sind allerdings nicht sehr genau, und auch

die Ausführungszeit des Programmcodes in der Hauptroutine hat

einen Einfluss auf die Tonhöhe. Um eine genaue Synchronisation

Vierter Sketch: Berechnungen in einer Interrupt-Routine

255

zu erreichen, muss eine Interrupt-Routine eingeführt werden. Das

ist eine Funktion, die vom Arduino automatisch aufgerufen wird,

wenn z.B. der Zähler der PWM-Einheit überläuft. Dadurch ist es

möglich, eine Funktion sehr regelmäßig aufzurufen. Da die PWM-

Einheit zum Erzeugen der analogen Ausgangsspannung mit 62.500

Hz läuft, ist es maximal möglich, 256 Befehle in dieser Routine aus-

zuführen. Der Programmcode muss also besonders sorgfältig

geschrieben werden.

Abbildung 11-4

Aufruf der Interrupt-Routine

In diesem Sketch wird innerhalb der Interrupt-Routine eine recht-

eckige Wellenform generiert. Dazu wird die Zählervariable phase

hochgezählt wie im vorigen Sketch. Der Zähler geht von 0 bis 65.

535. Ist der Zählerwert größer als 32.768 (also höher als die Hälfte

des möglichen Wertes), wird die Ausgangsspannung auf 255

gesetzt; ist der Zählerwert kleiner als 32.768, auf 0. Dadurch wird

eine Rechteck-Wellenform generiert, die deutlich langsamer ist als

die PWM-Rechteck-Wellenform. Die Frequenz dieser Wellenform

lässt sich über die Variable speed festlegen. Sie wird bei jedem Auf-

ruf der Interrupt-Funktion zur Variable phase hinzuaddiert. Ist

phase größer als 65.535, läuft die Variable automatisch über und

fängt wieder bei 0 an.

In der Interrupt-Routine wird als Erstes die analoge Ausgangsspan-

nung gesetzt. Dadurch hat die Dauer des folgenden Programm-

codes keinen Einfluss auf die zeitliche Genauigkeit der Routine. In

der Hauptschleife wird jetzt nur noch die Tonhöhe gesetzt, indem

der Wert des Potentiometers abgelesen und in der Variable speed

gespeichert wird. Dadurch ist eine saubere Trennung von Kontroll-

code und Audioberechnung gewährleistet.

// Definition des Ausgangspins

int audioPin = 9;

// Funktion zum Setzen der analogen Spannung

void writeAudio(uint8_t val) {

OCR1A = (val);

}

256

Kapitel 11: Musik mit Arduino

// digitaler Eingang für den Taster

int buttonPin = 4;

// Variable für die Erzeugung der Wellenform innerhalb der

// Interrupt-Routinephase ist ein Zähler, der von 0 bis 65535

// geht

uint16_t phase = 0;

// speed bestimmt, wie schnell phase hochgezählt wird.

uint16_t speed = 200;

// sample ist die Variable, in der die analoge Ausgangsspannung

// gespeichert wird.

uint8_t sample = 0;

// Das ist die Definition der Interrupt-Routine, die 625.000 Mal

// pro Sekunde aufgerufen wird (bei jedem Überlauf des PWM-

Timers).

SIGNAL(TIMER1_OVF_vect) {

// Als Erstes wird die analoge Spannung gesetzt.

writeAudio(sample);

// phase wird hochgezählt: je größer speed ist, desto schneller

phase += speed;

// Wenn phase größer als die Hälfte ist, wird die analoge

// Ausgangsspannung auf 5V gesetzt, sonst auf 0V.

// Dadurch wird eine regelmäßige Rechteck-Wellenform generiert.

if (phase >= 32768)

sample = 255;

else

sample = 0;

}

// In der Routine setup werden der PWM-Timer konfiguriert und die

// Interrupt-Routine aktiviert.

void setup() {

pinMode(audioPin, OUTPUT);

pinMode(buttonPin, INPUT);

TCCR1A = _BV(WGM10) | _BV(COM1A1);

TCCR1B = _BV(CS10) | _BV(WGM12);

// Aktivieren der Interrupt-Routine

TIMSK1 |= _BV(TOIE1);

}

void loop() {

// In der Hauptschleife wird nur noch die Tonhöhe bestimmt,

// indem die Variable speed gesetzt wird.

speed = analogRead(0) + 1;

}

Durch diese Trennung von Kontroll- und Audioberechnungscode

lassen sich jetzt deutlich kompliziertere Klänge generieren, ohne

dass der Programmcode unübersichtlich wird. Im nächsten Sketch

wird die Tonhöhe des generierten Tons durch eine zweite, langsa-

mere Wellenform kontrolliert. So eine langsame Wellenform, die

keinen Klang an sich erzeugt, sondern Parameter steuert, wird bei

Synthesizern LFO genannt, Low Frequency Oscillator, was so viel

Vierter Sketch: Berechnungen in einer Interrupt-Routine

257

heißt wie »Niedrigfrequenzoszillator«. Dadurch lassen sich z.B.

Sirenenklänge erzeugen. Hier wird nur die Hauptfunktion vorge-

stellt, setup() und Interrupt-Routine bleiben gleich.

uint16_t lfo_phase = 0;

uint16_t lfo_speed = 200;

uint8_t lfo_sample = 0;

void loop() {

lfo_speed = analogRead(0) * 5 + 1;

lfo_phase += lfo_speed;

lfo_sample = lfo_phase >> 8;

speed = lfo_sample * 5;

delay(5);

}

Der Code zum Berechnen der langsamen Wellenform (hier eine

Sägezahn-Wellenform) ist fast derselbe wie zur Berechnung der

Rechteck-Wellenform. Diese Vorgehensweise beim Berechnen der

Wellenform nennt man einen »Phasenakkumulator«. Deswegen

heißt der Zähler für die Wellenformen auch phase. Hier steuert das

Potentiometer die Geschwindigkeit der langsamen Wellenform.

Fünfter Sketch: Musikalische Noten

Bis jetzt wurden in den Sketchen nur Geräusche und Klänge

erzeugt, jedoch keine Noten. Mit der Berechnung der Interrupt-

Routine ist jedoch ein solides Fundament gegeben, um genaue

Tonhöhen zu erhalten. Jede musikalische Note in unserem Zwölf-

tonsystem entspricht einer Frequenz, und jeder dieser Frequenzen

entspricht auch ein Wert der Variablen speed. Damit diese Werte

nicht jedes Mal mit einer komplizierten Formel berechnet werden

müssen, werden die Werte von speed in einer Tabelle gespeichert.

Im nächsten Sketch wird die Tonhöhe bei jedem Druck auf den

Taster auf eine zufällige Note aus einem Moll-Arpeggio erzeugt.

Dadurch lassen sich angenehm klingende Melodien erzeugen. Es

wird nur der Programmcode für die Hauptroutine vorgestellt.

In der Tabelle freqtable werden die Werte der Variablen speed für

jede Note eingetragen. 60 Werte entsprechen fünf Oktaven. In der

Tabelle arp werden nur die vier Noten aus einem Moll-Arpeggio

festgehalten: 0 (Grundton), 3 (Mollterz), 7 (Quinte) und 10 (kleine

Septime). Wird der Taster betätigt (geht also der Wert am digitalen

Eingang von HIGH auf LOW), wird eine zufällige Note aus arp

gelesen (arp[random(4)]), und eine zufällige Oktave hinzuaddiert

(random(4) * 12). Der Wert von speed wird dann aus der Tabelle

 freqtable gelesen.

258

Kapitel 11: Musik mit Arduino

// Werte der Variablen speed für 60 chromatische Noten

// (fünf Oktaven) const uint16_t freqtable[60] = {

69, 73, 77, 82, 86, 92, 97, 103, 109, 115, 122, 129, // 12

137, 145, 154, 163, 173, 183, 194, 206, 218, 231, 244, 259, // 24

274, 291, 308, 326, 346, 366, 388, 411, 435, 461, 489, 518, // 36

549, 581, 616, 652, 691, 732, 776, 822, 871, 923, 978, 1036, // 48

1097, 1163, 1232, 1305, 1383, 1465, 1552, 1644, 1742, 1845, 1955, 2071, // 60

};

// Noten in einem Moll-Arpeggio

uint8_t arp[4] = { 0, 3, 7, 10 };

// Speichern der vorigen Werts des digital Eingangs für den

// Taster; dadurch lassen sich einzelne Tasterdrücke erkennen

int oldButtonPress = HIGH;

void loop() {

int buttonPress = digitalRead(BUTTON1);

// Wurde der Taster betätigt, wird speed ein neuer Wert

// zugewiesen, der einer zufälligen Note in einem Moll-Arpeggio

// entspricht.

if (oldButtonPress == HIGH && buttonPress == LOW) {

speed = freqtable[arp[random(4)] + random(4) * 12];

}

// Speichern des jetzigen Tasterwerts, um beim nächsten

// Durchlauf ein Drücken zu erkennen

oldButtonPress = buttonPress;

}

Anhand der Frequenztabellen können jetzt auch Melodien auf dem

Arduino implementiert werden. Dazu speichert eine Tabelle die

Reihenfolge der Tonhöhen, und eine andere die Länge der Noten.

Es werden nur die Programmzeilen ab uint8_t arp geändert:

// Diese Tabelle speichert die Noten der Melodie.

uint8_t melody[8] = { 12, 15, 17, 12, 24, 27, 12, 19 };

// Diese Tabelle speichert die Länge der Noten.

uint8_t lengths[8] = { 100, 50, 100, 50, 100, 50, 100, 50 };

void loop() {

// Die Hauptroutine läuft durch die Noten und Längentabellen und

// spielt die Noten ab.

for (int i = 0; i < 8; i++) {

// Setzen der Tonhöhe der aktuell gespielten Noten

speed = freqtable[melody[i]];

// Warten für die gespeicherte Länge

delay(lengths[i] * 2);

}

}

Durch Ändern der Werte in den Tabellen lassen sich neue Melodien

schreiben. Das Konzept kann auch weitergeführt werden, um neue

Melodien auf Knopfdruck zu generieren. Besonders interessant ist,

Tonlängen unabhängig von den Tonhöhen zu generieren. Wenn

der Taster gedrückt wird, werden beide Tabellen neu gefüllt, und

eine separate Variable mit der Länge der Tabellen wird neu gesetzt.

Fünfter Sketch: Musikalische Noten

259

Frequenzen, Filter und Tiefpassfilterung

Bis jetzt wurde Klang als eine Folge von Spannun-

ersichtlich. Als Faustregel gilt: Je »schärfer« die

gen in der Zeit betrachtet, wodurch man relativ

Kanten, desto mehr obere Frequenzen gibt es.

viel über die Lautstärke des Signals aussagen

Eine Sinuswelle (weiche Wellenform) hat keine

kann: Je größer die Ausschläge des Signals, desto

Obertöne, während eine Rechteckwellenform

höher seine Lautstärke. Aber über die eigentliche

viele hat. Deswegen ist auch die vom Arduino bei

Klangfarbe ließ sich relativ wenig aussagen.

der Pulsweitenmodulation erzeugte Wellenform

Klänge kann man als schrill oder weich einordnen,

sehr obertonlastig; sie klingt sehr »digital«.

blechern oder warm, statisch oder lebendig, und

Mit sogenannten Filtern wird der Frequenzinhalt

die meisten dieser Bezeichnungen beziehen sich

eines Klangs bearbeitet. Ein Tiefpassfilter schnei-

unmittelbar auf den Frequenzinhalt eines Klangs.

det obere Frequenzbereiche ab, während ein

Eine andere Möglichkeit, Klanginformation zu

Hochpassfilter nur höhere Frequenzbereiche

betrachten, ist das Frequenzspektrum. Jede Note

durchlässt. Der Entkopplungskondensator ist in

aus einem Synthesizer besteht aus einem Grund-

diesem Sinne ein Hochpassfilter, der sehr niedrige

ton, der die stärkste Frequenz in dem Ton und

(konstante) Frequenzen blockiert. Filter lassen

auch die wahrgenommene Tonhöhe ist. Zusätz-

sich sowohl als Programmcode implementieren

lich zu diesem Grundton gibt es eine Reihe von

(das nennt man dann generell DSP-Programmie-

Obertönen, die bestimmen, wie der Ton klingt.

rung, Digital Signal Processing) als auch als elek-

Der Ton einer Geige hat ein deutlich anderes Fre-

tronische Schaltungen, wie man es aus analogen

quenzspektrum als der einer Oboe. Grundsätzlich

Synthesizern oder Pedalen für E-Gitarren kennt.

gilt: Je mehr Obertöne, desto härter und metalli-

Ein Kondensator und ein Widerstand bilden

scher klingt der Ton.

schon einen elektronischen Filter, und in diesem

Diese Darstellungsweise ist auch für Geräusche

Kapitel werden zwei davon eingesetzt: der

nützlich. Zum Beispiel umfasst Rauschen alle

Entkopplungskondensator und der Tiefpassfilter,

möglichen Frequenzen, sodass kein einzelner Ton

der die Obertöne aus dem Arduino wegfiltert.

stärker heraussticht als ein anderer.

Der Tiefpassfilter in der vorgestellten Arduino-

Zusätzlich zu diesen Obertönen ist auch der zeit-

Schaltung ist sehr tief gesetzt und filtert die

liche Verlauf der Frequenzinformation sehr wich-

PWM-Rechteckwelle so stark, dass am Ende nur

tig. Eine Gitarre zum Beispiel hat einen recht har-

noch eine konstante Spannung übrig bleibt.

ten Anschlag mit vielen Obertönen, aber nach

Die hohe Geschwindigkeit der eingestellten

diesem kurzen Anschlag ist der eigentliche Klang

PWM ermöglicht es, auch mit einem digitalen

recht warm, d.h. mit weniger Obertönen.

Ausgang schnelle, »runde« Wellenformen wie

Die zeitliche Wellenform des Klangs umfasst auch

z.B. Sinuswellen zu erzeugen.

den Frequenzinhalt, nur ist dieser nicht so leicht

Theremin

Der Klang des ursprünglichen Theremins (ein elektronisches

Musikinstrument, das ohne körperliche Berührung gespielt wird)

ähnelt im Vergleich mit klassischen Instrumenten am ehesten einer

Geige und klingt ähnlich wie ein Fuchsschwanz.

Gesteuert wird das Theremin mit den Händen, die zwei kapazitive

Sensoren rechts und links am Gehäuse beeinflussen. Die Form die-

260

Kapitel 11: Musik mit Arduino

ser Antennen ist so ausgeklügelt, dass sich ein nahezu linearer

Zusammenhang zwischen Tonhöhe und Abstand ergibt. Zu der

Zeit der Erfindung des Theremins 1919 waren Mikrocontroller

allerdings noch unbekannt; heute ist es uns möglich, die teilweise

fehlerhaften Sensordaten mithilfe von Software vergleichsweise

leicht zu korrigieren und so einen noch besseren Klang zu erzeugen.

Hardware

Die zwei Antennen des Theremins werden aus zwei ca. 30 bis 40 cm

langen Drähten gebogen und mit den Pins 4 und 5 verbunden.

Zusätzlich wird jeweils ein 10-Mega-Ohm-Widerstand mit der

Antenne und Pin 3 verbunden. Da 10-Mega-Ohm-Widerstände

nicht so leicht zu finden sind, können mehrere 1-Mega-Ohm

Widerstände zusammengelötet werden.

Abbildung 11-5

Theremin-Aufbau

Software

Um das Theremin hörbar zu machen, gibt es verschiedene Mög-

lichkeiten: Die Sensordaten können an den PC gesendet werden

Fünfter Sketch: Musikalische Noten

261

(Kapitel 10), wo z. B. ein Softwaresynthesizer oder Processing Töne erklingen lässt, oder man schließt direkt einen Kopfhörer an den

Atmel an, wie bei den vorigen Beispielen beschrieben ist.

Als Erstes wird ein stabiler Nullpunkt für Lautstärke und Tonhöhe

benötigt. Da sich die Kapazität der Umwelt ständig ändert, soll sich

dieser Nullpunkt dynamisch anpassen. So ist ein ständiges Nach-

stimmen des Instruments wie beim Original nicht notwendig. Dazu

wird in den Variablen ton_null und volume_null der jeweils kleinste

jemals gemessene Wert gespeichert. Allerdings gibt es immer wie-

der Messfehler. Um diese etwas abzumildern, wird der Nullpunkt

nur um einen Bruchteil verändert, sodass einzelne Ausreißer nicht

in die Summe eingehen.

float volume_null = 0;

float ton_null = 0;

float gew_neg = 0.1;

float gew_pos = 0.0001;

void Adjust_Null(float volume_raw, float ton_raw)

{

if (volume_raw < volume_null) {

volume_null = volume_null * (1-gew_neg) + volume_raw * gew_neg;

}

if (volume_raw > volume_null) {

volume_null = volume_null * (1-gew_pos) + volume_raw * gew_pos;

}

if (ton_raw < ton_null) {

ton_null = ton_null * (1-gew_neg) + ton_raw * gew_neg; }

if (volume_raw > volume_null) {

ton_null = ton_null * (1-gew_pos) + ton_raw * gew_pos;

}

}

Mit den zwei Werten gew_neg und gew_pos kann die Geschwindig-

keit, mit der sich der Nullpunkt an geänderte Bedingungen anpasst,

verändert werden. Dabei ist aber zu beachten, dass gew_pos ziem-

lich klein sein sollte, da sich das Instrument sonst beim Spielen ver-

stimmt.

Die Werte ton_null und volume_null können nun vom Raw-Wert

abgezogen werden: Das Ergebnis ist eine Zahl, die nicht mehr von

der Umgebung abhängig ist. Damit ist aber noch nicht festgelegt,

was der höchste Wert und damit der höchste Ton oder die lauteste

Lautstärke ist. Auch hier kann der gleiche adaptive Algorithmus

verwendet werden, sodass nach dem Einschalten nur einmalig die

Hand bis ganz zum Instrument (aber ohne die Antenne zu berüh-

ren) geführt werden muss, um immer den gleichen Tonumfang zu

262

Kapitel 11: Musik mit Arduino

erhalten. Dazu müssen nur in der Funktion Adjust_Null oben und

unten vertauscht werden.

float volume_max = 0;

float ton_max = 0;

void Adjust_Max(float volume_raw, float ton_raw)

{

if (volume_raw > volume_max) {

volume_max = volume_max * (1-gew_neg) + volume_raw * gew_neg;

}

if (volume_raw < volume_max) {

volume_max = volume_max * (1-gew_pos) + volume_raw * gew_pos;

}

if (ton_raw > ton_max) {

ton_max = ton_max * (1-gew_neg) + ton_raw * gew_neg; }

if (volume_raw < volume_max) {

ton_max = ton_max * (1-gew_pos) + ton_raw * gew_pos;

}

}

Jetzt ist es ein Leichtes, direkt brauchbare Werte zu berechnen. Die

Töne sollen von 0 bis 12 (für eine Oktave) und die Lautstärke von 0

bis 100 skaliert werden.

ton = (ton_raw – ton_null)/(ton_max-ton_null)*12;

volume = (volume_raw – volume_null)/(volume_max-volume_null)*12;

Je nach Laune könnte man die Töne jetzt noch quantisieren, also

auf ganze Zahlen aufrunden, wodurch das Spielen einfacher wird,

man aber auch viel von der Ausdruckskraft des Theremins verliert,

die ja gerade in der Möglichkeit besteht, frei zu spielen.

Wir wollen für das Theremin einen schönen, weichen Sinusklang

erzeugen. Dafür verwenden wir eine Tabelle mit 256 Sinuswerten,

da das Berechnen eines Sinus viel zu lange dauern würde. Abhängig

von der Tonhöhe müssen jetzt Werte aus dieser Tabelle gelesen

und mit PWM ausgegeben werden. Dazu wird ein Zähler benutzt,

der angibt, welches der nächste Wert aus der Tabelle ist. Abhängig

davon, um wie viel dieser Zähler in jedem Durchgang erhöht wird,

entsteht eine andere Tonhöhe.

Würden hier ganze Zahlen verwendet, könnten nur der Grundton

und Vielfache davon erzeugt werden. Ein 16-Bit-Wert kann aber

auch so interpretiert werden, als ob die oberen 8 Bit die Ganzzahl

darstellen und die unteren hinter dem Komma stehen würden.

Wird jetzt z.B. jedes Mal 64 zum Zähler addiert, ändern sich die

oberen 8 Bit erst nach dem vierten Mal. Die oberen 8 Bit geben uns

also an, welcher Wert aus der Sinustabelle verwendet werden soll;

dieser Wert muss nur noch mit der gewünschten Lautstärke multi-

pliziert werden, bevor er ausgegeben wird.

Fünfter Sketch: Musikalische Noten

263

ANHANG A

In diesem Kapitel:

Arduino-Boards und -Shields

• Arduino-Boards

• Arduino-Shields

Arduino-Boards

Arduino Duemilanove/Diecemila

Der Arduino Duemilanove ist wohl der derzeit am meisten verkaufte

Arduino und kann als das »Standardmodell« angesehen werden. In

diesem Buch wird bei allen Workshops ein Duemilanove eingesetzt.

Er verfügt über 14 digitale Pins, von denen sechs PWM-fähig sind,

sowie sechs Analoge Eingänge. Weiterhin ist auf dem Board ein

USB-Port angebaut, der dem Duemilanove erlaubt, über eine serielle

Verbindung mit einem PC zu kommunizieren. Als Stromquelle dient

entweder der USB-Port oder ein 5-Volt-Netzteil, für das eine Buchse

angebracht ist. Der Duemilanove läuft standardmäßig mit einem

Atmega168- oder Atmega328p-Controller, der auf einem Steckso-

ckel angebracht ist. Eine ausführliche Erläuterung finden Sie unter

 http://arduino.cc/en/Main/ArduinoBoardDuemilanove.

Der Diecemila (italienisch für 10.000) ist der Vorgänger des Due-

milanove. Die Unterschiede dabei liegen in Details. So muss die

Stromquelle für den Duemilanove nicht mehr per Hand umge-

schaltet werden. Da der Diecemila keinerlei Vorteile bietet, emp-

fiehlt es sich nicht, ihn noch zu kaufen. Wer ein solches Board

besitzt, kann damit aber die Workshops in diesem Buch ebenso

durchführen wie mit einem Duemilanove. Mehr Informationen fin-

den Sie unter http://arduino.cc/en/Main/ArduinoBoardDiecimila.

265

Arduino Mega

Der Arduino Mega hält, was der Name verspricht: Ein Atmega1280

ist in der Lage, 54 digitale Pins zu steuern, von denen 14 PWM-

fähig sind. Er verfügt zudem über 16 analoge Inputs, vier serielle

Ports, 128 KByte Speicher und 8 KByte Arbeitsspeicher. Dieses

Monster kann eingesetzt werden, wenn die Fähigkeiten eines Due-

milanove nicht mehr ausreichen, zum Beispiel bei Installationen

mit vielen LEDs oder Displays oder wenn man mit mehr als einem

Gerät kommunizieren will. Sie sollten dabei die höhere Betriebs-

spannung von 7 bis 12 Volt beachten. Der Arduino Mega ist mit 50

Euro allerdings auch etwa doppelt so teuer wie der Duemilanove.

Arduino Bluetooth

Die besonders edle Variante des Arduino ist der Arduino Blue-

tooth. Er besitzt statt eines USB-Ports einen Bluetooth-Chip, der

mit 115.200 Bit pro Sekunde mit einer Gegenstelle kommunizieren

kann. Das ist zwar für die Entwicklung relativ egal, bietet aber

enorme Vorteile, wenn der Arduino irgendwo im Raum angebracht

werden und dennoch mit einem Rechner kommunizieren soll.

Dank dem Bluetooth-Chip ist diese Variante allerdings so teuer,

wie sie komfortabel ist. Einige Informationen zu diesem nicht sehr

weit verbreiteten Board gibt es unter http://arduino.cc/en/Main/

 ArduinoBoardBluetooth.

Arduino Pro 5V

Die auf dem Arduino Duemilanove angebrachten Steckverbindun-

gen sind zwar praktisch, können aber auch hinderlich sein, wenn

man zum Beispiel Drähte anlöten oder den Arduino in einem

Gehäuse verbauen möchte, das möglichst dünn sein soll. Der Ardu-

ino Pro kommt in zwei Varianten (3,3 Volt und 5 Volt) daher und

ist im Prinzip ein »nacktes« Arduino-Board. Der Atmega168 ist fest

verlötet, die Pins sind nur als Kontaktstellen auf dem Board verfüg-

bar. Das macht den Arduino Pro auch um etwa ein Drittel günstiger

als den Duemilanove. Wer also professionellere Ansprüche hat und

auf Luxus verzichten kann, mag mit einem Pro gut beraten sein.

Einsteigern empfehlen wir trotzdem den Duemilanove. Mehr Infor-

mationen zum Arduino Pro finden Sie unter http://arduino.cc/en/

 Main/ArduinoBoardPro.

266

Anhang A: Arduino-Boards und -Shields

Arduino LilyPad

Das Lilypad ist speziell dafür ausgelegt, in Kleidung eingebettet zu

werden. Es ist mit etwa 5 cm Durchmesser und nur 3 mm Dicke

sehr klein und verfügt über keine Pins oder Teile, welche die umge-

bende Kleidung zerreißen könnten. Trotzdem verfügt das Board

über 14 digitale (sechsmal PWM) und sechs analoge Pins. Mit 2,7–

5,5 Volt Betriebsspannung ist es zudem geeignet, um mit kleinen

Batterien betrieben zu werden. Das ist gerade bei Kleidung immens

wichtig, weil niemand einen oder gar mehrere 9-Volt-Blöcke mit

sich herumtragen möchte. Das LilyPad ist auf der Website des MIT

Medialab genauer beschrieben, von dem es entwickelt wurde (http://

 web.media.mit.edu/~leah/LilyPad/).

Arduino Nano und Mini

Neben dem LilyPad gibt es weitere Boards, die für kleinere und

kleinste Anwendungen geeignet sind: Beim Arduino Nano und

dem Arduino Mini ist die Fläche des Boards minimiert: Der Nano

ist 1,85 x 4,31 cm klein, der Mini sogar nur 1,8 x 3,3 cm. Dabei ver-

fügen beide über dieselbe Anzahl digitaler Pins wie ihre großen Brü-

der und zusätzlich sogar über zwei analoge Pins mehr. Was beim

Nano fehlt, ist ein zusätzlicher Stromanschluss, sodass er über den

USB-Port betrieben werden muss. Der Mini verfügt sogar nur über

einen seriellen Anschluss: Wer ihn also mit USB betreiben möchte,

benötigt einen Adapter. Die Minivariante ist auch als Pro-Version

(mit 3,3 und 5 Volt Betriebsspannung) verfügbar, um Arduino-Pro-

jekte zu ermöglichen, die noch kleiner sind und deren Board sich

noch besser einfügt.

Weitere Boards

Die Menge der Arduino-Varianten ist riesig, wächst stetig und kann

kaum erfasst werden. Die Änderungen reichen dabei von einfachen

Layoutabweichungen und anderen Mikrocontroller-Varianten bis

hin zu Boards, die für spezielle Einsatzgebiete wie etwa die Robotik

angepasst sind.

Der Sanguino (http://www.sanguino.cc) wurde zum Beispiel entwi-

ckelt, um den RepRap anzutreiben, einen 3-D-Drucker. Ursprüng-

lich hatte man dafür einen Arduino verwendet, musste dabei aber

Kompromisse eingehen. Der Sanguino verwendet 32 digitale Pins

Arduino-Boards

267

und hat seine eigene Bauform, die etwas kompakter und in die

Länge gezogen ist.

Mit dem Roboduino (http://www.curiousinventor.com/kits/robodu-

 ino) soll es leicht möglich sein, die Motoren und anderen Bauteile

von Robotern anzusteuern. Dafür verfügt das Board neben jedem

digitalen Pin noch über zwei Pins für einen weiteren Stromkreis.

Das soll vor allem das Anbringen erleichtern, da nun die anderen

Bauteile über einfache Steckverbindungen angebunden werden

können.

Weil der Arduino Duemilanove gerade für viele LEDs oder Matri-

zen nicht ausreicht, wurde der Illuminato (http://www.liquidware.

 com/shop/show/ILL/Illuminato) entwickelt. Er soll verhindern, dass

jeder Pin auf dem Arduino extra mit Erweiterungsbauteilen gega-

belt werden muss. Der Illuminato verfügt daher über 42 digitale

Pins. Der Arduino Fio ist mit anderen Arduino-Boards vergleich-

bar, verfügt aber neben 8 analogen und 14 digitalen Pins auch

zusätzlich über einen Xbee-Socket.

Weil sein Erfinder es leid war, sich mit den Steckverbindungen

eines Arduino herumzuärgern, schuf er den Boarduino, dessen

Bauform so entworfen ist, dass er genau auf ein Steckbrett passt.

Das macht natürlich das Entwickeln von Prototypen besonders

einfach. Mehr dazu finden Sie unter http://www.adafruit.com/

 index.php?main_page=product_info&cPath=19&products_id=72,

wo es auch eine USB-Variante des Boards zu kaufen gibt.

Der Ardupilot wurde entwickelt, um alle wichtigen Funktionen

einer autonomen Flugdrohne wahrnehmen zu können. Dieses

spezielle Board hat deshalb Pins für Beschleunigungssensoren und

ein GPS-Modul sowie die Kontrolle von Servos. Zudem besitzt

das Board einen zweiten Stromkreis, der beim Ausfall des ersten

aktiv wird. Das verhindert das Abstürzen des Flugobjektes. Mehr

dazu finden Sie unter http://diydrones.com/profiles/blog/show?id=

 705844%3ABlogPost%3A44814.

Wie in Kapitel 10 ausführlich erklärt wurde, eignet sich der Arduino auch zur Verwendung als Midi-Controller. Über eine entsprechende

Steckverbindung kann er an Midi-Geräten angebracht werden, um

beispielsweise Ton über besondere Eingabemethoden zu steuern.

Der Miduino wurde dafür geschaffen, mit genau diesen Midi-Buch-

sen zu arbeiten. Sie können ihn unter http://tomscarff.110mb.com/

 miduino/miduino.htm bestellen, wo auch die Schaltpläne und eine

genaue Dokumentation verfügbar sind.

268

Anhang A: Arduino-Boards und -Shields

Sieht der Protoduino auf den ersten Blick heillos komplex aus,

besteht er doch lediglich aus einer Leiterplatte, auf der nur die

nötigsten Leiterbahnen miteinander verbunden sind, um einen

Mikrocontroller, Stromversorgung und einen 16-MHz-Taktgeber

anzubringen. Zudem verfügt er über ein Netzwerk von Widerstän-

den für den schnellen Betrieb von LEDs. Der Protoduino ist vor

allem dann geeignet, wenn man ein eigenes Board entwerfen und

zunächst ausprobieren möchte. Dazu muss man Leiterbahnen

selbstständig auflöten, hat aber maximale Freiheit in dem, was man

tun möchte. Mehr Informationen dazu finden Sie unter http://east-

 ham-lee.com/protoduino.html.

Arduino-Shields

Möchte man viele Sensoren oder Aktoren an den Arduino anschlie-

ßen, kann das zu komplexen Schaltungen führen, die möglicher-

weise auch nicht ganz stabil angebracht werden können. Dafür gibt

es viele verschiedene sogenannte Shields, die auf die Pins des Ardu-

ino aufgesteckt werden können. Einige gängige Shields sollen hier

kurz vorgestellt werden. Jeder Absatz enthält auch einen Link zu

weiteren Informationen über den entsprechenden Shield. Viele

davon sind leider nur als Import erhältlich, allerdings sollten Sie

auch die deutschen Websites wie http://www.bausteln.de oder http://

 www.tinkersoup.d e im Auge behalten. Zudem werden auch bei her-

kömmlichen Elektronik-Webshops wie http://www.elmicro.de oder

 http://www.segor.de Shields angeboten.

Prototypen-Shields

Was der Protoduino für das Arduino-Board, ist der Arduino Proto

Shield für die passenden Aufsätze: eine Platine, auf der lediglich

die Pins des Arduino sowie zwei LEDs, der Reset-Knopf und ICSP-

Header aufgebracht sind. Er kann zum Entwickeln von weiteren

Shields verwendet werden und zum Beispiel ein Steckbrett ein-

fassen. Das Shield ist unter http://www.ladyada.net/make/pshield/

beschrieben.

Ähnlich verhält sich das Breadboard-Shield, auf dem bereits ein

Steckbrett angebracht ist. Er ist deshalb nicht so flexibel wie der

Proto Shield, aber er ist ja auch nur zum schnellen Ausprobieren

und nicht zum Entwickeln gedacht (http://todbot.com/blog/2006/

 07/11/arduino-breadboard-shield/)

Arduino-Shields

269

Arduino RepRap Shield

Das RepRap ist ein Gestell, das unter anderem als 3-D-Drucker ver-

wendet werden kann. Um die nötigen Motoren, Düsen und ande-

ren Teile anzuschließen, wurde der RepRap-Shield entwickelt. Er

bietet robuste Schraubanschlüsse für den Arduino Duemilanove

und ist deshalb auch für andere Anwendungen geeignet. Mehr

Informationen bietet das Blog des RepRap, das Sie unter http://blog.

 reprap.org/2008/04/new-board-arduino-breakout-v11.html finden.

Propellurino

Der Propellurino steuert nicht etwa ausschließlich Propeller, wie

der Name vielleicht vermuten lässt. Vielmehr verfügt er zusätzlich

über Anschlüsse für einen VGA-Monitor, eine PS/2-Maus oder PS/

2-Tastatur, Midi und ein Mikrofon. Zudem hat er zwei DAC-Aus-

gänge, um Ton auszugeben. Bastelanleitungen und andere Infor-

mationen finden Sie auf der deutschen Website http://www.hobby-

 roboter.de/forum/viewtopic.php?f=5&t=72.

Battery Shield

Möchte man den Arduino autonom betreiben, also ohne externe

Stromquelle, kann man den Battery Shield verwenden. Er repliziert

alle Pins des Arduino und hat in der Mitte eine Halterung für einen

Lithium-Ionen-Akku. Je nach Akkutyp kann das Projekt dann viele

Stunden betrieben werden, bevor es neu aufgeladen werden muss,

was über den USB-Port möglich ist. Dieser Shield ist in Deutsch-

land leider nicht erhältlich, kann aber aus den USA von liquidware.

 com bezogen werden (http://www.liquidware.com/products/show/

 BP/Lithium+BackPack).

Adafruit Ethernet Shield

Diese Ethernet-Shield wurde bereits recht ausführlich in Kapitel 6

erklärt: Er bietet die Möglichkeit, ein Netzwerkkabel anzuschließen

und so den Arduino mit dem Internet oder einem Heimnetzwerk zu

verbinden. Im Handel sind mehrere Ethernet-Shields erhältlich,

zum Beispiel das von ladyada.net. Diese Shields sind weit verbrei-

tet, sodass man sie auch in Deutschland leicht bestellen kann. Eine

genauere Beschreibung finden Sie unter http://www.ladyada.net/

 make/eshield/.

270

Anhang A: Arduino-Boards und -Shields

Liquidware TouchShield

Auf dem TouchShield (http://www.liquidware.com/shop/show/TS/

 TouchShield+Stealth) ist ein Touchscreen mit 128 x 128 Pixeln

angebracht, dessen Eingabedaten vom Arduino verwendet werden

können. Auch der Monitor wird vom Arduino gesteuert, wobei ent-

sprechende Bibliotheken für eine einfache Ansteuerung sorgen.

Dieser Shield ist mit 140 US-Dollar teuer, was an den sehr vielfälti-

gen Möglichkeiten liegt, die er bietet.

Drahtlose Kommunikation

Neben Bluetooth, für das man am besten einen Arduino Bluetooth

verwendet, gibt es noch weitere drahtlose Übertragungsprotokolle.

WLAN ist allerdings für die meisten Zwecke übertrieben, komplex

und ein Stromfresser. Zigbee hingegen wird in vielen Projekten ein-

gesetzt, weil es einfach ist und eine gute Reichweite hat. Dieses

Protokoll wurde ursprünglich entwickelt, um Haushaltsgeräte zu

steuern und Sensordaten zu übermitteln. Der Xbee-Shield bringt

dieses Protokoll auf den Arduino und kann zum Beispiel verwen-

det werden, um Roboter oder Fluggeräte zu bedienen. Mehr Infor-

mationen darüber gibt es unter http://www.arduino.cc/playground/

 Shields/Xbee01.

Die Radio Frequency Identification, kurz RFID, findet ihren Weg in

immer mehr Bereiche. Ein Lesegerät sendet dabei elektromagneti-

sche Frequenzen aus, die einen stromlosen Schaltkreis anregen.

Dieser emittiert dann darin gespeicherte Daten, um sich zu identifi-

zieren. Je nach Bauart können so über mehrere Meter oder wenige

Zentimeter einige Kilobytes an Informationen übermittelt werden.

Marc Boon bietet auf seiner Website einen entsprechenden Shield

an, den man auch selbst herstellen kann, wenn man möchte. Alle

Informationen dazu finden Sie unter http://rfid.marcboon.com/#

 category2.

Musik-Shields

Mit dem Wave Shield (ebenfalls von LadyAda.net) können Sound-

dateien abgespielt werden. Tonausgabe auf dem Arduino ist recht

kompliziert und begrenzt. Der Shield bietet Platz für eine SD-Karte,

auf der unkomprimierte Wave-Dateien (also keine MP3s und ähnli-

che Formate) gespeichert werden können. Ein Soundchip sorgt für

eine qualitativ hochwertige Ausgabe auf dem ebenfalls angebrach-

Arduino-Shields

271

ten Kopfhöreranschluss. Mehr über den Wave Shield finden Sie

unter http://www.ladyada.net/make/waveshield.

Eine weitere Möglichkeit, Musik zu machen, ist der SID-Chip, der

schon dem Commodore 64 8-Bit-Klänge entlockte. Er ist immer

noch sehr beliebt, weil er einen ganz eigenen Klang produziert, statt

reale Musikinstrumente nachzuahmen. Im auf der Arduino-Web-

site beschriebenen SID-Shield (http://www.arduino.cc/playground/

 Main/SID-emulator) arbeitet ein Atmega168-Mikrocontroller, der

diesen SID-Chip emuliert und von einem Arduino gesteuert wird.

Der Arduinome ist kein Shield im eigentlichen Sinne, da er nicht für

weitere Projekte verwendbar ist. Vielmehr wird er auf den Arduino

aufgesteckt, um ein Monome zu emulieren, einen USB-Midi-Cont-

roller, der auf einer Matrix von Tasten basiert, die jeweils mit einer

LED beleuchtet werden. Der Arduinome kann so an einen PC ange-

schlossen werden, um diese Eingabedaten zu verarbeiten, oder er

erzeugt selbst weiteren Output. Das Arduinome-Projekt finden Sie

unter http://bricktable.wordpress.com/30/.

Adafruit GPS Shield

Der GPS-Shield bietet die Möglichkeit, ein GPS-Modul zu montie-

ren und die ermittelten Positionsdaten auf einer SD-Karte zu spei-

chern. So lässt sich mit dem Arduino ein kompaktes Gerät

entwickeln, das den Weg einer Wanderung oder einer Fahrt durch

die Stadt speichert. Diese Daten können beispielsweise für das

Projekt OpenStreetMap (http://www.openstreetmap.org) verwendet

werden, das zum Ziel hat, eine frei verfügbare Datenbank mit

Landkarten zur Verfügung zu stellen und so eine freie Alternative

zu kommerziellen Anbietern wie Google Maps zu liefern. Mehr

Informationen zu dem Shield finden Sie auf der LadyAda-Website

(http://www.ladyada.net/make/gpsshield).

MicroSD Module

Der Speicher des Arduino ist vergleichsweise klein und eignet

sich kaum dazu, über einen längeren Zeitraum Werte aufzu-

zeichnen. Glücklicherweise gibt es auch dafür eine Lösung: das

MicroSD-Modul (http://www.sensor-networks.org/index.php?page

 =0827727742), das eine MicroSD-Karte fassen und beschreiben

kann. Die kann man dann später über den Arduino oder einen

Kartenleser auslesen.

272

Anhang A: Arduino-Boards und -Shields

DMX-shield

DMX ist ein Bussystem, mit dem in der Lichttechnik Lampen ange-

steuert werden. Es wird zum Beispiel bei Konzerten und in Disko-

theken eingesetzt, um von einem Mischpult aus die Beleuchtung

des Raumes oder der Bühne zu steuern. DMX steht für Digital Mul-

tiplex. Möchte man sein eigenes Mischpult oder andere Ansteue-

rungsmöglichkeiten (zum Beispiel über Sensoren) entwickeln, kann

man auf den DMX-shield zurückgreifen. Das Shield wird unter

anderem in Kapitel 8 beschrieben. Weitere Informationen finden sich auf der Arduino-Website unter http://www.arduino.cc/playground/DMX/DMXShield.

Eingabe-Shields

Eingabesensoren wie Schieberegler oder Joysticks benötigen keine

komplexe Programmierung. Passende Shields bieten vor allem Fas-

sungen, um eine möglichst einfache Montage zu erlauben. Der

Danger Shield von Zach Hoeken (http://www zachhoeken.com/dan-

 ger-shield-v1-0) ist so einer und verfügt unter anderem über drei

Schieberegler und drei Taster. Zudem hat er allerlei andere Senso-

ren (z.B. einen Temperatur- und einen Klopfsensor) und Aktoren

(wie ein Siebensegment-Display und einen Piezo-Lautsprecher). Er

ist also quasi ein Allround-Shield, der für viele verschiedene Ardu-

ino-Projekte verwendet werden kann.

Ein anderer Shield ist der InputShield von LiquidWare (http://www.

 liquidware.com/shop/show/INPT/InputShield). Er eignet sich zum

Beispiel dazu, einen Controller für eine Spielkonsole zu bauen, und

verfügt über einen Joystick, zwei Knöpfe, einen Vibrationsmotor

und ein serielles Interface. Damit kann man zum Beispiel eine

kleine Handheld-Konsole bauen, deren Vorbild der Game Boy von

Nintendo ist.

Motoren und Rotoren

Der Tank Shield von Liquidware (http://www.liquidware.com/shop/

 show/TANK/TankShield) ist mehr als nur ein Shield. Er verfügt über

einen Kettenantrieb, mit dem man aus dem Arduino einen Panzer-

Roboter bauen kann. Dazu verfügt er über zwei Motorenantriebe

und eine steuerbare Achse. Dank seinem Design ist er in der Lage,

nicht nur einen Arduino, sondern auch einige weitere Shields mit

sich zu führen.

Arduino-Shields

273

Der Adafruit Motor Shield erlaubt den Anschluss mehrerer Moto-

ren. So enthält er Anschlüsse für zwei 5-Volt-Servos, vier Gleich-

strommotoren oder zwei Schrittmotoren. Mehr Informationen gibt

es unter http://www.ladyada.net/make/mshield/.

274

Anhang A: Arduino-Boards und -Shields

ANHANG B

In diesem Kapitel:

Arduino-Bibliotheken

• EEPROM-Bibliothek:

Werte langfristig speichern

• Ethernet-Bibliothek: mit dem

Internet kommunizieren

• Firmata-Bibliothek

• LiquidCrystal-Bibliothek

• Servo-Bibliothek

• Debounce-Bibliothek

• Wire-Bibliothek

• capSense-Bibliothek

Die Arduino-Umgebung bringt eine ganze Reihe nützlicher Biblio-

theken (libraries) mit, die hier kurz vorgestellt werden. Weiterhin

haben viele Benutzer von Arduino selbst Bibliotheken geschrieben

und online gestellt. Diese Libraries bieten oft eine angenehme und

einfache Programmieroberfläche für spezielle Bauteile, Sensoren

und Aktoren sowie für spezifische Arduino-Shields. Eine Liste der

verschiedenen Arduino-Bibliotheken können Sie auf der Arduino-

Website unter http://www.arduino.cc/en/Reference/Libraries finden.

Eine Arduino-Bibliothek besteht aus einer Sammlung von C- und

C++-Quellcodedateien, die in einem separaten Verzeichnis gespei-

chert werden. Eine dieser Dateien ist eine sogenannte Header-

Datei, die nicht die Funktionalität und den Quellcode an sich ent-

hält, sondern die Oberfläche beschreibt, die der Benutzer der Bibli-

othek in seinem eigenen Programm aufrufen kann. Eine solche

Oberfläche nennt man oft auch API (application programming

interface).

Bibliotheken werden meistens als Archivdatei im Netz zum Her-

unterladen angeboten. Diese Datei enthält ein Verzeichnis, das wie

die Bibliothek heißt und in den Ordner hardware/libraries der Ardu-

ino-Entwicklungsumgebung kopiert wird. Anschließend muss die

Header-Datei der Bibliothek in einen Sketch eingebunden werden,

indem am Anfang der Sketch-Datei die Zeile #include <headerdatei.h>

geschrieben wird. Die Arduino-Programmierumgebung erkennt

diese Zeile, sucht nach der genannten Datei in ihrem Bibliotheks-

ordner und übersetzt die Dateien der Bibliothek zusammen mit den

restlichen Dateien des Sketches. Wenn die Arduino-Umgebung

gestartet wird, indiziert diese die verfügbaren Bibliotheken und bie-

tet sie unter SKETCH → IMPORT LIBRARIES an. Wenn dort eine Bibli-

275

othek ausgewählt wird, ergänzt die Entwicklungsumgebung den

aktuellen Sketch automatisch um die Zeile #include.

Für fortgeschrittene Benutzer wird auf der Arduino-Website unter

 http://arduino.cc/en/Hacking/LibraryTutorial im Detail erklärt, wie

man eine eigene Bibliothek erstellt.

EEPROM-Bibliothek:

Werte langfristig speichern

Wie in Kapitel 6 beschrieben wird, kann der Arduino-Prozessor

Werte langfristig in seinem internen EEPROM-Speicher festhalten.

Um Werte aus dem EEPROM zu lesen und zu speichern, bietet

Arduino die EEPROM-Bibliothek. Sie muss mit der Zeile #include

<EEPROM.h> eingebunden werden.

EEPROM.read(adress)

Mit dieser Funktion kann ein Byte an der angegebenen Adresse aus

dem EEPROM-Speicher gelesen werden. Mögliche Adresswerte

gehen von 0 bis 511. Werte, die noch nie beschrieben worden sind,

sind im Arduino-Prozessor auf 255 initialisiert. Man sollte im Auge

behalten, dass die geschriebenen Werte auch nach dem Ausstecken

des Arduino erhalten bleiben, im Speicher also durchaus noch

Werte von anderen Programmen stehen können.

EEPROM.write(adress, value)

Mit dieser Funktion kann ein Bytewert an der angegebenen Adresse

in den EEPROM-Speicher geschrieben werden. Auch hier sollte

man bedenken, dass die Adresse vielleicht auch von einem anderen

Sketch verwendet wird, um Daten zu speichern. Gehen Sie beim

Schreiben also vorsichtig vor, wenn noch gespeicherte Daten von

anderen Sketchen verwendet werden sollen.

Beispiel

void setup() {

Serial.begin(9600);

EEPROM.write(0, 15); // 15 an Adresse 0 des EEPROM-Speichers

// schreiben

byte daten = EEPROM.read(0); // Adresse 0 lesen

Serial.println(daten); // und an den Computer schicken

}

void loop() {

}

276

Anhang B: Arduino-Bibliotheken

Ethernet-Bibliothek:

mit dem Internet kommunizieren

Die Ethernet-Bibliothek wird zusammen mit einem Ethernet-Shield

eingesetzt. Sie implementiert zum einen eine einfache Serverfunktio-

nalität, die es einem Arduino ermöglicht, verschiedene Serverdienste

wie z.B. einen Webserver oder einen Telnet-Server anzubieten, und

zum anderen eine Clientfunktionalität, mit der der Arduino mit

anderen Servern im Internet kommunizieren kann. Die Ethernet-

Bibliothek ist deswegen in einen Server- und einen Clientteil unter-

gliedert. Bevor einer dieser beiden Bereiche verwendet werden kann,

muss die Bibliothek initialisiert werden.

Ethernet.begin(mac, ip) / Ethernet.begin(mac, ip, gateway) /

Ethernet.begin(mac, ip, gateway, subnet)

Mit dieser Funktion werden der Ethernet-Chip auf dem Ethernet-

Shield initialisiert und die Ethernet-Adresse und die IP-Adresse des

Arduino festgelegt. Diese Funktion muss aufgerufen werden, bevor

die Server- und/oder die Client-Funktionalität der Ethernet-Library

verwendet wird. Zusätzlich können der IP-Funktion der Ethernet-

Bibliothek noch die Adresse der Default-Gateway angegeben wer-

den (also des Routers, der die Schnittstelle des lokalen Netzwerks

zum Internet ist, z.B. der Router, der vom Provider zur Verfügung

gestellt wird) sowie die Netzmaske des lokalen Netzwerks. Stan-

dardmäßig wird die Gateway-Adresse auf die IP-Adresse des Ardu-

ino gesetzt, mit einer 1 als letzter Zahl. Die Default-Netzwerkmaske

ist 255.255.255.0. Die Mac-Adresse ist eine Tabelle von sechs

Bytes, während die IP-Adresse und die Gateway-Adresse jeweils

eine Tabelle von vier Bytes sind.

Beispiel

#include <Ethernet.h>

byte mac[] = { 0xde, 0xad, 0xbe, 0xef, 0xfe, 0xed };

byte ip[] = {10, 0, 0, 27};

void setup() {

Ethernet.begin(mac, ip);

}

void loop() {}

Serverfunktionalität

Mit der Serverfunktionalität der Ethernet-Bibliothek kann der

Arduino einen Internetdienst anbieten. Dieser wird mit durch ein

Ethernet-Bibliothek: mit dem Internet kommunizieren

277

Serverobjekt erstellt, dem der Port mitgegeben wird, auf dem dieser

Dienst lauscht. Dieses Serverobjekt kann dann benutzt werden, um

Verbindungen anzunehmen und Daten von verbundenen Clients

zu lesen und zu schreiben.

Server(port)

Mit dieser Funktion wird ein Serverobjekt erzeugt, das auf dem

angegebenem Port lauscht. Standardwerte für port sind z.B. 23 für

einen Telnetdienst, 25 für einen Mailserver, und 80 für einen Web-

server.

Server.begin()

Nachdem Server.begin() aufgerufen wurde, kann ein Serverobjekt

Verbindungen annehmen.

Server.available()

Diese Funktion überprüft, ob ein Serverobjekt eine Verbindung

angenommen hat. Wenn das der Fall ist, gibt sie ein Clientobjekt

zurück, das benutzt werden kann, um mit dem Gegenpunkt der

Verbindung zu kommunizieren. Es besteht kein Unterschied zwi-

schen einem Clientobjekt, das als Folge einer Serververbindung

erzeugt wurde, und einem Clientobjekt, das erzeugt wurde, weil

der Arduino sich mit einem Server verbunden hat (siehe unten).

Wenn keine Verbindung angenommen wurde, gibt Server.avai-

lable() NULL zurück.

Server.write(data)

Mit dieser Funktion können Daten an alle verbundenen Gegenstel-

len des Serverobjekts geschrieben werden. data ist dabei ein Byte

oder ein Buchstabe.

Server.print(value) / Server.print(value, base)

Mit dieser Funktion können ähnlich wie mit Serial.print (siehe

Kapitel 5) beliebige Werte formatiert an alle verbundenen Gegen-stellen gesendet werden. value kann dabei wie bei Serial.print ein

beliebiger numerischer Wert sein (allerdings keine Fließkomma-

zahl) oder ein Zeichenkette. Zusätzlich kann auch noch die Darstel-

lungsbasis angegeben werden.

278

Anhang B: Arduino-Bibliotheken

Server.println(value) / Server.println(value, base)

Mit dieser Funktion können ähnlich wie mit Serial.println (siehe

Kapitel 5) beliebige Werte formatiert an alle verbundenen Gegen-stellen gesendet werden. Der gesendete Wert wird von einer Zeilen-

einrückung gefolgt.

Beispiel

#include <Ethernet.h>

byte mac[] = { 0xde, 0xad, 0xbe, 0xef, 0xfe, 0xed };

byte ip[] = {10, 0, 0, 27};

Server server(23);

void setup() {

Ethernet.begin(mac, ip);

server.begin();

}

void loop() {

Client client = server.available();

if (client) {

server.write(client.read());

}

}

Clientfunktionalität

Mit der Clientfunktionalität der Ethernet-Bibliothek kann der

Arduino sich mit einem Internetdienst verbinden. Weiterhin wird

die Clientfunktionalität verwendet, wenn eine externe Gegenstelle

sich mit einem Server verbindet, der auf dem Arduino läuft. Man

kann daher die Clientfunktionalität auch als »Verbindungsfunktio-

nalität« betrachten. Eine Verbindung wird als ein Clientobjekt dar-

gestellt, das entweder von Hand erzeugt wird, um mit einem

externen Server zu kommunizieren (in diesem Fall werden Adresse

und Port des Dienstes auf diesem Server angegeben), oder beim

Aufruf von Server.available() (siehe oben).

Nachdem der Arduino sich erfolgreich mit der Gegenseite verbun-

den hat (über einen Aufruf von Client.connect() oder weil das Cli-

entobjekt von einem auf dem Arduino laufenden Server erzeugt

wurde), können mit dem Clientobjekt Daten an die Gegenstelle

geschickt und von ihr empfangen werden.

Client(ip, port)

Mit dieser Funktion wird ein Clientobjekt erzeugt, das mit dem

angegebenen Dienst verbunden wird. Die IP-Adresse wird wie

gehabt als Tabelle von vier Bytes angegeben, und der Port als Inte-

ger-Wert.

Ethernet-Bibliothek: mit dem Internet kommunizieren

279

Client.connected()

Diese Funktion gibt zurück, ob das benutzte Clientobjekt mit der

Gegenstelle verbunden ist (also TRUE, wenn eine laufende TCP-IP

Verbindung besteht, sonst FALSE). Diese Funktion gibt auch

TRUE zurück, wenn die Verbindung schon geschlossen wurde,

aber noch ungelesene Daten existieren.

Client.connect()

Wenn diese Funktion aufgerufen wird, versucht der Ethernet-

Shield sich mit der Gegenstelle zu verbinden. Gelingt das, gibt die

Funktion TRUE zurück, kann keine Verbindung erstellt werden,

FALSE.

Client.write(data)

Mit dieser Funktion können Daten an alle verbundenen Gegenstel-

len des Clientobjekts geschrieben werden. data ist dabei ein Byte

oder ein Buchstabe.

Client.print(value), Client.print(value, base)

Diese Funktion ähnelt Server.print(), außer dass Daten nur an die

Gegenstelle der Verbindung geschickt werden.

Client.println(value), Client.println(value, base)

Diese Funktion ähnelt Server.println(), außer dass Daten nur an

die Gegenstelle der Verbindung geschickt werden.

Client.available()

Ähnlich wie bei der seriellen Schnittstelle werden bei einer TCP-

Verbindung die empfangenen Daten auf dem Arduino gepuffert.

Mit dieser Funktion kann abgefragt werden, ob sich Daten in die-

sem Zwischenpuffer befinden, die dann später mit Client.read()

ausgelesen werden können. Diese Funktion gibt die Anzahl der vor-

handenen Bytes zurück.

Client.read()

Mit dieser Funktion kann ein einzelnes Byte aus dem Puffer ausge-

lesen werden. Mit Client.available() kann zuerst überprüft wer-

den, ob überhaupt Bytes im Puffer vorhanden sind. Sind keine

Bytes vorhanden, gibt Client.read() –1 zurück.

280

Anhang B: Arduino-Bibliotheken

Client.flush()

Mit dieser Funktion kann der Puffer der Verbindung geleert werden

(es werden also alle ungelesenen Bytes gelöscht).

Client.stop()

Mit dieser Funktion wird die TCP-Verbindung mit der Gegenstelle

getrennt.

Beispiel

#include <Ethernet.h>

byte mac[] = { 0xde, 0xad, 0xbe, 0xef, 0xfe, 0xed };

byte ip[] = {10, 0, 0, 27};

byte server[] = {64, 233, 187, 99 }; // Google

Client client(server, 80); // Verbindung zum Google-Webserver

void setup() {

Ethernet.begin(mac, ip);

Serial.begin(9600);

server.begin();

if (client.connect()) {

Serial.println(»Mit google verbunden");

client.println("GET /search?q=arduino HTTP/1.0"); // Suchkette

// verschicken

client.println();

} else {

Serial.println("Verbindung erfolglos");

}

}

void loop() {

if (client.available()) {

char c = client.read();

Serial.print(c);

}

if (!client.connected()) {

Serial.println("Verbindung getrennt");

client.stop();

for (;;) ; // Leere Schleife

}

}

Firmata-Bibliothek

Die in Kapitel 5 vorgestellte Firmata-Bibliothek ist ein nützliches Werkzeug, um einen Arduino mit einem normalen Desktopcomputer zu verbinden (unter anderem mit Programmen, die in Proces-

sing oder Max/MSP geschrieben sind). Mit Firmata können über

die serielle Schnittstelle viele Befehle an den Arduino gesendet und

Informationen vom Arduino empfangen werden (z.B. der Status

Firmata-Bibliothek

281

einzelner Pins, aber auch beliebige Zeichenketten und numerische

Werte). Die Bibliothek ist eine sehr große und etwas komplexe

Bibliothek, mit der die Firmata-Funktionalität in normale Sketche

mit eingebunden werden kann (im Vergleich zur »normalen«

Firmata-Firmware, die nur die Standardfunktionalität des Proto-

kolls unterstützt). Hier sei auf die ausführliche Dokumentation

des Firmata-Protokolls und der Firmata-Bibliothek im Netz ver-

wiesen, die viele nützliche Beispiele über ihre Verwendung gibt. Die

Dokumentation finden Sie unter http://www.arduino.cc/playground/

 Interfacing/Firmata.

LiquidCrystal-Bibliothek

Mit der Bibliothek LiquidCrystal kann ein LCD-Bildschirm, der

auf einem Hitachi HD44780 oder einem seiner zahlreichen Klone

aufgebaut ist, angesprochen werden. Es gibt viele verschiedene

Varianten dieser LCD-Bildschirme, die kostengünstig bei Vertrie-

ben wie http://conrad.de/, http://reichelt.de/ oder http://pollin.de

bestellt werden können. Diese LCD-Bildschirme können Buchsta-

ben anzeigen und haben meistens Größen wie 2 × 16 (zwei Zeilen

mit je 16 Buchstaben), 1 × 16, 2 × 40, 4 × 16 usw. Da es viele

HD44780-kompatible Chips gibt, kann es oft zu leichten Unter-

schieden zwischen den einzelnen Displays kommen. Oft sind

gerade kleine Zeitunterschiede bei der Initialisierung oder beim

Senden von Daten wichtig, weshalb manchmal eine Anpassung der

Sketche notwendig ist. Um die genauen Zeiten herauszube-

kommen, müssen Sie im Datenblatt des Chips nachsehen, wie

lange z.B. Daten anliegen müssen oder wie lange nach bestimmten

Kommandos gewartet werden muss. Diese Zeiten kann man dann

mit delayMicroseconds() einbauen. Auch die Pinbelegung der Dis-

plays kann verschieden sein, besonders der Anschluss der Rückbe-

leuchtung variiert. Oft ist es notwendig, die Rückbeleuchtung über

einen Transistor zur Stromverstärkung anzuschließen.

Displays können in zwei verschiedenen Modi angesteuert werden:

im 4-Bit-Modus oder im 8-Bit-Modus. Beim 8-Bit-Anschluss wer-

den zwar mehr digitale Output-Pins am Arduino benutzt, die

Datenübertragung ist dafür aber deutlich schneller, sodass zum Bei-

spiel flüssigere Animationen auf dem Display dargestellt werden

können. Im 4-Bit-Modus werden vier Datenleitungen (d0 bis d3)

weniger benutzt.

282

Anhang B: Arduino-Bibliotheken

LiquidCrystal(rs, rw, enable, d4, d5, d6, d7) /

LiquidCrystal(rs, rw, enable, d0, d1, d2, d3, d4, d5, d6, d7)

Mit dieser Funktion, die eine variable Anzahl an Parametern akzep-

tiert, wird ein LiquidCrystal-Objekt erzeugt, mit dem ein Display

gesteuert werden kann. Die einzelnen Leitungen des Displays müs-

sen mit digitalen Pins am Arduino verbunden werden. Die Pinnum-

mern der einzelnen Leitungen werden an die LiquidCrystal-

Funktion übergeben. Werden d0 bis d3 angegeben, wird das Dis-

play im 8-Bit-Modus konfiguriert, ansonsten im 4-Bit-Modus. Mit

dem erzeugten Objekt kann das Display dann angesteuert werden.

LiquidCrystal.clear()

Mit dieser Funktion werden das LCD-Display gelöscht und der

Kursor nach links oben zurückgesetzt.

LiquidCrystal.home()

Mit dieser Funktion wird der Kursor des LCD-Displays in die linke

obere Ecke bewegt. Ab dieser Position werden dann weitere Ausga-

ben auf dem Display angezeigt.

LiquidCrystal.setCursor(col, row)

Mit dieser Funktion kann der Kursor frei auf dem LCD-Display

bewegt werden. col bezeichnet dabei die Spalte und row die Zeile,

in die der Kursor bewegt werden soll. 0 ist dabei die erste Spalte

bzw. Zeile.

LiquidCrystal.write(data)

Mit dieser Funktion kann ein einzelner Buchstabe auf dem Display

angezeigt werden.

LiquidCrystal.print(value), LiquidCrystal.print(value, base)

Ähnlich wie bei der Funktion Serial.print() können mit Liquid-

Crystal.print() Zeichenketten und numerische Werte auf dem

Display angezeigt werden.

Beispiel

#include <LiquidCrystal.h>

LiquidCrystal lcd(12, 11, 10, 5, 4, 3, 2); // LCD im 4-Bit-Modus

void setup() {

lcd.print("HALLO WELT");

}

void loop() {}

LiquidCrystal-Bibliothek

283

Servo-Bibliothek

Mit dieser Bibliothek können ein oder zwei Servomotoren an den

Arduino angeschlossen und gesteuert werden, ohne dass anderer

Programmcode dadurch beeinflusst wird (die Steuerung läuft paral-

lel in einer Interrupt-Routine). Dazu werden die zwei PWM-Pins 9

und 10 benutzt. Wird nur ein Servo angeschlossen, kann der

andere Pin nicht als PWM-Ausgang benutzt werden (man kann die

Funktion analogWrite also nicht auf ihn anwenden). Wie in

Kapitel 6 beschrieben wurde, schließt man einen Servomotor an

GND, VCC und Pin 9 oder 10 an. Um einen Servomotor zu kon-

trollieren, muss ein Objekt des Typs Servo erzeugt werden, der

dann mit der Funktion attach vor der Benutzung konfiguriert wird.

Servo.attach(pin), Servo.attach(pin, min, max)

Mit dieser Funktion kann ein Servo-Objekt mit einem der beiden

Servo-Pins (9 und 10) verbunden werden. Optional kann die Puls-

breite in Millisekunden (ms) angegeben werden, die für den kleins-

ten Winkel (0 Grad am Servo) und den größten Winkel (180 Grad)

benutzt wird. Als Standardwerte werden 544 ms für den kleinsten

Winkel und 2.400 ms für den größten Winkel verwendet.

Servo.write(winkel)

Mit dieser Funktion kann der Servo kontrolliert werden. Auf einem

normalen Servo wird so der Winkel eingestellt (von 0 bis 180), auf

einem kontinuierlichen Servo wird die Geschwindigkeit des Servos

eingestellt. (In diesem Fall ist ein Winkel von 0 die volle Geschwin-

digkeit in die eine Richtung und 180 die volle Geschwindigkeit in

die andere Richtung, und ein ungefährer Wert von 90 die Position,

an der sich das Servo nicht bewegt.)

Servo.read()

Mit dieser Funktion kann der zuletzt eingestellte Winkel ausgelesen

werden. Sie gibt einen Wert von 0 bis 180 zurück.

Servo.attached()

Mit dieser Funktion kann überprüft werden, ob das Servo-Objekt

schon mit einem Pin verbunden wurde. Sie gibt TRUE zurück,

wenn das Objekt schon verbunden wurde, sonst FALSE.

284

Anhang B: Arduino-Bibliotheken

Servo.detach()

Mit dieser Funktion kann das Servo-Objekt von seinem Pin

getrennt werden. Wurden alle Servo-Objekte von ihren Pins

getrennt, können Pin 9 und 10 wieder als normale PWM-Pins ver-

wendet werden.

Beispiel

#include <Servo.h>

Servo meinServo; // Servo-Objekt

int pos = 0; // Variable zum Speichern der Servoposition

void setup() {

meinServo.attach(9); // Der Servo ist an Pin 9 angeschlossen.

}

void loop() {

// In dieser Schleife wird der Servo komplett von links nach

// rechts bewegt.

for (pos = 0; pos < 180; pos++) {

meinServo.write(pos);

delay(15);

}

// und wieder zurück

for (pos = 180; pos >= 1; pos—) {

meinServo.write(pos);

delay(15);

}

}

Debounce-Bibliothek

Wie in Kapitel 3 beschrieben wurde, können bei Tastern und Schaltern schnell Fehler auftreten. Weil sie auf federnden Effekten basie-

ren, öffnen und schließen sie sich beim Betätigen mehrmals, am Pin

kommen also mehrere HIGH- und LOW-Signale an, was ein uner-

wünschter Effekt ist. Dieses Phänomen wird als »Prellen« oder

»Bouncing« bezeichnet, weshalb die Bibliothek, die dagegen helfen

soll, »Debounce« heißt. Sie sorgt dafür, dass der Input-Pin nach

einer Eingabe für eine bestimmte Anzahl Millisekunden gesperrt

wird, sodass alle weiteren Signale ausgesperrt werden.

Debounce(unsigned long debounceZeit byte pin)

Instanziiert ein Debounce-Objekt. Es wird eine Debounce-Zeit in

Millisekunden festgelegt und das Objekt mit einem Input-Pin ver-

bunden.

Debounce-Bibliothek

285

Debounce.update()

Liest den Pin neu ein und prüft, ob sich das Signal unter Berück-

sichtigung der Debounce-Zeit geändert hat. Ist das der Fall, wird

TRUE zurückgegeben, ansonsten FALSE.

Debounce.interval(unsigned long debounceZeit)

Ändert die Debounce-Zeit, die dem Objekt zugewiesen wird.

Debounce.read()

Liest den aktuellen Wert des mit dem Objekt verbundenen Pins ein

und berücksichtigt dabei die Debounce-Zeit.

Debounce.write()

Schreibt den aktuellen Debounce-Wert in den Speicher des Objekts

und auf den mit dem Objekt verbundenen Pin.

Beispiel

// schalte eine LED durch Betätigung eines Schalters an und aus

#include <Debounce.h>

#define SCHALTER 5

#define LED 13

// instanziiere ein Debounce-Objekt mit einer Debounce-Zeit von 20 ms

Debounce debouncer = Debounce(20 , SWITCH);

void setup() {

pinMode(SWITCH,INPUT);

pinMode(LED,OUTPUT);

}

void loop() {

// update den Debouncer

debouncer.update ();

// verwende den neuen Wert, um die LED damit zu schalten

digitalWrite(LED, debouncer.read());

}

Wire-Bibliothek

Um mit dem Arduino über das Two-Wire-Interface bzw. das Proto-

koll I²C (inter-integrated circuit) zu kommunizieren, verwendet

man die Wire-Bibliothek. Das I²C-Protokoll ist ein sogenannter

Datenbus. Das heißt, dass auf einer Leitung mehrere Geräte ange-

schlossen werden können. Ein Hauptgerät, der Master, sendet

Daten, während die Slaves diese empfangen und darauf reagieren.

Die Wire-Bibliothek erlaubt, sowohl als Master- als auch als Slave-

Gerät an einem TWI/I²C-Bus teilzunehmen. Der Bus basiert dabei

286

Anhang B: Arduino-Bibliotheken

auf zwei Leitungen, einer Datenleitung (SDA), die auf dem analo-

gen Input-Pin 4 angeschlossen wird, sowie einer Taktleitung (SCL)

auf dem analogen Pin 5. Auf dem Arduino Mega werden die Lei-

tungen auf Pin 20 (SDA) und 21 (SCL) angeschlossen.

Wire.begin() /Wire.begin(address)

Meldet den Arduino am Bus an. Wird eine Adresse (7 Bit, 0–127)

mitgegeben, geschieht diese Anmeldung als Slave, ohne Adresse als

Master.

Wire.requestFrom(address, quantity)

Fordert von einem Gerät Informationen an. address bezeichnet

dabei die 7-Bit-Geräteadresse, quantity die Anzahl von Bytes, die

erwartet werden.

Wire.available()

Gibt die Anzahl von Bytes zurück, die auf dem Bus gelesen werden

können. Wenn der Arduino als Slave registriert ist, kann er so

Daten vom Master empfangen, andersherum wird festgestellt, wie

viele Bytes der Slave nach einer requestFrom-Anfrage gesendet hat.

Wire.receive()

Empfängt das nächste Byte, das auf dem Bus für das Gerät vorliegt

und gibt dieses als »Byte« zurück.

Wire.beginTransmission(address)

Beginnt eine Übertragung als Master an die in address angegebene

Slave-Adresse.

Wire.send(value) / Wire.send(string) / Wire.send(data, quantity)

Speichert Daten in einer Warteschleife, die dann an eine Slave-

Adresse gesendet werden. Wire.send() wird nach wire.beginTrans-

mission aufgerufen. Die Daten können dabei entweder ein Bytewert

(value), ein string oder ein Array von Bytes (data) sein, wobei im

letzten Fall zusätzlich die Anzahl von Bytes übergeben wird.

Wire.endTransmission()

Beendet den Übertragungsblock, der mit beginTransmission()

gestartet und mit send() vorbereitet wurde. Mit endTransmission()

wird der gesamte Block übertragen.

Wire-Bibliothek

287

Wire.onReceive(handler)

Mit dieser Funktion kann eine weitere Funktion festgelegt werden,

die aufgerufen werden soll, wenn ein Slave Daten vom Master

erhält. Dabei wird der Funktionsname übergeben, die Funktion

selbst wird im weiteren Verlauf des Sketches deklariert. Sie sollte

genau einen Int-Parameter besitzen, an den die Anzahl der übertra-

genen Bytes übergeben wird.

Wire.onRequest(handler)

Diese Funktion verhält sich wie onReceive(), allerdings für den

Fall, dass der Master Daten anfordert. Die mitgegebene Funktion

hat weder einen Rückgabewert noch Parameter. Sie wird bei einem

Request aufgerufen und kann zum Beispiel die Anweisung enthal-

ten, einen Sensor auszulesen und mit write() wieder an den Master

zu senden.

Beispiel

// schließt den Arduino als Master an und sendet eine Anfrage an

// einen Slave mit Adresse 1; dann werden die Antwort gelesen und

// der Inhalt wieder an den Slave gesendet

#include <Wire.h>

void setup() {

// initialisiere die Bus-Verbindung

Wire.begin();

}

void loop() {

// fordere ein Byte von Gerät 1 an

Wire.requestFrom(1, 1);

if (Wire.available()) {

byte empfangeneDaten = Wire.receive();

Wire.beginTransmission(1);

Wire.send(empfangeneDaten);

Wire.endTransmission();

}

}

capSense-Bibliothek

Mit dieser Bibliothek können auf dem Arduino einfach kapazitive

Sensoren implementiert werden. Wie in Kapitel 7 beschrieben

wurde, sind dazu nur ein Widerstand (von 100.000–50 Mio. Ohm)

und ein Stück Draht oder Aluminiumfolie notwendig. Der Wider-

stand muss zwischen zwei Pins gesteckt werden, bei dem der eine

Pin als Sendepin fungiert und der andere als Empfangspin. An den

Empfangspin muss der Draht oder die Alufolie als Antenne ange-

schlossen werden. Für einen kapazitiven Sensor wird die CapSen-

288

Anhang B: Arduino-Bibliotheken

sor-Bibliothek verwendet, um ein CapSense-Objekt zu erzeugen,

mit dem der Wert des Sensors (also die Entfernung zum menschli-

chen Körper) gemessen werden kann.

Ein Widerstand von einem Megaohm oder weniger kann eingesetzt

werden, damit der Sensor nur bei tatsächlicher Berührung aktiviert

wird; mit einem Widerstand von ungefähr 10 Megaohm wird der

Sensor bei einer Entfernung von 10–15 cm aktiviert; mit einem

Widerstand von 40 Megaohm wird der Sensor bei einer Entfernung

von 30–40 cm aktiviert. 40-Megaohm-Widerstände sind nicht so

leicht zu finden, weshalb man auch vier in Serie gelötete 10-Mega-

ohm-Widerstände einsetzen kann.

CapSense(sendePin, empfangsPin)

Mit dieser Funktion wird ein CapSense-Objekt erzeugt, mit dem

ein kapazitiver Sensor gemessen werden kann. Der Widerstand

muss zwischen Sende- und Empfangspin gesteckt werden (beides

müssen digitale Pins sein) und die Antenne an den Empfangspin

angeschlossen sein.

CapSense.capSenseRaw(samples)

Mit dieser Funktion kann die Kapazität des Sensors gemessen wer-

den, in einer beliebigen Einheit. Der samples-Parameter gibt die

Zeit an, über die gemessen wird. Je länger diese Zeit und damit der

Messvorgang ist, desto genauer der gemessene Wert. Das Ergebnis

wird nicht durch die Zeitdauer geteilt, sondern es wird einfach der

rohe Messwert zurückgegeben. Die Funktion gibt -2 zurück, wenn

der gemessene Wert über CS_Timeout_millis liegt (das mit der

Funktion set_CS_Timeout_Millis eingestellt werden kann und stan-

dardmäßig 2.000 Millisekunden beträgt).

CapSense.capSense(samples)

Ähnlich wie die CapSense.capSenseRaw-Funktion misst diese Funk-

tion die Kapazität des Sensors über einen gewissen Zeitrahmen.

Allerdings misst CapSense.capSense auch die Kapazität im nicht

aktivierten Zustand und zieht diese vom gemessenen Wert ab. Cap-

Sense.capSense() sollte deswegen im nicht aktivierten Zustand

einen niedrigen Wert zurückgeben. Die automatische Kalibrierung

wird in regelmäßigen Intervallen ausgeführt, die mit der Funktion

set_CS_AutocaL_Millis eingestellt werden können. Die Autokali-

brierung wird normalerweise alle 20 Sekunden ausgeführt. Diese

Funktion gibt -2 zurück, wenn der gemessen Wert über CS_

Timeout_millis liegt.

capSense-Bibliothek

289

CapSense.set_CS_Timeout_Millis(millis)

Mit dieser Funktion wird die maximale Messzeit eingestellt.

CapSense.reset_CS_AutoCal()

Mit dieser Funktion wird sofort eine Kalibrierung der Kapazität im

nicht aktivierten Zustand ausgelöst.

CapSense.set_CS_AutoCaL_Millis(millis)

Mit dieser Funktion kann die Periode der automatischen Kalibrie-

rung eingestellt werden. Die automatische Kalibrierung kann deak-

tiviert werden, indem millis auf 0xFFFFFFFF gesetzt wird.

Beispiel

#include <CapSense.h>

CapSense cs = CapSense(4, 2); // Widerstand zwischen Pin 4 und 2

// 2 ist der Empfangspin

CapSense cs2 = CapSense(4, 3); // ein weiterer Sensor an

// Empfangspin 3

void setup() {

cs.set_CS_AutocaL_Millis(0xFFFFFFFF);

Serial.begin(9600);

}

void loop() {

long start = millis(); // Messdauer festhalten

long wert1 = cs.capSense(30); // ersten Sensor messen

long wert2 = cs2.capSense(30); // zweiten Sensor messen

// Messzeit und Messwerte ausgeben

Serial.print(millis() – start);

Serial.print(": ");

Serial.print(wert1);

Serial.print(", ");

Serial.println(wert2);

delay(10);

}

290

Anhang B: Arduino-Bibliotheken

ANHANG C

In diesem Kapitel:

Sprachreferenz

• Übersicht: Programmier-

sprachen

• Struktur, Werte und Funk-

tionen

• Syntax

• Programmwerte (Variablen,

Datentypen und Konstanten)

• Ausdrücke und Anweisungen

• Ausdrücke

• Kontrollstrukturen

• Funktionen

 • Sketch-Struktur

• Funktionsreferenz

Übersicht: Programmiersprachen

In diesem Anhang wird die Arduino-Programmiersprache ausführ-

lich erklärt. Es werden zuerst die Syntax der Programmiersprache

(also was in der Sprache zulässig ist) und die Struktur eines Ardu-

ino-Sketches erklärt (notwendige Sketch-Funktionen, Programm-

flusskonstrukte, mathematische Operatoren). Anschließend werden

häufig benutzte Funktionen zur Steuerung der Arduino-Hardware

gezeigt. An vielen Stellen wird auf potenzielle Fehlerquellen hinge-

wiesen (Programmieren ist nicht gerade die leichteste Aufgabe). Das

soll auf keinen Fall der Abschreckung dienen, sondern eher die Feh-

lersuche erleichtern und Ihnen generell ein Gefühl für mögliche Fal-

len geben. Es kann praktisch wenig passieren, außer dass der

Arduino sich merkwürdig benimmt oder stehen bleibt. Es reichen

also bei einem Programmfehler meistens ein Reset, ein bisschen

Nachdenken und das erneute Hochladen der korrigierten Software.

Ein Arduino-Programm ist eine Folge von Programmierbefehlen,

die dem Arduino-Prozessor Anweisungen dafür geben, welche

Berechnungen er auszuführen hat. Eine Folge von Anweisungen,

die eine bestimmte Aufgabe erfüllen, nennt man Algorithmus.

Diese Anweisungen können rein mathematische Anweisungen sein

(»nimm den Wert, der an dieser Stelle im Speicher steht, addiere 3

und speichere ihn an dieser anderen Stelle«) oder auch Programm-

flussanweisungen (»wenn der Eingabewert größer als 5 ist, dann

führe diese Anweisungen aus, ansonsten führe diese anderen

Anweisungen aus«). Weiterhin gibt es eine Reihe von Strukturan-

weisungen, die es ermöglichen, bestimmte Teile eines Programms

291

flexibel zu gestalten und auch getrennt zu bearbeiten. Die Program-

mierbefehle, die diese Anweisungen beschreiben, werden vom Pro-

grammierer in einer sogenannten Programmiersprache oder

Computersprache (also nicht auf Englisch oder Deutsch) in eine

Textdatei geschrieben.

Eine Computersprache braucht eine feste Syntax, damit der Com-

puter verstehen kann, was mit dem Programm bewirkt werden soll.

Beim Hochladen eines Sketches auf den Arduino wird der Pro-

grammtext in Maschinencode übersetzt. Dieser Schritt heißt »kom-

pilieren« und wird von einem eigenen Programm namens

»Compiler« durchgeführt. Falls Arduino in diesem Schritt einen

Programmfehler antrifft (z.B. einen Tippfehler), wird der Vorgang

abgebrochen und der Fehler in der Konsole angezeigt. Der Ardu-

ino-Editor springt an die fehlerhafte Zeile im Programmcode und

markiert sie gelb. So lassen sich schnell Probleme in einem Pro-

gramm finden. Das erfolgreiche Übersetzen des Programms heißt

jedoch noch nicht, dass es auch korrekt ist, denn es können noch

viel mehr Fehler auftreten als nur Syntaxfehler.

Abbildung C-1

Programmfehler im

Arduino-Edito

Die Arduino-Programmiersprache baut auf der Programmierspra-

che C++ auf. Die Grundsyntax der Programmiersprache (welche

Wörter eine besondere Bedeutung haben und welche Sonderzei-

chen benutzt werden, um Abschnitte des Programms abzugrenzen)

ist also dieselbe wie die von C++. Falls Sie C++ schon kennen, wer-

den Sie merken, dass viele der erweiterten Konstrukte (z.B. Klas-

sen) von C++ in normalen Sketchen nicht verwendet werden.

Struktur, Werte und Funktionen

Ein Arduino-Programm kann man grob in drei Bereiche untertei-

len: Programmstruktur (der Ablauf eines Programms), Programm-

werte (Variablen und Konstanten) und Programmfunktionen (eine

292

Anhang C: Sprachreferenz

logische Einteilung von Programmfunktionalität, um diese ver-

ständlicher und wiederverwendbar zu gestalten).

Die Programmstruktur kann man als das »eigentliche« Programm

betrachten. Es umfasst Kontrollstrukturen, die es ermöglichen,

Algorithmen zu implementieren, indem der Programmfluss gesteu-

ert wird: if, if...else, switch, while usw. Es umfasst auch arithme-

tische Operationen (addieren, subtrahieren, vergleichen, logische

Operatoren), Zuweisungen (den Wert einer Variablen setzen oder

lesen) und Funktionsaufrufe.

Programmwerte kann man in Variablen und in Konstanten unter-

teilen. Konstanten sind symbolische Namen für konstante numeri-

sche Werte, die eine bestimmte festgelegte Bedeutung haben (z.B.

den logischen Wert für eine hohe Spannung an einem Eingangs-

pin). Variablen sind Ausdrücke, die einen Wert speichern können,

z.B. eine Zahl, die von einem analogen Eingang gelesen wird, oder

eine Zeichenkette. Variablen haben unterschiedliche Datentypen,

je nachdem, welche Art von Werten gespeichert werden soll.

Letztendlich werden Abschnitte von Programmstrukturen in Funk-

tionen unterteilt, um sie logisch zu trennen und wiederverwendbar

zu machen. Anstatt immer wieder denselben Programmcode zu

schreiben (unter Umständen mit nur leichten Änderungen), kann

man diesen als Funktion abkapseln und mit Funktionsaufrufen

immer wieder neu ausführen. Einem Funktionsaufruf können auch

Parameter übergeben werden, damit die Funktion flexibler wird

und so vielfältiger eingesetzt werden kann. Libraries, die bestimmte

Funktionalitäten anbieten (z.B. Schnittstellen zu diversen Sensoren

und Aktoren oder bestimmte mathematische Berechnungen) wer-

den meistens über einige bestimmte Funktionen angesprochen. Die

Zusammenfassung dieser Funktionen nennt man Library-Schnitt-

stelle (oder API, application programming interface).

Syntax

Eine Programmiersprache ist eine formale Sprache, die strikt defi-

nierten Regeln folgt, damit der Computer sie auch verstehen kann.

Anstatt Sätze zu schreiben, werden in einer Programmiersprache

Befehle an den Arduino geschrieben, die man Anweisungen nennt.

Eine Anweisung kann zum Beispiel sein: »Addiere 2 und 5, oder

setze den Ausgangspin 5 auf HIGH.«

Syntax

293

In Arduino muss jede dieser Anweisungen mit einem Semikolon

abgeschlossen werden. Vergisst man, eine Anweisung mit einem

Semikolon abzuschließen, wird Arduino einen Fehler melden. Es

kann allerdings passieren, dass der Fehler, der durch ein fehlendes

Semikolon ausgelöst wird, sehr kryptisch ist, weil der Compiler die

Programmstruktur nicht korrekt erkennen kann. Wenn Arduino

also einen »absurden« Fehler meldet, ist es sinnvoll, zuerst nach

Syntaxfehlern im Programmquellcode zu suchen.

Beispiel

int buttonPin = 2;

a = a + 3;

meineFunktion();

Mehrere Anweisungen können zu einer übergeordneten zusam-

mengefasst werden, indem sie mit geschweiften Klammern grup-

piert werden. Diese Gruppierungen nennt man Programmblock.

Jede öffnende geschweifte Klammer muss von einer passenden

schließenden geschweiften Klammer gefolgt werden. Der Arduino-

Editor ist dort eine große Hilfe: Positioniert man den Cursor hinter

einer schließenden Klammer, wird die dazugehörige öffnende

Klammer hervorgehoben. Die Programmblöcke, die durch Klam-

mern erzeugt werden, sind enorm wichtig für die Programmstruk-

tur. Fehlende oder falsch gesetzte Klammern können (wie fehlende

Semikola) zu kryptischen Programmfehlern führen (oder, noch

schlimmer, zu syntaktisch korrekten, aber fehlerhaften Program-

men). Es lohnt sich also, vorsichtig mit Klammern umzugehen und

immer sicherzustellen, dass Klammerpaare korrekt sind.

Geschweifte Klammern ({}) werden benutzt, um mehrere State-

ments zu einem Funktionskörper zusammenzufassen und einzelne

Pfade bei Programmstruktur-Konstrukten zu bilden.

Beispiel

void meineFunktion(){

statement1;

statement2;

statement3;

}

if (i > 0) {

statement1;

statement2;

} else {

statement3;

statement4;

}

294

Anhang C: Sprachreferenz

Es ist auch möglich, Textabschnitte in einem Programm so zu

markieren, dass sie vom Compiler ignoriert werden. So kann ein

Programm mit normalen Sätzen auf Deutsch oder Englisch kom-

mentiert werden, ohne dass der Compiler versucht, diese als Pro-

grammcode zu interpretieren und deswegen einen Fehler meldet.

Sieht der Compiler die Zeichenkette //, wird alles bis zum Ende

der Zeile ignoriert. Mit // kann man also kurze Kommentare, die

sich auf eine Zeile beziehen, einfügen.

Größere Blöcke von Programmcode lassen sich durch /* und */

auskommentieren. Alles, was sich zwischen diesen beiden Zeichen-

ketten befindet, wird vom Compiler ignoriert. Es können schwere

Fehler erzeugt werden, wenn solche Kommentare ungründlich ver-

schachtelt werden.

Kommentare sind natürlich in erster Linie dazu da, komplizierte

Programme für menschliche Leser zu beschreiben. So können

Algorithmen erläutert, Hinweise auf Nebenwirkungen oder Fehler-

möglichkeiten gegeben oder Anleitungen zu Anwendung und

Modifikation des Codes gegeben werden. Es gilt hier allerdings:

Kommentare sind genauso wichtig wie der Programmcode selbst

und genauso aufwendig zu warten. Schlimmer als keine Kommen-

tare sind falsche Kommentare, die nicht zum kommentierten Pro-

grammcode passen.

Es ist auch sehr praktisch, Teile des Programms auszukommentie-

ren, um verschiedene Möglichkeiten zu testen oder Programmteile

auszugrenzen, die Probleme erzeugen. Das kann besonders nützlich

sein, wenn der Compiler kryptische Fehler meldet oder ein Bug

nicht genau eingegrenzt werden kann. Mit Kommentaren können

auch Debugging-Anweisungen ein- und ausgeschaltet werden.

Beispiel

x = 5; // Dieser Kommentar geht bis zum Zeilenende.

x = x + 1; // Einzeilige Kommentare kann man so gestalten, dass sie

// über mehrere Zeilen gehen.

/* So lassen sich auch Kommentare schreiben,

die über mehrere Zeilen gehen.

Diese sind besonders nützlich für längere Erklärungen, oder um

komplette Programmteile auszukommentieren.

*/

/* Es ist wichtig, keine Kommentare zu verschachteln.

if (i > 0) {

statement1; /* denn das funktioniert nicht und führt zu

Programmfehlern */

Syntax

295

 statement2; // Einzeilige Kommentare kann man allerdings

// schachteln.

}

*/

Um Programmcode leserlich zu halten (ihn zu schreiben, ist

immer viel einfacher, als ihn nachträglich zu verstehen und zu

modifizieren), ist es sehr wichtig, gewisse Schreibregeln einzuhal-

ten. So wird Code, der in geschweiften Klammern gruppiert ist,

eingerückt, damit man schon beim Überfliegen der Datei sehen

kann, wie das Programm strukturiert ist. Der Arduino-Editor hilft

einem dabei, indem der Cursor automatisch an die richtige Stelle

gesetzt wird, wenn eine neue Zeile eingefügt wird. Wird jedoch

durch späteres Editieren die Programmstruktur verändert, kann es

leicht vorkommen, dass die Einrückungen nicht mehr korrekt

sind. Der komplette Programmcode kann zurechtgerückt werden,

indem die Funktion TOOLS → AUTOFORMAT ausgeführt wird

(alternativ auch Apfel-T auf Mac OS X und Steuerung-T auf Linux

und Windows).

Neben den Syntaxsymbolen werden in der Arduino-Programmier-

sprache numerische Werte (also Zahlen) und Wörter verwendet.

Ein Teil der möglichen Wörter ist als Teil der Programmiersprache

definiert (z.B. int, if, else, return, break usw., aber auch

Operatoren wie +, -, <<, && und &). Diese Wörter und Zeichen

nennt man »reserviert«, denn sie haben eine von der Programmier-

sprache definierte Bedeutung. Weitere Wörter können vom Pro-

grammierer als Variablen (siehe Abschnitt über Variablen) und

Funktionen (siehe Abschnitt über Funktionen) definiert werden.

Diese frei definierbaren Wörter müssen mit einem Buchstaben

anfangen (Spezialbuchstaben wie ä oder ü sind nicht erlaubt,

außer in Zeichenketten) und dürfen nur Buchstaben, Zahlen und

das _-Zeichen enthalten. Groß- und Kleinschreibung ist in Ardu-

ino-Programmen wichtig. Im folgenden Beispiel werden einige

mögliche Variablennamen gezeigt.

Beispiel

byte meineVariable; // Das Trennen von Teilwörtern in einem Namen

// mit Großbuchstaben ist eine weit verbreitete

// Programmierkonvention, die man "CamelCase" nennt.

const byte MeineZweiteVariable; // Eine weitere Konvention ist ein

// Großbuchstabe als erster Buchstabe bei Konstanten

// (siehe Konstanten).

296

Anhang C: Sprachreferenz

Programmwerte (Variablen,

Datentypen und Konstanten)

Die meisten Arduino-Programme gehen mit Daten um, die in dem

internen Speicher des Arduino abgelegt oder von den Eingangspins

abgelesen werden. Diese Daten werden im Programm in Variablen

gespeichert, damit man als Programmierer systematisch auf den

Speicher zugreifen kann.

Eine Variable hat einen Namen, einen Datentyp und einen Wert.

Der Name ist eine beliebige Zeichenkette, die keine Sonderzeichen

oder Leerzeichen enthalten darf, die mit einem Buchstaben anfan-

gen muss und die nicht zu den reservierten Wörtern der Arduino-

Programmsprache gehören darf.

Datentypen

Weiterhin hat eine Variable einen Datentyp. Der interne Speicher

des Arduino besteht aus einer langen Tabelle von 8-Bit-Werten;

eine Variable kann allerdings noch viel mehr Arten von Daten ent-

halten. Datentypen kann man in zwei Gruppen unterteilen: nume-

rische und zusammengesetzte Datentypen.

Numerische Datentypen werden benutzt, um Zahlen oder Boole-

sche logische Werte abzubilden. Sie unterscheiden sich grundsätz-

lich durch den Zahlenbereich, den sie abbilden können. Hier muss

man zwischen ganzzahligen numerischen Typen unterscheiden, die

nur ganze Zahlen darstellen können, und Fließpunktkommazah-

len, die Kommazahlen darstellen können. Die Datentypen float und

 double werden benutzt, um Fließkommazahlen zu speichern. Der

Arduino basiert auf einem 8-Bit-Prozessor, sodass Kommazahlen

nur mit viel Mehraufwand eingesetzt werden können. Falls schnelle

Berechnungen notwendig sind (oder ein kürzerer Programmcode)

ist es besser, ganze Zahlen einzusetzen.

Zusammengesetzte Datentypen lassen sich in Tabellen und Daten-

strukturen unterteilen. Datenstrukturen sind ein fortgeschrittenes

Thema und werden in diesem Buch nicht behandelt. Datentabel-

len sind Listen von vielen Werten eines Datentyps, auf die inde-

xiert zugegriffen werden kann. Diese Werte werden hintereinander

im Speicher abgelegt. Einen speziellen zusammengesetzten Daten-

typ bilden Zeichenketten, die als Tabelle von char-Werten im Spei-

cher abgebildet werden. Der letzte Wert in einer Zeichenkette ist

immer 0.

Programmwerte (Variablen, Datentypen und Konstanten)

297

Im Folgenden sehen Sie die meistbenutzten Datentypen in Ardu-

ino-Programmen.

Tabelle C-1

Datentyp

Beschreibung

Beispiel

Datentypen

boolean

Ein boolean hat entweder den Wert true oder boolean a = true;

den Wert false. Dieser Datentyp wird benutzt,

um Binärlogikwerte zu speichern.

char

Speichert einen Buchstaben in einem Byte Spei-

char c = 'a';

cher.

byte

Speichert einen numerischen Wert von 0 bis 255

byte b = 35;

in einem Byte Speicher.

signed

Speichert einen numerischen Wert von –128 bis

unsigned byte b = 35;

byte

127 in einem Byte Speicher.

int

Speichert einen numerischen Wert von –32.768

int i = -9892;

bis 32.767 in 2 Bytes Speicher.

unsigned Speichert einen numerischen Wert von 0 bis 65.

unsigned int i = 9723;

int

535 in 2 Bytes Speicher.

long

Speichert einen numerischen Wert von – 2.147.

long l = 98237498L;

483.648 bis 2.147.483.647 in 4 Bytes Speicher.

unsigned Speichert einen numerischen Wert von 0 bis 4.

unsigned long l =

long

294.967.295 in 4 Bytes Speicher.

834759824L;

float

Speichert eine Fließkommazahl von mittlerer

float f = 4.34;

Auflösung in 4 Bytes Speicher.

double

Auf dem Arduino ist double äquivalent zu

double d = 4.34;

float.

string

Speichert eine Zeichenkette als 8-Bit-Tabelle mit

char str[] = "arduino";

abschließender 0.

array

Speichert eine Tabelle von Variablen. Die Größe

int meineWerte[] = {1,

wird angegeben.

2, 3, 4, 5};

void

Wird nur bei Funktionsdeklarationen verwendet

und gibt an, dass die Funktion keinen Rückgabe-

wert hat.

Numerische Datentypen und binäre Darstellung

Wie man anhand der Tabelle sehen kann, gibt es eine Vielzahl

numerischer Datentypen in der Arduino-Programmiersprache.

Diese unterscheiden sich durch ihre Größe und den numerischen

Bereich, den sie abdecken. In diesem Abschnitt wird ein bisschen

tiefer gehend erklärt, wie Zahlen auf dem Arduino-Chip abgelegt

werden, da es sehr wichtig ist, das zu verstehen, um Fehler zu ver-

meiden und den richtigen Datentyp auszuwählen.

In einem Prozessor werden sämtliche Werte als Folgen von Bits

abgespeichert. Ein Bit ist die grundlegende Speichereinheit und kann

298

Anhang C: Sprachreferenz

als Wert entweder 0 oder 1 annehmen. Da man mit einem einzelnen

Bit noch nicht viel rechnen kann, werden sie in Bytes zusammenge-

fasst, wobei ein Byte 8 Bits umfasst. Dabei wird das sogenannte

Binärsystem benutzt, das ähnlich wie unser Dezimalsystem funktio-

niert. Wenn wir 13 schreiben, heißt das soviel wie 1 * 10 + 3, jede

Stelle nach links bedeutet also zehn Mal so viel wie die auf der rech-

ten Seite. Im Binärsystem ist jede Stelle nach links nur zweimal wich-

tiger, weil eine Stelle eben nur zwei Werte darstellen kann. In der

folgenden Tabelle sehen Sie ein paar Zahlen in Binärdarstellung auf-

gelistet. Mehr über das Binärsystem findet man zum Beispiel in der

Wikipedia unter http://de.wikipedia.org/wiki/Binärsystem.

Wenn ein numerischer Wert als Folge von Bits interpretiert wird,

redet man von einer Bitmaske. Für den Arduino-Prozessor gibt es

keinen Unterschied zwischen einer normalen Zahl und einer Bit-

maske, diese Unterscheidung ist also nur für den Programmierer

von Relevanz. Bitmasken sind bei der Programmierung von einge-

betteten Prozessoren, wie der Arduino-Prozessor einer ist, oft von

Relevanz. So lassen sich in einer Bitmaske digitale Werte (also 0

oder 1) sehr speichereffizient speichern (siehe Kapitel 4 über LED-Matrix). Anstatt ein Byte zu verwenden, um einen digitalen Wert zu

speichern, kann ein Byte als Bitmaske interpretiert gleich acht digi-

tale Werte speichern (siehe Abschnitt über logische Operationen).

Mit einer Bitmaske lassen sich auch mehrere Pins auf einmal schal-

ten, was in bestimmten Anwendungen (siehe Kapitel 4, LED-Matrix und Kapitel 10 über Musik) aus Geschwindigkeitsgründen wichtig sein kann. Da Zahlen generell als Bitmasken gespeichert werden,

lassen sich bestimmte mathematische Operationen mit Bitmasken

sehr effizient berechnen (siehe Abschnitt »Logische Operationen«).

Tabelle C-2

Dezimaldarstellung

Hexadezimaldarstellung

Binärdarstellung

Binärdarstellung

0

0x0

0

1

0x1

1

2

0x2

10

10

0xa

1010

15

0xf

1111

255

0xff

11111111

260

0x104

1 00000100

60000

0xea60

11101010 01100000

-128 (8 bit)

-0x80

10000000

-127 (8 bit)

-0x7f

10000001

-128 (16 bit)

-0x80

11111111 10000000

-127 (16 bit)

-0x7f

11111111 10000001

Programmwerte (Variablen, Datentypen und Konstanten)

299

Zahlen von 0 bis 255 lassen sich in einem Byte speichern, größere

Zahlen werden in mehreren Bytes gespeichert. Intern arbeitet der

Prozessor auf einem Arduino-Board mit 8 Bit, d.h. er kann intern

8-Bit-Werte addieren, subtrahieren und multiplizieren. Werden

größere numerische Werte benutzt, werden diese in mehrere 8-Bit-

Werte zerlegt und nach der Bearbeitung im Prozessor wieder

zusammengefügt. Wenn viele Daten sehr schnell bearbeitet werden

müssen (z.B. bei bestimmten Sensoren), ist es also wichtig, die pas-

sende Größe für numerische Werte zu benutzen.

Negative Zahlen werden in der sogenannten Zweierkomplement-

Darstellung gespeichert. Dazu wird das größte Bit benutzt, um zu

speichern, ob die Zahl positiv oder negativ ist. Ist das größte Bit

gesetzt, wird die Zahl in den unteren Bits auf den kleinsten nega-

tivsten Wert addiert (bei 8 Bit z. B. –128). Die Datentypen, die

negative und positive Zahlen erlauben, werden »signierte« (englisch

 signed) Datentypen genannt, im Unterschied zu den »unsignierten«

(unsigned) Datentypen, die nur positive Werte speichern können.

Dadurch, dass der größte und der kleinste Wert einer Variable

beschränkt sind, kann es dazu kommen, dass eine Variable über-

läuft bzw. unterläuft. Wird z.B. zum 8-Bit-Wert 255 eine 2 addiert,

kommt als Ergebnis nicht 261 heraus, sondern 1, weil die Variable

übergelaufen ist. Das ist eine häufige Quelle von Fehlern, weshalb

es notwendig ist, bei der Wahl von numerischen Datentypen immer

sehr vorsichtig vorzugehen. Besonders kritisch und kompliziert

wird es, wenn signierte und unsignierte Datentypen in mathemati-

schen Operationen vermischt werden. In solchen Operationen ist

es sehr schwer nachzuvollziehen, wo und wie ein Überlauf passie-

ren kann. Wann immer mit unsignierten und signierten Datenty-

pen gerechnet wird, lohnt es sich also, die unsignierten Datentypen

in signierte Datentypen umzuwandeln und erst dann zu rechnen.

Beispiel

unsigned char x = 0; // unsignierter Datentyp, 0-255

char y = 0; // signierter Datentyp, -128 – 127

char x2 = x; // umwandeln von x in einen signierten Datentyp

// x muss kleiner als 128 sein!

char ergebnis = y + x;

In der Arduino-Programmiersprache können Zahlen in verschiede-

nen Darstellungen angegeben werden. So ist es natürlich möglich,

Zahlen in der üblichen Dezimaldarstellung zu schreiben. Ganz ähn-

lich können Kommazahlen (als Datentyp float) in der Dezimaldar-

stellung angegeben werden. Als Komma wird das Punktzeichen

verwendet, wie es in englischsprachigen Ländern üblich ist.

300

Anhang C: Sprachreferenz

Weiterhin können Zahlen aber auch in der Hexadezimaldarstellung

angegeben werden, in der sie mit 0x beginnen. Bei der Hexadezi-

maldarstellung werden die Ziffern 0–9 und die Buchstaben a-f

benutzt. a ist dabei äquivalent zu 10 in der Dezimaldarstellung, b

zu 11, c zu 12 usw. Eine Ziffernstelle in Hexidezimaldarstellung

geht also von 0 bis 15, nicht von 0 bis 10 wie in Dezimaldarstel-

lung. Das Praktische an der Hexadezimaldarstellung ist, dass eine

Ziffer genau 4 Bit im Speicher belegt, ein Byte also als zwei Ziffern

angegeben werden kann. Dadurch lässt sich beim ersten Blick auf

die Zahl sehen, wie viel Speicher sie benötigt. Deswegen werden

häufig Adresswerte und Zahlenwerte in technischen Artikeln und

Datenblättern in Hexadezimaldarstellung angegeben.

In der Arduino-Programmiersprache (aber nicht im normalen C++)

lassen sich Zahlenwerte auch direkt in Binärdarstellung angeben.

Das ist besonders praktisch bei der Ansteuerung bestimmter Senso-

ren und Aktoren, bei denen einzelne Bits eine bestimmte Bedeu-

tung haben. Zahlen in Binärdarstellung werden mit 0b am Anfang

angegeben.

Beispiel

unsigned char a = 128; // Dezimaldarstellung

float f = 3.14; // Kommadarstellung

unsigned char x = 0x80; // Hexadezimaldarstellung

unsigned char b = 0b10101010; // Binärdarstellung

Fließkommazahlen

Fließkommazahlen werden benutzt, um Zahlen darzustellen, die

ein Komma (das ja durch einen Punkt dargestellt wird) haben.

Allerdings sind diese Zahlen nicht genau, sondern nähern diesen

Wert soweit möglich. Der darstellbare Zahlenbereich geht von –3.

4028253E+38 bis 3.4028235E+38. Dadurch, dass diese Zahlen

nicht genau sind, kann es vorkommen, dass z.B. 6.0 geteilt durch 3.

0 nicht gleich 2.0 ist. Der Prozessor auf einem Arduino-Board kann

nicht mit Fließkommazahlen umgehen, sodass eine zusätzliche

Library benutzt wird, die diese Berechnung auf 8-Bit-Zahlen abbil-

det. Dadurch sind Fließkommaberechnungen sehr langsam, und

bei zeitkritischen Berechnungen ist es oft notwendig, sie auf ganze

Zahlen umzuwandeln.

Buchstaben (char)

Buchstaben werden in der Arduino-Programmiersprache als nume-

rische Werte gespeichert. Ein Buchstabe ist ein Byte groß und kann

Programmwerte (Variablen, Datentypen und Konstanten)

301

Werte von 0 bis 255 annehmen. Um zuzuordnen, welcher Buch-

stabe welchen numerischen Wert hat, wird die ASCII-Tabelle

benutzt. Diese enthält die numerischen Werte für viele übliche

Buchstaben (auch viele der deutschen Spezialzeichen sowie Sonder-

zeichen wie Zeilenumbruch oder Leerzeichen). Damit in Program-

men aber nicht immer Zahlen als Buchstaben angegeben werden,

können einfache Anführungszeichen verwendet werden. Den Buch-

staben a kann man also als 'a' notieren. Es ist sehr wichtig, zwi-

schen einfachen Anführungszeichen, die zum Kennzeichnen von

einzelnen Buchstaben benutzt werden, und doppelten Anführungs-

zeichen, die zum Kennzeichnen von Zeichenketten verwendet wer-

den (siehe Abschnitt »Variablen« in diesem Anhang), zu

unterscheiden.

Tabellen (Arrays)

Tabellen speichern Listen von Werten desselben Datentyps.

Anhand eines numerischen Index kann dann auf einen Wert aus

einer Liste zugegriffen werden. Es gibt mehrere Arten, Arrays zu

erzeugen.

Beispiel

int meineTabelle[6];

int meineWerte[] = {4, 5, 6, 7, 8, 9, 10};

int meineNummern[5] = { 4, 5, 6, 7, 8}

In der ersten Zeile in diesem Beispiel wird eine Tabelle mit dem

Datentyp int erzeugt, die sechs Werte speichern kann. Im Speicher

werden also zwölf Bytes benutzt (weil ein int-Wert zwei Bytes

belegt), um diese sechs Werte zu speichern. Diese sechs Werte wer-

den automatisch auf 0 initialisiert.

In der zweiten Zeile wird die Größe des Array nicht explizit defi-

niert, sondern implizit durch die folgenden (sieben) Initialisie-

rungswerte gesetzt.

Im der dritten Zeile werden die Größe des Array definiert und Initi-

alisierungswerte übergeben. Stimmt die Größe der Initialisierungs-

werte nicht mit der Größe des Array überein, wird vom Compiler

ein Fehler gemeldet.

Diese Tabellen werden im Arbeitsspeicher des Arduino-Prozessors

gehalten, der relativ klein ist (2 oder 4 KByte auf einem Arduino

Duemilanove, je nach Herstellungszeitpunkt). Der Arduino-Editor

wird allerdings keinen Fehler signalisieren, wenn eine Tabelle zu

groß für den Arbeitsspeicher ist. Es ist also wichtig, sich darüber im

302

Anhang C: Sprachreferenz

Klaren zu sein, wie viel Speicher größere Tabellen belegen, und ob

so viel noch vorhanden ist.

Der Zugriff auf einzelne Tabellenwerte erfolgt über einen soge-

nannten Indexwert. Dieser gibt an, an welcher Stelle innerhalb der

Tabelle ein Wert geschrieben oder ausgelesen werden soll.

Beispiel

meineTabelle[0]; // Lesezugriff auf den ersten Wert aus

// meineTabelle

meineTabelle[6]; // Lesezugriff auf den letzten Wert aus

// meineTabelle

meineTabelle[0] = 1; // Schreibzugriff auf den ersten Wert aus

// meineTabelle

Indexe für Tabellen fangen bei 0 an und gehen bis zur Größe der

Tabelle minus eins. Deswegen wird in Programmen generell von 0

aus gezählt, nicht von 1 aus (das ist besonders bei Schleifen wich-

tig, siehe Abschnitt Kontrollstrukturen). Bei einer Tabelle der

Größe 6 geht der Indexwert also von 0 bis 5. Es ist sehr wichtig

sicherzustellen, dass der Indexwert innerhalb der zugelassenen

Größe liegt. Der Arduino-Prozessor wird das beim Ausführen des

Tabellenzugriffes nicht überprüfen und wird irgendwo im Speicher

lesen (was nicht so schlimm ist, aber zu komischen Ergebnissen

führt) oder schreiben (was deutlich schlimmer ist und zu sehr

schwer nachvollziehbaren Fehlern führt, z.B. dass das Arduino-

Board spontan neu startet oder in Funktionen springt, die gar nicht

angegeben worden sind). Bei Tabellenzugriffen ist also äußerste

Vorsicht geboten.

Es ist oft nützlich, eine Tabelle mit einer for-Schleife zu durchlau-

fen (siehe Abschnitt Kontrollstrukturen). Dazu wird eine Variable

hochgezählt, die jeden möglichen Index-Wert für die Tabelle

annimmt.

Beispiel

for (int i = 0; i < 5; i++) { // i nimmt alle Werte von 0 bis 5 an

meineTabelle[i] = i; // Zugriff auf das i-te Element aus

// meineTabelle

}

Eine fortgeschrittene Nutzung von Tabellen ist die Möglichkeit,

mehrdimensionale Tabellen zu erzeugen. Auf eine mehrdimensio-

nale Tabelle wird anhand von zwei oder mehr Indexwerten zuge-

griffen. Damit hat man die Möglichkeit, z.B. zweidimensionale

Tabellen zum Speichern von Grafiken für eine LED-Matrix zu erzeu-

gen. Zum Erzeugen einer mehrdimensionalen Tabelle werden meh-

Programmwerte (Variablen, Datentypen und Konstanten)

303

rere Größen in eckigen Klammern angegeben. Zum Initialisieren

mehrdimensionaler Tabellen werden geschachtelte Initialisierungs-

werte in geschweiften Klammern angegeben. Der Speicheraufwand

einer mehrdimensionalen Tabelle ist desto größer, je mehr Dimensi-

onen verwendet werden. So belegt eine 5-mal-5-Tabelle genauso viel

Speicher wie eine eindimensionale Tabelle mit 25 Werten.

Beispiel

int meine2DTabelle[5][5]; // Diese Tabelle speichert 5 x 5 = 25

// Werte.

int nochEineTabelle[3][2] = { // Diese Tabelle wird auch

// initialisiert.

{ 0, 1 }, // Hier ist es wichtig zu beachten, dass die Tabelle

// dreimal

{ 2, 3 }, // zwei Werte speichert, nicht zweimal drei Werte.

{ 4, 5 }

};

Hier ist es auch wichtig, die Grenzen der einzelnen Größen zu

beachten. Beim Zugriff muss sich der erste Indexwert innerhalb des

für die erste Tabelle festgelegten Rahmens befinden, der zweite

innerhalb des Rahmens der zweiten Tabelle usw..

Beispiel

int meine2DTabelle[5][5]; // Diese Tabelle speichert 5 x 5 = 25

// Werte.

meine2DTabelle[0][0] = 1; // Zugriff auf verschiedene Elemente

// innerhalb

meine2DTabelle[0][1] = 2; // der zweidimensionalen Tabelle

meine2DTabelle[3][3] = 3;

Ähnlich wie bei einer eindimensionalen Tabelle kann man eine

mehrdimensionale Tabelle mit mehreren geschachtelten for-Schlei-

fen durchlaufen.

Beispiel

// for-schleife zum Durchlaufen der ersten Dimension

for (int y = 0; y < 5; y++) {

// for-schleife zum Durchlaufen der zweiten Dimension

for (int x = 0; x < 5; x++) {

meine2DTabelle[y][x] = x; // Zugriff auf die zweidimensionale

// Tabelle

}

}

Zeichenketten

Zeichenketten sind einfach Tabellen von char-Werten. Zusätzlich

muss allerdings noch die Länge der Zeichenkette angegeben wer-

304

Anhang C: Sprachreferenz

den. Dazu wird an das Ende der Tabelle eine 0 angehängt, die sig-

nalisiert, dass damit die Zeichenkette zu Ende ist. Um zur

Initialisierung von Zeichenketten nicht immer explizit diese 0 ange-

ben zu müssen, gibt es die Möglichkeit, die Zeichenkette in dop-

pelte Anführungszeichen zu setzen. Dadurch wird automatisch eine

Zeichentabelle angelegt und die schließende 0 eingefügt.

Es ist sehr wichtig, diese 0 anzugeben. Fehlt sie, werden die meisten

Funktionen, die mit Zeichenketten arbeiten, das Ende der Zeichen-

kette nicht erkennen und weiter im Speicher lesen oder schreiben,

mit den problematischen Folgen, die schon erläutert wurden. Wer-

den statt doppelter Anführungszeichen (") einfache Anführungszei-

chen (') benutzt, wird auch eine Tabelle für die Zeichenkette

erzeugt, allerdings ohne schließende 0.

Beispiel

char meinString[8]; // leere Zeichenkette der Größe 8

// explizite Initialisierung der Zeichenkette mit schließender 0

// Die Null wird als '\0' (Buchstabenwert 0) angegeben.

char meinString2[8] = { 'a', 'r', 'd', 'u', 'i', 'n', 'o', '\0' };

// explizite Initialisierung der Zeichenkette, die 0 ist implizit

char meinString3[8] = { 'a', 'r', 'd', 'u', 'i', 'n', 'o' };

// Initialisierung mit doppelten Anführungszeichen

char meinString4[] = "arduino";

// Initialisierung mit expliziter Größe

char meinString5[8] = "arduino";

Wegen der schließenden 0 sind für die Zeichenkette arduino also

acht Buchstaben notwendig. Es ist auch möglich, direkt eine mit

doppelten Anführungszeichen gekennzeichnete Zeichenkette inner-

halb eines Programms zu benutzen, ohne eine eigene Variable dafür

einzurichten. Es wird allerdings immer noch der notwendige Spei-

cherplatz für diese Variable benutzt. Wenn also viele Zeichenketten

in einem Programm verwendet werden, ist es unter Umständen

auch nötig, ein Auge auf den Speicherplatzverbrauch zu werfen.

Oft muss man in Anwendungen, die viel mit Zeichenketten arbei-

ten (z.B. Anwendungen, die ein Display verwenden), eine Tabelle

von Zeichenketten anlegen. Dazu wird eine sogenannte Zeigerta-

belle verwendet. Zeiger sind ein fortgeschrittenes Konstrukt der

Arduino-Programmiersprache, das hier nur verwendet, aber nicht

weiter erläutert wird. Ein Zeiger »zeigt« auf einen Speicherbereich,

in dem andere Daten gespeichert werden. Für unseren Gebrauch

lassen sich Zeiger so benutzen wie Tabellen. Man kann also grob

sagen, dass die untere Zeigertabelle weitere Tabellen speichert, die

wiederum unsere Zeichenketten enthalten.

Programmwerte (Variablen, Datentypen und Konstanten)

305

Beispiel

char *meineKetten[] = {

"meine erste Kette",

"meine zweite Kette",

"meine dritte Kette"

};

Serial.println(meineKetten[0]);

Serial.println(meineKetten[1]);

So wie Tabellen können auch Strings durchlaufen werden. Aller-

dings ist die Länge der Zeichenkette nicht bekannt, und die schlie-

ßende 0 muss erkannt werden.

Beispiel

char meinString[] = "arduino";

for (int i = 0; meinString[i] != 0; i++) {

sendCharacter(meinString[i]);

}

Variablen

Mit Variablen lassen sich Speicherbereiche mit symbolischen

Namen verbinden. Das erleichtert erheblich die Programmierung,

weil sich so mit einem informativen Namen Werte auslesen und

speichern lassen. Zum Beispiel kann die Variable sensorWert

benutzt werden, um den zuletzt ausgelesenen Statuswert eines Sen-

sors zu speichern.

Jede Variable ist mit einem Datentyp verbunden. So kann beim

Kompilieren des Programms berechnet werden, welcher Bereich im

Speicher belegt ist und wie mit den dort gespeicherten Werten

gerechnet werden muss. Dadurch können Tabellenzugriffe und

Zeichenkettenzugriffe berechnet werden.

Variablen sind eines der wichtigsten Konzepte beim Programmie-

ren, und sie sind in quasi jedem Programm mehrfach anzutreffen.

Die Wahl der benutzten Variablen (also der Namen für Speicherbe-

reiche) ist äußerst wichtig für die Strukturierung eines Programms.

Namen dienen auch zur menschlichen Verständlichkeit eines Pro-

gramms. So sollte eine Variable namens zaehler nicht benutzt wer-

den, um eine Zeichenkette zu speichern, da das verwirrend sein

kann, wenn man ein Programm nach einiger Zeit wieder modifizie-

ren und dazu verstehen will.

Beispiel

char meinString[] = "hallo"; // Die Variable meinString speichert

// einen String.

int meineZahl = 5; // Die Variable meineZahl speichert eine Zahl

306

Anhang C: Sprachreferenz

 // vom Datentyp int.

int meineTabelle = 5; // Der Name meineTabelle ist schlecht

// gewählt, da meineTabelle eine Zahl

// speichert.

Um die Arbeit mit Variablen zu erleichtern, benutzt die Arduino-

Programmiersprache das Konzept der Variablensichtbarkeit. Nicht

an allen Orten im Programm sind alle Variablen erreichbar. Als

Faustregel gilt, dass innerhalb von geschweiften Klammern defi-

nierte Variablen nur in diesem Bereich auch sichtbar sind (man

nennt sie lokale Variablen). Die äußerste Ebene des Programms ist

die globale Ebene, in der sogenannte globale Variablen (und Funk-

tionen) definiert werden können. Diese globalen Variablen sind im

gesamten Programm sichtbar und können deshalb benutzt werden,

um Informationen zu speichern, die zentral für das Programm sind.

Weiterhin kann eine Variable nicht benutzt werden, bevor sie

deklariert wird.

Geschweifte Klammern können geschachtelt werden (besonders

mit Kontrollstrukturen, siehe den entsprechenden Abschnitt). Vari-

ablen sind somit auch geschachtelt, und es gilt immer die zuletzt

definierte Version einer Variablen. Hier ist auch Vorsicht geboten,

weil so mehrere Variablen mit demselben Namen (aber in anderen

Speicherbereichen) definiert werden und dann im Programm-

Quellcode verwirrend sein können (und zu Fehlern führen).

Beispiel

int globaleZahl = 5; // globaleZahl ist eine globale Variable und

// von überall aus zugreifbar.

void setup() {

int lokaleZahl = 5; // lokaleZahl ist nur innerhalb der

// setup-Funktion erreichbar.

for (int i = 0; i < 10; i++) {

int lokalereZahl = 8; // i und lokalereZahl sind nur

// innerhalb der for-Schleife

// erreichbar.

int lokaleZahl = 10; // Innerhalb der for-schleife

// wurde auch eine neue

// Variable namens lokaleZahl

// definiert. Innerhalb der

// Schleife hat lokaleZahl den

// Wert 10.

lokaleZahl = 18; // Hier wird die Variable

// lokaleZahl überschrieben, die

// innerhalb der for-Schleife

// definiert wurde.

}

// Hier hat lokaleZahl wieder den Wert 5.

}

Programmwerte (Variablen, Datentypen und Konstanten)

307

Eine weitere Faustregel ist, dass Variablen immer im kleinstmögli-

chen Bereich definiert sein sollten. Werden Variablen außerhalb

geschweifter Klammern nicht benutzt, ist es sinnvoll, sie in diesem

Bereich auch zur definieren.

Oft werden globale Variablen als Konfigurationsvariablen benutzt.

Diese setzen dann z.B. die Pinbelegung für das Arduino-Programm

fest oder ermöglichen es, schnell bestimmte Zeitintervalle zu

definieren. Es ist oft nützlich, diese globalen Konfigurationsvariab-

len unmittelbar am Anfang des Programms zu schreiben, damit sie

alle an einem Ort gruppiert erscheinen. Späterer Benutzer des Pro-

gramms können dann schnell bestimmte Konfigurationswerte ein-

stellen, ohne im kompletten Programm nach ihnen suchen zu

müssen.

Konstanten

Konstanten sind eine besondere Art von Variablen, die nicht verän-

dert werden können. Konstanten belegen meistens auch keinen

Speicherplatz (außer Tabellen und Zeichenketten) und werden oft

benutzt, um bestimmten festen Werten symbolische Namen zuzu-

ordnen (zum Beispiel die Nummer eines Pins, der eine bestimmte

Funktion erfüllt, die Nummer eines bestimmten Kommandos auf

einem externen Sensor oder ein Konfigurationsparameter der Soft-

ware). Eine Konstante wird mit dem Wort const deklariert. Bei

Schreibzugriffen auf diese Variable meldet die Arduino-Software

einen Programmierfehler.

Beispiel

const int ledPin = 5; // ledPin kann nicht verändert werden und

// hat den Wert 5.

Allgemein ist es sehr praktisch, häufig benutzte explizite Werte

(zum Beispiel eine Pinnummer, die häufig verwendet wird, oder die

Dauer für einen sleep()-Aufruf) als Konstanten zu deklarieren.

Damit sind diese Konfigurationswerte später leicht zu ändern, weil

sie nur an der Definitionsstelle der Konstante geändert werden

müssen, nicht an jeder Einsatzstelle. Weiterhin wird mit der Defini-

tion der Konstante jeder Programmierer, der das Programm zu

einem späteren Zeitpunkt verwendet, darauf hingewiesen, dass ein

bestimmter Konfigurationswert benutzt wird, und welche Bedeu-

tung dieser Wert hat (wenn der Name der Konstante gut gewählt

wurde).

308

Anhang C: Sprachreferenz

Beispiel

const int ledPin = 5;

digitalWrite(ledPin, HIGH); // Diese Schreibweise ist leichter zu

// verstehen ...

digitalWrite(5, HIGH); // ... als diese Schreibweise.

Ausdrücke und Anweisungen

In der Arduino-Programmiersprache wird zwischen zwei Arten von

Programmierbefehlen unterschieden. Auf der einen Seite gibt es

Ausdrücke, die einen bestimmten Wert berechnen, den Rückgabe-

 wert. Diese Art von Programmierbefehlen ist mit einer Funktions-

definition in der Mathematik zu vergleichen: Aus bestimmten

Werten (Konstanten oder Variablen) wird ein neuer Wert berech-

net, zum Beispiel werden mit dem Programmierbefehl a + b die

Variablen a und b addiert. Ausdrücke lassen sich in beliebiger

Weise kombinieren und schachteln, mit ähnlichen Regeln wie in

der Mathematik. Es ist oft wichtig, runde Klammern ((und)) zu

benutzen, um die Reihenfolge der Ausdrücke korrekt zu berechnen.

Da jeder Ausdruck einen Wert berechnet, hat jeder Ausdruck auch

einen entsprechenden Datentyp, den man Rückgabetyp nennt. Die-

ser hängt sowohl vom Ausdruck als auch von den im Ausdruck

benutzten Datenwerten ab. Im nächsten Abschnitt werden die ver-

schiedenen Ausdrücke der Arduino-Programmiersprache erläutert.

Eine spezielle Art von Ausdrücken sind Funktionsaufrufe, die in

dem Abschnitt über Funktionen erklärt werden.

Auf der anderen Seite gibt es sogenannte Anweisungen, die im

Unterschied zu Ausdrücken keine Werte berechnen, sondern orga-

nisatorische Rollen übernehmen und den Status des Prozessors

beeinflussen (einen Wert zu berechnen, verändert erst einmal

nichts, dazu muss er zunächst gespeichert werden). Sie bestimmen

auch die Struktur des Programms, also welche Funktionen es gibt

und welche Variablen definiert werden. Sie bestimmen auch, wel-

cher Weg durch das Programm letztendlich benutzt wird (welche

Anweisungen ausgeführt werden). Diesen Weg und seine Steue-

rung nennt man den Programmkontrollfluss.

Ausdrücke sind auch Anweisungen, allerdings bewirken Ausdrücke

(außer den Zuweisungsausdrücken, siehe den Abschnitt über Aus-

drücke) nichts: Die Werte, die sie berechnen, werden nirgendwo

gespeichert, und meistens werden allein stehende Ausdrücke vom

Compiler ignoriert.

Ausdrücke und Anweisungen

309

Eine Art von Anweisungen wurde schon erläutert, die Variablende-

klaration. Eine weitere Kategorie von Anweisungen sind Kontroll-

strukturen und Funktionsdefinitionen, die in in ihren entsprechen-

den Abschnitten erläutert werden.

Ausdrücke

Die einfachste Art Ausdruck in der Arduino-Programmiersprache

haben wir schon oft gesehen. Es ist ein einfacher expliziter Wert,

z.B. eine Zahl oder die Angabe einer Zeichenkette. Dieser Aus-

druck hat den Typ des expliziten Werts, und der Wert ist natürlich

die angegebene Zahl. Bei Zeichenketten ist der Wert die Adresse

der Speicherkette, dieses Detail ist allerdings in den meisten Ardu-

ino-Programmen nicht von Bedeutung.

Beispiel

5; // Zahlenausdruck mit Wert 5

"arduino"; // Der Wert dieses Ausdrucks ist die Adresse der

// Zeichenkette.

// Beide Ausdrücke werden vom Compiler ignoriert.

Variablenzuweisung

Ein weiterer Ausdruck ist die Variablenzuweisung, die das Gleich-

heitszeichen (=) als Symbol verwendet. Auf der linken Seite des =

steht die Variable, der ein Wert zugewiesen werden soll, und auf

der rechten Seite steht der Ausdruck, der berechnet und anschlie-

ßend gespeichert werden soll.

Eigentlich ist die Variablenzuweisung eine Anweisung, sie hat

jedoch den zugewiesenen Wert als Rückgabewert und den Typ der

zugewiesenen Variable als Rückgabetyp (das ist wichtig bei der

automatischen Datentypkonvertierung, die weiter unten erklärt

wird). Dadurch ist es möglich, mehrere Variablenzuweisungen zu

schachteln und Variablenzuweisungen innerhalb von weiteren Aus-

drücken zu verwenden. Hier ist aber wieder Vorsicht geboten, weil

deswegen die Zuweisungsreihenfolge von Variablen nicht unbe-

dingt klar ersichtlich ist. Es ist deswegen ratsam, Zuweisungen bes-

ser als getrennte Anweisungen in das Programm zu schreiben.

Beispiel

int i = 0; // Die Variable i wird mit 0 initialisiert

// (kein Ausdruck).

int j = 2; // Die Variable j with mit 2 initialisiert.

i = 5; // Der Variable i wird der Wert 5 zugewiesen.

310

Anhang C: Sprachreferenz

j = i = 6; // Der Variable i wird der Wert 6 zugewiesen,

// dann wird der Variable j der Wert 6 zugewiesen.

j = (i = 5) * 2; // Der Variable i wird der Wert 5 zugewiesen,

// der Variable j wird der Wert 10 zugewiesen.

i = 5; // Es ist allerdings ratsamer, die vorige Zeile

// in zwei getrennte

j = i * 2; // Zuweisungen zu schreiben. Der erzeugte

// Maschinencode ist in beiden Fällen identisch.

Ein häufiger Fehler beim Lernen der Arduino-Programmiersprache

(und von C und C++) ist das Verwechseln der Variablenzuweisung

= und der Vergleichsoperation == (siehe Abschnitt Vergleichsopera-

tionen). Im ersten Fall wird ein Wert gespeichert, und der Rückga-

bewert des Ausdrucks ist dieser Wert. Im zweiten Fall werden zwei

Werte verglichen (es wird kein Wert gespeichert), und der Rückga-

bewert des Ausdrucks ist ein Boolescher Wert true oder false. Es

kommt ziemlich häufig vor, dass = statt == verwendet wird, und der

Compiler meldet auch keinen Fehler. Im Programm ist ein solcher

Fehler auch schwer zu erkennen, weil = und == ähnlich aussehen.

Ein Weg, um das zu umgehen, ist, bei Vergleichsoperationen mit

literalen Werten den literalen Wert auf die linke Seite zu schreiben.

Wird dann = mit == verwechselt, meldet der Compiler einen Fehler,

weil in einem literalen Wert nichts gespeichert werden kann.

Beispiel

if (i = 2) { // Hier wird nicht i mit 2 verglichen, sondern i wird

// 2 zugewiesen.

}

if (2 == i) { // Mit dieser Schreibweise lassen sich solche

// Verwechslungen oft vermeiden.

}

Operationen

Der Großteil der Ausdrücke in der Arduino-Programmiersprache

sind Operationen, die aus einem oder mehreren Argumenten einen

neuen Wert berechnen. Es gibt mehrere Arten von Operationen,

die innerhalb von Ausdrücken benutzt werden können. Eine Ope-

ration nimmt einen oder mehrere Werte und berechnet daraus

einen neuen Ergebniswert. Je nach Operationsart und Typ der Ein-

gabewerte werden Werte mit unterschiedlichen Datentypen

berechnet.

Wir stellen Ihnen jetzt zuerst die verschiedenen Operationen im

Überblick vor und erklären sie im weiteren Abschnitt dann detail-

liert.

Ausdrücke

311

Arithmetische Operationen berechnen aus Zahlenwerten einen

neuen Zahlenwert: Es sind die bekannten Operationen wie Addie-

ren, Subtrahieren, Multiplizieren und Teilen. Logische Operatio-

nen berechnen aus Bitmasken neue Bitmasken (Bitmasken sind

binär dargestellte Zahlen), es sind die Operationen »und« (&),

»oder« (|), »exklusiv oder« (^), »Negieren« (~) und »Shiften« (<<

und >>). Boolesche Operationen berechnen aus den Booleschen

Werten »wahr« und »falsch« neue Boolesche Ergebniswerte, die

Operationen »und« (&&), »oder« (||) und »Negieren« (!). Diese sind

sehr einfach mit den logischen Operationen zu verwechseln, sind

aber ganz anders definiert (die Unterschiede werden weiter unten

im Abschnitt über logische Operationen erläutert).

Viele Operationen arbeiten mit Booleschen Werten (also mit

»wahr« oder »falsch«). Diese Werte müssen natürlich auch im Spei-

cher des Arduino-Prozessors gespeichert werden, entweder als Bit

in einem größeren numerischen Wert oder als eigener Wert (z.B.

wenn dieser Boolesche Wert in einer Variable gespeichert wird).

Deswegen gibt es Konvertierungsregeln, die einen Booleschen Wert

in einen numerischen Wert (oder Bitwert) konvertieren und anders

herum. Falsch wird generell als 0 kodiert (also als numerischer

Wert 0 oder als Bitwert 0). Wahr sind dementsprechend alle Werte,

die nicht 0 sind (also der Bitwert 1 und jeder mögliche numerische

Wert ungleich 0). Diese Unterscheidung mag ein bisschen übertrie-

ben klingen, ist aber sehr wichtig, besonders wenn Vergleichsope-

rationen und logische Operationen verwendet werden.

Datentypkonvertierung

Diese Konvertierung von numerischen Werten zu Booleschen Wer-

ten ist eigentlich nur ein kleiner Einblick in ein größeres Thema: die

 Datentypkonvertierung. Generell ist es möglich, Operationen auf

unterschiedliche Datentypen anzuwenden, um zum Beispiel eine

 long-Zahl zu einer short-Zahl zu addieren oder um eine signed-Zahl

mit einer unsigned-Zahl zu vergleichen. Es gibt zwei Arten von

Datentypkonvertierungen: implizite und explizite. Implizite Daten-

typkonvertierungen werden automatisch ohne spezielle Markie-

rung vom Programmierer vom Compiler eingefügt, wenn z.B.

unterschiedliche Datentypen im selben Ausdruck vorkommen.

Explizite Datentypkonvertierungen werden vom Programmierer

eingefügt. Es ist nur selten notwendig, explizite Datentypkonvertie-

rungen einzuführen, aber besonders auf einem Mikrocontroller wie

dem Arduino-Prozessor, der über eine begrenzte Menge an Spei-

cher verfügt und intern mit 8 Bit rechnet, ist es in fortgeschrittenen

312

Anhang C: Sprachreferenz

Fällen notwendig, genau zu kontrollieren, welche Datentypen ein-

gesetzt werden.

Die einfachste Art von implizierter Konvertierung geschieht bei der

Zuweisung einer Variable. Hier kann es zwei Möglichkeiten geben.

Im unproblematischen Fall umfasst der Zieldatentyp den Quellda-

tentyp. Im problematischen Fall ist der Zieldatentyp kleiner als der

Quelldatentyp (z.B. wenn ein unsigned-Wert in einen signed-Wert

konvertiert wird, oder wenn ein int-Datentyp in einen byte-Daten-

typ konvertiert wird). In diesem Fall wird der Wert trunkiert, je

nachdem, welche Konvertierung vorgenommen wird. Belegt der

Zieldatentyp weniger Platz im Speicher, wird einfach der obere Teil

des Wertes verworfen, was zu interessanten Ergebnissen führen

kann, wie im folgenden Beispiel gezeigt wird. Wird eine signierte

Konvertierung vorgenommen, wird der alte Wert jetzt signiert

interpretiert, was unter Umständen zu einer kompletten Umkeh-

rung des Wertes führen kann (siehe das Beispiel). Es ist bei Konver-

tierungen also kritisch zu überprüfen, dass keine fehlerhaften

Konvertierungen passieren.

Beispiel

byte b = 5;

int i;

i = b; // Der byte-Wert von b wird in einen int-Wert konvertiert.

i = 260;

b = i; // Der int-Wert von i wird in einen byte-Wert konvertiert.

// Da int zwei Byte belegt, wird das oberste Byte einfach

// verworfen. b hat jetzt den Wert 4.

unsigned byte b2 = 160;

signed byte b3 = b2; // Hier wird 160 als signierte Zahl

// interpretiert.

// Der Wert von b3 ist -96.

b2 = -80; // Hier wird -80 als unsignierte Zahl interpretiert.

// Der Wert von b2 ist 176.

int i2 = 60 * 100; // Der Wert von i2 ist 6000.

int i3 = 60 * 1000; // Der Wert von i3 ist -5536 (!).

Werden unterschiedliche Datentypen im selben Ausdruck verwen-

det, konvertiert der Compiler sie automatisch in den »größten«

Datentyp, der alle benutzten Argumente und das Ergebnis der Ope-

ration beinhalten kann. Wird eine byte-Zahl zu einer weiteren byte-

Zahl addiert, ist das Ergebnis eine int-Zahl, weil das Ergebnis unter

Umständen (z.B. 250 + 8) nicht mehr in das eine Speicherbyte einer

 byte-Zahl passen würde. Wird eine byte-Zahl zu einer int-Zahl

addiert, ist das Ergebnis eine long-Zahl, weil wie im vorigen Bei-

spiel das Ergebnis nicht mehr in die zwei Speicherbytes einer int-

Zahl passen würde.

Ausdrücke

313

Besonders knifflig wird die Thematik, wenn signed-Werte und unsigned-Werte im selben Ausdruck verwendet werden. Dadurch wird

der Ausdruck zu einem signierten Ausdruck, und es kann bei der

Zuweisung des Ergebnisses oder beim Vergleich mit unsignierten

Werten schnell zu unerwarteten Ergebnissen kommen. Solche Feh-

ler sind besonders schwer herauszufinden, weil sie beim Lesen des

Programms nicht sofort ersichtlich sind. Falls also bei Rechen-

ausdrücken oder Vergleichen (insbesondere in Schleifen) unerwar-

tete Werte auftreten, ist es manchmal notwendig, die Ausdrücke

ganz genau unter die Lupe zu nehmen, und zur Not explizite

Datentypkonvertierungen zu verwenden.

Einer der häufigsten Fehler ist der Vergleich von signed- und unsig-

 ned-Zahlen, der immer wahr oder immer falsch ist und zum Bei-

spiel zu nie endenden Schleifen führen kann. Solche simplen Fehler

werden häufig vom Compiler erkannt, aber nur als Warning

gekennzeichnet, sodass man sie in der Arduino-Umgebung, wenn

die verbose-Kompilation nicht angeschaltet ist, nicht zu sehen

bekommt.

Explizite Datentypkonvertierungen werden vom Programmierer

eingefügt. Hier wird vor dem zu konvertierenden Ausdruck in

Klammern der Zieldatentyp angegeben. Es gelten die gleichen

Regeln und Warnungen wie für implizite Datentypkonvertierungen.

Beispiel

short s = 2;

int i = (int)s; // explizite Konvertierungen von short nach int

Präzedenzregeln

Bei Ausdrücken gibt es in der Arduino-Programmiersprache festge-

legte Präzedenzregeln (in welcher Reihenfolge Ausdrücke berechnet

werden). Generell gelten die üblichen arithmetischen Regeln (Mul-

tiplikation und Division vor Addition und Subtraktion), ansonsten

wird der Ausdruck von links nach rechts ausgewertet. Das ist bei

längeren Ausdrücken schwer nachzuvollziehen, insbesondere wenn

Operationen verwendet werden, die programmiersprachenspezi-

fisch sind. Es ist möglich, die Auswertungsreihenfolge explizit zu

beschreiben, indem man runde Klammern benutzt. Ausdrücke

innerhalb von Klammern werden als Erstes berechnet und ihr

Ergebnis im übergeordneten Ausdruck eingesetzt. Runde Klam-

mern können beliebig geschachtelt werden.

314

Anhang C: Sprachreferenz

Auch hier ist es manchmal angebracht, der Lesbarkeit halber den

Ausdruck in mehrere einzelne Ausdrücke aufzutrennen, die in

lokale Variablen gespeichert werden. Oft hat das keinen Einfluss

auf die Geschwindigkeit eines Programms.

Beispiel

int i = 5 + 2 * 6 – 8 / 2; // Der Wert von i ist 13.

int i2 = ((5 + 2) * 6 – 8) / 2; // Der Wert von i2 ist 17.

// Hier wird der Ausdruck von i2 in mehrere einzelne lokale

// Variablen aufgetrennt.

int tmp1 = 5 + 2;

int tmp2 = tmp1 * 6 – 8;

int i3 = tmp2 / 2; // Der Wert von i3 ist 17.

Arithmetische Operationen

Die arithmetischen Operationen in der Arduino-Programmierspra-

chen sind die üblichen mathematischen Operationen: Addition,

Subtraktion, Multiplikation und Division.

Eine spezielle arithmetische Operation ist die Modulo-Operation,

die den Restwert einer ganzzahligen Division berechnet. Die

Modulo-Operation ist auf Fließkommazahlen nicht definiert. Die

Modulo-Operation wird häufig benutzt, um einen Wert innerhalb

eines bestimmten Bereichs zu halten (z.B. innerhalb der Größe

einer Tabelle). Die Modulo-Operation mit einem Teiler, der eine

Zweierpotenz ist (also 2, 4, 8, 16, 32 usw.), lässt sich auf einem

Computer besonders effizient ausführen. Es ist also aus Geschwin-

digkeitsgründen wichtig, bei häufig benutzten Tabellen, auf die

mithilfe der Modulo-Operation zugegriffen wird, eine Zweierpo-

tenz als Größe zu wählen.

Beispiel

byte b = 5 % 3; // Der Wert von b ist 2, weil 2 der Restwert von 5

// geteilt durch 3 ist.

byte b2 = 65 % 20; // Der Wert von b2 ist 5, weil 5 der Restwert

// von 65 geteilt durch 20 ist.

int tabelle[64]; // eine Tabelle mit 64 Werten

int index = 40;

tabelle[index % 64] = 5; // So ist gewährleistet, dass der

// Indexwert immer innerhalb der Tabelle

// ist.

tabelle[index % 64]; // Diese Operation ist um ein Vielfaches

// schneller als:

tabelle[index % 63];

Wird die Divisionsoperation auf ganzzahlige Wert angewendet, ist

das Ergebnis auch eine ganzzahlige Zahl, es wird also die ganzzah-

Ausdrücke

315

lige Division angewendet. Soll eine Fließkommazahl berechnet

werden, muss mindestens eins der Divisionsargumente eine Fließ-

kommazahl sein (also vom Datentyp float oder double). Das lässt

sich entweder durch explizite Datentypkonvertierung erreichen,

oder indem literale Werte mit einem Komma (geschrieben als

Punkt) angegeben werden (zur Not mit ».0«).

Beispiel

byte b = 5 / 2; // Der Wert von b ist 2.

float f = 5 / 2; // Der Wert von f ist 2.0.

float f2 = 5.0 / 2.0; // Der Wert von f2 ist 2.5.

In der folgenden Tabelle werden alle arithmetischen Operationen

zur Referenz aufgelistet.

Tabelle C-3

Zeichen

Name

Erklärung

Arithmetische Operationen

+

Addition

addiert zwei Zahlen

-

Subtraktion

subtrahiert zwei Zahlen

*

Multiplikation

multipliziert zwei Zahlen

/

Division

teilt zwei Zahlen (wenn beide Argumente ganzzahlig sind, ist die

Division ganzzahlig)

%

Modulo

Berechnet den Restwert der ganzzahligen Division von zwei Zahlen

Logische Operationen

Logische Operationen rechnen mit Bitwerten, also mit 0 und 1. Da

sich aber einzelne Bitwerte nicht direkt auf dem Arduino-Prozessor

speichern lassen, arbeiten die logischen Operationen mit den ein-

zelnen Bits der normalen numerischen Datenwerte (also mit der

Bitmaskendarstellung, siehe Abschnitt Datentypen). Die logische

Operation wird auf jedes einzelne Bit des numerischen Wertes

getrennt angewendet.

Das logische UND (&) und das logische ODER (|) ähneln den Boo-

leschen Operatoren UND (&&) und ODER (||), und beide Operato-

ren sind leicht zu verwechseln. Die logischen Operationen arbeiten

jedoch auf numerische Werte und beeinflussen jedes einzelne Bit

dieser Werte, während die Booleschen Operatoren mit Booleschen

Werten arbeiten (0 ist falsch, alles andere ist wahr). Dazu werden

numerische Argumente erst in Boolesche Werte konvertiert (siehe

oben im Abschnitt »Datentypkonvertierung« in diesem Anhang).

Viele der logischen Operatoren werden benutzt, um einzelne Bits

auf 0 oder auf 1 zu setzen. Deswegen bietet die Arduino-Program-

mierumgebung ein Funktion, um eine Bitmaske zu erzeugen, in der

316

Anhang C: Sprachreferenz

ein einziges Bit gesetzt ist. Diese Funktion heißt bit(bitNummer).

Hier muss beachtet werden, dass bitNummer bei 0 anfängt, also

bit(0) verwendet wird, um eine Bitmaske zu erzeugen, in der das

unterste (also das letzte) Bit auf 1 gesetzt ist.

Beispiel

byte a = bit(4); // a wird auf 00010000 gesetzt.

a = bit(0); // a wird auf 00000001 gesetzt.

In der folgenden Tabelle sind alle logische Operationen zur Refe-

renz aufgelistet.

Tabelle C-4

Zeichen

Name

Erklärung

Logische Operationen

&

Und

logisches UND, Maskierung

(1 & 1 = 1, sonst 0)

|

Oder

logisches ODER

(0 | 0 = 0, sonst 1)

^

Exklusiv-Oder

exklusives ODER (gibt 1 zurück, wenn genau eins der

Argumente 1 ist)

~

Bitweise negieren

invertiert jedes Bit (aus 1 wird 0, aus 0 wird 1)

<<

Shift nach links

bewegt alle Bits um eine Stelle nach links und füllt mit 0 auf

>>

Shift nach rechts

bewegt alle Bits um eine Stelle nach rechts und füllt mit dem

Sign-Bit nach, wenn notwendig, sonst mit 0

& : Logisches UND (Maskierung)

Die &-Operation ist der logische UND-Operator. Er gibt 1 zurück,

wenn seine beiden Argumente auch 1 sind. Seine Funktionsweise

lässt sich am leichtesten mit der folgenden Tabelle erläutern. Das

&-Zeichen muss immer mit Leerzeichen abgetrennt werden, da es

in der Arduino-Programmiersprache eine fortgeschrittene (und

ganz andere) Bedeutung hat, wenn es direkt an einem Wort hängt .

Tabelle C-5

a

b

a & b

Logische UND-Operation

0

0

0 & 0 = 0

0

1

0 & 1 = 0

1

0

1 & 0 = 0

1

1

1 & 1 = 1

In den folgenden Beispielen wird der logische UND-Operator auf

numerische Datenwerte angewendet (die obige Funktionstabelle

wird auf jedes einzelne Bit der Datenwerte angewendet).

Ausdrücke

317

Beispiel

byte a = 5; // a ist 00000101 in Binärdarstellung.

byte b = 3; // b ist 00000011 in Binärdarstellung.

byte c = a & b; // c ist a & b = 00000101 & 00000011 = 00000001 = 1.

a = 0xFE; // a ist 11111110 in Binärdarstellung.

c = a & b; // c ist a & b = 11111110 & 00000011 = 00000010 = 2.

Üblicherweise wird der Maskierungsoperator verwendet, um ein-

zelne Bits aus einem Wert zu extrahieren oder zu testen. So kann

man das letzte Bit aus einem Wert (oder einem Eingangsport des

Arduino) extrahieren, indem man ihn mit 1 maskiert. Das letzte Bit

in einem Wert kennzeichnet, ob der Wert gerade oder ungerade ist,

so lässt sich also mit dem Maskierungsoperator bestimmen, ob eine

Zahl gerade oder ungerade ist, ohne sie durch 2 teilen zu müssen.

Beispiel

byte a = 5;

if (a & 1) {

// a ist ungerade, da das letzte Bit gesetzt ist.

} else {

// a ist gerade, da das letzte Bit nicht gesetzt ist.

}

Ähnlich lassen sich z.B. die vier unteren Bits oder die vier oberen

Bits aus einem Wert extrahieren (das ist manchmal notwendig,

wenn z.B. ein Sensor zwei 4-Bit-Werte in einem Byte zurückgibt).

Um die Werte auch richtig zu bearbeiten, wird oft noch der Shift-

Operator (siehe Abschnitt über Shift-Operator) eingesetzt, um die

extrahierten Bits an die unterste Stelle zu bewegen.

Beispiel

byte a = 0xfe;

byte untereBits = (a & 0xF); // extrahiert die 4 unteren Bits, da

// 0xF = 00001111

byte obereBits = (a & 0xF0) >> 4; // extrahiert die 4 oberen Bits,

// da 0xF0 = 11110000

Mit dem Maskierungsoperator ist es auch möglich, bestimmte Bits

auf 0 zu setzen. Im folgenden Beispiel wird gewährleistet, dass das

oberste Bit der Variable value auf 0 gesetzt wird.

Beispiel

value = value & 0x7F; // Das oberste Bit von value ist immer 0, da

// 0x7F = 01111111.

Oft werden auch Masken als Konstanten definiert (siehe Abschnitt

über Konstanten), um den Programmtext besser lesbar zu machen.

Die obigen Beispiele lassen sich auch wie folgt schreiben:

318

Anhang C: Sprachreferenz

Beispiel

const byte UntereBitsMaske = 0x0F;

const byte ObereBitsMaske = 0xF0;

byte a = 0xfe;

byte untereBits = (a & UntereBitsMaske);

byte obereBits = (a & ObereBitsMaske) >> 4;

const byte ValueByteMaske = 0x7F; // Diese Maske wird auf alle

// Values angewendet.

value = value & ValueByteMaske;

|: Logisches ODER

Das | ist der logische ODER-Operator. Er gibt 1 zurück, wenn min-

destens eins seiner Argumente auch 1 ist. Seine Funktionsweise

lässt sich am besten mit der folgenden Tabelle erläutern.

Tabelle C-6

a

b

a | b

Logische ODER-Operation

0

0

0 | 0 = 0

0

1

0 | 1 = 1

1

0

1 | 0 = 1

1

1

1 & 1 = 1

In den folgenden Beispielen wird der logische ODER-Operator auf

numerische Datenwerte angewendet (die obige Funktionstabelle

wird auf jedes einzelne Bit der Datenwerte angewendet).

Beispiel

byte a = 5; // a ist 00000101 in Binärdarstellung.

byte b = 3; // b ist 00000011 in Binärdarstellung.

byte c = a | b; // c ist a | b = 00000101 | 00000011 = 00000111 = 7.

a = 0x8E; // a ist 10001110 in Binärdarstellung.

c = a | b; // c ist a | b = 10001110 | 00000011 = 10001111 = 0x8F.

Üblicherweise wird der ODER-Operator verwendet, um einzelne

Bits in einem Wert auf 1 zu setzen. Hier lässt sich die Funktion

bit(bitNummer) einsetzen, um gezielt einzelne Bits auf 1 zu setzen.

Beispiel

value = value | 1; // Das unterste Bit in value wird auf 1

// gesetzt.

byte a = bit(0) | bit(2) | bit(4); // a wird auf 00010101 gesetzt.

^: Exklusives ODER

Das ^ ist der exklusive ODER-Operator. Er gibt 1 zurück, wenn

genau eins seiner Argumente auch 1 ist. Seine Funktionsweise lässt

sich am besten mit der folgenden Tabelle erläutern .

Ausdrücke

319

Tabelle C-7

a

b

a ^ b

Exklusive ODER-Operation

0

0

0 ^ 0 = 0

0

1

0 ^ 1 = 1

1

0

1 ^ 0 = 1

1

1

1 ^ 1 = 0

In den folgenden Beispielen wird der exklusive ODER-Operator auf

numerische Datenwerte angewendet (die obige Funktionstabelle

wird auf jedes einzelne Bit der Datenwerte angewendet).

Beispiel

byte a = 5; // a ist 00000101 in Binärdarstellung.

byte b = 3; // b ist 00000011 in Binärdarstellung.

byte c = a ^ b; // c ist a ^ b = 00000101 ^ 00000011 = 00000010 = 2.

a = 0x8E; // a ist 10001110 in Binärdarstellung.

c = a ^ b; // c ist a ^ b = 10001110 ^ 00000011 = 10000001 = 0x81.

Üblicherweise wird der exklusive ODER-Operator verwendet, um

einzelne Bits umzukehren, ohne andere Bits zu beeinflussen. Das ist

besonders praktisch, um zum Beispiel eine bestimmte LED bei

jedem Durchlaufen einer Funktion blinken zu lassen (beim ersten

Durchlauf anschalten, beim nächsten Durchlauf ausschalten, dann

wieder anschalten usw.), wenn der Wert dieser LED zusammen mit

den Werten anderer LEDs in einer Variable gespeichert wird (wie

bei unserer LED-Matrix, siehe).

Beispiel

byte ledZeile = 0; // ledZeile speichert den Wert von 8 LEDs

void toggleLed() {

ledZeile = ledZeile ^ 1; // die unterste LED in ledZeile wird

// invertiert

}

~: Logische Negierung

Die Tilde ~ ist der logische Negierungsoperator, der ein einzelnes

Argument annimmt (das auf eine rechte Seite geschrieben wird). Er

gibt 1 zurück, wenn er auf 0 angewendet wird, und 0, wenn er auf 1

angewendet wird, wie der folgenden Tabelle zu entnehmen ist.

Tabelle C-8

a

~a

Logische Negierung

0

~0 = 1

1

~1 = 0

In den folgenden Beispielen wird die logische Negierung auf nume-

rische Datenwerte angewendet (die obige Funktionstabelle wird auf

jedes einzelne Bit der Datenwerte angewendet).

320

Anhang C: Sprachreferenz

Beispiel

byte a = 5; // a ist 00000101 in Binärdarstellung.

byte c = ~a; // c ist ~a = ~00000101 = 11111010 = 0xFA.

a = 0x8E; // a ist 10001110 in Binärdarstellung.

c = ~a; // c ist ~a = ~10001110 = 01110001 = 0x71.

Üblicherweise wird der Negierungsoperator verwendet, um jedes

Bit in einem Wert umzukehren.

<<: Shift nach links

Die <<-Operation verschiebt die Bits in einem Wert um eine

bestimmte Anzahl von Stellen nach links. (Auf Englisch heißt ver-

schieben »to shift«, diese Operation wird auch auf Deutsch übli-

cherweise »shiften« genannt.) Die dadurch »entstehenden« Stellen

werden mit Nullen gefüllt. Bits, die nicht mehr in den Datentyp

hineinpassen, verschwinden.

Beispiel

byte a = 5; // a ist 00000101 in Binärdarstellung.

byte b = a << 2; // b ist 00010100 in Binärdarstellung,

// der Wert von a wurde um 2 Stellen nach links

// verschoben.

byte c = 0x7F; // c ist 01111111.

byte d = c << 3; // d ist 11111000.

In Kombination mit der |-Operation lassen sich so beliebige Bit-

masken erstellen. Eine eigene Implementierung der bit(bitNum-

mer)-Funktion (die allerdings nur für byte-Bitmasken funktioniert)

könnte in etwa so aussehen wie im folgenden Beispiel (um mehr zu

Funktionsdefinition zu erfahren, siehe den Abschnitt Funktionen).

Beispiel

byte meinBv(uint8_t bitNummer) {

return (1 << bitNummer);

}

Da auf einem Computer Zahlen in Binärdarstellung gespeichert

werden, ist die Shift-nach-links-Operation eine effiziente Art,

Werte mit einer Zweierpotenz zu multiplizieren. Einen Wert um

eine Stelle nach links zu verschieben, entspricht einer Multiplika-

tion mit der Zahl 2. Einen Wert um zwei Stellen nach links zu ver-

schieben, entspricht einer Multiplikation mit der Zahl 4 usw.

Deswegen lassen sich Multiplikationen mit Zweierpotenzen oft

schneller ausführen als allgemeine Multiplikationen.

Beispiel

byte a = 5;

byte b = a << 2; // b ist gleich 5 * 4 = 20.

Ausdrücke

321

>>: Shift nach rechts

Die >>-Operation verschiebt die Bits in einem Wert um eine

bestimmte Anzahl von Stellen nach rechts. Im Unterschied zur

Shift-nach-links-Operation werden allerdings die »entstehenden«

Stellen nicht immer mit Nullen gefüllt. Wegen der Zweierkomple-

ment-Darstellung (siehe Abschnitt über Datentypen) ist bei negati-

ven Zahlen das oberste Bit auf 1 gesetzt. Um das Vorzeichen eines

Wertes beim Shiften nach rechts zu erhalten, wird dementspre-

chend bei negativen Zahlen mit Einsen aufgefüllt. Deswegen ist

Vorsicht beim Shiften nach rechts geboten, weil unerwartete Werte

herauskommen können.

Um zu vermeiden, dass mit dem obersten Bit bei negativen Zahlen

aufgefüllt wird, kann der Wert vor dem Shiften mit einer expliziten

Datentypkonvertierung zuerst in einen unsigned-Wert konvertiert

werden.

Beispiel

byte a = 5; // a ist 00000101 in Binärdarstellung.

byte b = a >> 2; // b ist 00000001 in Binärdarstellung,

// der Wert von a wurde um zwei Stellen nach

// rechts verschoben. Da a keine signed Nummer

// ist, wird hier mit 0 aufgefüllt.

signed byte c = -16; // c ist 11110000 in Binärdarstellung.

signed byte d = c >> 3; // d ist 11111110 in Binärdarstellung.

signed byte e = (unsigned)c >> 3; // d ist 00011110 in

// Binärdarstellung.

Ähnlich wie die >>-Operation entspricht die Shift-nach-rechts-

Operation einer ganzzahligen Division durch eine Zweierpotenz.

Beispiel

byte a = 100;

byte b = a >> 2; // b ist gleich 100 / 4 = 25.

Mit dem >>-Operator und dem logischen UND (&) lassen sich ein-

zelne Bits aus einem Wert extrahieren und in einem anderen spei-

chern.

Beispiel

byte b = (a >> 2) & 1; // Das dritte Bit von a wird in b

// gespeichert.

Vergleichsoperationen

Vergleichsoperationen sind eine der am häufigsten eingesetzten

Arten von Operationen, insbesondere kombiniert mit dem Einsatz

322

Anhang C: Sprachreferenz

von Kontrollstrukturen (siehe Abschnitt von Kontrollstrukturen).

Mit Vergleichsoperationen lassen sich zwei Werte vergleichen. Der

Rückgabetyp von Vergleichsoperationen ist ein Boolescher Wert,

der sich auch als numerischer Wert einsetzen lässt (wahr ist 1,

falsch ist 0).

Der ==-Operator vergleicht, ob zwei Werte gleich sind. Dieser Ope-

rator sollte nicht mit dem Zuweisungsausdruck (=) verwechselt wer-

den. Der !=-Operator ist das genaue Gegenteil des ==-Operators und

gibt immer »wahr« zurück, wenn zwei Werte unterschiedlich sind.

Beispiel

byte a = 255;

byte b = 101;

signed byte c;

a == 255; // ist wahr

a != 255; // ist falsch

a == b; // ist falsch

a != b; // ist wahr

byte d = a == b; // d hat jetzt den Wert 0.

c == 128; // ist immer falsch, egal welchen Wert c hat,

// da der Datentyp von c 128 nicht umfasst

c != 128; // ist immer wahr

a = b; // Das ist eine Zuweisung und kein Vergleich!

char x = 'a';

x == 'a'; // ist wahr

Zeichenketten lassen sich allerdings nicht so einfach vergleichen,

weil der »eigentliche« Wert einer Zeichenkette ihre Adresse im

Speicher ist, nicht die Zeichenketten als solche. Auch Tabellen las-

sen sich nicht mit Vergleichsoperationen vergleichen.

Beispiel

char meineKette[] = "foobar";

meineKette == "foobar"; // ist falsch

int meineTabelle[] = { 1, 2, 3};

int meineTabelle2[] = { 1, 2, 3};

meineTabelle != meineTabelle2; // ist wahr

Ähnlich wie ihre verwandten Operatoren in der Mathematik ver-

gleichen die Operatoren > (größer als), < (kleiner als), >= (größer als

oder gleich) und <= (kleiner als oder gleich) numerische Werte.

Hier sei wieder auf die vom Compiler ausgeführte implizite Typ-

konvertierung und die möglichen Werte der einzelnen Datentypen

hingewiesen.

Beispiel

byte a = 5;

a < 10; // ist wahr

a > 2; // ist wahr

Ausdrücke

323

a > 5; // ist falsch

a >= 5; // ist wahr

a < 300; // ist für jeden Wert von a wahr

In der folgenden Tabelle sind alle Vergleichsoperationen zur Refe-

renz aufgelistet.

Tabelle C-9

Zeichen

Name

Vergleichsoperationen

==

gleich

!=

nicht gleich

<

kleiner

<=

kleiner oder gleich

>

größer

>=

größer oder gleich

Boolesche Operationen

Boolesche Operationen ähneln sehr ihren äquivalenten logischen

Operationen. Allerdings arbeiten Boolesche Operationen mit den

Wahrheitswerten »wahr« und »falsch«, nicht mit Bits. Mit Boole-

schen Operationen lassen sich verschiedene Boolesche Ausdrücke

(z.B. Vergleichsoperationen) miteinander verknüpfen.

Das Boolesche UND && (im Unterschied zum logischen UND &)

gibt » wahr« zurück, wenn seine beiden Argumente wahr sind. Das

Boolesche ODER || (im Unterschied zum logischen ODER |) gibt

» wahr« zurück, wenn mindestens eines seiner Argumente wahr ist.

Die Boolesche Negierung ! (im Unterschied zur logischen Negie-

rung ~) gibt » wahr« zurück, wenn ihr Argument falsch ist, und

» falsch«, wenn ihr Argument wahr ist.

Da mit Booleschen Operatoren oft kompliziertere Vergleichsopera-

tionen verknüpft werden, ist es meist ratsam, runde Klammern ein-

zusetzen, um die Auswertungsreihenfolge explizit zu formulieren –

sonst kann es unter Umständen zu fehlerhaften Ausdrücken kom-

men (insbesondere wenn mehrere &&- und ||-Operatoren verknüpft

werden). Wie man leicht sehen kann, können Boolesche Ausdrücke

ähnlich kompliziert werden wie arithmetische Ausdrücke. Auch

hier ist es oft hilfreich (und meistens nicht langsamer), Zwischenva-

riablen einzuführen, um die Ausdrücke zu vereinfachen.

Beispiel

byte a = 5;

byte b = 10;

(a < 10) && (a > 4); // ist wahr

324

Anhang C: Sprachreferenz

(a > 6) && (b == 10); // ist falsch

(a < b) || (b > 10); // ist wahr

!(a == 5); // ist falsch

!((a < b) || !(b > 10)); // ist falsch

Ein wichtiger Unterschied zu logischen Operatoren ist, wie Boole-

sche Operatoren ihre Argumente auswerten. »Auswerten« heißt in

diesem Fall, dass geprüft wird, ob der Wert des Ausdrucks auch

tatsächlich berechnet wird. Das ist insbesondere bei Zuweisungen

und Funktionsaufrufen wichtig, da diese Nebenwirkungen haben.

Wird ein Ausdruck wie z.B. »2 + 5« oder »a / b« ausgewertet,

ändert sich eigentlich gar nichts, außer dass der Arduino-Prozessor

ein bisschen Rechenzeit verbraucht hat. Wird allerdings ein Aus-

druck wie »a = 5« ausgewertet, wurde a ein neuer Wert zugewiesen.

Bei logischen Operatoren werden beide Argumente immer ausge-

wertet. Bei Booleschen Operatoren werden allerdings nur so viele

Argumente ausgewertet wie nötig. Ist das erste Argument eines

Booleschen UND (&&) falsch, braucht das zweite Argument gar

nicht erst ausgewertet zu werden, weil das Ergebnis auf jedem Fall

falsch sein wird. Ähnlich verhält es sich, wenn das erste Argument

eines Booleschen ODER (||) wahr ist, denn dann ist das Ergebnis

des Ausdrucks auf jeden Fall wahr.

Beispiel

(a == 1) & (b = 5); // In diesem Fall wird b immer auf 5 gesetzt.

(a == 1) && (b =)5; // b wird nur dann auf 5 gesetzt, wenn a == 1.

Diese unterschiedlichen Auswertungsstrategien können zu fehler-

haften Programmen führen, wenn sie nicht beachtet werden. Sie

lassen sich jedoch auch einsetzen, um bestimmte Kontrollvorgänge

knapper zu formulieren, wie im folgenden Abschnitt über Kontroll-

strukturen gezeigt wird. In der folgenden Tabelle sind die Boole-

schen Operationen zur Referenz aufgelistet.

Tabelle C-10

Zeichen

Name

Beschreibung

Boolesche Operationen

&&

und

wahr, wenn beide Argumente wahr sind

||

oder

wahr, wenn mindestens eins der Argumente wahr ist

!

negieren

wahr, wenn das Argument falsch ist, falsch, wenn das Argument

wahr ist

Zusammengesetzte Operationen

Es kommt häufig vor, dass mit einer Variablen gerechnet und das

Ergebnis anschließend wieder in dieser Variablen gespeichert wird.

Um das Schreiben solcher Vorgänge zu vereinfachen, gibt es eine

Ausdrücke

325

Reihe zusammengesetzter Operationen, die eine Zuweisungsopera-

tion mit einer arithmetischen oder logischen Operation verknüpfen.

Zwei spezielle zusammengesetzte Operation sind die Inkrementie-

rungsoperation, die 1 zu einer Variablen hinzuaddiert, und die

Dekrementierungsoperation, die 1 von einer Variablen subtrahiert.

Beide werden oft in Schleifen eingesetzt, um einen Wertebereich zu

durchlaufen. Bei diesen beiden Operationen gibt es zwei mögliche

Schreibweisen. Man kann den Operator vor die zu inkrementie-

rende (oder dekrementierende) Variable schreiben – in diesem Fall

spricht man von Prä-Inkrementierung bzw. Prä-Dekrementierung.

Wenn man ihn hinter die Variable schreibt, spricht man von Post-

Inkrementierung bzw. Post-Dekrementierung. Der Unterschied

zwischen beiden Schreibweisen ist der Rückgabewert des Aus-

drucks. Im Fall der Prä-Operationen wird zuerst die Variable modi-

fiziert; der Rückgabewert des Ausdrucks ist der Wert der Variablen

nach der Inkrementierung oder Dekrementierung. Im Fall der Post-

Operationen wird die Variable erst nach der Auswertung der Vari-

ablen inkrementiert oder dekrementiert, d.h. der Wert des Aus-

drucks ist der Wert der Variablen vor der Modifikation. In den

meisten Fällen werden Post-Operationen verwendet.

Inkrementierung und Dekrementierung werden oft bei while-

Schleifen eingesetzt, die im folgenden Abschnitt erläutert werden.

Beispiel

byte a = 5;

byte b = a++;

// b hat jetzt den Wert 5, a hat den Wert 6.

b = ++a;

// b hat jetzt den Wert 7, a hat auch den Wert 7.

In der folgenden Tabelle sind die zusammengesetzten Operationen

zur Referenz aufgelistet und jeweils mit einem entsprechenden aus-

geschriebenen Ausdruck dokumentiert.

Tabelle C-11

Zeichen

Name

Ausdruck

Äquivalenter Ausdruck

Zusammengesetzte Operationen

++

inkrementieren

a++

a = a + 1

--

dekrementieren

a--

a = a – 1

+=

addieren und zuweisen

a += 4

a = a + 4

-=

subtrahieren und zuweisen

a -= 4

a = a – 4

*=

multiplizieren und zuweisen

a *= 4

a = a * 4

%=

teilen und zuweisen

a *= 4

a = a % 4

&=

und und zuweisen

a *= 4

a = a & 4

326

Anhang C: Sprachreferenz

Zeichen

Name

Ausdruck

Äquivalenter Ausdruck

|=

oder und zuweisen

a *= 4

a = a | 4

<<=

Shift nach links und zuweisen

a *= 4

a = a << 4

>>=

Shift nach rechts und zuweisen

a *= 4

a = a >> 4

Kontrollstrukturen

Bis jetzt wurden Datentypen, Variablen und Ausdrücke vorgestellt.

Mit diesen Konstrukten lassen sich Werte berechnen, es fehlt aber

noch eines der grundlegenden Fundamente der Programmierung:

Kontrollstrukturen. Ohne Kontrollstrukturen ist es kaum möglich,

auf unterschiedliche Daten (aus externen Sensoren, dem Daten-

speicher oder der seriellen Schnittstelle) zu reagieren.

Kontrollstrukturen steuern den Programmfluss, also in welcher

Reihenfolge der Arduino-Prozessor das Programm abarbeitet. Ein

Algorithmus (also eine Folge von Anweisungen, die eine bestimmte

Aufgabe ausführen) lässt sich oft auf unterschiedliche Arten imple-

mentieren (also als Programm niederschreiben). Viele der Kontroll-

strukturen der Programmiersprache lassen sich durch andere

ersetzen. Die Auswahl der benutzten Kontrollstrukturen wird

durch mehrere Parameter beeinflusst: Effizienz (wie schnell kann

der Arduino-Prozessor diese Anweisungen ausführen), Lesbarkeit

(je nach Aufgabe sind bestimmte Kontrollstrukturen besser geeig-

net, und einen Algorithmus zu beschreiben) und Programmierstil

(jeder Programmierer hat seine eigenen Vorlieben). Bestimmte

Strukturen lassen sich auch leichter debuggen, falls Fehler auftre-

ten, manche anderen lassen sich später leichter modifizieren.

In diesem Abschnitt stellen wir die unterschiedlichen Kontroll-

strukturen der Arduino-Programmiersprache vor und gehen auf

ihre jeweiligen Einsatzbereiche, Vor- und Nachteile ein.

if

Die if-Kontrollstruktur ist die einfachste Kontrollstruktur in der

Arduino-Programmiersprache und auch eine der am häufigsten

benutzten. Mit ihr lässt sich ein Programmblock ausführen, wenn

eine bestimmte Bedingung zutrifft. Diese Bedingung ist ein Boole-

scher Ausdruck (also ein Ausdruck, der als Boolescher Wert inter-

pretiert wird). Meistens ist dieser Ausdruck ein Vergleichsoperator,

wie in den folgenden Beispielen. Die Syntax der if-Kontrollstruktur

ist folgende:

Kontrollstrukturen

327

if (Boolescher Ausdruck) {

// Dieser Block wird nur dann ausgeführt, wenn der Boolesche

// Ausdruck wahr ist.

}

Beispiel

if (a == 5) {

// Dieser Funktionsaufruf wird nur ausgeführt, wenn die Variable

// a den Wert 5 hat.

Serial.println("a ist 5");

}

if ((a < 5) || (b > 10)) {

// Dieser Funktionsaufruf wird nur ausgeführt,

// wenn a kleiner als 5 ist oder wenn b größer als 10 ist.

Serial.println(»a ist kleiner als 5 oder b ist größer als 10.");

}

Es lassen sich natürlich beliebige Ausdrücke innerhalb der runden

Klammern nach dem if benutzen. Dabei werden die in Abschnitt

»Datentypkonvertierung« in diesem Anhang vorgestellten Konver-

tierungsregeln verwendet. So ist es also möglich, z.B. ein bestimm-

tes Bit zu testen und nur dann ein Block auszuführen, wenn dieses

Bit gesetzt ist.

Beispiel

if (a & bit(3)) {

Serial.println("Das vierte Bit von a ist gesetzt.");

}

if (ledMatrix[3] & bit(4)) {

// Die LED wird angeschaltet, wenn das fünfte Bit von

// ledMatrix[3] gesetzt ist.

digitalWrite(ledPin, HIGH);

}

if … else

Die if ... else-Kontrollstruktur ist eine Erweiterung der if-Kon-

trollstruktur. Mit ihr es möglich, die Alternative zu beschreiben,

falls die Bedingung falsch ist, ohne gleich eine zweite if-Struktur

benutzen zu müssen. Die einfache Syntax der if ... else-Kontroll-

struktur ist folgende:

if (Boolescher Ausdruck) {

// Dieser Block wird nur dann ausgeführt, wenn der Boolesche

// Ausdruck wahr ist.

} else {

// Dieser Block wird nur dann ausgeführt, wenn der Boolesche

// Ausdruck falsch ist.

}

328

Anhang C: Sprachreferenz

Wenn der Boolesche Ausdruck wahr ist, wird der erste Block aus-

geführt. Diesen Block nennt man auch den if-Zweig. Ist der Boole-

sche Ausdruck allerdings falsch, wird der erste Block übersprungen

und der zweite Block, der nach dem else definiert wird, ausgeführt.

Diesen zweiten Block nennt man auch den else-Zweig.

Es ist auch möglich, die geschweiften Klammern wegzulassen,

wenn ein Block nur aus einer einzigen Anweisung besteht. Das

bringt allerdings keine Vorteile (das Programm wird dadurch nicht

kleiner), aber eine ganze Reihe von Problemen mit sich. Erstens

wird dadurch der Programmtext schwerer zu lesen, weil nicht mehr

klar ersichtlich ist, wo der if-Zweig aufhört und wo der else-Zweig

anfängt. Wird später einer der Zweige mit weiteren Anweisungen

ergänzt, müssen die geschweiften Klammern hinzugefügt werden.

Besonders haarig wird es, wenn mehrere if ... else-Ausdrücke

geschachtelt werden. Spätestens in diesem Fall ist es notwendig,

geschweifte Klammern einzuführen, weil sonst nicht mehr nach-

vollziehbar ist, welches else zu welchem if gehört.

So lassen sich die vorigen Beispiele wie folgt ergänzen.

Beispiel

if (a & bit(3)) {

Serial.println("Das vierte Bit von a ist gesetzt.");

} else {

Serial.println("Das vierte Bit von a ist nicht gesetzt.");

}

if (ledMatrix[3] & bit(4)) {

// Die LED wird angeschaltet, wenn das fünfte Bit von

// ledMatrix[3] gesetzt ist.

digitalWrite(ledPin, HIGH);

} else {

// Sonst wird die LED ausgeschaltet.

digitalWrite(ledPin, LOW);

}

Die if ... else-Kontrollstruktur erlaubt auch die Verknüpfung von

mehreren if-Kontrollstrukturen in eine große Kontrollstruktur,

indem mehrere Bedingungen verknüpft werden. Die verschiedenen

Bedingungen werden der Reihe nach ausgewertet, bis eine den

Wert » wahr« zurückgibt. In dem Fall wird der dazugehörige Pro-

grammblock ausgeführt und schließlich das Programm nach dem

Ende der if ... else-Kontrollstruktur weiter ausgeführt. Trifft

keine der Bedingungen zu, wird der else-Teil der Kontrollstruktur

(falls vorhanden) ausgeführt.

Kontrollstrukturen

329

Beispiel

if (a > 10000) {

Serial.println("a ist groß.");

} else if (a > 500) {

Serial.println("a ist mittelgroß.");

} else if (a > 10) {

Serial.println("a ist klein.");

} else {

Serial.println("a ist sehr klein.");

}

An diesem Beispiel kann man sehen, dass die Reihenfolge der

Bedingungen unter Umständen relevant sein kann. Folgende

Schreibweise wäre z.B. falsch, weil sie für alle Werte von a, die grö-

ßer als 10 sind, »a ist klein.« anzeigen würde. Selbst bei ver-

hältnismäßig einfachen Kontrollstrukturen ist es also leicht, Fehler

zu machen. Die meisten Programmfehler rühren von fehlerhaften

Kontrollstrukturanweisungen her.

Beispiel

if (a > 10) {

Serial.println("a ist klein.");

} else if (a > 500) {

Serial.println("a ist mittelgroß.");

} else if (a > 10000) {

Serial.println("a ist groß.");

} else {

Serial.println("a ist sehr klein.");

}

Komplexe bzw. sehr lange if ... else-Strukturen lassen sich oft

mit der switch-Kontrollstruktur einfacher beschreiben.

Es ist natürlich möglich, mehrere if und if ... else zu schachteln.

Dazu ist es wichtig, den Programmtext sauber einzurücken (beim

Schreiben oder mit Apfel-T bzw. Steuerung-T), damit dieser gut

lesbar bleibt.

Beispiel

if (a > 10) {

if (b > 10) {

Serial.println("a und b sind größer als 10.");

} else {

Serial.println("a ist größer als 10, b aber nicht.");

}

} else {

if (b > 10) {

Serial.println("a ist kleiner oder gleich 10, aber b ist größer

als 10.");

} else {

Serial.println("a und b sind kleiner oder gleich 10.");

}

330

Anhang C: Sprachreferenz

Besondere Vorsicht ist beim Einsatz von Booleschen Operatoren in

if ... else-Ausdrücken geboten. Der else-Zweig wird nur ausge-

führt, wenn der komplette Boolesche Ausdruck falsch ist, was zu

nicht unbedingt sofort ersichtlichen Fallunterscheidungen führt

(besonders bei langen Booleschen Ausdrücken.)

Beispiel

if ((a > 10) && (b > 10)) {

Serial.println("a und b sind größer als 10.");

} else {

Serial.println("a ist kleiner oder gleich 10, oder b ist kleiner

oder gleich 10.");

Serial.println("Es kann aber sein, dass a größer ist als 10.");

Serial.println("Es kann auch sein, dass b größer ist als 10.");

}

switch ... case

Die switch ... case-Kontrollstruktur kann man als spezialisierte if

... else-Kontrollstruktur betrachten. Ein Ausdruck wird mit einer

Reihe von Werten verglichen, und falls er mit einem dieser Werte

gleich ist, wird ein bestimmter Programmblock ausgeführt. Ist der

Ausdruck mit keinem der angegebenen Werten gleich, wird ein

Default-Programmblock (falls vorhanden) ausgeführt. Die Syntax

der switch ... case-Kontrollstruktur ist folgende:

switch (Ausdruck) {

case Wert1:

programmBlock1;

break;

case Wert2:

programmBlock2;

break;

case Wert3:

programmBlock3;

break;

default:

defaultProgrammBlock;

break;

}

Die break-Anweisung bewirkt einen Sprung ans Ende der switch ...

case-Kontrollstruktur. Falls die break-Anweisung fehlt, wird der

nächste Programmblock in der Struktur ausgeführt, was in speziel-

len Fällen praktisch sein kann (man sagt, dass das Programm in den

nächsten switch ... case-Block »fällt«). Meistens ist das aber eher

eine Fehlerquelle, weshalb es wichtig ist, sicherzustellen, dass die

break-Anweisung am Ende der einzelnen Programmblöcke auch

wirklich vorhanden ist.

Kontrollstrukturen

331

Es ist sinnvoll, immer einen default-Block zu definieren, der unde-

finierte Fälle abfängt und zur Not einen Fehler anzeigt oder das

Programm neu initialisiert. Damit lassen sich beim Entwickeln Feh-

ler abfangen.

Programmblöcke sind einfache Listen von Anweisungen, die mit

einem Semikolon getrennt werden. Es ist auch möglich, nach einer

case-Anweisung lokale Variablen zu definieren, indem der Pro-

grammblock mit geschweiften Klammern abgeschlossen wird.

switch (Ausdruck) {

case Wert1: {

int lokaleVariable;

programmBlock1;

}

break;

case Wert2:

programmBlock2;

break;

switch ... case-Kontrollstrukturen lassen sich natürlich auch

schachteln. Auch dabei ist es wichtig, den Programmtext sauber

einzurücken, da er sonst sehr schwer zu lesen sein kann.

Eine switch ... case-Kontrollstruktur benutzt den üblichen ==-Ver-

gleichsoperator. Deswegen ist es nicht möglich, Zeichenketten mit

einer switch ... case-Struktur zu unterscheiden.

Beispiel

char zeichenKetten[] = "arduino";

// Falsch! Zeichenketten und Tabellen lassen sich nicht mit switch

// ... case bearbeiten.

switch (zeichenKette) {

case "foobar":

break;

case "arduino":

break;

}

Ein häufiger Einsatzbereich von switch ... case-Kontrollstrukturen

ist die Fallunterscheidung zwischen unterschiedlichen Modi eines

Programms (z.B. ob das Programm sich gerade im Konfigurations-

modus oder im Betriebsmodus befindet). Dazu wird eine Statusva-

riable deklariert, die eine bestimmte Anzahl von vordefinierten

Werten annehmen kann. Diese Werte werden oft als Konstanten

deklariert, damit der Programmquelltext besser zu lesen ist. Im fol-

genden Beispiel wird vorausgesetzt, dass zwei LEDs und ein Taster

am Arduino angeschlossen sind. blinkErsteLed(), blinkZwei-

teLed() und buttonPressed() sind Funktionen, die nicht gezeigt,

sondern nur als Beispiele benutzt werden.

332

Anhang C: Sprachreferenz

Beispiel

const int BetriebsModus = 0;

const int KonfigurationsModus = 1;

int programmStatus = BetriebsModus;

void loop () {

switch (programmStatus) {

case BetriebsModus:

// Im Betriebsmodus wird die erste LED geblinkt.

blinkErsteLed();

if (buttonPressed()) {

// Wurde der Taster gedrückt, wird in den

// Konfigurationsmodus gewechselt.

programmStatus = KonfigurationsModus;

}

break;

case KonfigurationsModus:

// Im Konfigurationsmodus wird die zweite LED geblinkt.

blinkZweiteLed();

if (buttonPressed()) {

// Wurde der Taster gedrückt, wird in den

// Betriebsmodus gewechselt.

programmStatus = BetriebsModus;

}

break;

default:

// Falls die programmStatus-Variable durch einen Fehler

// einen unbekannten Wert annimmt, wird diese auf den

// Betriebsmodus zurückgesetzt.

programmStatus = BetriebsModus;

break;

}

}

Die switch ... case-Kontrollstruktur lässt sich auch einsetzen, um

unterschiedliche Kommandos zu erkennen, die z.B. als Bytes über

die serielle Schnittstelle vom Computer aus an den Arduino gesen-

det werden (siehe Abschnitt serielle Schnittstelle). Im folgenden

Beispiel werden drei Kommandos erkannt, die ebenfalls die hier

nicht gezeigten Funktionen blinkLed(), motorAn() und motorAus()

aufrufen.

Beispiel

const int BlinkLedCommand = 10;

const int MotorAnCommand = 11;

const int MotorAusCommand = 12;

void loop() {

if (Serial.available()) {

switch (Serial.read()) {

case BlinkLedCommand:

blinkLed();

break;

Kontrollstrukturen

333

 case MotorAnCommand:

motorAn();

break;

case MotorAusCommand:

motorAus();

break;

default:

// unbekanntes Kommando ignorieren

break;

}

}

}

for

Die for-Kontrollstruktur wird eingesetzt, um einen Programm-

block mehrmals in einer Schleife auszuführen. Oft wird diese

Struktur gemeinsam mit einem Schleifenzähler eingesetzt, um den

Programmblock eine bestimmte Anzahl von Malen zu wiederho-

len oder eine Tabelle oder Zeichenkette zu durchlaufen (siehe

Abschnitt über Tabellen und Zeichenketten). Die Syntax der for-

Kontrollstruktur sieht so aus:

for (Initialisierung; Schleifenbedingung; Schleifenanweisung) {

// Schleifencode

}

Zu Beginn der Schleife wird die Initialisierungsanweisung ausge-

führt. Mit dieser Anweisung kann z.B. die Schleifenvariable initiali-

siert werden. Bei jedem Durchlauf wird der Programmcode

innerhalb des Schleifenblocks ausgeführt. Nach jedem Schleifen-

durchlauf wird die Schleifenanweisung ausgeführt (die oft dazu ver-

wendet wird, den Schleifenzähler zu inkrementieren). Letztendlich

wird die Schleifenbedingung ausgewertet. Ist der Rückgabewert der

Schleifenbedingung » wahr«, wird die Schleife erneut durchlaufen.

Ist er » falsch«, wird die Schleife abgebrochen, und das Programm

wird nach dem Ende der for-Kontrollstruktur weiter ausgeführt.

Im folgenden Beispiel wird die LED 10 Mal ein- und wieder

ausgeschaltet.

Beispiel

int i; // i wird als Schleifenvariable verwendet.

for (i = 0; i < 10; i++) {

digitalWrite(ledPin, HIGH); // LED wird angeschaltet.

delay(200); // kurz warten

digitalWrite(ledPin, LOW); // LED wird ausgeschaltet.

delay(200);

}

334

Anhang C: Sprachreferenz

In diesem Beispiel wird zu Beginn der Schleife die Variable i mit 0

initialisiert. Anschließend wird die LED einmal ein- und ausge-

schaltet. Dann wird i inkrementiert (wegen der Schleifenanweisung

i++). Im nächsten Schritt wird der Ausdruck i < 10 ausgewertet, und

falls i noch klein genug ist, wird die Schleife weiter ausgeführt.

Selbst in einfachen Schleifen kann es zu Problemen kommen. Es

ist besonders wichtig, beim Einsatz von Schleifenvariablen zu

überprüfen, ob diese Schleifenvariable den gewünschten Bereich

durchläuft (insbesondere, wenn diese Schleifenvariable als Index

in einer Tabelle verwendet wird, weil sonst auf den falschen Spei-

cher zugegriffen werden könnte). Wäre der Schleifenkopf wie folgt

geschrieben, würde die Schleife entweder nicht genug oder zu oft

ausgeführt.

Beispiel

// Die Schleife wird nur 9 Mal ausgeführt.

for (i = 1; i < 10; i++) {

}

// Die Schleife wird 11 Mal ausgeführt.

for (i = 0; i <= 10; i++) {

}

Diese Art von Fehlern, die insbesondere bei komplizierteren Schlei-

fen auftritt, wird so häufig gemacht, dass sie ihren eigenen Namen

verdient hat: Man nennt sie »off by one«-Fehler, weil die Schleifen-

variable meistens um genau 1 neben dem beabsichtigten Wert liegt.

Hier kommen auch die ganzen Vorsichtsanweisungen zum Tragen,

die bei den verschiedenen Vergleichsoperatoren vorgestellt wurden.

Folgende Schleife zum Beispiel wird nie enden (der Schleifenblock

wird also immer wieder bis in alle Unendlichkeit wiederholt):

Beispiel

int i;

for (i = 0; i < 40000; i++) {

// i ist ein int, ist also immer kleiner als 40000.

// Die Bedingung ist also immer erfüllt, und die Schleife bricht

// nie ab.

}

Die for-Kontrollstruktur ist sehr flexibel. So lassen sich in der

Arduino-Programmiersprache auch direkt Variablen innerhalb der

Initialisierungs-Anweisung definieren. Diese Variablen sind nur

innerhalb des Schleifenblocks sichtbar. Somit lässt sich immer wie-

der derselbe Name für eine Schleifenvariable verwenden, ohne dass

es zu Konflikten oder Mehrfachbenutzungen kommt.

Kontrollstrukturen

335

Beispiel

for (int i = 1; i < 10; i++) {

// Die Variable i ist nur innerhalb des Schleifenblocks sichtbar.

analogWrite(ledPin, i * 25);

}

Es ist auch möglich, mehrere Anweisungen in der Initialisierung

oder den Schleifenanweisungen auszuführen. Dazu werden die

Anweisungen mit dem sogenannten sequenziellen Operator , ver-

knüpft. So können z.B. mehrere Schleifenvariablen initialisiert und

inkrementiert werden (es ist allerdings nicht möglich, mehrere

Schleifenvariablen mit unterschiedlichen Typen zu deklarieren).

Beispiel

for (int i = 1, j = 2; i < 5; i++, j += 2) {

// i und j durchlaufen die Werte

// i = 1, j = 2

// i = 2, j = 4

// i = 3, j = 6

// i = 4, j = 8

}

Es ist durchaus möglich, mehrere for-Kontrollstrukturen zu

schachteln. So lassen sich z.B. mehrdimensionale Tabellen durch-

laufen. Hier ist wichtig, die Schleifenvariablen nicht zu verwech-

seln.

Beispiel

int ledMatrix[10][10];

for (int x = 0; x < 10; x++) {

for (int y = 0; y < 10; y++) {

// Jeder Wert der ledMatrix wird auf 1 gesetzt.

ledMatrix[x][y] = 1;

}

}

Innerhalb des Schleifenblocks kann der Programmfluss der Schleife

auch beeinflusst werden. Die break-Anweisung wird benutzt, um

aus der Schleife auszusteigen. Das Programm wird anschließend

nach dem Ende der for-Schleife weitergeführt. Dadurch lassen sich

im Schleifenblock weitere Terminierungsbedingungen überprüfen.

Der Programmfluss innerhalb der Schleife kann auch durch die

continue-Anweisung beeinflusst werden. Die continue-Anweisung

bewirkt, dass ans Ende des Programmblocks innerhalb der Schleife

gesprungen wird. Es werden also direkt nach der continue-Anwei-

sung die Schleifenanweisung ausgeführt (meistens wird dann der

Schleifenzähler inkrementiert), die Schleifenbedingung ausgewertet

und, falls diese wahr ist, der nächste Schleifendurchlauf ausgeführt.

336

Anhang C: Sprachreferenz

Will man zum Beispiel die fünfte Zeile der Matrix überspringen,

würde sich folgende Schleife anbieten:

Beispiel

int ledMatrix[10][10];

for (int x = 0; x < 10; x++) {

// fünfte Zeile wird übersprungen

if (x == 4)

continue;

for (int y = 0; y < 10; y++) {

// Jeder Wert der ledMatrix wird auf 1 gesetzt.

ledMatrix[x][y] = 1;

}

}

Bei geschachtelten Kontrollstrukturen beziehen sich break und con-

tinue jeweils auf die zuletzt definierte Kontrollstruktur (break und

continue lassen sich auch bei den switch ... case-, while- und do ...

while-Kontrollstrukturen einsetzen).

Ein spezielle Schreibweise der for-Kontrollstruktur findet man in

Arduino-Programmen oft, wenn ein Endpunkt erreicht wurde und

das Programm sozusagen beendet werden soll. Da es dem Arduino

nicht möglich ist, sich selbst auszuschalten, wird eine unendliche

Schleife ausgeführt. Dazu genügt eine for-Schleife ohne Abbruch-

bedingung.

Beispiel

for (;;) {

// unendliche Schleife

}

while

Die while-Kontrollstruktur ist eine weitere Kontrollstruktur, mit

der sich Schleifen implementieren lassen. Im Vergleich zur for-

Kontrollstruktur, die eher darauf ausgelegt ist, Schleifen mit Zäh-

lervariablen zu beschreiben, führt eine while-Schleife den Schleifen-

block so lange aus, wie die Schleifenbedingung wahr ist. Die

Schleifenbedingung wird vor dem ersten Durchlauf der Schleife

ausgewertet. Ist sie dort schon falsch, wird die Schleife gar nicht

ausgeführt. So lässt sich z.B. eine Schleife ausführen, bis ein Sensor

einen bestimmten Wert meldet oder ein Taster betätigt wird. Die

Syntax der while-Kontrollstruktur ist folgende:

while (schleifenBedingung) {

// Schleifenblock

}

Kontrollstrukturen

337

Im folgenden Beispiel wird die LED solange an- und ausgeschaltet,

bis ein Taster gedrückt wird.

Beispiel

while (!tasterGedrueckt()) {

blinkLed();

}

Wie bei der for-Schleife kann die break-Anweisung benutzt wer-

den, um aus der Schleife herauszugelangen. Die continue-Anwei-

sung führt einen neuen Schleifendurchlauf aus (falls die Bedingung

wahr ist).

do … while

Die do ... while-Kontrollstruktur ist eng verwandt mit der while-

Kontrollstruktur. Bei dieser Kontrollstruktur wird die Schleifenbe-

dingung allerdings erst nach dem Schleifenblock ausgewertet,

sodass die Schleife mindestens einmal ausgeführt wird. Die Syntax

der do ... while-Kontrollstruktur ist folgende:

do {

// Schleifenblock

} while (schleifenBedingung);

Funktionen

Mit den bis jetzt erklärten Konstrukten lassen sich schon alle

möglichen Programme schreiben. Allerdings kommt es relativ oft

vor, dass bestimmte Programmabschnitte immer wieder ausge-

führt werden sollen, nur mit leicht unterschiedlichen Werten oder

Programmanweisungen. Diese immer wieder verwendeten Pro-

grammblöcke kann man als getrennte Funktionen schreiben, die

aufgerufen werden können (das nennt man Funktionsaufruf, und

viele der bisherigen Programmbeispiele haben schon solche Funk-

tionsaufrufe enthalten), das heißt, sie werden von einer anderen

Stelle im Programm aus angesprungen und ausgeführt.

Beim Funktionsaufruf kann man einer Funktion eine Anzahl von

Werten übergeben, die man Parameter nennt. Mit Parametern lässt

sich das Verhalten der Funktion steuern. Man kann zum Beispiel

Berechnungen mit unterschiedlichen Werten ausführen oder

bestimmte Teile der Funktion deaktivieren. Nachdem eine Funk-

tion ausgeführt wurde, springt sie wieder zur Stelle zurück, an der

sie aufgerufen wurde, und gibt gegebenenfalls einen Wert zurück

(den Rückgabewert).

338

Anhang C: Sprachreferenz

Dieses Auftrennen von Programmcode ist eins der wichtigsten Kon-

strukte in Programmiersprachen allgemein. Auf der einen Seite

wird dadurch der Programmtext kürzer, weil oft verwendete

Abschnitte nur einmal geschrieben werden müssen. So lassen sich

auch viele Fehler vermeiden, weil nur noch eine Stelle korrigiert

werden muss, wenn ein Problem auftritt. Den Prozess des Extrahie-

rens bestimmter Programmteile und ihre Definition in eigenen

Funktionen nennt man »Refaktorieren«. Besonders nach einer län-

geren Programmierphase ist es oft ganz nützlich, sich das Pro-

gramm in Ruhe anzugucken und Stellen zu identifizieren, die sich

angenehmer als getrennte Funktionen definieren lassen würden.

Als Faustregel gilt: Kommt ein Stück Programmcode mehr als zwei

Mal vor, wird daraus eine Funktion definiert. Auch sehr lange

Funktionen (z.B. mehr als einen Bildschirm lang) sollte man in klei-

nere Funktionen auftrennen, die jeweils bestimmte Aufgaben erle-

digen. Dadurch wird das Programm viel klarer zu lesen.

Auch das erzeugte Programm, das auf dem Arduino gespeichert

wird, wird dadurch kleiner. Da jede Funktion auch einen eigenen

Namen hat, wird das Programm auch einfacher zu verstehen. Der

Programmname erklärt sofort (wenn er gut gewählt wurde), was

die Funktion bewirkt. Es ist auch bei sehr kleinen Funktionen (die

z.B. nur einen bestimmten Wert, der oft verwendet wird, einer wei-

teren Funktion übergeben) sinnvoll, eine eigene Funktion zu defi-

nieren, weil der Compiler diese effizienter bearbeiten kann.

Funktionen erhöhen auch die Wiederverwendbarkeit von Pro-

grammcode. Oft werden in einem Programm Funktionen benutzt,

die auch im Kontext eines anderen Programms sinnvoll sind. Man

kann also Funktionen von einem Programm zum anderen wieder-

verwenden. Viele sinnvolle Funktionen sind schon in der Arduino-

Programmiersprache enthalten: Das sind auf der einen Seite die ein-

gebauten Funktionen der Arduino-Umgebung, die in den Work-

shops ab Kapitel 3 vorgestellt und beschrieben werden, auf der anderen Seite die Funktionen, die in zusätzlichen Libraries enthalten sind und eine bestimmte Funktionalität implementieren (z.B.

die Kommunikation mit einem Sensor).

Funktionen sind auch der beste Weg, um Programme oder Pro-

grammteile mit anderen Leuten auszutauschen. Es ist nicht mehr

notwendig, ein Stück Programmcode genau zu erklären, sondern es

reicht, die generelle Funktionsweise einer Funktion zu beschreiben

sowie ihre Argumente und ihren Rückgabewert. Damit weiß jeder

Programmierer Bescheid, wie die Funktion einzusetzen ist. Auch

Funktionen

339

zur eigenen Referenz ist es sinnvoll, einen kurzen Kommentar vor

die Funktion zu schreiben, der die Argumente und den Rückgabe-

wert beschreibt. In diesem Kommentar sollte man auch mögliche

Nebenwirkungen der Funktion auflisten (z.B. dass sie einen

bestimmten Pin in der Richtung ändert).

Funktionsaufruf

Das Aufrufen einer Funktion ist ein Ausdruck (und keine Anwei-

sung), d.h. er hat einen Wert, der in weiteren Ausdrücken eingesetzt

werden kann. Es ist allerdings auch möglich, den Rückgabewert

einer Funktion zu ignorieren (das sollte man allerdings mit Vorsicht

tun, oft wird der Rückgabewert benutzt, um z.B. Fehler zu signali-

sieren). Die Syntax eines Funktionsaufrufs sieht so aus:

funktionsName(argumente);

Die Argumente sind eine Folge von Werten, die an die Funktion

übergeben wird. Sie werden mit einem einfachen Komma getrennt.

Es ist wichtig, die richtige Anzahl von Argumenten zu geben, da der

Compiler sonst einen Fehler meldet (bestimmte Funktionen können

eine variable Anzahl von Argumenten bearbeiten, was zum Beispiel

im Anhang Libraries deutlich wird. Es ist auch wichtig, dass die ein-

zelnen Argumente den passenden Datentyp haben. Dazu werden

die gleichen Konvertierungsregeln benutzt, die in Abschnitt »Daten-

typkonvertierung« vorgestellt wurden. Genauso werden bei der weiteren Bearbeitung des Rückgabewerts (z.B. Speichern in einer

Variablen) dieselben Konvertierungsregeln angewandt. Im Folgen-

den werden einige Funktionsaufrufe vorgestellt.

Beispiel

machNichts(); // ruft die Funktion machNichts auf, die keine

// Argumente braucht

byte knopfWert = knopfGedrueckt(); // Der Rückgabewert von

// knopfGedrueckt wird in

// knopfWert gespeichert.

int x = analogRead(sensorEinsPin) + 2 * analogRead(sensorZweiPin);

do {

machWas(); // führt die Funktion machWas aus, solange der Knopf

// nicht gedrückt wurde

} while (!knopfGedrueckt())

Funktionsdefinition

Das Hinschreiben einer Funktion (mit Namen, Parametern und

Programmrumpf) nennt man Funktionsdeklaration oder Funk-

tionsdefinition. Eine Funktionsdeklaration ähnelt stark einer Vari-

340

Anhang C: Sprachreferenz

ablendeklaration. Es ist allerdings nicht möglich, Funktionen

innerhalb von beliebigen Programmblöcken zu deklarieren (im

Gegensatz zur Deklaration von lokalen Variablen). Funktionen las-

sen sich nur auf der obersten Ebene des Programmtextes definie-

ren. Im Unterschied zu Variablendefinitionen können allerdings

Funktionen aufgerufen werden, bevor sie definiert werden.

Die Syntax einer Funktionsdeklaration ist folgende:

returntyp funktionsName(argumentenListe) {

programmRumpf;

}

Ähnlich wie eine Variable besitzt eine Funktion einen Datentyp,

den man Rückgabetyp nennt. Dieser Typ beschreibt den Datentyp

der Rückgabewerte der Funktion. Der Rückgabetyp einer Funktion

umfasst alle numerischen Datentypen, die im Abschnitt Datenty-

pen vorgestellt wurden. Es ist jedoch nicht möglich, eine Tabelle

oder eine Zeichenkette aus einer Funktion zurückzugeben; das

funktioniert nur mit Pointern, die ein fortgeschrittenes Konstrukt

der Arduino-Programmiersprache sind und keinen Platz in diesem

Buch gefunden haben. Es kommt noch ein weiterer spezieller Rück-

gabetyp hinzu: der void-Datentyp. void ist eigentlich kein Daten-

typ, sondern kennzeichnet, dass eine Funktion keinen Wert

zurückgibt.

Funktionsnamen folgen denselben Regeln wie Variablennamen: Sie

müssen mit einem Buchstaben anfangen, dürfen Buchstaben, Zah-

len und Unterstriche (_) enthalten, und sie dürfen nicht mit schon

definierten Namen kollidieren (also mit reservierten Wörtern der

Programmiersprache und mit schon definierten Funktionsnamen

und Variablennamen).

In der Argumentenliste, die in runden Klammern nach dem Funkti-

onsnamen geschrieben wird, werden die Argumente definiert, die

die Funktion annimmt (und bearbeitet). Argumente ähneln stark

den lokalen Variablen, die beim Funktionsaufruf initialisiert wer-

den und innerhalb des Funktionsrumpfes definiert sind (man kann

nicht auf Argumente außerhalb der Funktion zugreifen, sondern sie

nur beim Funktionsaufruf initialisieren). In der Argumentenliste

werden Argumente wie Variablen mit einem Namen und einem

Datentyp definiert. Mehrere Argumentdefinitionen werden durch

Kommata voneinander getrennt. Es ist auch möglich, eine Funk-

tion ohne Argumente zu definieren. Dazu wird eine leere Argumen-

tenliste verwendet (die runden Klammern sind aber nach wie vor

notwendig). Bei einem Funktionsaufruf wird der erste übergebene

Funktionen

341

Parameterwert in das erste Argument kopiert, der zweite Parame-

terwert in das zweite Argument usw.

Es ist auch möglich, Tabellen und Zeichenketten als Argumente zu

übergeben. Dazu wird der Tabellentyp in eckigen Klammern ange-

geben. Unten sehen Sie verschiedene Argumentenlisten als Bei-

spiele. Oft ist es bei Tabellen notwendig, der Funktion auch noch

die Tabellengröße zu übergeben (bei Zeichenketten kann die Funk-

tion die abschließende Null erkennen), es sei denn, alle Tabellen,

die der Funktion als Argumente übergeben werden, haben dieselbe

Größe.

Funktionsargumente werden als Werte übergeben (diese Eigen-

schaft nennt man in der Programmierwelt »call-by-value«). Wird

also an einer Stelle eine Variable als Argument übergeben und

dieses Argument innerhalb der Funktion modifiziert, wird die

ursprüngliche Variable nicht modifiziert. Stattdessen wird beim

Aufruf der Funktion eine lokale Kopie der Variablen erzeugt und

im Funktionsrumpf verwendet. Das ist ein bisschen gewöhnungs-

bedürftig (und nicht unbedingt leicht zu verstehen), erhöht aber die

Wiederverwendbarkeit von Funktionen und verhindert auch viele

Programmfehler.

Funktionen können deswegen nur den globalen Status eines Pro-

gramms (globale Variablen) verändern (und natürlich den Zustand

des Arduino-Prozessors). Weitere Veränderungen müssen vom Pro-

grammierer explizit angegeben werden, indem zum Beispiel der

Rückgabewert der Funktion gespeichert wird. Nach dem Zurück-

kehren aus einer Funktion werden alle lokalen Variablen (und alle

Argumente) gelöscht und sind nicht mehr zugänglich. Es ist also

nicht möglich, einen lokalen Wert als Speicherplatz zu verwenden,

der von Funktionsaufruf zu Funktionsaufruf bestehen bleibt. Dazu

muss eine globale Variable verwendet werden.

Beispiel

int zaehlHochFalsch() {

// Diese Funktion gibt immer 1 zurück, weil bei jedem

// Aufruf a neu initialisiert wird.

int a = 0;

a++;

return a;

}

int a = 0;

int zaehleHochRichtig() {

// Diese Funktion gibt bei jedem Aufruf einen hochgezählten

// Wert zurück (also 1, 2, 3 usw.). Nach 32767 wird der

// Wert -32768, weil die Variable a übergelaufen ist.

342

Anhang C: Sprachreferenz

 a++;

return a;

}

Es ist allerdings besser, die Anzahl von globalen Variablen, die

innerhalb einer Funktion verwendet werden, zu begrenzen.

Dadurch wird nämlich nicht die Wiederverwendbarkeit der Funk-

tion eingeschränkt: Auf der einen Seite hängt die Funktion dann

von mehreren globalen Variablen ab, weshalb es nicht mehr mög-

lich ist, sie ohne Weiteres in ein neues Programm einzusetzen. Auf

der anderen Seite steigt durch globale Variablen auch die Anzahl

von Nebenwirkungen der Funktion, d.h. der Programmierer, der

die Funktion aufruft, muss jetzt immer berücksichtigen, dass

dadurch mehrere globale Variablen verändert werden können.

Werden globale Variablen benutzt, sollte man sich also überlegen,

ob diese durch weitere Argumente oder durch einen Rückgabewert

ersetzt werden können.

Vorsicht ist allerdings bei Tabellen und Zeichenketten geboten.

Diese können innerhalb der Funktion doch modifiziert werden,

weil sie beim Aufruf der Funktion nicht kopiert werden; stattdessen

wird der Funktion ein Zeiger auf die Tabelle oder die Zeichenkette

übergeben (das nennt man in der Programmierwelt »call-by-refe-

rence«). Es erhöht die Geschwindigkeit der Funktion, weil keine

Daten kopiert werden, kann aber zu Programmfehlern führen,

wenn Tabellen unabsichtlich modifiziert werden. Auf der anderen

Seite kann genau diese Eigenschaft benutzt werden, um Tabellen zu

modifizieren. Zum Beispiel werden viele der Funktionen im Work-

shop zur LED-Matrix in Kapitel 4 verwendet, um die gespeicherte Tabelle der Matrix zu modifizieren.

In seltenen Fällen ist es notwendig, mehrere Werte aus einer Funk-

tion zurückzugeben. Dazu kann man einzelne Argumente als »call-

by-reference« übergeben (wird im Funktionsrumpf einem Argu-

ment ein Wert zugewiesen, wird auch in die ursprüngliche Variable

geschrieben). Dazu wird der Referenz-Operator & benutzt. Dieser

muss direkt vor den Argumentnamen in der Argumentenliste

geschrieben werden (ohne Leerzeichen zwischen & und Variablen-

namen). Diese Schreibweise ist nur in sehr seltenen Fällen notwen-

dig und sollte sparsam eingesetzt werden.

Beispiel

int machWas(int a) { // a ist ein call-by-value-Argument.

a = a + 10; // Nur die lokale Kopie von a wird verändert.

return a;

}

Funktionen

343

int machWasMitReferenz(int &a) { // a ist jetzt ein call-by-

reference-Argument.

a = a + 10; // Auch die ursprüngliche wird verändert.

}

int foo = 0;

machWas(foo);

// foo ist immer noch 0.

foo = machWas(foo);

// foo ist jetzt 10.

machWasMitReferenz(foo);

// foo ist jetzt 20.

foo = machWas(foo);

// foo ist jetzt 30 (wird aber zweimal zugewiesen).

Der Funktionsrumpf einer Funktion beinhaltet alle Programmier-

anweisungen der Funktion. Diese werden in geschweiften Klam-

mern hinter dem Funktionsnamen und der Argumentenliste

angegeben. Bei einem Funktionsaufruf werden die Anweisungen

wie ein normales Stück Programmcode ausgeführt. Erreicht der

Prozessor die letzte Zeile des Funktionsrumpfes (und damit die

schließende geschweifte Klammer), und hat die Funktion keinen

Rückgabewert (wurde also mit dem Datentyp void definiert), wird

aus der Funktion zurückgekehrt. Das Programm wird nach dem

ursprünglichen Funktionsaufruf weiter ausgeführt.

Die return-Anweisung wird verwendet, um aus einer Funktion

zurückzukehren. Diese Anweisung lässt sich also einsetzen, um an

beliebigen Stellen innerhalb des Funktionsrumpfes (und nicht nur

am Ende der Funktion) aus der Funktion auszubrechen. Gibt die

Funktion einen Wert zurück (hat also nicht den Datentyp void),

geschieht das mit dem Wort return und dem Wert oder Namen

der Variable, die zurückgegeben werden soll.

Innerhalb eines Funktionsrumpfes ist es möglich, lokale Variablen

zu definieren, wie in jedem Programmblock, der durch geschweifte

Klammern abgeschlossen ist. In einer Funktion kann man natürlich

auch weitere Funktionen aufrufen.

Beispiel

// Dies ist eine sehr einfache Funktion, die nichts macht und auch

// keinen Wert zurückgibt. Sie dient nur als Beispiel und hat

// keinen praktischen Nutzen.

void machNichts() {

}

// Diese Funktion macht auch gar nichts, gibt allerdings den Wert

// 5 (vom Datentyp int) zurück. Sie dient auch nur als Beispiel

// und hat keinen praktischen Nutzen.

int fuenf() {

return 5;

344

Anhang C: Sprachreferenz

}

// Diese Funktion schaltet die LED aus, die an ledPin hängt. Diese

// Funktion ist an sich auch nicht sehr nützlich. Allerdings wird

// beim Ersetzen der ledAus()-Funktion deutlich, was der

// Programmcode bewirkt.

void ledAus() {

digitalWrite(ledPin, LOW);

}

// Diese Funktion addiert 5 zum Argument x hinzu und gibt diesen

// Wert zurück.

int addierFuenf(int x) {

return x + 5;

}

// Diese Funktion schaltet die LED an, wenn a größer ist als 10.

int ledAn(int a) {

if (a > 10) {

digitalWrite(ledPin, HIGH);

} else {

return;

}

}

// Diese Funktion addiert 10 zu x hinzu, wenn x positiv ist, sonst

// gibt sie 0 zurück. x wird hier nur innerhalb der Funktion

// modifiziert.

int addierZehnPositiv(int x) {

if (x > 0) {

x = x + 10;

return x;

} else {

return 0;

}

}

Bei einem Funktionsaufruf wird der Funktionsrumpf einer Funk-

tion immer ausgeführt. Es ist also oft sinnvoll, den Rückgabewert

einer Funktion zu speichern, anstatt immer wieder die Funktion

mit denselben Argumenten aufzurufen. Dabei sollte natürlich

berücksichtigt werden, welche Nebenwirkungen eine Funktion hat

(z.B. ob sie bestimmte Werte auf die serielle Schnittstelle schreibt).

Generell ist es aber möglich, Ausdrücke deutlich effizienter zu

gestalten, wie Sie bei den Beispielen sehen können.

Beispiel

// Anstatt des Ausdrucks

int x = square(y) + square(y); // y-Quadrat wird zweimal berechnet

// ist das hier effizienter:

int y2 = square(y); // y-Quadrat wird nur einmal berechnet

int x = y2 + y2;

Rückgabewerte werden auf zwei unterschiedliche Arten benutzt.

Im ersten Fall wird die Funktion hauptsächlich benutzt, um einen

Funktionen

345

Wert zu berechnen. Das Ergebnis dieser Berechnung wird als Rück-

gabewert an die aufrufende Programmstelle zurückgegeben. Der

Rückgabewert wird aber auch oft benutzt, um den Status der Aus-

führung einer Funktion zurückzugeben (um zum Beispiel zu signa-

lisieren, dass ein Fehler bestimmte andere Ereignisse eingetreten

sind). Für einen einfachen Rückgabestatus »erfolgreich« bzw.

»nicht erfolgreich« reicht ein boolean-Rückgabetyp. Dadurch kann

man auch gleich den Funktionswert in einer Kontrollstruktur ein-

setzen, wie im folgenden Beispiel gezeigt wird. Hier können Sie

außerdem sehen, wie man eine Funktion flexibler gestaltet, indem

man ihr einen zusätzliches Argument übergibt.

Beispiel

boolean istKnopfEinsGedrueckt() {

if (digitalRead(knopfEinsPin) == HIGH) {

return true;

} else {

return false;

}

}

// Diese Funktion kann man auch flexibler schreiben, indem man ihr

// die Nummer des Pins übergibt, an dem ein Knopf angeschlossen ist.

boolean istKnopfGedrueckt(int knopfPin) {

if (digitalRead(knopfPin) == HIGH) {

return true;

} else {

return false;

}

}

Es ist aber auch möglich, einen numerischen Wert als Rückgabetyp

zu verwenden, um unterschiedliche Statuswerte zu signalisieren. So

ist es z.B. möglich, verschiedene Fehlerquellen zu signalisieren. Es

ist sinnvoll, diese unterschiedlichen Statuswerte als Konstanten zu

deklarieren, um das Programm besser lesbar zu machen. Diese

Rückgabewerte lassen sich am besten mit einer switch ... case-

Kontrollstruktur bearbeiten. Es ist oft auch praktisch, Fehlerwerte

als negative Werte zu definieren und Erfolge als positive Werte,

weil man so mit einem einfachen arithmetischen Vergleich bestim-

men kann, ob ein Fehler aufgetreten ist.

Beispiel

const int KeinKnopfGedruecktFehler = -1;

const int NurKnopfEinsGedruecktFehler = -2;

const int NurKnopfZweiGedruecktFehler = -3;

const int BeideKnoepfeGedruecktErfolg = 1;

byte sindBeideKnoepfeGedrueckt() {

346

Anhang C: Sprachreferenz

 if (!istKnopfGedrueckt(knopfEinsPin) &&

!istKnopfGedrueckt(knopfZweiPin)) {

return KeinKnopfGedruecktFehler;

} else if (istKnopfGedrueckt(knopfEinsPin)) {

return NurKnopfEinsGedruecktFehler;

} else if (istKnopfGedrueckt(knopfZweiPin)) {

return NurKnopfZweiGedruecktFehler;

} else {

return BeideKnoepfeGedruecktErfolg;

}

}

// Die folgenden Zeilen zeigen einen möglichen Aufruf von

// sindBeideKnoepfeGedrueckt.

int retWert = sindBeideKnoepfeGedrueckt();

if (retWert < 0) {

// Der Rückgabewert ist negativ, also ist ein Fehler

// aufgetreten, der jetzt gemeldet wird.

switch (retWert) {

case KeinKnopfGedruecktFehler:

Serial.println("Es ist kein Knopf gedrueckt worden.");

break;

case NurKnopfEinsGedrueckt:

Serial.println("Es ist nur Knopf eins gedrueckt worden.");

break;

case NurKnopfZweiGedrueckt:

Serial.println("Es ist nur Knopf zwei gedrueckt worden.");

break;

}

} else {

// Der Rückgabewert ist positiv, es wurden also beide Knöpfe

// gedrückt.

Serial.println("Es sind beide Knoepfe gedrueckt worden.");

}

Es ist möglich, aus einer Funktion heraus dieselbe Funktion noch-

mal aufzurufen. Man kann auch eine zweite Funktion aufrufen, die

wiederum die erste aufruft. Diese Programmiertechnik nennt man

 rekursive Funktionsaufrufe. Sie ist allerdings mit großer Vorsicht zu

genießen und bei den meisten Arduino-Programmen nicht notwen-

dig. Durch jeden Funktionsaufruf werden neue temporäre Variab-

len angelegt und ein bisschen Speicher belegt. Dadurch kann es

schnell zu einem Überlauf des Speichers kommen.

Sketch-Struktur

Ein Arduino-Programm wird Sketch genannt. Ein Sketch wird im

Arduino-Editor geschrieben und als Ordner gespeichert, der alle

Daten und Programmdateien enthält, die für das Ausführen not-

wendig sind. Die Programmdateien haben die Endung .pde.

Sketch-Struktur

347

In der Hautpdatei des Sketches müssen zwei Funktionen auf jeden

Fall implementiert werden: setup() und loop().

Die Funktion setup() wird beim Programmstart aufgerufen (also

wenn das Arduino-Board eingeschaltet oder Reset gedrückt wird).

In dieser Funktion werden Variablen initialisiert, Pinmodi gesetzt

sowie benutzte Libraries und zusätzliche Hardware initialisiert.

setup() wird nur einmal ausgeführt.

Beispiel

int buttonPin = 2;

int meinZaehler;

void setup()

{

meinZaehler = 0;

pinMode(buttonPin, INPUT);

Serial.begin(9600);

}

Zwischen die geschweiften Klammern werden nun alle Befehle

geschrieben, die vor dem Start des Hauptprogramms zum Einrich-

ten des Arduino benötigt werden. Dazu gehört die Festlegung ein-

zelner Pins als Ein- oder Ausgang. In diesem Beispiel hier sind das

die Zeile pinMode(buttonPin, INPUT), die Initialisierung zusätzlicher

Libraries (hier die Initialisierung der seriellen Schnittstelle auf 9.600

Baud) und das Initialisieren von Variablen (hier das Initialisieren

von meinZaehler auf 0).

Die Setup-Routine wird nur ein einziges Mal ausgeführt, wenn das

Board neu an eine Stromquelle (oder per USB an den Rechner)

angeschlossen oder neuer Code hochgeladen wird.

Loop

Die Funktion loop() wird auch als Hauptfunktion bezeichnet. Von

hier aus werden andere Bestandteile des Programms aufgerufen und

Befehle abgearbeitet. Wie der Name schon verrät, läuft loop() in

einer Schleife, das heißt sie beginnt immer wieder von vorn, sobald

sie durchlaufen wurde. In dieser Funktion wird meistens die

gesamte Funktionalität des Sketches implementiert. Einzige Aus-

nahme ist die Funktionalität, die über Interrupt-Routinen imple-

mentiert wird. Interrupts sind allerdings ein fortgeschrittenes

Konstrukt von Arduino und werden meistens in Libraries gekapselt.

Beispiel

void loop()

{

if (meinZaehler > 100) {

348

Anhang C: Sprachreferenz

 serialWrite("ueberLauf");

meinZaehler = 0;

} else {

meinZaehler++;

}

if (digitalRead(buttonPin == LOW)) {

serialWrite('H');

} else {

serialWrite('L');

}

delay(1000);

}

Mehrere Dateien in einem Sketch

Meistens wird ein Arduino-Programm in einer Datei gespeichert,

die auch den Namen des Sketches trägt (mit der Endung .pde). Bei

komplizierteren Programmen wird diese Datei allerdings ziemlich

lang, und es ist oft schwer, einzelne Funktionen oder Variablen-

deklarationen wiederzufinden. Deswegen ist es möglich, im Ardu-

ino-Editor mehrere Dateien anzulegen, die vor dem Kompilieren zu

einer großen Datei zusammengefügt werden. So können in einem

größeren Programm unterschiedliche Bereiche in getrennte Dateien

geschrieben werden (z.B. eine Datei für alle LED-Funktionen, eine

für die serielle Kommunikation und eine für die Kommunikation

mit einem Sensor). Dazu muss für jede neue Datei ein neuer Tab

angelegt werden, indem der Knopf mit dem Pfeilsymbol auf der

rechten Seite gedrückt wird (nicht der Knopf mit dem Pfeilsymbol

in der Hauptleiste, der verwendet wird, um einen Sketch auf das

Arduino-Board hochzuladen). Danach erscheint ein Menü, mit

dem die einzelnen Tabs (sprich Dateien) verwaltet werden können.

Zum Anlegen einer neuen Datei muss NEW TAB ausgewählt wer-

den. Der Arduino-Editor fragt nach einem Namen für den Tab und

speichert die so erzeugte Datei im Verzeichnis des Arduino-Pro-

gramms.

Beim Kompilieren des Arduino-Programms werden alle Tabs zu

einer großen Datei zusammengefügt und anschließend übersetzt.

Das kann zu Problemen führen, wenn in einer Datei globale Variab-

len benutzt werden, die in einer anderen Datei definiert wurden

(die Reihenfolge der Variablendefinition ist nämlich wichtig, siehe

Abschnitt Variablen), weil die Reihenfolge des Zusammenfügens

sich nicht steuern lässt. Es ist deswegen sinnvoll, globale Variablen

so zu definieren, dass sie nur in einer Datei verwendet werden, und

als Schnittstelle zwischen den einzelnen Dateien Funktionen zu

definieren. Das gilt auch für Programmabschnitte, die in loop()

Sketch-Struktur

349

und setup() verwendet werden. Eine Strukturierung, die sich als

sinnvoll erwiesen hat, ist, in jeder Datei passende Funktionen loop-

Dateiname() und setupDateiname() zu definieren, die dann in den

eigentlichen loop()- und setup()-Funktionen aufgerufen werden.

Zugriff auf globale Konfigurationswerte wird in sogenannte Getter

und Setter gekapselt. Eine Getter-Funktion liefert nur den Wert

einer Variablen zurück, während eine Setter-Funktion den Wert

einer Variablen setzt. Im folgenden Beispiel werden der Zugriff auf

die globale Variable ZeitInterval gekapselt und eine zweite Datei

 Zeit.pde benutzt.

Beispiel

// Dies ist die Hauptdatei des Sketches.

int zeitInterval = 10; // globale Konfigurationsvariable

int getZeitInterval() { // Getter-Funktion zum Lesen von

// zeitInterval

return zeitInterval;

}

void setZeitInterval(int wert) { // Setter-Funktion zum Schreiben

// von zeitInterval

zeitInterval = wert;

}

void setup() {

setupZeit(); // Aufruf der setup-Funktion in der Datei Zeit.pde

}

void loop() {

loopZeit(); // Aufruf der loop-Funktion in der Datei Zeit.pde

}

// Dies ist die Datei Zeit.pde des Sketches.

void setupZeit() {

setZeitInterval(20); // Setzen von zeitInterval auf 20 in der

// Initialisierungsphase

}

void loopZeit() {

delay(getZeitInterval()); // Hauptroutine der Datei Zeit.pde mit

// Lesen der zeitInterval-

// Konfigurationsvariable

}

Funktionsreferenz

In diesem Abschnitt werden die in der Arduino-Programmierspra-

che vordefinierten Funktionen vorgestellt. Sie decken eine breite

Menge von unterschiedlichen Bereichen ab, von der Kommunika-

tion mit der elektronischen Außenwelt (digitale und analoge Ein-

und Ausgabe) über Zeitfunktionen (Zeitmessen und Warten) und

mathematische Funktionen bis hin zur Kommunikation mit dem

Computer über die serielle Schnittstelle (bzw. die USB-Schnittstelle).

350

Anhang C: Sprachreferenz

Digitale Ein- und Ausgabe

Die Funktionen für digitale und analoge Ein- und Ausgabe ermögli-

chen die Kommunikation des Arduino mit der Außenwelt, indem

Werte von Pins eingelesen und auf diese Pins geschrieben werden

können.

pinMode(pin, mode)

Diese Funktion initialisiert die »Richtung« eines digitalen Pins. pin

ist die Nummer des Pins, wie sie auf dem Arduino-Board geschrie-

ben steht. Jeder Pin, auch die als »analog« markierten, kann als

digitaler Eingangs- und Ausgangspin initialisiert werden. .mode

definiert die Richtung und kann entweder INPUT sein, um den Pin

als Eingangspin zu initialisieren, oder OUTPUT, um den Pin als Aus-

gangspin zu initialisieren.

Beispiel

pinMode(13, OUTPUT); // initialisiert Pin 12 als Ausgangspin

pinMode(9, INPUT); // initialisiert Pin 9 als Eingangspin

digitalWrite(pin, value)

Diese Funktion setzt die Spannung eines als Ausgangspin definier-

ten digitalen Pins oder aktiviert die Pull-up-Funktionalität für Pull-

up-Widerstände eines als Eingangspin definierten digitalen Pins.

Wird der Wert des digitalen Ausgangspins auf HIGH gesetzt, legt

der Arduino-Prozessor eine Spannung von 5 Volt (bzw 3,3 auf

Boards mit 3,3-Volt-Versorgungsspannung) an den Pin an. Wird

der Wert auf LOW gesetzt, legt der Arduino-Prozessor eine Span-

nung von 0 Volt an.

Ist der Pin als Eingangspin definiert, wird beim Schreiben eines

HIGH-Wertes der interne Pull-up-Widerstand des Arduino akti-

viert, und der Pin wird auf die Versorgungsspannung »hochgezo-

gen«. Wird auf den Eingangspin der Wert LOW geschrieben, wird

der Pull-up-Widerstand deaktiviert.

Beispiel

pinMode(13, OUTPUT); // initialisiert Pin 12 als Ausgangspin

digitalWrite(13, HIGH); // Jetzt liegen 5V an Pin 13 an.

digitalWrite(13, LOW); // Jetzt liegen 0V an Pin 13 an.

pinMode(9, INPUT); // initialisiert Pin 9 als Eingangspin

digitalWrite(0, HIGH); // Der Pull-up-Widerstand auf Pin 9 ist aktiviert.

digitalWrite(0, LOW); // Der Pull-up-Widerstand auf Pin 9 ist deaktiviert.

Funktionsreferenz

351

int digitalRead(pin)

Mit dieser Funktion lassen sich digitale Werte (HIGH oder LOW)

auslesen, die an einem digitalen Eingangspin anliegen. Der Pin

muss vorher als digitaler Eingangspin festgelegt worden sein. Liegt

keine definierte Spannung am Eingangspin an (z.B. wenn nichts

angeschlossen wurde), kann digitalRead einen zufälligen Wert

zurückgeben.

Beispiel

pinMode(9, INPUT); // initialisiert Pin 9 als Eingangspin

int val = digitalRead(9);

Analoge Ein- und Ausgabe

Auf dem Arduino-Prozessor gibt es eine Reihe von Pins, die sich als

analoge Eingänge konfigurieren lassen (auf dem Arduino Duemila-

nove sind es die Pins 14 bis 19). Im Unterschied zu digitalen Ein-

gängen können diese den kompletten Spannungsbereich (und nicht

nur 0 und 5V) auslesen. Dazu wird intern auf dem Arduino-Prozes-

sor ein sogenannter AD-Wandler eingesetzt, der analoge Werte in

digitale konvertiert. Dieser AD-Wandler hat eine Auflösung von 10

Bit, d.h. Eingangsspannung 0 bis zur Referenzspannung (meistens

5V, siehe aber analogReference) werden zum numerischen Bereich

0 bis 1.023 konvertiert, es ist also möglich, mit einer Genauigkeit

von 5 / 1.024 = 4.9mV Spannungen zu messen. Hier sei angemerkt,

dass diese Eingänge oft sehr empfindlich für Rauschen sind, die

Genauigkeit entspricht also nur in den seltensten Fällen der the-

oretisch möglichen. Analoge Pins lassen sich auch problemlos als

digitale Ein- und Ausgangspins einsetzen. Das umgekehrte Vorge-

hen ist leider nicht möglich.

int analogRead(pin)

Mit analogRead wird die Spannung, die an einem analogen Ein-

gangspin anliegt, ausgelesen. Der Rückgabewert geht von 0 (0V)

bis 1.023 (Referenzspannung). Das Einlesen analoger Werte dauert

deutlich länger als das Einlesen digitaler Werte, was unter Umstän-

den berücksichtigt werden muss.

Wie bei digitalRead werden bei einem Pin, an dem keine definierte

Spannung anliegt, einigermaßen zufällige Werte zurückgegeben (je

nachdem, wie nah der Benutzer am Arduino ist, wie hoch die Luft-

feuchtigkeit ist und ob mit einem Gummihuhn über der Schaltung

gewedelt wird).

352

Anhang C: Sprachreferenz

Beispiel

pinMode(9, INPUT); // Initialisiert Pin 9 als Eingangspin

int val = digitalRead(9);

analogWrite(pin, value)

Obwohl die analogWrite-Funktion in der analogen Kategorie aufge-

listet wird, wird sie konkret benutzt, um den Arbeitszyklus eines

PWM-Pins festzulegen. Wie in Kapitel 3 beschrieben, wird bei

PWM-Pins (auf dem Arduino Duemilanove sind das die Pins 3, 5,

6, 9, 10 und 11) periodisch zwischen HIGH und LOW alterniert.

Mit analogWrite lässt sich die Länge der HIGH-Periode einstellen

(aber nicht die Periodendauer).

analogReference(type)

Mit analogReference lässt sich die Referenzspannung, die der AD-

Wandler benutzt, umstellen. Dies ist eine fortgeschrittene Funktion

und sollte mit großer Vorsicht eingesetzt werden, weil man damit

den Arduino-Prozessor beschädigen kann. Die Referenzspannung

bestimmt, welche Spannung den Wert 1.023 beim Aufruf von ana-

logRead() bekommt. Ist die Referenzspannung 5 Volt, wird 0 Volt

als 0 gelesen, 5 als 1.023, und 2,5 als 512. Ist die Referenzspannung

allerdings 1 Volt, wird 0 Volt als 0 gelesen, 1 als 1.023, und 0,5 als

512. Wird eine höhere Spannung als die Referenzspannung an einen

analogen Eingang angelegt, besteht die Möglichkeit, den Arduino-

Prozessor zu beschädigen. Es ist also große Vorsicht geboten, wenn

die Referenzspannung verändert wird, was bei bestimmten Sensoren

zur Erhöhung der Genauigkeit notwendig ist. Die Referenzspan-

nung kann nicht höher als die Versorgungsspannung liegen (in den

meisten Fällen 5 Volt, auf einigen Arduino-Clones allerdings 3,3).

Weiterhin ist es sehr sinnvoll, Referenzspannungen an den AREF-

Pin über einen 5.000-Ohm-Widerstand anzuschließen, um den

Arduino-Prozessor zu schützen. Dadurch wird ein zu großer Strom-

fluss verhindert, falls die aktuellen Referenzspannungseinstellun-

gen nicht kompatibel zum Aufbau der Schaltung sind.

Es gibt drei mögliche Einstellungen für die Referenzspannung, die

mit dem type-Argument gesetzt werden. Die normale Einstellung

(wenn als Argument DEFAULT übergeben wird), die für die meisten

Fälle ausreichen sollte, ist das Verwenden von AVCC (also der

analogen Betriebsspannung, die 5 Volt beträgt) als Referenzspan-

nung. Der AREF-Pin muss frei sein und wird intern mit AVCC

beschrieben.

Funktionsreferenz

353

Die zweite Möglichkeit ist das Anschließen einer internen Span-

nung von 1,1 Volt als Referenzspannung. Dazu muss type als

INTERNAL gesetzt werden.

Die dritte Möglichkeit ist das Konfigurieren der Referenzspannung

über den AREF-Pin, indem type als EXTERNAL gesetzt wird. Dazu

wird die Spannung an AREF angelegt (am besten über einen 5.000-

Ohm-Widerstand, um Fehler zu vermeiden). Diese Spannung wird

dann als Referenzspannung benutzt.

Fortgeschrittene Ein- und Ausgabe

Bei komplizierten Aufbauten müssen oft viele Werte über einen syn-

chronen seriellen Bus ausgegeben werden. Das klingt ziemlich kom-

pliziert, ist aber eigentlich sehr einfach. Z.B. sind die Shift-Register,

die wir in Kapitel 10 (Musik-Controller) eingesetzt haben, so angeschlossen. Über solche Busse werden längere digitale Werte über-

tragen (z.B. 16 Bits), aber nur zwei oder drei digitale Ausgangspins

benutzt.

Anders als bei einer asynchronen seriellen Schnittstelle, wie wir sie

in Kapitel 5 gesehen haben, wird bei einer synchronen Schnittstelle ein expliziter Takt mitgegeben: Nach jedem übermittelten Bit (das

auf eine Datenleitung gesetzt wird) wird ein sogenanntes Clock-Sig-

nal gepulst, um zu signalisieren, das gerade ein Bit anliegt. Das Pul-

sen des Clock-Signals muss eine gewisse Länge haben, damit der

empfangende Chip genügend Zeit hat, den Wert einzulesen, kann

aber sonst in einem beliebigen Tempo gesetzt werden. Die Clock-

Leitung und die Datenleitung sind die einzigen notwendigen Lei-

tungen, um Daten zu übermitteln. Oft wird aber noch eine dritte

Leitung verwendet, um die Kommunikation zu starten (bzw. zu

beenden). Bei einem Shift-Register wird zum Beispiel die Enable-

Leitung verwendet, um die übermittelten Daten dann letztendlich

auch zu aktivieren. Der komplette Kommunikationsablauf sieht

also wie folgt aus: Kommunikation starten (wenn notwendig), ers-

tes Datenbit anlegen, Clock-Signal pulsen, zweites Bit anlegen,

Clock-Signal pulsen usw. Zum Abschluss muss ggf. noch die Kom-

munikation beendet werden.

shiftOut(dataPin, clockPin, bitOrder, value)

Diese Funktion vereinfacht das Übermitteln von Daten über eine

synchrone serielle Schnittstelle. Übergeben werden dataPin, die

Nummer des digitalen Ausgangspins, der für Datenübermittlung

354

Anhang C: Sprachreferenz

verwendet wird, clockPin, die Nummer des digitalen Ausgangspins,

der für die Clock-Leitung verwendet wird, bitOrder, die Rei-

henfolge, in der die Bits übermittelt werden sollen, und value, der

numerische byte-Wert (also 8 Bits lang), der übermittelt werden soll.

Die Bitreihenfolge (bitOrder) kann zwei unterschiedliche Werte

annehmen: LSBFIRST und MSBFIRST. LSBFIRST ist die Abkürzung für

»least significant bit first«, und heißt, dass das niedrigste Bit aus

value zuerst übertragen wird. So wird zum Beispiel Byte 19, also

00010011 in Binärdarstellung, wie folgt übertragen: 1, 1, 0, 0, 1, 0,

0, 0. MSBFIRST ist die Abkürzung für »most significant bit first«, und

Byte 19 würde als 0, 0, 0, 1, 0, 0, 1, 1 übertragen. Je nach empfan-

genden Chip ist die eine oder die andere Darstellung erforderlich.

Beispiel

int clkPin = 9;

int dataPin = 10;

pinMode(clkPin, OUTPUT);

pinMode(dataPin, OUTPUT);

shiftOut(dataPin, clkPin, MSBFIRST, 19); // übertragen von 19 auf

// der synchronen

// seriellen

Schnittstelle

// auf Pins 9 und 10

unsigned long pulseIn(pin, value) /

unsigned long pulseIn(pin, value, timeout)

Manchmal werden Sensorwerte (z.B. beim Beschleunigungssensor

ADXL, siehe) als Pulse übertragen. Je länger der Puls, desto höher

ist der übertragene Wert. Es bedarf also einer Funktion, mit der

sich diese Pulslänge messen lässt. Diese Funktion lässt sich z.B. mit

den unten beschriebenen Zeitfunktionen definieren, ist dann aller-

dings nicht sehr genau (weil die Zeitfunktionen der Arduino-Umge-

bung nur als grobe Hilfen zur Verfügung stehen). Deswegen wird

für solche Zwecke die Funktion pulseIn verwendet.

pulseIn gibt die Länge eines Pulses auf dem digitalen Eingangspin

pin zurück. Dabei gibt value an, welchen Wert der Puls haben will.

Wird als value HIGH übergeben, wartet die Funktion, bis der Ein-

gangspegel am Pin auf HIGH geht, und misst die Zeit, bis der Ein-

gangspegel wieder auf LOW geht. Die gemessene Zeit wird in

Mikrosekunden zurückgegeben. Wird LOW als value übergeben,

wartet die Funktion darauf, dass der Eingangspegel auf LOW geht,

und misst die Zeit, bis er wieder zu HIGH zurückkehrt. Wird nach

einer bestimmten Timeout-Zeit kein Pegel erkannt (als Standard-

wert wird eine Sekunde benutzt, es ist allerdings möglich, den

Funktionsreferenz

355

Timeout als drittes Argument zu übergeben), gibt die Funktion 0

zurück. Die Zeitmessungen dieser Funktionen können von 10

Mikrosekunden bis ungefähr 3 Minuten gehen, werden allerdings

ungenauer, je länger der Puls ist.

Beispiel

pinMode(9, INPUT); // initialisiert Pin 9 als Eingangspin

int pulsLaenge = pulseIn(9, HIGH); // misst einen positiven Puls

// auf Pin 9

pulsLaenge = pulseIn(9, HIGH, 400);// misst einen positiven Puls

// auf Pin 9, gibt 0 zurück, falls

// innerhalb von 400 Mikrosekunden

// kein Puls erkannt wurde

Zeitfunktionen

Es ist oft notwendig, Zeiten zu messen und auch bestimmte Zeiten

zu warten, um Programme zu implementieren. Diese Zeiten lassen

sich in zwei größere Ebenen einteilen: »menschliche Zeit«, also

Zeitintervalle, die für Menschen bemerkbar sind. Diese reichen von

ein paar Millisekunden (wenn z.B. LEDs blinken sollen) bis zu

mehreren Sekunden oder gar Minuten (wie z.B. beim Brainma-

chine-Workshop in). Auf der anderen Seite gibt es die »Compu-

terzeit«, die deutlich schneller ist. Sie wird z.B. benötigt, um auf

bestimmte Sensoren oder Chips zu warten, um ein Kommunikati-

onsprotokoll genau zu implementieren, um Lichter zu dimmen (sie

also so schnell flackern zu lassen, dass der Mensch es nicht

bemerkt).

Deswegen sind die zwei Zeitfunktionen (eine Funktion zum

Messen von Zeit und eine Funktion zum Warten) immer in zwei

Versionen vorhanden: eine für Millisekunden und eine für Mikro-

sekunden (es gibt 1.000 Millisekunden in einer Sekunde und 1.000

Mikrosekunden pro Millisekunde). Der Arduino-Prozessor läuft

mit 16 MHz, d.h. er kann bis zu 16 Millionen Instruktionen pro

Sekunde ausführen. Das setzt auch die unterste Grenze für die Auf-

lösung gemessener Zeitwerte fest. Jeder Zyklus ist genau 0,0625

Mikrosekunden lang, es ist also nicht möglich, mit dem Arduino

sehr genaue Werte in Mikrosekunden überhaupt zu messen. Wei-

terhin entstehen durch den Aufruf der Funktion und unterschiedli-

che andere Nebenwirkungen (wie z.B. periodische Interrupts, die

in Arduino verwendet werden) Verzögerungen, die sich nicht vor-

aussagen lassen. Dadurch ist die Genauigkeit dieser Zeitfunktionen

mit Vorsicht zu genießen.

356

Anhang C: Sprachreferenz

unsigned long millis()

Diese Funktion gibt die Anzahl von Millisekunden zurück, die seit

dem Anschalten des Arduino abgelaufen sind. Der Zähler wird bei

jedem Neuprogrammieren, Neuanschließen und Resetten des

Arduino-Boards neu initialisiert. Nach ungefähr 50 Tagen läuft die

Variable unsigned long über und beginnt wieder bei 0 (das ist ein

ähnliches Problem wie beim Y2K-Bug). Das folgende Programm

gibt die abgelaufene Zeit in Millisekunden auf der seriellen Schnitt-

stelle aus.

Beispiel

unsigned long time;

void setup() {

Serial.begin(9600);

}

void loop() {

time = millis(); // Auslesen der abgelaufenen Millisekunden

// seit Programmanfang

Serial.println(time); // Ausgeben auf der seriellen Konsole

elay(1000); // eine Sekunde warten

}

unsigned long micros()

Diese Funktion ist das Mikrosekunden-Pendant zur Funktion mil-

lis(). Sie gibt die abgelaufene Anzahl an Mikrosekunden seit Pro-

grammanfang zurück und läuft schon nach ungefähr 70 Minuten

über. Durch den Aufrufmehraufwand gibt diese Funktion auf

einem Arduino-Board immer ein Vielfaches von 4 Mikrosekunden

zurück (wenn das Arduino-Board mit 16 MHz läuft; 8-MHz-Ardu-

ino-Boards wie z.B. das LilyPad liefern Vielfache von 8 Mikrose-

kunden zurück).

delay(ms)

Diese Funktion hält das Ausführen des Programms für die angege-

bene Zeit ms (Millisekunden) an. In Wirklichkeit läuft der Prozes-

sor weiter (es werden z.B. auch Interrupt-Funktionen weiter

aufgerufen) und führt nur Anweisungen aus, die nichts bewirken.

Die serielle Schnittstelle läuft deswegen problemlos weiter und

empfangene Bytes werden weiter im Puffer gespeichert. Auch mit

PWM gepulste Pins (siehe) laufen während eines delay-Aufrufs

weiter. Allerdings ist es in dieser Zeit auch nicht möglich, z.B. wei-

tere Werte aus einem Sensor oder von Tastern auszulesen. Deswe-

gen ist es bei längeren Pausen (von mehr als nur ein paar

Funktionsreferenz

357

Millisekunden) besser, auf die Funktionen micros() und millis()

auszuweichen, um bestimmte zeitabhängige Verhalten zu imple-

mentieren.

Da Interrupts weiterlaufen, während delay() ausgeführt wird, ist

die zeitliche Genauigkeit der Funktion nicht sehr hoch. Sie sollte

nicht eingesetzt werden, um zeitkritische Verhalten zu implemen-

tieren. Auch in diesem Fall ist es besser, die Funktion millis() zu

benutzen oder die Interrupts zu deaktivieren.

In dem folgenden einfachen Beispiel wird eine LED zum Blinken

gebracht.

Beispiel

int ledPin = 13;

void setup() {

pinMode(ledPin, OUTPUT); // Der LED-Pin wird als Ausgang

// initialisiert.

}

void loop() {

digitalWrite(ledPin, HIGH); // LED anschalten

delay(1000); // 1000 Millisekunden warten (also eine

// Sekunde)

digitalWrite(ledPin, LOW); // LED ausschalten

delay(1000); // eine weitere Sekunde warten

}

Das folgende Beispiel zeigt, wie man das Blinken der LED ohne

delay() implementieren kann. Dazu wird in jedem loop()-Aufruf

die Zeit gemessen, die verlaufen ist, und entsprechend die LED an-

und ausgeschaltet. Das Beispiel scheint relativ uninteressant zu

sein, aber im Vergleich zum vorigen Programmbeispiel lassen sich

jetzt z.B. problemlos Taster abfragen. Würde man delay() mit Tas-

tenabfragen kombinieren, würden viele verloren gehen, weil der

Prozessor in dieser Zeit damit beschäftigt wäre, delay() auszufüh-

ren.

Beispiel

int ledPin = 13;

int ledValue = LOW; // der aktuelle Wert der LED

long ledSchaltZeit = 0; // die Zeit, zu der die LED zuletzt

// geschaltet wurde

long intervall = 1000; // die Länge des Intervalls zwischen jedem

// Schalten

void setup() {

pinMode(ledPin, OUTPUT); // Der LED Pin-wird als Ausgang

// initialisiert.

}

void loop() {

// zeit speichert die Dauer seit dem letzten Schalten.

358

Anhang C: Sprachreferenz

 unsigned long zeit = millis() – ledSchaltZeit;

// überprüfen, ob genügend Zeit seit dem letzten Schalten

// abgelaufen ist

if (zeit > intervall) {

// es ist genügend Zeit abgelaufen, jetzt muss die LED

// geschaltet werden

if (ledValue == LOW) {

ledValue = HIGH;

} else {

ledValue = LOW;

}

digitalWrite(ledPin, ledValue);

// jetzt wird die aktuelle Zeit als Schaltzeit gespeichert

ledSchaltZeit = millis();

}

// Hier können jetzt Sensoren und Taster abgefragt und andere

// Aufgaben ausgeführt werden.

}

delayMicroseconds(us)

delayMicroseconds() ist das Mikrosekunden-Pendant zur delay()-

Funktion. Auch hier gibt es wichtige Unterschiede. Im Unterschied

zur delay()-Funktion ist delayMicroseconds() zwischen ungefähr 3

Mikrosekunden und 16.383 Mikrosekunden sehr genau. Um diese

Genauigkeit zu erreichen, werden allerdings die Interrupts deakti-

viert, d.h. es werden keine Daten auf der seriellen Schnittstelle

empfangen, und Zeiten, die von millis() und micros() zurückge-

geben werden, werden nicht hochgezählt. delayMicroseconds()

sollte man deswegen nur für sehr kurze Pausen benutzen, delay()

dagegen für längere. Wegen der Art, wie delayMicroseconds()

geschrieben wurde (um diese Genauigkeit einzuhalten), führt

delayMicroseconds(0) zu einer deutlich längeren Pause von unge-

fähr 1.020 Mikrosekunden.

Mathematische und trigonometrische Funktionen

Viele häufig verwendete mathematische Funktionen werden auch

von der Arduino-Programmiersprache zur Verfügung gestellt. Sie

decken Bereiche ab von der einfachen Berechnung (Minimum,

Maximum) bis hin zu komplexeren trigonometrischen Funktionen

wie Sinus und Kosinus.

min(x, y)

Diese Funktion gibt die kleinere der beiden Zahlen x und y zurück.

Sie kann auf alle numerischen Datentypen angewandt werden. Aus

Funktionsreferenz

359

nicht ganz intuitiven Gründen wird min oft benutzt, um die obere

Grenze einer Variable zu setzen. Aus Implementationsgründen

sollte man vermeiden, weitere Ausdrücke in die Parameter von min

zu schreiben, da die Gefahr besteht, sie mehrmals auszuführen.

Deswegen sollte man unbedingt darauf achten, reine Zahlen und

Variablen als Argumente an min (und an max) zu übergeben.

Beispiel

int x = 13;

x = min(x, 12); // x wird nie größer als 12 sein.

min(x++, 20); // Diese Schreibweise ist falsch, x++ könnte

// mehrmals ausgeführt werden.

x++;

min(x, 20); // Dies ist die richtige Schreibweise.

max(x, y)

Diese Funktion gibt die größere der beiden Zahlen x und y zurück.

Wie min kann auch max auf alle numerischen Datentypen ange-

wandt werden. Auch nicht ganz intuitiv ist die Anwendung von max

zum Setzen der unteren Grenze einer Variablen. Zum Einschränken

einer Variablen nach oben und unten sollte man allerdings auf die

schwer lesbare Kombination von min und max verzichten und statt-

dessen die Funktion constrain einsetzen. Auch hier sollten nur

Variablen und Zahlen als Argumente übergeben werden.

Beispiel

int x = 13;

x = max(x, 5); // x wird nie kleiner als 5 sein.

// Folgendes ist schwer zu lesen.

int y = 80;

y = max(min(y, 100), 20); // y wird immer zwischen 20 und 100

sein.

abs(x)

Diese Funktion gibt den Absolutwert einer Zahl zurück (also x,

wenn x positiv ist, und –x, wenn x negativ ist) und kann auf alle

numerischen Datentypen angewandt werden. Auch an abs dürfen

nur Variablen und numerische Zahlenwerte übergeben werden,

keine beliebigen Ausdrücke.

Beispiel

int x = 13;

int y = abs(x); // y ist 13.

x = -13;

y = abs(x); // y ist 13.

360

Anhang C: Sprachreferenz

constrain(x, a, b)

Anstatt eine Kombination aus min und max zu verwenden, um einen

Wert nach oben und unten zu beschränken, lässt sich die Funktion

constrain einsetzen. Sie gibt x zurück, wenn x größer oder gleich a

und kleiner oder gleich b ist. Ist x kleiner als a, wird a zurückgege-

ben. Ist x größer als b, wird b zurückgegeben.

Beispiel

int x = 13;

x = constrain(x, 10, 20); // x ist immer zwischen 10 und 20.

map(value, fromLow, fromHigh, toLow, toHigh)

Soll ein Wert in einem bestimmten numerischen Bereich in einen

anderen numerischen Bereich konvertiert werden (also nicht nur

beschränkt werden), ist die map-Funktion zu benutzen. Die Zahl

value, die sich im Bereich fromLow bis fromHigh befindet, wird in

den Bereich toLow bis toHigh abgebildet. So kann z.B. ein Wert in

dem Bereich 0 bis 100 konvertiert werden, damit er im Bereich von

50 bis 60 liegt. Dann wird z.B. 0 zu 50, 50 zu 55, 100 zu 60. So lässt

sich auch der Wertebereich invertieren, indem man zum Beispiel

eine Zahl von 0 bis 100 auf den Bereich 100 bis 0 konvertiert. Wei-

terhin kann die map-Funktion auch Bereiche mit negativen Zahlen

bearbeiten, sodass man z.B. den Bereich 20 bis 40 auf den Bereich –

20 bis 80 legen kann (20 wird zu –20, 30 wird zu 30, 40 wird zu

80).

Die map-Funktion beschränkt Eingangswerte nicht auf den angege-

benen Bereich, weil es oft auch nützlich ist, Ausreißer zu berück-

sichtigen. Die Funktion arbeitet mit ganzzahligen Werten, auch

wenn je nach Eingabe mathematisch eine Fließkommazahl erzeugt

werden müsste.

Beispiel

int val = analogRead(0); // analoger Sensorwert, von 0 bis 1023

int y = map(val, 0, 1023, 0, 255); // jetzt von 0 bis 255

analogWrite(9, y); // und als PWM-Wert für Pin 9 eingesetzt

// für mathematisch interessierte Leser ist hier die Definition

// der Funktion:

long map(long x, long in_min, long in_max, long out_min, long out_max) {

return (x – in_min) * (out_max – out_min) / (in_max – in_min) + out_min;

}

sq(x)

Diese Funktion gibt das Quadrat einer Zahl zurück.

Funktionsreferenz

361

pow(base, exponent)

Diese Funktion gibt die Potenz der Zahl base zurück. Der Grad der

Potenz wird im Argument exponent übergeben. Die Argumente der

pow-Funktion sind Fließkommazahlen, sodass auch Bruchwerte als

Potenzen eingesetzt werden können (z.B. um Wurzeln oder expo-

nentielle Werte zu berechnen). Allerdings ist deswegen die Funk-

tion relativ langsam und sollte sparsam (oder mithilfe von Lookup-

Tabellen, siehe Kapitel 4, »LED-Matrix«) eingesetzt werden. Alle weiteren Funktionen (insbesondere die trigonometrischen) in diesem Abschnitt arbeiten mit Fließkommazahlen und komplizierten

Algorithmen und sind deswegen sehr langsam.

sqrt(x)

Diese Funktion gibt die quadratische Wurzel einer Fließkomma-

zahl zurück.

sin(rad)

Diese Funktion gibt den Sinus eines Winkels rad, der in Radian

angegeben ist, zurück.

cos(rad)

Diese Funktion gibt den Kosinus eines Winkels rad, der in Radian

angegeben ist, zurück.

tan(x)

Diese Funktion gibt den Tangens eines Winkels rad, der in Radian

angegeben ist, zurück.

Zufallszahlen

Es ist möglich, auf dem Arduino-Prozessor Zufallszahlen zu erzeu-

gen. Allerdings sind diese nicht »echte« Zufallszahlen, sondern

werden algorithmisch generiert. Ein sogenannter PRNG (pseudo-

 random number generator, pseudozufälliger Zahlengenerator) rech-

net immer wieder neue Zahlen aus, die in keiner ersichtlichen

logischen Reihenfolge zueinander stehen. Wird dieser PRNG mit

demselben Wert initialisiert (das Initialisieren nennt man auf eng-

lisch seeding, also »Samen pflanzen«, den Initialisierungswert seed,

also »Samen«), generiert er auch dieselbe Folge an Zufallszahlen.

Das kann ein Vor- oder ein Nachteil sein. Auf der einen Seite kön-

nen immer wieder gleiche Zufallszahlen nach einer gewissen Zeit

362

Anhang C: Sprachreferenz

ihren Reiz verlieren, auf der anderen Seite ist es so möglich, einen

bestimmten Ablauf zu wiederholen, falls z.B. ein Fehler oder eine

besonders interessante Folge gefunden wurde. Um jedes Mal eine

neue Folge zu generieren, kann man den PRNG mit einer »richti-

gen« Zufallszahl initialisieren (z.B. dem Ergebnis von analogRead

auf einem nicht angeschlossenen Pin). Echte Zufallszahlen sind

aber nicht gleich verteilt, während die erzeugten Zufallszahlen eini-

germaßen gleich verteilt und deshalb besser einzusetzen sind.

randomSeed(seed)

Mit dieser Funktion wird der PRNG initialisiert.

long random(max) / long random(min, max)

Diese Funktion liefert einen zufälligen Wert als Ergebnis. Dieser

Wert befindet sich zwischen 0 (bzw. min, wenn min als Argument

angegeben wurde) und der oberen Schranke max.

Beispiel

randomSeed(analogRead(0)); // initialisiert den PRNG auf einen

// wirklich zufälligen Wert, weil 0

// nicht angeschlossen ist

int val = random(300); // liefert einen zufälligen Wert zwischen 0

// und 300

int val2 = random(10, 20); // liefert einen zufälligen Wert

// zwischen 10 und 20

Serielle Kommunikation

Mit den folgenden Funktionen lässt sich die serielle Schnittstelle

des Arduino-Prozessors konfigurieren und benutzen (siehe). Diese

serielle Schnittstelle ist über einen weiteren Chip an die USB-

Schnittstelle angebunden und kann so einfach an jedem Computer

angebracht werden. Die Funktionen in diesem Abschnitt können

verwendet werden, um sowohl Daten vom Arduino-Prozessor an

den Computer zu schicken als auch Daten vom Computer aus an

den Arduino-Prozessor zu übermitteln.

Serial.begin(speed)

Bevor die serielle Schnittstelle verwendet werden kann, um Daten

zwischen Computer und Arduino-Prozessor auszutauschen, muss

erst die Geschwindigkeit der Übertragung eingestellt werden. Diese

Geschwindigkeitseinstellung (und weitere Initialisierungen der seri-

ellen Schnittstelle und der dazugehörigen Speicherdaten) werden

Funktionsreferenz

363

durch die Funktion Serial.begin() implementiert. Als Argument

wird ihr die gewünschte Geschwindigkeit der Schnittstelle in Bits

pro Sekunde (oder auch Baud) mitgegeben. Aus technischen und

historischen Gründen sind allerdings nicht alle Geschwindigkeiten

möglich, sondern nur folgende (die vielleicht noch aus Modemzei-

ten bekannt sind): 300, 1.200, 2.400, 4.800, 9.600, 14.400, 19.200,

28.800, 38.400, 57.600 oder 115.200 Bits pro Sekunde. Es ist wich-

tig, dass auf der empfangenden Seite (auf dem Computer) und im

Sketch die gleichen Geschwindigkeiten eingestellt sind.

Es ist nicht möglich, die serielle Schnittstelle vor der Initialisierung

zu benutzen. Deswegen ist in den meisten Sketches, die die serielle

Schnittstelle verwenden, ein Aufruf an die Funktion Serial.begin()

als erste Anweisung in der Funktion setup zu sehen. Ein weiterer

wichtiger Punkt ist, dass nach dem Initialisieren der seriellen

Schnittstelle die Benutzung der ersten zwei digitalen Pins nicht

mehr möglich ist, weil diese Pins die eigentliche serielle Schnitt-

stelle bilden (ein Pin für den Datenempfang und einer für den

Datenversand).

int Serial.available()

Der Arduino-Prozessor empfängt Daten, die vom Computer aus

über die serielle Schnittstelle geschickt wurden, automatisch in

einer getrennten Interrupt-Routine. Diese Routine speichert die

empfangenen Daten in einem kleinen Puffer, damit der Sketch, der

auf dem Arduino-Prozessor läuft, nicht dauernd unterbrochen

wird. Die Funktion Serial.available() prüft, ob Daten in diesem

Zwischenpuffer empfangen wurden, und gibt zurück, wie viele

Bytes an Daten vorhanden sind. Es ist wichtig, regelmäßig Daten

aus diesem Puffer mithilfe der Funktion Serial.read() auszulesen

oder ihn mit Serial.flush() zu leeren, damit er nicht überläuft (er

kann maximal 128 Bytes zwischenspeichern).

int Serial.read()

Diese Funktion liest das nächste Byte aus dem Empfangspuffer und

gibt es zurück. Dadurch wird wieder ein Byte in diesem Puffer frei.

Falls keine Daten empfangen wurden, gibt die Funktion –1 zurück.

Beispiel

void setup() {

Serial.begin(9600); // Initialisieren der seriellen

// Schnittstelle auf 9600 Baud

}

364

Anhang C: Sprachreferenz

void loop() {

// überprüfen, ob Daten über die serielle Schnittstelle

// empfangen wurden

if (Serial.available() > 0) {

// es wurden Daten empfangen

byte b = Serial.read(); // Auslesen des ersten

// Bytes und Ausgabe auf der

seriellen Schnittstelle

Serial.print("Empfangen: ");

Serial.println(b, DEC);

}

}

Serial.flush()

Mit dieser Funktion lässt sich der komplette Empfangspuffer leeren

(z.B. beim Neuinitialisieren des Programms). Diese Funktion ist

auch nützlich, wenn z.B. ein Überlauf des Empfangspuffers erkannt

wurde und die enthaltenen Daten nicht mehr gebraucht werden.

Serial.print(data) / Serial.println(data)

Mit diesen zwei Funktionen können beliebige ganzzahlige Werte

und Zeichenketten auf der seriellen Schnittstelle ausgegeben wer-

den. Die Funktion Serial.println() fügt eine Leerzeile an das Ende

der Ausgabe ein.

Wird Serial.print ohne zweites Argument verwendet, wird das

erste Argument in Dezimaldarstellung ausgegeben. Es ist allerdings

möglich, die Darstellung als zweites Argument an Serial.print()

zu übergeben, um so z.B. eine Zahl in Hexadezimaldarstellung aus-

zugeben. Es ist so möglich, mit DEC eine Zahl in Dezimaldarstellung

auszugeben, mit HEX in Hexadezimaldarstellung, mit OCT in Oktal-

darstellung, mit BIN in Binärdarstellung und mit BYTE als ASCII-Zei-

chen.

Es ist nicht möglich, Fließkommazahlen auf der seriellen Schnitt-

stelle auszugeben; sie werden in ganzzahlige Zahlen konvertiert. Es

ist allerdings möglich, diese Fließkommazahlen vor dem Ausgeben

noch mit 10 oder 100 zu multiplizieren, um so zumindest ein paar

Nachkommaziffern anzeigen zu können.

Beispiel

void setup() {

Serial.begin(9600); // Initialisieren der seriellen

// Schnittstelle auf 9600 Baud

}

void loop() {

// gibt die Zahlen von 0 bis 9 auf der seriellen Schnittstelle aus

Funktionsreferenz

365

 for (int x = 0; x < 10; x++) {

Serial.print("Normal: ");

Serial.println(x);

Serial.print("DEC: ");

Serial.println(x, DEC);

Serial.print("OCT: ");

Serial.println(x, OCT);

Serial.print("HEX: ");

Serial.println(x, HEX);

Serial.print("BIN: ");

Serial.println(x, BIN);

}

}

366

Anhang C: Sprachreferenz

ANHANG D

Händlerliste

In der folgenden Tabelle finden Sie einige Lieferanten, die Arduino-

boards führen.

Händler

Internet

bausteln

www.bausteln.de

Geist Electronic-Versand GmbH

www.geist-electronic.de

Hans-Sachs-Strasse 19

78054 VS-Schwenningen

Telefon 0049 (0)7720 / 36673

Fax 0049 (0)7720 / 36905

SEGOR-electronics GmbH

www.segor.de

Kaiserin-Augusta-Allee 94

10589 Berlin

TinkerSoup

www.tinkersoup.de

Watterott electronic

www.watterrott.com

Winkelstr. 12a

37327 Hausen

367

Index

Symbole

Arduino XVI

AIR-Projekt 9

(Raute) 138

Aktoren 4, 20

// (Kommentarzeichen) 295

Analoger Pin 20

<<-Operation 321

Arbeitsspeicher 27

==-Operator 323

Arduino-Programm 292

>>-Operation 322

Betriebsleuchte 19

~ (Tilde) 320

Bezugsquellen 21

~ (Tildenoperator) 116

Bibliotheken 275

Board 267

Numerisch

Bootloader 19

3-D-Drucker 267

C++ 5

Duemilanove 5

A

Editor 292

EEPROM 165

Abisolierzange 63

E-Mails versenden 137

Abstandssensor 178

Entwicklungsboard 3

Acknowledged 154

Entwicklungsumgebung 3, 22

Adafruit Ethernet Shield 270

Ethernet-Shield 155

Adafruit GPS Shield 272

GND (Ground) 20

Adafruit Motor Shield 274

Hobley, Stephen 248

ADXL320 176

I/O-Pin 20

ADXL330 176

Installation unter Linux 22

AIR-Projekt 9

Java 5

Aktoren 187

Kommunikation mit PC 137

Alphawellen 121

Labyrinth 14

Ampere 36

LilyPad 8

analoge Codierung 41

Markenrecht XVI

Analoge Ein- und Ausgabe 352

Mega 266

Anode 85

Minuspol 20

Api

Musik 12, 247

Application Programming Interface 94

Philosophie 7

Application Programming Interface

Programmfunktionen 292

API 94

Programmstruktur 292

Ardrumo 234

Programmwerte 292

Ardugotchi 119

|

369

Prototypen 7

B

Proxy 137

BakerTweet 15

Pulsweitenmodulation 251

Banzi, Massimo 2

Reset-Schalter 19

Basis

Sensoren 20

Transistor 105

serielle Kommunikation 131

Battery Shield 270

serielle Konsole 132

Bausteln-Projekt 21

Shield 269

Bauteile

Sounderzeugung 12

Bedrahtete 44

Spiele 12

Oberflächenbauteile 44

Stromanschluss 19

parallel schalten 39

Syntax 291

passive Komponente 44

Übertragungsleuchte 19

surface mounted devices (SMD) 44

USB-Chip 18

Benutzerschnittstelle 33

USB-Port 18

Beschleunigungssensor 241

Varianten 267

Beschleunigungssensoren 176

visuelle Effekte 9

Betawellen 121

Webserver 157

Bibliothek 275

Wii Balance-Board 14

Biegungssensor 186

Arduino Bluetooth 266

Bilderrahmen 17

Arduino Duemilanove 18, 265

bipolare Spannung 250

Arduino Lilypad 267

Bitübertragungsschicht 153

Arduino Mega 266

Blinkenlights 12

Arduino Mini 267

Blinkenlights-Projekt 109

Arduino Nano 267

Boarduino 268

Arduino Pro 5V 266

Boolesche Operation 324

Arduino Proto Shield 269

Bootloader 62

Arduino RepRap Shield 270

Botanicalls 161

Arduino, Giovanni 2

Bouncing

Arduinoboy 14

Prellen 95

Arduino-Entwicklungsumgebung

Boxsack 11

Codefenster 27

Brain Machine 122

Konsole 27

Brainmachine 65

Sketch 26

BrainPong 185

Sketchbook 28

Brainwave 128

Skizzenbuch 28

Breadboard-Shield 269

Symbolleiste 26

Brewboard 15

Syntax Highlighting 28

BrewTroller 15

Arduinome 272

Buchse 58

Arduino-Shield 269

Buchsenleisten 60

ArduPilot 268

Buchstaben 301

Argumentenliste 341

Byte 130

arithmetische Operation 315

Arnold, Frank 247

Array 91

C

Arrays 302

Cadmiumsulfid 175

Atari 12

Cahill, Thaddeus 227

Atmega168 18

Callback-Funktion 244

Atmega328 18

capSense-Bibliothek 288

Ausdruck 309, 310

Channel Pressure-Nachricht 236

Chip 41

370

|

Index

Codierung

E

analoge 41

EAGLE 46

digitale 41

Echtzeit-MIDI-Nachricht 236

Controller Change-Nachricht 236

EEPROM 165, 276

Creative Commons 3

Lebensdauer 170

Cuartielles, David 2

Schreibzyklen 169

Eingabepin 87

D

Eingabesensoren 273

Dance Dance Revolution 34

Eingabe-Shields 273

Datenblätter 44

Elektret-Kondensatormikrofone 183

Datenblattsammlungen 45

Elektretmikrofone 183

Datentyp 86

elektrische Regel 43

Variablen 86

elektrischer Leiter 43

Datentypen 297

elektrischer Strom 36

Numerische 298

Elektroenzephalografie 185

Datentypkonvertierung 312

Elektrolytkondensator 53

Debounce-Bibliothek 94, 285

elektromechanische Klangerzeugung 227

Dehnungsmessstreifen 186

Elektron 36

Dekrementierungsoperation 326

Elektronische Klangerzeugung 250

Deltawellen 121

elektronisches Klavier 248

Desktopcomputer 33

Elko 53

Die binäre Brücke 11

Entkopplungskondensator 250, 260

Diecemila 265

Entlöten 71

Differenzdrucksensor 185

Entlötlitze 71

Digiripper 9

Entlötpumpe 72

Digital-Analog-Wandler 251

Entwicklungsumgebung

digitale Codierung 41

Processing 2

Digitale Ein- und Ausgabe 351

Epoxidharz 43

digitale Kommunikation 129

E-Reihen 50

Dihardja, Daniel 247

Erschütterungssensor 194

Dimmen 107

Ethernet 277

Diode 55

exklusiver ODER-Operator 319

Anode 55

EyeToy 34

Kathode 55

diskrete Spannungswerte 41

F

Display

Fehlerquellen 77

Siebensegment 111

Feldeffekttransistor 105

Diver Sequencer 248

Fernbedienung 173

DMX 273

Feuchtigkeitssensor 182

DMX-shield 273

Filtern 260

do ... while-Kontrollstruktur 338

Fingerabdruckssensoren 184

Dorsum Arduino 2

Firmata 144, 281

DPDT (Double Pole, Double Throw) 49

Bibliothek 281

DPST (Double Pole, Single Throw) 49

Schnittstelle 281

Drehknopf 102

Flash 4

Helligkeit 102

Flexsensoren 53

Drehregler 172

Fließkommazahlen 301

Dreiachsen-Beschleunigungssensor 241

Flugdrohne 173, 177

Drei-Wege-Handshake 154

Fluidforms 11

Drucksensoren 53

Flusskontrolle 151

Dynamisches Mikrofon 183

Index

|

371

for-Kontrollstruktur 334

Hirnwellenfrequenz 127

Fototransistor 175

HMC6352 182

Fotowiderstand 53

Hochpräzisionswiderstände 50

Fotowiderstand (LDR) 175

Holm, Eric 13

Fotozelle 53

Honeywell 182

Freeduino.org XVI

HTTP 155

Frequenzen 260

Hygrometer 182

Frequenztabelle 259

Hypertext Transport Protocol (HTTP) 155

Funktion 92, 338, 342

Argumente 92

I

Funktionsargumente 342

i2c 241

Funktionsaufruf 338

IC 61

Funktionsdefinition 340

if ... else-Kontrollstruktur 328

Funktionsdeklaration 340

if-Kontrollstruktur 327

Igoe, Tom 3

G

Illuminato 268

Gadget 16

IMAP 155

Galliumarsenid 105

In-Circuit Serial Programming

Gammawellen 121

ICSP 19

Gasdrucksensor 185

Infrarotsensoren 181

gEDA 46

Inkrementierungsoperation 326

Gehirnmaschine 122

Input 32

Gehirnwellenmaschine 16

Input-Output

Geschweifte Klammern ({}) 294

IO 88

Glasfaser 43

Instructables.com XVII

Gleichspannung 56

Integer

Gleichstrommotor 188

Zahl 86

Glühbirnen vs. LED 106

integrated circuit 41

GND

Interaction Design 2

Ground 85

Interaction Design Institute Ivrea (IDII) 2

Gobetwino 137

Interactive Telecommunications Program 3

Gotcha 14

Internet Protocol (IP) 153

GPS-Shield 272

Interrupt-Routine 255

Grundton 263

IO

Gyroskop 178

Pin 88

IP-Adresse 154

H

iPhone 33

iterieren 91

Halbleiter 40

Halbleitermaterial 54

Hall, Edwin 180

J

Hall-Sensor 180

Joystick 173, 273

Handluftpumpen 247

Hauptfunktion 84

K

loop() 84

Kabel 58

Hayward, David 107

Kapazitiver Pad 173

Heißluftpistole 72

kapazitiver Sensor 179

Helligkeitsstufen 102

Kathode 85

Hexadezimaldarstellung 301

Katze 17

HIGH-Spannung 41

372

|

Index

Key Pressure-Nachricht 236

libraries 275

KiCad 46

Lichtschranke 176

Kingbright TA20 110

Lichtsensor 146

Klangstufen 10

Lichtwechsel 93

Kleidung 8

Lichtwecker 107

Kohleschichtwiderstände 50

Light Intensity 175

Kollision 148

Lilie, Anita 16

Kommentare 295

Linux 22

Kommunikation

LiquidCrystal 282

Protokoll 129

Liquidware 273

Kompass 182

Liquidware TouchShield 271

Kompilieren 95

Lochrasterplatine 43, 65

Kondensator 53

Logarithmustabelle 100

Farad 53

Logische Negierung 320

Filter 54

Logische Operation 316

Konstanten 308

Löten 64

Kontrollstruktur 327

Sicherheit 72

Kraftsensor 185

Lötkolben 67

Krokodilklemmen 59

Lötpunkte 70

Künstler 8

Lötspitze 67

Kupferleiterbahn 43

Lötvorgang 69

Kupferlitze 59

Lötzinn 68

Flussmittel 68

L

ROHS-Regelung 68

Low Frequency Oscillator (LFO) 257

L293 189

LOW-Spannung 41

Ladyada XVII

LSBFIRST 355

Lampe

Luftfeuchtigkeit 182

Farbverläufe 100

Luftverschmutzung 9

Lampen 106

Laptop 130

RS232-Schnittstelle 130

M

Laserharfe 248

Mac OS X 22

Laserspiele 13

Make Magazine XVI

Laufschrift 109

March Frame Projec 16

Lautsprechermembran 250

Maskierung 317

LCD-Bildschirm 282

Masse 85

LDR (Fotowiderstand) 53, 162, 175

mathematische Funktion 359

LED 109, 187

Matrix 109

Anode 85

Flackern 115

Auge 98

MAX/MSP 11

Diode 84

Max/MSP 4

Kathode 85

mediamatic.net XVII

Lichtfarbe 85

Mellis, David 2

light emitting diodes 84

Melodien 259

Matrix 110

MEMS 176

Leistung 39

Messung

Leuchtdioden 106

analoger Eingang 102

Leuchtstofflampen vs. LED 106

Metalldetektor 180

Leyh, Arvid 122

Metalloxid-Halbleiter-Feldeffekttransistor

LFO 257

Mosfet 105

Index

|

373

Metallschichtwiderstände 50

Nintendo Gameboy 14

MicroSD Module 272

Note Off 236

MIDI 231

Note On 236

Temposynchronisation 236

NPN-Transisto 105

Timing Master 236

Nullpunkt 262

Timing Slave 236

Nunchuck 173, 241

Midi 143

Midi Monitor 235

O

MidiDuino 239

Obertöne 260

Bibliothek 239

Objekt 95

MIDI-Gerät 231

ODER-Operator 319

MIDI-Nachrichten 235

Ohmsches Gesetz 37

MIDI-Protokoll 231, 233

Open Heart Kit 65

MIDI-Sniffer 235

Open Source 5

Miduino 268

Open Systems Interconnection Model 129

Mika Satomi 186

OpenEEG 185

Mikrocontroller 32

Operationen 311

Mikrofon 106

Optokoppler 237

Mikrofone 183

OSI-Modell 129

Milk Lamp 107

Oszilloskop 81

MIT Media Lab 2

Output 32

Mittelwert 101

Modulo 93

Modulo-Operation 315

P

Moll-Arpeggio 258

Pad 173

Mollterz 258

Paintball 13

Monome 232

Parameter 338

Moog, Bob 228

Parker, Alastair 13

Morup, Mikael 137

Perner-Wilson, Hannah 186

Motion-Capturing 186

Physical Computing 31

Motor-Driver 189

Grundlagen 35

Motoren 188

Rechnen 42

MSBFIRST 355

Sensoren 171

Multimeter 78

Piezoeffekt 184

Spannungen messen 80

Piezoelektrisches Mikrofon 184

Ströme messen 81

Pin

Widerstandswerte messen 80

Festlegung 84

Multitouch-Oberfläche 33

Setup-Routine 84

Musik-Shield 271

Pinzette 64

Platine 43

N

Pocket Piano Shield 249

Pong 12

Nam June Paik 9

POP3 155

Natal 34

Potentiometer 102, 172

Negative Zahlen 300

Powerball 13

Negierungsoperator 320

Präzedenzregeln 314

Nervenzellen

Prellen 94

Spannungsimpulse 121

Bouncing 95

Niedrigfrequenzoszillator 258

PRNG (pseudorandom number generator) 362

Nintendo 177

374

|

Index

Processing 2, 142

S

Drehknopf 145

s2midi 234

Program Change-Nachricht 236

Sanguino 267

Programmblock 294

Schaltbild

Programmiersprache 84

Verbindungen 46

Programmrumpf 340

Schalter 48, 87

Programmstruktur 293

Ball Switches 48

Propellurino 270

Taster 49

Protoduino 269

Schaltkreis 36, 61

pseudozufälliger Zahlengenerator 362

elektrischer 35

Pulswellenmodulation

Schaltung 43

PWM 97

analoge 40

Zähler 98

digitale 40

Punkten 42

Schaltungen

PWM

Fehlersuche 73

Pulsweitenmodulation 97

Temperatursensortransistorverstärkungsschal-

tung 74

Q

Schieberegler 273

Quadrokopter 178

Fader 52

Quecksilberspeicher 230

Schleife

Quinte 258

for() 91

loop() 91

R

Schleifendurchlauf 91

Schrittmotor 189

R.E.M. 142

Schutzbrille 122

Radio Frequency Identification, (RFID) 271

Seitenschneider 63

Raes, Godfried-Willem 228

Semikolon 294

Rails 65

Sensor

Rapid Prototyping XI

resistiver 39, 53

Rauschen 260

Sensoren 171

Raute (#) 138

Septime 258

Reed-Relais 180

Sequencer 229

Relais 54

Serielle Kommunikation 363

RepRap 267

Servo

reservierte Zeichen 296

Bibliothek 284

resistive Sensoren 172

Servo (siehe Servomotor) 139

Resistiver Pad 173

Servomotor 138, 188

resistiver Touchscreen 174

Servomotoren 284

Resistor Capacitator (RC) 180

shiften 321

Restwert 315

Shift-Register 62

RFID 271

SID-Chip 272

RGB-LED 106

Siebensegment 111

Ribbon Controller 173

Signal

Roaming Drone 175

digitales 86

Roboduino 268

elektrisches 35

Roboter 12

Silizium 54

Rotor 189

Sketch 347

Rückgabetyp 309

Funktionsreferenz 350

Rückgabewert 309

Kompiliervorgang 26

Index

|

375

loop() 348

Thetawellen 121

.pde 349

Tiefpassfilter 106, 249, 260

Stop-Symbol 27

Tilde (~) 320

Struktur 347

Tildenoperator (~) 116

Sleeptracker 16

tinker.it XVI

SMTP 155

Tischzange 69

SN754410NE 189

dritte Hand 69

Sniffer 155

Tomczak, Sebastian 9

Solenoid 190

Tonhöhe 127

Sonar 181

Touchpad 173

Sonic Body 11

Touchscreen 174

Soundchip 271

TouchShield 271

Spannung 35, 41, 86

Transistor 54

U 86

Basis 105

Volt 35

Emitter 105

Spannungsregler 56

Kollektor 105

Spannungsteiler 38

NPN 105

Spannungswert 50

PNP 105

SparkFun 176

Transistoren 105

SPDT (Single Pole, Double Throw) 49

Treiberbaustein 61

Spielekonsolen 12

TSL230R-LF 175

Spielzeugroboter 12

Tweetie 160

Spitzzange 64

Tweets 160

SPST (Single Pole, Single Throw) 49

Twhirl 160

Stahlwolle 68

Twitter 160

Steckbrett 43, 57

Stecker 58

U

Steckernetzteil 56

UDP 154

Stereoklinkenbuchse 249

Ultraschallsensor 17

Strom 36

Umgang mit Strom

Studentenkneipe

Fehlerstromsicherung 40

Arduino 2

Sicherheitsregeln 40

switch ... case-Kontrollstruktur 331

Umwandlung aus Energie

Synthesizer

Wärme 36

modularer 228

UND-Operator 317

Systeme

unipolare Spannung 250

mikroelektrisch-mechanische 176

T

V

Vakuumröhren 105

T.V.-be-Gone 65

Val, Olaf 9

Tabellen 302

Variable 297, 306

Tamagotchi 118

Variablenzuweisung 310

Tank Shield 273

Vergleichsoperation 323

Taos 175

VGA 9

Taster 48, 87

virtual instrument 230

TCP 154

virtuelles Instrument 230

Telharmonium 227

void 92

Temperatursensor 182

Vorwiderstand 86

Theremin 228, 260

Vorzeichenmarker 98

Thermistoren 53

VVVV 4

376

|

Index

W

Wireshark 155

Wiznet W1500 156

Wärmeleitpaste 106

WLAN-Modul 154

Watt 39

Wave Shield 271

Wearable Computing XVII

X

LilyPad 8

x0xbox 65

Webduino 160

Xbee-Shield 271

Webserver 138, 157

Wellenform 258

Z

Sägezahn 258

Tonhöhen 258

Zahl

while-Kontrollstruktur 337

Integer 86

Widerstand 36, 50, 86

Zahlen 300

Drehpotentiometer 52

Zählvariable 91

Farbcode 50

Zapfanlage 15

lichtempfindlicher 53

Zeichenketten 304

Ohm 36

Zeitfunktion 356

R 86

Zeitschaltuhr 32

Schieberegler 52

Zigbee 271

Variabler 52

Zilius, Jonas XVIII

Wii 34

Zufallszahlen 362

Wiimote 173

Zusammengesetzte Operation 325

Windows 22

Zylinderspule 190

Wire-Bibliothek 286

Index

|

377

Über die Autoren

Manuel Odendahl ist Selbstständiger und stellt unter dem Namen

»Ruin & Wesen« Opensource-MIDI-Kontroller her.

Julian Finn ist Informatikstudent kurz vor dem Diplom und arbei-

tet bei der Gameforge AG in Karlsruhe, sowie als freier Autor. Er

hat die Texte für mehrere Computerspiele verfasst und beschäftigt

sich ansonsten mit den Randbereichen von Technik, Kunst und

Gesellschaft. Dazu gehört die Arbeit an Medienkunstinstallationen

genauso wie Text- und Diskussionsbeiträge zu digitaler Kultur,

freiem Wissen und Netzpolitik.

Alex Wenger wollte schon als Kind wissen wie die Welt im Inneren

funktioniert und kein elektrisches Gerät war vor Ihm sicher. Nach

dem Physik- und Dipl. Ing. Informationstechnikstudium entwickelt

er hauptberuflich Software und Elektronik für Display-Anwendun-

gen. Zu den weiteren Beschäftigungen gehört die Arbeit als

Medienkünstler und Dozent.

Yunjun Lee ist in Südkorea geboren und arbeitet momentan als

Gastkünstler am Karlsruher Zentrum für Kunst- und Medientech-

nologie (ZKM). Yunjun Lee entwickelt vielseitige Medienkunstpro-

jekte, bei denen er seine Fähigkeiten als Maler, Bildhauer und

Musiker mit technischen Mitteln erweitert.

Jonas Zilius studiert Architektur an der Universität Karlsruhe.

Neben seiner Tätigkeit als freier Grafiker für Print- und Web-

Medien ist seine Leidenschaft die Photographie. Er ist studentischer

Mitarbeiter in der zentralen Fotowerkstatt der Fakultät Architektur.

Arbeiten aus den Bereichen Veranstaltungen/Konzerte, Sport, Port-

rait und Produkte zählen zu seinen Referenzen. Ein Reise-Bildband

über Tirana/Albanien ist in Arbeit.

Kolophon

Das Coverlayout dieses Buchs hat Michael Oreal gestaltet. Als

Textschrift verwenden wir die Linotype Birka, die Überschriften-

schrift ist die Adobe Myriad Condensed und die Nichtproportio-

nalschrift für Codes ist LucasFont's TheSansMono Condensed.

Table of Contents

		Einleitung

	1

	Der Arduino, das unbekannte Gerät .

	Arduino-Projekte: eine kleine Vorstellung .

	Hardware .

	Die Arduino-Entwicklungsumgebung .

	2

	Elektrische Grundlagen .

	Schaltungen, Bauteile und Schaltbilder .

	Löten .

	Fehlersuche in elektronischen Schaltungen .

	3

	Eine blinkende LED – das »Hello World« des Physical Computing

	4

	Animationen .

	Interrupts .

	Tamagotchi .

	Brainwave und Biofeedback .

	5

	Nach Hause telefonieren mit der seriellen Konsole .

	Automatisierung mit Gobetwino .

	Processing .

	6

	Hello World – ein Mini-Webserver .

	Sagś der Welt mit Twitter .

	Fang die Bytes – Datalogger .

	7

	Aktoren .

	Elektronischer Würfel .

	8

	DMX .

	Barlicht .

	RF-Steckdosen .

	Gespensterschreck .

	9

	Wearable Komponenten .

	Die iPod-Steuerung im Mantel .

	10 Musik-Controller mit Arduino

	Das MIDI-Protokoll .

	Die MidiDuino-Bibliothek .

	Ein MIDI-Zauberstab .

	MIDI-Input .

	11 Musik mit Arduino

	Erster Sketch: Töne mit langsamer PWM .

	Zweiter Sketch: Angenehme Klänge mit schneller PWM . 252

	Dritter Sketch: Steuerung von Klängen .

	Vierter Sketch: Berechnungen in einer Interrupt-Routine .

	Fünfter Sketch: Musikalische Noten .

	A

	Arduino-Shields .

OEBPS/Images/image00444.png
MIDI-CON

IN1

MIDIIN

220
R7

GND

to arduino RX

OEBPS/Images/image00577.png

OEBPS/Images/image00445.png

OEBPS/Images/image00578.png

OEBPS/Images/image00442.png

OEBPS/Images/image00575.png

OEBPS/Images/image00443.png

OEBPS/Images/image00576.png

OEBPS/Images/image00448.png

OEBPS/Images/image00446.png

OEBPS/Images/image00579.png

OEBPS/Images/image00447.png

OEBPS/Images/image00580.png

OEBPS/Images/image00581.png

OEBPS/Images/image00453.png

OEBPS/Images/image00585.png

OEBPS/Images/image00454.png

OEBPS/Images/image00586.png

OEBPS/Images/image00451.png

OEBPS/Images/image00582.png

OEBPS/Images/image00452.png

OEBPS/Images/image00583.png

OEBPS/Images/image00432.png

OEBPS/Images/image00566.png

OEBPS/Images/image00433.png
7 77 2
T

—

OEBPS/Images/image00567.png

OEBPS/Images/image00430.png

OEBPS/Images/image00564.png

OEBPS/Images/image00431.png

OEBPS/Images/image00565.png

OEBPS/Images/image00437.png

OEBPS/Images/image00570.png

OEBPS/Images/image00438.png
L TR TYTY
Arsdd P00

Hady qaoy

OEBPS/Images/image00435.png

OEBPS/Images/image00568.png

OEBPS/Images/image00436.png

OEBPS/Images/image00569.png
3 >
wo B ACC
rEDT

< >
w K3

ANCC

OEBPS/Images/image00440.png

OEBPS/Images/image00573.png

OEBPS/Images/image00441.png

OEBPS/Images/image00574.png

OEBPS/Images/image00571.png

OEBPS/Images/image00439.png
pIn 9 1k

—
2 u
EL
= AUDIOJACK
1 uF ERRY)
—

OEBPS/Images/image00572.png

OEBPS/Images/image00468.png

OEBPS/Images/image00603.png

OEBPS/Images/image00469.png

OEBPS/Images/image00604.png

OEBPS/Images/image00466.png

OEBPS/Images/image00601.png

OEBPS/Images/image00467.png

OEBPS/Images/image00602.png
Arduino File Edit Sketch JQEIIEY Help % & |

Auto Format ®T
Copy for Forum Arduino - 0014
Archive Sketch

Arduino Nano
| Serial Port > Arduino Pro or Pro Mini (8 MHz)
! Arduino BT

Burn Bootloader 3

Arduino NG or older w/ ATmega8
B =2y - b
ey oanea(20| Arduino Duemilanove w/ ATmega328

it potiPin = 5 v Arduino NG or older w/ ATmegal68

it ledPins[5] < {11, 19, 9, 6,5 Arduino Mini

Arduino Diecimila or Duemilanove w/ ATmegal68
LilyPad Arduino

int currentLoop -

int currentDelay = 20
e ine NIM_PROGRANS 4

votd setun()
pirtide(ButtorPin, INRUT);
Uit e buttarPin, AIDH);
for (int 1+ 85 1 <65 1)
pirtiode(tedins (1], QUTPUTY;
3

OEBPS/Images/image00470.png

OEBPS/Images/image00471.png

OEBPS/Images/image00606.png

OEBPS/Images/image00472.png

OEBPS/Images/image00607.png

OEBPS/Images/image00605.png

OEBPS/Images/image00475.png

OEBPS/Images/image00610.png

OEBPS/Images/image00476.png

OEBPS/Images/image00611.png

OEBPS/Images/image00473.png

OEBPS/Images/image00608.png

OEBPS/Images/image00474.png

OEBPS/Images/image00609.png

OEBPS/Images/image00457.png

OEBPS/Images/image00589.png

OEBPS/Images/image00458.png

OEBPS/Images/image00590.png

OEBPS/Images/image00455.png

OEBPS/Images/image00587.png

OEBPS/Images/image00456.png

OEBPS/Images/image00588.png

OEBPS/Images/image00459.png

OEBPS/Images/image00592.png

OEBPS/Images/image00460.png

OEBPS/Images/image00593.png

OEBPS/Images/image00461.png
wel:terﬁ":'E?

OEBPS/Images/image00594.png

OEBPS/Images/image00464.png

OEBPS/Images/image00597.png

OEBPS/Images/image00465.png

OEBPS/Images/image00599.png

OEBPS/Images/image00462.png

OEBPS/Images/image00595.png

OEBPS/Images/image00463.png
INT INT INT INT

RN
Tyl

256 _ 256 256 256

OEBPS/Images/image00596.png

OEBPS/Images/image00491.png

OEBPS/Images/image00489.png

OEBPS/Images/image00625.png

OEBPS/Images/image00490.png

OEBPS/Images/image00626.png

OEBPS/Images/image00404.png

OEBPS/Images/image00403.png
error: 'bla’ was not declared in this scope

OEBPS/Images/image00402.png

OEBPS/Images/image00401.png

OEBPS/Images/image00400.png
()@

Play Stop New Open Save Upload Console

OEBPS/Images/image00627.png

OEBPS/Images/image00494.png

OEBPS/Images/image00631.png

OEBPS/Images/image00495.png

OEBPS/Images/image00632.png

OEBPS/Images/image00492.png

OEBPS/Images/image00628.png
® 6 0 ¢ & A % 0 0 8 8 8 8 8
e 0 0 .« 0 6 8 0 ¢ o

OEBPS/Images/image00493.png

OEBPS/Images/image00629.png

OEBPS/Images/image00498.png

OEBPS/Images/image00636.png

OEBPS/Images/image00499.png

OEBPS/Images/image00637.png

OEBPS/Images/image00496.png

OEBPS/Images/image00633.png

OEBPS/Images/image00497.png
Device Manager

Fle Acion Vew Hep
ol ==

7 Dsplay adoprers

2 DVDJCD-ROM drives:

2 Flgpy disk contolers

13 Foppy dis dives

% IDE ATA[ATAPI contrallers

Infrered devices
© Keyboards
) Mice and other pointing devices

L Modens

3 vontors
58 Network adapters
Other devices

PCMCIA adapters
o Ports (COMBLPT)

. Communicatons Port: (CoM1)
3 printer port (PT1)

A Processors
@, Sound, viden and game controllers.

System devices
Universal Seral Bus cortrolers

OEBPS/Images/image00634.png

OEBPS/Images/image00480.png

OEBPS/Images/image00615.png

OEBPS/Images/image00481.png

OEBPS/Images/image00478.png

OEBPS/Images/image00612.png

OEBPS/Images/image00479.png

OEBPS/Images/image00613.png

OEBPS/Images/image00483.png

OEBPS/Images/image00618.png

OEBPS/Images/image00484.png

OEBPS/Images/image00619.png
VOO

N

%g LDR
' to analog 0

DE

CND

220

OEBPS/Images/image00616.png

OEBPS/Images/image00482.png

OEBPS/Images/image00617.png
CViD

ANCC

OEBPS/Images/image00487.png

OEBPS/Images/image00623.png

OEBPS/Images/image00488.png

OEBPS/Images/image00624.png

OEBPS/Images/image00485.png

OEBPS/Images/image00620.png

OEBPS/Images/image00486.png

OEBPS/Images/image00621.png

OEBPS/Images/image00514.png

OEBPS/Images/image00427.png

OEBPS/Images/image00426.png

OEBPS/Images/image00425.png

OEBPS/Images/image00424.png

OEBPS/Images/image00423.png

OEBPS/Images/image00422.png

OEBPS/Images/image00421.png

OEBPS/Images/image00420.png
vee
>

C1
1lu
R2

100k

K

oS
o

1

to arduino analog 0

RO

T1

I: BC846B

CND

OEBPS/Images/image00418.png

OEBPS/Images/image00515.png

OEBPS/Images/image00417.png

OEBPS/Images/image00516.png

OEBPS/Images/image00519.png

OEBPS/Images/image00522.png

OEBPS/Images/image00517.png

OEBPS/Images/image00518.png

OEBPS/Images/image00525.png

OEBPS/Images/image00526.png

OEBPS/Images/image00523.png

OEBPS/Images/image00524.png

OEBPS/Images/image00500.png

OEBPS/Images/image00638.png

OEBPS/Images/image00501.png

OEBPS/Images/image00415.png

OEBPS/Images/image00414.png

OEBPS/Images/image00413.png

OEBPS/Images/image00412.png

OEBPS/Images/image00411.png
Statseie | Biag | Shop | Anlitungen| Termins Wiki Kentakt |

bausteln a“
[

DEMOKRATISIERUNG DES PRODUKTIONSWISSENS

baulsteln; ich baustle]le, gebaustelt (vgl. bauen, basteln):
kreativ seibst etwas erschafien (s. a. erfinden, tifteln, werken, herumprobieren, spielen)

bausteln.de will dir das Wissen und die Mittel an die Hand geben, um die Dingwelt um dich
herum neu zu erfinden, umzubauen und mit Intelligenz anzureichern:
Baustel die Maschinen, Roboter, Kunstwerke der Zukunft!

Die Werkzeuge, Materialien und Baupléne hierfiir demokratisieren sich, werden handiicher,
verfiigbarer, offener. Um anzufangen, braucht man keine mehrjahrige technische
Ausbildung mehr. Wer SpaB am Lego-Spielen oder Origami-Falten hat, bringt bereits alle
Voraussetzungen mit, um zum Baustler zu werden.

Foto: Alexander Lang

Blog Startseite Shop Anleitungen Termine Wiki Kontaki RSS

OEBPS/Images/image00410.png

OEBPS/Images/image00409.png

OEBPS/Images/image00408.png

OEBPS/Images/image00407.png

OEBPS/Images/image00405.png

OEBPS/Images/image00639.png

OEBPS/Images/image00503.png

OEBPS/Images/image00640.png

OEBPS/Images/image00508.png

OEBPS/Images/image00643.png

OEBPS/Images/image00509.png

OEBPS/Images/image00644.png
MADE IN
ALY, i 2A”C'

L_H!II

ummm

i Dtn.nemllla

O (’3 (\r
3

3

=0l q X

[lllvl]‘“ & _("’ =3y

ﬂsz
e QID 0.0 . @ &
8 ﬂ B qw»b b o |

“.} ‘EF\W B [

wuwu.arduino.cc |
9 POWER ANALOG IN
Y ™5Y Gnd Um %] 1 X

OEBPS/Images/image00504.png

OEBPS/Images/image00641.png

OEBPS/Images/image00505.png

OEBPS/Images/image00642.png

OEBPS/Images/image00512.png

OEBPS/Images/image00647.png

OEBPS/Images/image00513.png

OEBPS/Images/image00648.png

OEBPS/Images/image00510.png
.hmi
itk OF 3

W
o
- vl

OEBPS/Images/image00645.png
ceUd]

cdd]

a4l

<

DDA

1
2

B

RYY

B

RYY

LY

T1

R1

to arduino pin

GND

OEBPS/Images/image00511.png

OEBPS/Images/image00646.png
lest LED

UsB lnte(face

X Duemilano

Tx/Rx LEDs =

e ey

wuwu.arduino.cc |
POWER ANALOG. IN
25V Gnd Vin @1 2 3 4

Stromversorgung analoge Eingdange

OEBPS/Images/image00528.png

OEBPS/Images/image00529.png

OEBPS/Images/image00527.png

OEBPS/Images/image00532.png

OEBPS/Images/image00534.png

OEBPS/Images/image00530.png
CVb

SA

IA

NV
<

OEBPS/Images/image00531.png

OEBPS/Images/image00538.png
[4SEN

—
P4 N.
1aal
— &
Ty =

1)

S1

OEBPS/Images/image00535.png
TINKER@'SOUP

OEBPS/Images/cover00659.jpeg
Manuel Odendahl,
O'REILLY" Julian Finn & Alex Wenger

OEBPS/Images/image00536.png

OEBPS/Images/image00539.png

OEBPS/Images/image00651.png

OEBPS/Images/image00653.png

OEBPS/Images/image00649.png

OEBPS/Images/image00650.png

OEBPS/Images/image00656.png
MIDI-CON

OUl 1

Y

VCC

220

GND

' to arduino TX

OEBPS/Images/image00657.png

OEBPS/Images/image00654.png

OEBPS/Images/image00655.png

OEBPS/Images/image00658.png

OEBPS/Images/image00555.png
Empfangen ‘
Empfangen
Empfangen
Empfangen:

OEBPS/Images/image00556.png

OEBPS/Images/image00553.png

OEBPS/Images/image00554.png

OEBPS/Images/image00559.png

OEBPS/Images/image00560.png

OEBPS/Images/image00557.png

OEBPS/Images/image00558.png

OEBPS/Images/image00428.png

OEBPS/Images/image00562.png

OEBPS/Images/image00429.png

OEBPS/Images/image00563.png

OEBPS/Images/image00561.png

OEBPS/Images/image00542.png

OEBPS/Images/image00544.png

OEBPS/Images/image00540.png

OEBPS/Images/image00541.png

OEBPS/Images/image00547.png

OEBPS/Images/image00548.png

OEBPS/Images/image00545.png

OEBPS/Images/image00546.png

OEBPS/Images/image00549.png

OEBPS/Images/image00551.png

OEBPS/Images/image00552.png

