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Vorwort 
Das dreibändige Buch „Elektrotechnik für Ingenieure“ ist für Studenten des Grundstudi-
ums der Ingenieurwissenschaften, insbesondere der Elektrotechnik, geschrieben. Bei der 
Darstellung der physikalischen Zusammenhänge, also der Elektrotechnik als Teil der 
Physik – sind die wesentlichen Erscheinungsformen dargestellt und erklärt und zwar aus 
der Sicht des die Elektrotechnik anwendenden Ingenieurs. Für ein vertiefendes Studium 
der Elektrizitätslehre dienen Lehrbücher der theoretischen Elektrotechnik und theoreti-
schen Physik. 
Die Herleitungen und Übungsbeispiele sind so ausführlich behandelt, dass es keine ma-
thematischen Schwierigkeiten geben dürfte, diese zu verstehen. Teilgebiete aus der Ma-
thematik werden dargestellt, sofern sie in den üblichen Mathematikvorlesungen des 
Grundstudiums ausgespart bleiben. 
Die Wechselstromtechnik des Kapitels 4 setzt Kenntnisse über die Gleichstromtechnik 
und das Elektromagnetische Feld voraus, die im Band 1 behandelt sind. Durch die Abbil-
dung der sinusförmigen Größen in komplexe Zeitfunktionen können die Netzberech-
nungsverfahren entsprechend angewendet werden, weil Differentialgleichungen durch die 
Abbildung algebraische Gleichungen werden. Die Zusammenhänge zwischen Sinusgrö-
ßen, komplexen Zeitfunktionen, komplexe Amplituden, komplexe Effektivwerte, rotie-
rende Zeiger und ruhende Zeiger werden ausführlich erklärt. Damit können die verschie-
denen Lösungsmethoden der Wechselstromtechnik gegenübergestellt und durch Beispiele 
erläutert werden. Bei der Behandlung von gemischten Schaltungen wird das Kreisdia-
gramm mit Zahlenbeispielen vorgestellt, die leicht rechnerisch nachvollzogen werden 
können. Resonanzerscheinungen in Reihen- und Parallelschwingkreisen und zahlreiche 
Wechselstromschaltungen werden ausführlich beschrieben. In der Wechselstromtechnik 
werden fünf verschiedene Leistungen unterschieden, deren Zusammenhänge mathema-
tisch, in Diagrammen und durch Beispiele erläutert werden. 
Bei den Ortskurven im Kapitel 5 steht die Konstruktion des „Kreises durch den Null-
punkt“ im Mittelpunkt. 
Um den Transformator im Kapitel 6 verstehen zu können, sind die Ausführungen im 
Band 1 zu studieren. Dort sind die Differentialgleichungen im Zeitbereich entwickelt, die 
dann hier in den Bildbereich überführt werden. Besonderes Augenmerk gilt den verschie-
denen Ersatzschaltbildern von Transformatoren. 
Im Kapitel 7 werden sowohl symmetrische als auch unsymmetrische Dreiphasensysteme 
behandelt und durch Rechenbeispiele erläutert. Ergänzt wird die Messung der Leistungen 
des Dreiphasensystems bei symmetrischer und unsymmetrischer Belastung. 
Die 5. Auflage wurde um ein Verzeichnis der verwendeten Formelzeichen und Einheiten 
ergänzt. Die 6. Auflage wurde vollständig überarbeitet; dabei wurden Erläuterungen und 
in den Berechnungen Zwischenschritte ergänzt. In der 7. Auflage sind einige Korrekturen 
und Verbesserungen vorgenommen worden. 
Für die mühevolle Durchsicht des Manuskripts und die vielen helfenden Anregungen in 
Diskussionen bedanke ich mich herzlich bei meinen Kollegen. Ebenso danken möchte ich 
den Mitarbeitern des Verlags für die gute Zusammenarbeit. 

 

Wedemark, im Oktober 2008 Wilfried Weißgerber 
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4 Wechselstromtechnik

4.1 Wechselgrößen und sinusförmige Wechselgrößen

4.1.1 Wechselgrößen

Gleich- und Wechselgrößen

Kennzeichnend für die Gleichstromtechnik und das elektrische Strömungsfeld sind zeit-
lich konstante Größen: Strom, Spannung, Stromdichte und elektrische Feldstärke. Auch
das mit dem elektrischen Feld verbundene magnetische Feld mit den entsprechenden
magnetischen Größen ist zeitlich konstant.

Sind die Größen, die die elektromagnetischen Erscheinungen beschreiben, zeitlich verän-
derlich, dann handelt es sich um Wechselvorgänge. In der Wechselstromtechnik können
sich Ströme, Spannungen, magnetische Flüsse, magnetische Induktionen, Verschiebungs-
flüsse, elektrische und magnetische Feldstärken, u.a. zeitlich ändern. Ströme und Span-
nungen werden im Gegensatz zu den Gleichgrößen mit kleinen Buchstaben i und u be-
schrieben, bei magnetischen Flüssen und magnetischen Induktionen verwendet man
Großbuchstaben mit einem t in der Klammer: �(t), B(t).

Bei allgemeiner Betrachtungsweise werden zeitlich veränderliche Größen mit v bezeich-
net. Sie haben in jedem Zeitpunkt t einen Augenblicks- oder Momentanwert v(t).

Periodische Wechselgrößen

Nimmt eine Wechselgröße in bestimmten aufeinanderfolgenden Zeitabschnitten wieder
denselben Augenblickswert an, dann nennt man sie periodische Wechselgröße. Prinzipiell
hat das zeitliche Diagramm einer periodischen Wechselgröße das im Bild 4.1 dargestellte
Aussehen.

Bild 4.1
Periodische
Wechselgröße

Dabei bedeuten

T: Periodendauer oder kurz Periode des Wechselvorgangs, das ist die kürzeste
Zeit zwischen zwei Wiederholungen des Vorgangs mit [T] = 1s

f = 1/T: Frequenz des Wechselvorgangs, das ist die Anzahl der Wiederholungen pro
Zeit, also der Kehrwert der Periodendauer mit [f] = 1s–1 = 1Hz (Hertz)

t0: Nullzeit, das ist die Zeit vom Nullpunkt des Koordinatensystems zum
ersten Nulldurchgang der Wechselgröße

v̂ = Vm: Maximal- oder Größtwert, das ist der höchste Wert, den die Wechselgröße
v(t) annehmen kann.
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Periodische Wechselgrößen genügen also der Bedingung: 

v(t) = v(t + k · T)         mit      k = 0, ± 1, ± 2, … (4.1) 

In der Elektrotechnik wird der Begriff „Wechselgröße“ enger gefasst als in der Physik, 
indem unter einer Wechselgröße eine physikalische Größe verstanden wird, die perio-
disch ist und deren arithmetischer Mittelwert Null ist: 

 

1
T

v(t) � dt � 0
0

T

� .  (4.2) 

Eindeutiger jedoch ist es, wenn die Wechselgröße näher bezeichnet wird, z.B. sinusför-
mige Wechselgröße oder nichtsinusförmige periodische Wechselgröße: 

 Bild 4.2  Sinusförmige und nichtsinusförmige periodische Wechselgröße 
 
Mittelwerte 
Zur Bedeutung des zahlenmäßigen Gesamtverhaltens einer Wechselgröße werden 
zeitliche Mittelwerte definiert: 

Arithmetischer Mittelwert während einer Halbperiode und Gleichrichtwert: 

Va =

 

2
T

v(t) � dt
0

T/2

� .  (4.3) 
T

0

1 | v(t) | dtv
T

� �� . (4.4) 

 Ist die Wechselgröße ein Strom, so entspricht der arithmetische Mittelwert der Halb-
periode bzw. der Gleichrichtwert einem Gleichstrom, der dieselbe elektrolytische 
Wirkung hat wie der gleichgerichtete Wechselstrom. 

 Der Gleichrichtwert (elektrolytischer Mittelwert) ist der arithmetische Mittelwert 
der absoluten, also gleichgerichteten Augenblickswerte der Wechselgröße. 

Quadratischer Mittelwert oder Effektivwert: 

V =

 

1
T

[v(t)]2

0

T

� � dt.  (4.5) 

 Der Effektivwert eines Wechselstroms entspricht zahlenmäßig einem Gleichstrom, 
der dieselbe Wärmeenergie entwickelt und dieselbe Kraftwirkung auf andere strom-
durchflossene Leiter zeigt wie der betreffendeWechselstrom. 
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Für die Beschreibung der Kurvenform periodischer Wechselgrößen werden definiert:

Formfaktor =
Effektivwert

Gleichrichtwert
Scheitelfaktor =

Maximalwert

Effektivwert

4.1.2 Sinusförmige Wechselgrößen

Wechselgrößen, die sich zeitlich sinusförmig ändern, haben in der Elektrotechnik große
Bedeutung. Von den vielfältigen Anwendungsbeispielen sollen zwei herausgegriffen
werden:

Bei der Übertragung elektrischer Energie werden sinusförmige Ströme und Spannungen
einer Frequenz verwendet, so dass der geringste gerätetechnische Aufwand erforderlich
wird (siehe Kapitel 7: Mehrphasensysteme).

Jede beschränkte nichtsinusförmige periodische Wechselgröße lässt sich in eine bestimm-
te unendliche Reihe mit sinusförmigen Summengliedern überführen (siehe Band 3, Kapi-
tel 9: Fourieranalyse).

Darstellung sinusförmiger Wechselgrößen:

Bei der Behandlung des Induktionsgesetzes wurden bereits sinusförmige Spannungen
dargestellt: Durch das Drehen einer rechteckigen Spule mit einer konstanten Winkelge-
schwindigkeit in einem homogenen zeitlich konstanten Magnetfeld entsteht in der Spule
eine sinusförmige Spannung (Band 1, Abschnitt 3.4.6.1, Gl. (3.300)):

uq = – w · A · � · B · sin �t.

Grundsätzlich wird eine sinusförmige Wechselgröße

v (t) = v̂ · sin (�t + �v) (4.6)

durch drei Größen bestimmt:

durch den Maximalwert oder die Amplitude v̂ ,
die Kreisfrequenz � = 2�f = 2�/T
und den Anfangsphasenwinkel �v, der von dem willkürlichen Beginn der
Zeitzählung bei t = 0 abhängt.

Eine sinusförmige Wechselgröße lässt sich sowohl in Abhängigkeit von der Zeit t als auch
vom Winkel � = �t darstellen:

Bild 4.3 Sinusförmige Wechselgröße in Abhängigkeit von t und �t
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Bei der Darstellung der Sinusgröße in Abhängigkeit von �t lautet die Bedingungsglei-
chung für die Periodizität entsprechend: 

v(�t) = v(�t + k · 2�)    mit   k = 0, ± 1, ± 2, … (4.7) 

Mittelwerte sinusförmiger Wechselgrößen 
Mit den Definitionsgleichungen für Mittelwerte (Gl. (4.3) bis (4.5)) lassen sich die Mittel-
werte für sinusförmige Wechselgrößen v(t) = v̂ · sin �t errechnen: 

Va =
T / 2

0 0 0

ˆ2 2 vv(t) dt v( t) d( t) sin t d( t)
T 2

� �

� � � � � � � � �
� �� � �  

Va = � � � �0
ˆ ˆv vcos t cos cos 0�� � � � � � ��
� �

 

Va =
2 ˆ ˆv 0,637 v� �
�

 (4.8) 

T 2

0 0 0

1 1 1| v(t) | dt | v( t) | d( t) 2 v( t) d( t)v
T 2 2

� �

� � � � � � � � � � �
� �� � �  

v � Va (4.9) 

V =

 

1
T

v(t)��  !
2
� dt

0

T

� �
1

2�
v(�t)��  !

2
� d(�t)

0

2�

�  

V =
2 2

2 2 2

0 0

1 1ˆ ˆv sin t d( t) v sin t d( t)
2 2

� �

� � � � � � � � �
� �� �  

mit    sin 2�t = 
1
2

 (1 – cos 2�t) 

V =
2 2

00

1 1 t sin 2 tˆ ˆv (1 cos 2 t) d( t) v
2 2 2 2 2 2 2

� �
� �" #� � � � � � � � �$ %� � � � � �& '�  

V = v̂ ˆ0,707 v
2

� �  (4.10) 

 

Für sinusförmige Wechselgrößen haben Form- und 
Scheitelfaktor folgende Werte: 

Formfaktor =
a

v̂
V 2 1,11

2V 2 2v̂

�
� � �

�

 

Scheitelfaktor = v̂ 2 1,414.
V

� �  Bild 4.4  Darstellung der Mittelwerte 
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4.2 Berechnung von sinusförmigen Wechselgrößen mit Hilfe der
komplexen Rechnung

4.2.1 Notwendigkeit der Berechnung im Komplexen

Problemstellung

Wechselstromnetze sind Netzwerke, in denen sinusförmige Quellspannungen oder Quell-
ströme gleicher Frequenz auf ohmsche, induktive und kapazitive Widerstände wirken. Die
sinusförmigen Ströme und Spannungen sind Zeitfunktionen, die verschiedene Richtungen
annehmen können. Positive Richtungen werden für Ströme und Spannungen für Kapazitä-
ten (Band 1: Abschnitt 3.3.4, Gl. (3.97) und (3.98)) und Induktivitäten (Band 1: Abschnitt
3.4.7, Gl. (3.327)) festgelegt und durch entsprechende Pfeile gekennzeichnet. Die Be-
schreibung der Vorgänge in Wechselstromnetzen ergeben Differentialgleichungen für
unbekannte Ströme oder Spannungen, die gelöst werden müssen.

Beispiel: Reihenschaltung eines ohmschen Widerstandes und einer Induktivität

Bild 4.5
Reihenschaltung eines ohmschen Widerstandes
und einer Induktivität

Nach Gl. (3.328) (Band 1) lautet die Differentialgleichung mit konstanten Koeffizienten:

u = uR + uL

u
di

û sin( t ) R i L .
dt

( � + ) = ( +

Die Berechnung von Strömen ist durch die Lösung der Differentialgleichung mit Hilfe des

Lösungsansatzes i = î ( sin(�t + )i ) möglich, aber wegen trigonometrischer Umformun-

gen sehr aufwendig, wie im Abschnitt 4.2.5 an einem Beispiel gezeigt wird.

Sind die Quellspannungen und Quellströme sinusförmig, dann sind alle Ströme und Span-
nungen an den passiven Schaltelementen (ohmscher Widerstand, Kapazität, Induktivität)
sinusförmig. Die gleiche Frequenz der Quellspannungen und Quellströme bestimmen
auch die gleiche Frequenz sämtlicher Ströme und Spannungen im Netzwerk. Die Zusam-
menhänge zwischen den Strömen und Spannungen in einem Zeitdiagramm zu entwickeln,
ist ebenfalls aufwendig und ungenau, weil die Sinusverläufe punktweise durch Überlage-
rung der Augenblickswerte ermittelt werden müssen. Bei umfangreicheren Netzen ist die
Darstellung der Ströme und Spannungen in einem Diagramm nicht mehr möglich, weil
die Sinuskurven nicht mehr auseinander gehalten werden können.
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Zum Beispiel: Reihenschaltung eines ohmschen Widerstandes und einer Induktivität

Bild 4.6
Sinusförmige Verläufe von Strom und
Spannungen der Reihenschaltung von
R und L

Die sinusförmigen Verläufe im Bild 4.6 werden in folgender Reihenfolge entwickelt:

1. i = î · sin (�t + �i)

2. uR = R · i = R · î · sin (�t + �i)

3. uL = L
di

dt
= � · L · î · cos (�t + �i)

4. u = uR + uL.

Die rechnerische und grafische Behandlung von Wechselstromnetzen ist im Zeitbereich
wohl möglich, aber wegen des großen Aufwandes praktisch nicht durchführbar.

Lösung des Problems: Prinzip des Berechnungsverfahrens

Werden sämtliche sinusförmigen Ströme und Spannungen eineindeutig (umkehrbar ein-
deutig) in entsprechende komplexe Zeitfunktionen abgebildet, dann können Wechsel-
stromnetze im komplexen Bereich sowohl einfach berechnet als auch einfach grafisch
behandelt werden. Beide Verfahren und die sich daraus ergebende „Symbolische Metho-
de“ werden im folgenden ausführlich dargestellt.

Die eineindeutige Abbildung ist möglich, weil bei vorgegebener Frequenz f oder Kreis-
frequenz � sowohl die Sinusgröße als auch die komplexe Größe nur noch durch zwei
Größen bestimmt sind:

die Sinusgröße durch Amplitude und Anfangsphasenwinkel,

die komplexe Größe durch Betrag und Argument (Winkel).
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Mathematische Voraussetzungen 
Für die rechnerische und grafische Behandlung der abgebildeten Sinusgrößen ist es not-
wendig, die wichtigsten Zusammenhänge der „komplexen Rechnung“ zu kennen, die hier 
nur zusammengefasst werden. 

 

Darstellungsform einer komplexen Zahl: 
Algebraische oder kartesische Form: 

z = x + j y mit x, y als reelle Zahl 

 mit j = 1�  als imaginäre Einheit 
Trigonometrische oder goniometrische Form: 

z = r · (cos � + j · sin �) 

mit   r = | z | = x2 � y2  und   x = r · cos � 

und   � � arcz � arctan (y/x) und   y = r · sin � 

Bild 4.7 
Darstellung der komplexen Zahl 

Exponentialform: 
z = r · ej�     mit   ej� = cos � + j · sin �        (Eulersche Formel) 

konjugiert komplexe Zahl zur komplexen Zahl z: 
z* = x – j y = r · (cos ��– j · sin �) = r · e–j� 

Komplexe Zahlen werden in der Gaußschen Zahlenebene durch Punkte P(x, y) oder Zei-
ger, das sind Pfeile vom Koordinatenursprung zu den Punkten P, dargestellt (Bild 4.7). 

Operationen mit komplexen Zahlen z1 = x1 + j y1 = r1· ej�1 und z2 = x2 + j y2 = r2· ej�2: 
Addition und Subtraktion: 

z1 ± z2 = (x1 ± x2) + j · (y1 ± y2) 
Multiplikation: 

z1 · z2 = r1 · r2 · ej(�1+�*) = r1 · r2 · [cos (�1 + �2) + j · sin (�1 + �2)] 
z1 · z2 = (x1x2 – y1y2) + j (x1y2 + x2y1) 

Division: 

 

z1
z2

�
r1
r2

e j(�1��2 ) �
r1
r2

cos (�1 � �2 ) � j � sin (�1 � �2 )��  !  

 

z1
z2

�
x1 � jy1
x2 � jy2

�
x2 � jy2
x2 � jy2

�
x1x2 � y1y2
x2

2 � y2
2

� j
x2y1 � x1y2
x2

2 � y2
2

 

Potenzieren: 
zn = rn · e j n��  = rn · [cos (n�) + j · sin (n�)] 

Radizieren: 

xk =
k 360jn nn

k 360 k 360r e r cos j sin
n n

�� � " #� � � � � �
� � � � �$ %

& '

� � �
 

mit k = 0, 1, 2, … , n – 1. 
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4.2.2 Die Darstellung sinusförmiger Wechselgrößen durch komplexe Zeit-
funktionen, Lösung der Gleichung im Komplexen und Rückführung in
die gesuchte Zeitfunktion (rechnerisches Verfahren)

Transformation ins Komplexe

Jede sinusförmige Wechselgröße v(t) wird in eine entsprechende komplexe Zeitfunktion
v(t) eineindeutig abgebildet:

Zeitbereich (Originalbereich) komplexer Bereich (Bildbereich)

v(t) = v̂ · sin (�t + �v) �
mit v̂ : Amplitude

und �v: Anfangsphasenwinkel

v(t) = v̂ · cos (�t + �v)
+ j · v̂ · sin (�t + �v)

v(t) = v̂ · ej(�t + �v) (4.11)

v(t) = v̂ · ej�v · ej�t

v(t) = 2 ( V ( e j)v ( e j�t

v(t) = v̂ � e j�t = 2 � V � e j�t

mit v̂ = v̂ � e j)v

als komplexe Amplitude

( v̂ : Amplitude,

�v: Anfangsphasenwinkel)

und V = V · ej�v als komplexer

Effektivwert

(V: Effektivwert,

�v : Anfangsphasenwinkel)

Bei der Abbildung der sinusförmigen Zeitfunktion v(t) in die komplexe Zeitfunktion v(t)
wird also die Sinusfunktion mit der imaginären Einheit j multipliziert und die Kosinus-
funktion mit dem gleichen Argument dazuaddiert. Wie im Folgenden zu sehen ist, bietet
diese Abbildung viele Vorteile bei der Behandlung von Wechselstromnetzen. Die sinus-
förmige Wechselgröße v(t) des Zeitbereiches ist also gleich dem Imaginärteil der komple-
xen Zeitfunktion v(t).

Selbstverständlich kann auch die Kosinusfunktion v = v̂ · cos (�t + �v) in die komplexe
Zeitfunktion v abgebildet werden, indem die imaginäre Sinusfunktion mit gleichem Ar-
gument dazuaddiert wird. Da diese Abbildung keine Vorteile gegenüber der hier darge-
stellten Abbildung bietet und um Verwechslungen zu vermeiden, wird diese Art der Ab-
bildung nicht beschrieben.
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Der komplexe Effektivwert V wird in vielen Literaturstellen in Frakturbuchstaben ange-
geben: V . Der Vorteil dieser Schreibweise ist, dass im Zeichen selbst sofort erkennbar
ist, dass nicht nur der Betrag der komplexen Größe, sondern Betrag (Effektivwert V) und
Argument (Anfangsphasenwinkel �v) der komplexen Größe erfasst sind. Entsprechendes
gilt für komplexe Zeitfunktionen v(t) . Der Nachteil der Frakturbuchstaben besteht im
Erlernen neuer Zeichen:

v(t) = v(t)

i(t)= i(t) und u(t) = u(t)

V = V

I = I und U = U

komplexe Zeitfunktion bei allgemeiner Be-
trachtung
komplexe Zeitfunktion von Strom und
Spannung
komplexer Effektivwert bei allgemeiner
Betrachtung
komplexer Effektivwert von Strom und
Spannung

Die Schreibweise mit unterstrichenen lateinischen Buchstaben hat sich in der neueren
Literatur durchgesetzt, weil sie leichter erlernbar ist. Der Nachteil ist, dass der Strich unter
dem Buchstaben häufig vergessen wird, wodurch gravierende Fehler entstehen.

In Induktivitäten und Kapazitäten hängen Strom und Spannung differentiell bzw. über
Integrale zusammen:

u = L
di

dt
, i =

1

L
u � dt� und i = C

du

dt
, u =

1

C
i � dt�

d. h. die Zeitfunktionen und die komplexen Zeitfunktionen müssen differenziert und inte-
griert werden:

Zeitbereich (Originalbereich) komplexer Bereich (Bildbereich)

d v(t)

dt
=

d[v̂ ( sin (�t + )v )]

dt
� dv(t)

dt
=

d[v̂ ( e j(�t+)v ) ]

dt

d v(t)

dt
= � ( v̂ ( cos (�t + )v )

dv(t)

dt
= j (� ( v̂ ( e j(�t+)v )

dv(t)

dt
= j � � � v(t) (4.12)

d2v(t)

dt2
= ��2 � v̂ � sin (�t + �v ) �

d2v(t)

dt2
= ��2 ( v(t) (4.13)

v(t), � dt = �
1

�
v̂ � cos (�t + �v ) � v� (t) ( dt = v̂� ( e j(�t+)v ) ( dt

v(t)� � dt =
1

j�
v(t) (4.14)

Die Differentiation der komplexen Zeitfunktion bedeutet eine Multiplikation mit
j�, die Integration eine Division durch j�.
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Transformation der Differentialgleichung ins Komplexe

Dadurch lassen sich die mit Hilfe des Maschensatzes und der Knotenpunktregel aufge-
stellten Differentialgleichungen in algebraische Gleichungen überführen.

Zum Beispiel: Reihenschaltung eines ohmschen Widerstandes und einer Induktivität

Zeitbereich: Differentialgleichung

u
d i(t)

û sin ( t ) R i(t) L
dt

( � + ) = ( +

Transformationen:

uˆu(t) u sin ( t )= ( � + ) � uj( t )ˆu(t) u e � +)= (

i
ˆi(t) i sin ( t )= ( � + ) � ij( t )ˆi (t) i e � +)= (

di(t)

dt
�

d i (t)
j i (t)

dt
= � �

komplexer Bereich: algebraische Gleichung

û ( e j(�t+)u ) = R ( i (t) + j�L ( i (t)

Lösung der algebraischen Gleichung

Die algebraischen Gleichungen können nun einfach nach der transformierten gesuchten
Größe aufgelöst werden.

Zum Beispiel: Reihenschaltung eines ohmschen Widerstandes und einer Induktivität

uj( t )û e i (t) (R j L)� +)( = ( + �

uj( t )û e
i (t)

R j L

� +)(
=

+ �

Rücktransformation in den Zeitbereich

Um die Lösung im Zeitbereich, also die gesuchte sinusförmige Zeitfunktion, zu erhalten,
muss die Abbildung entsprechend rückgängig gemacht werden, d. h. die Lösung der alge-
braischen Gleichung muss rücktransformiert werden. Bei der Rücktransformation der
komplexen Zeitfunktion v(t) in die Zeitfunktion v(t) muss der Kosinusanteil verschwinden
und der Sinusanteil reell werden. Die Rücktransformation bedeutet also das Errechnen des
Imaginärteils der komplexen Zeitfunktion:

v(t) = Im{v(t)} (4.15)



4.2  Berechnung von sinusförmigen Wechselgrößen 11 

Die Rücktransformation ist allerdings erst dann möglich, wenn die Lösung der algebrai-
schen Gleichung so umgeformt wurde, dass der Imaginärteil abgespalten werden kann. 
Diese Umformung erfolgt im allgemeinen nach folgenden Schritten: 
1. Der komplexe Nenner in algebraischer Form wird in die Exponentialform umgeformt: 

x + jy = r · ej� mit 2 2r x y� �  

 und � = arc tan y
x

 

2. Der ej�-Anteil des Nenners wird mit e–j� in den Zähler gebracht und mit dem e-Anteil 
der abgebildeten Sinusgröße im Zähler zusammengefasst. 

3. Der gesamte e-Anteil des Zählers wird nach der Eulerschen Formel 
ej� = cos � + j · sin � 

in die trigonometrische Form überführt. 
4. Die Rücktransformation der komplexen Zeitfunktion in die gesuchte sinusförmige 

Zeitfunktion kann nun vorgenommen werden, indem nur der Imaginärteil berücksich-
tigt wird. 

 
Anschließend lassen sich mit der Lösung im Zeitbereich die restlichen unbekannten Strö-
me und Spannungen ermitteln. 
 

zum Beispiel: Reihenschaltung eines ohmschen Widerstandes und einer Induktivität 

Zu 1. 
uj( t )

2 2 j arc tan ( L / R)

û ei (t)
R ( L) e

� ��

� �

�
�

� � �
 

Zu 2. uj( t arc tan L / R)
2 2

ûi (t) e
R ( L)

� �� � �� �
� �

 

Zu 3 u2 2

û Li (t) cos t arc tan
RR ( L)

�" #� � � � � �$ %
& '� �

 

+ u2 2

û Lj sin t arc tan
RR ( L)

�" #� � � � � �$ %
& '� �

 

Zu 4. u2 2

û Li(t) Im{i (t)} sin t arc tan
RR ( L)

�" #� � � � � � �$ %
& '� �

 

  mit i
ˆi(t) i sin ( t )� � � � �  

  ergeben sich die Stromamplitude: 
2 2

ûî
R ( L)

�
� �

 

  und der Anfangswinkel des Stroms i u
Larc tan

R
�

� � � �  
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Die beiden Spannungen uR und uL können nun mit dem Strom i(t) berechnet werden:

uR(t) = u
2 2

ˆR u L
R i(t) sin t arc tan

RR ( L)

� �� �� = � � + � �- 	
. /+ �

uL(t) = u
2 2

ˆdi(t) L u L
L cos t arc tan

dt RR ( L)

� � �� �= � � + � �- 	
. /+ �

uL(t) = u
2 2

ˆL u L
sin t arc tan

R 2R ( L)

� � � �� �� � + � � +	 

� �+ �

Zusammenfassung

Prinzipiell erfolgt die Berechnung eines Wechselstrom-Netzwerkes mit Hilfe der komple-
xen Rechnung nach folgendem Schema:
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4.2.3 Die Darstellung sinusförmiger Wechselgrößen durch Zeiger und 
die Ermittlung der gesuchten Zeitfunktion mit Hilfe des Zeigerbildes 
(grafisches Verfahren) 

Transformation in Zeiger 
Die im vorigen Abschnitt rechnerisch behandelte Abbildung der sinusförmigen Wechsel-
größe in die komplexe Zeitfunktion bedeutet grafisch eine Abbildung der Sinusfunktion 
in einen um den Koordinatenursprung der Gaußschen Zahlenebene rotierenden Zeiger, 
der sich im mathematisch positiven Sinn mit der Winkelgeschwindigkeit � dreht: 
 

 
Bild 4.8 Transformation einer sinusförmigen Zeitfunktion in einen rotierenden Zeiger 

 
Zeitbereich (Originalbereich) komplexer Bereich (Bildbereich) 
v(t) = v̂ · sin(�t + �v) 0 v(t) = v̂ · ej(�t + �v) 
 
dargestellt: v(�t) 

 
v(t) = v̂ · ej�t = 2 � V � e j�t  

mit  j vˆ ˆv v e �� �  als komplexe Amplitude 

und  V = V · ej�v   als komplexer Effektivwert 
 
Die Projektion des rotierenden Zeigers v(t) auf die imaginäre Achse ist der Augenblicks-
wert v(t) der sinusförmigen Wechselgröße. Zwischen dem rotierenden Zeiger und der 
Sinusgröße besteht somit eine eineindeutige Beziehung – genauso wie zwischen der kom-
plexen Zeitfunktion und der Sinusfunktion. 
Die Zeitfunktion v im Zeitbereich ist nicht in Abhängigkeit von t, sondern in Abhängig-
keit von �t dargestellt, damit die zugeordneten Winkel besser ersichtlich sind:  
der Anfangswinkel �v, der beliebig gewählte „Drehwinkel“ �t von t = 0 bis zur beliebi-
gen Zeit t und der Gesamtwinkel �t + �v und �T = 2�. 
 
In dieser Weise können beliebig viele sinusförmige Wechselgrößen gleicher Frequenz in 
der komplexen Ebene durch Zeiger dargestellt werden. 
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Überlagerung zweier sinusförmiger Wechselgrößen bzw. zweier Zeiger

Wie bereits eingangs ausgeführt, sind sämtliche in einem Wechselstromnetz vorhandenen
Ströme und Spannungen sinusförmig, d. h. auch die Summe zweier sinusförmiger Wech-
selgrößen mit unterschiedlicher Amplitude und mit unterschiedlichen Anfangsphasenwin-
keln muss eine sinusförmige Wechselgröße ergeben, die eine resultierende Amplitude und
einen resultierenden Anfangsphasenwinkel besitzt. Dieses Ergebnis muss sich auch im
komplexen Bereich bestätigen, indem zwei Zeiger addiert einen resultierenden Zeiger
ergeben.

Trigonometrische Addition im Zeitbereich:

vr = v1 + v2

mit vr = v̂r ( sin (�t + )vr )

v1 = v̂1 ( sin (�t + )v1) und v2 = v̂2 ( sin (�t + )v2 )

vr = v̂r ( sin (�t + )vr ) = v̂1 ( sin (�t + )v1) + v̂2 ( sin (�t + )v2 ) (4.16)

mit sin (� + �) = sin� ( cos� + cos� ( sin�

vr = v̂r ( sin �t ( cos )vr + v̂r ( cos �t ( sin )vr

vr = v̂1 ( sin �t ( cos )v1 + v̂1 ( cos �t ( sin )v1

+ v̂2 ( sin �t ( cos )v2 + v̂2 ( cos �t ( sin )v2

oder

vr = v̂r ( cos )vr ( sin �t + v̂r ( sin )vr ( cos �t

vr = (v̂1 ( cos )v1 + v̂2 ( cos )v2 ) ( sin�t + (v̂1 ( sin)v1 + v̂2 ( sin)v2 ) ( cos�t

Damit ergeben sich zwei Gleichungen

v̂r � cos )vr = v̂1 � cos )v1 + v̂2 � cos )v2

v̂r � sin )vr = v̂1 � sin )v1 + v̂2 � sin )v2

mit den zwei Unbekannten rv̂ und �vr, die sich durch Quadrieren und Addieren bzw.
Dividieren errechnen lassen:

v̂r
2 � cos2 )vr + v̂r

2 � sin2 )vr = v̂r
2

= (v̂1 � cos )v1 + v̂2 � cos )v2 )2 + (v̂1 � sin )v1 + v̂2 � sin )v2 )2

= v̂1
2 � cos2 )v1 + v̂2

2 � cos2 )v2 + 2 � v̂1 � v̂2 � cos )v1 � cos )v2

+ v̂1
2 � sin2 )v1 + v̂2

2 � sin2 )v2 + 2 � v̂1 � v̂2 � sin)v1 � sin)v2

mit sin2 )v1 + cos2 )v1 = 1, sin2 )v2 + cos2 )v2 = 1

und cos�v2 ( cos�v1 + sin�v2 ( sin�v1 = cos (�v2 � �v1)

ergibt sich schließlich

v̂r
2 = v̂1

2 + v̂2
2 + 2 ( v̂1 ( v̂2 ( cos (�v2 � �v1)
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und damit die Formel für die Amplitude der resultierenden Wechselgröße:

v̂r = v̂1
2 + v̂2

2 + 2 � v̂1 � v̂2 � cos )v (4.17)

mit �v = �v2 – �v1.

Mit

v̂r � sin )vr

v̂r � cos )vr

= tan )vr =
v̂1 � sin )v1 + v̂2 � sin )v2

v̂1 � cos )v1 + v̂2 � cos )v2

lässt sich der Anfangsphasenwinkel der resultierenden Wechselgröße angeben:

)vr = arc tan
v̂1 � sin )v1 + v̂2 � sin )v2

v̂1 � cos )v1 + v̂2 � cos)v2

(4.18)

Bild 4.9 Überlagerung von zwei Sinusgrößen im Zeitbereich und von zwei abgebildeten Sinus-
größen im komplexen Bereich

Geometrische Addition im komplexen Bereich:

Das Zeigerbild im komplexen Bereich (im
Bild 4.9 rechts) wird im Bild 4.10 dreifach
vergrößert, damit die geometrischen Zusam-
menhänge besser abgelesen werden können.
Mit Hilfe des Kosinussatzes

a2 = b2 + c2 – 2 · b · c · cos �

lässt sich im Dreieck 0 – C – E die Länge des

resultierenden Zeigers rv̂ aus den Längen

der gegebenen Zeiger 1v̂ und 2v̂ errechnen:
Bild 4.10 Überlagerung von Zeigern

v̂r
2 = v̂1

2 + v̂2
2 � 2 ( v̂1 ( v̂2 ( cos 180° � (�v2 � �v1)�

�
�
�
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Mit cos (180° – �) = – cos �
ergibt sich dasselbe Ergebnis wie bei der trigonometrischen Überlagerung im Zeitbe-
reich:

v̂r = v̂1
2 + v̂2

2 + 2 ( v̂1 ( v̂2 ( cos (�v2 � �v1) .

Das Argument des resultierenden Zeigers rv̂ lässt sich aus den folgenden Strecken-

verhältnissen berechnen:

tan )vr =
EB

OB
=

CA + ED

OA + CD
=

v̂1 � sin )v1 + v̂2 � sin )v2

v̂1 � cos )v1 + v̂2 � cos )v2

)vr = arc tan
v̂1 � sin )v1 + v̂2 � sin )v2

v̂1 � cos )v1 + v̂2 � cos )v2

.

Sowohl die trigonometrische Addition im Zeitbereich als auch die geometrische Addition
im komplexen Bereich führen zum selben Ergebnis:

Die Summe von zwei sinusförmigen Wechselgrößen gleicher Frequenz ist eine resul-
tierende sinusförmige Wechselgröße derselben Frequenz.

Überlagerung von n sinusförmigen Wechselgrößen

Die Überlagerung von mehr als zwei sinusförmigen Wechselgrößen lässt sich auf die
Überlagerung von zwei sinusförmigen Wechselgrößen zurückführen und ergibt selbstver-
ständlich eine resultierende sinusförmige Wechselgröße derselben Frequenz, deren Am-
plitude und Anfangsphasenwinkel nach folgenden Formeln berechnet werden können:

v̂r ( sin (�t + )vr ) = v̂i
i=1

n

� ( sin (�t + )vi ) (4.19)

mit v̂r = v̂ j
j=1
k=1

n

� ( v̂k ( cos (�vj � �vk ) (4.20)

und )vr = arc tan

v̂i
i=1

n

� � sin )vi

v̂i
i=1

n

� � cos)vi

(4.21)

z. B. für n = 2

v̂r = v̂1 ( v̂1 + v̂1 ( v̂2 ( cos (�v1 � �v2 ) + v̂2 ( v̂1 ( cos (�v2 � �v1) + v̂2 ( v̂2

mit cos (��) = cos� ist cos (�v1 � �v2 ) = cos (�v2 � �v1)

v̂r = v̂1
2 + v̂2

2 + 2 ( v̂1 ( v̂2 ( cos (�v2 � �v1)
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z. B. für n = 3:

v̂r
2 = v̂1 ( v̂1 (cos(�v1 ��v1)+ v̂1 ( v̂2 (cos(�v1 ��v2 )+ v̂1 ( v̂3 (cos(�v1 ��v3)

+ v̂2 ( v̂1 (cos(�v2 ��v1)+ v̂2 ( v̂2 (cos(�v2 ��v2 )+ v̂2 ( v̂3 (cos(�v2 ��v3)

+ v̂3 ( v̂1 (cos(�v3 ��v1)+ v̂3 ( v̂2 (cos(�v3 ��v2 )+ v̂3 ( v̂3 (cos(�v3 ��v3)

v̂r = v̂1
2 + v̂2

2 + v̂3
2 + 2v̂1v̂2 cos(�v2 ��v1)+ 2v̂1v̂3cos(�v3 ��v1) + 2v̂2v̂3 cos(�v3 ��v2 )

(4.22)

Vereinfachte Zeigerbilder

In der Praxis werden die abgebildeten Sinusgrößen grundsätzlich zum Zeitpunkt
t = 0, also als „ruhende Zeiger“ gezeichnet.

Weil Effektivwerte in weiteren Berechnungen, z.B. Leistungsberechnungen, benötigt
werden, berücksichtigt man in Zeigerbildern nicht die komplexen Amplituden, sondern
die komplexen Effektivwerte. Das bedeutet gegenüber den komplexen Amplituden eine
Maßstabsänderung mit 2 .

Die reellen und imaginären Achsen werden bei vereinfachten Zeigerbildern weggelassen,
weil für die Beurteilung der sinusförmigen Wechselgrößen einer Schaltung nur die Effek-
tivwerte und die gegenseitige Phasenverschiebung wichtig sind. Die Anfangsphasenwin-
kel hängen von der willkürlichen Festlegung des Zeitpunktes t = 0 ab, d. h. auch die Lage
des Achsenkreuzes der komplexen Ebene zu den Zeigern bedeutet die Festlegung des
gleichen Zeitpunktes t = 0.

Ein Zeigerbild wird grundsätzlich von innen nach außen entwickelt, so dass immer nur die
Zeiger von einem oder zwei Schaltelementen, also von einfachen Zweipolen, gezeichnet
werden. Sind ein Strom oder eine Spannung in einem Zweig innerhalb der Schaltung nicht
gegeben, sondern die Gesamtspannung oder der Gesamtstrom, dann wird trotzdem von
diesen Größen ausgegangen, indem ein Zahlenwert vorgegeben wird; nachträglich lässt
sich dieser dann proportional korrigieren. Die weiteren Zeiger ergeben sich dann durch
Multiplikation oder Division mit einfachen Operatoren. Resultierende Zeiger werden dann
durch geometrische Addition ermittelt, so dass sich schließlich die Gesamtspannung und
der Gesamtstrom der Schaltung ergeben.

Im vereinfachten Zeigerbild können also mit einfachen geometrischen Beziehungen die
Effektivwerte und Phasenverschiebungen ermittelt und ablesen werden, so dass sie bei der
Behandlung der verschiedensten Wechselstromschaltungen unverzichtbar sind.

Um qualitative und quantitative Zeigerbilder bei vorgegebenen Schaltungen entwickeln zu
können, ist es allerdings notwendig, die Operatoren und komplexen Widerstände und
komplexen Leitwerte kennen zu lernen, die im folgenden behandelt werden.

Sollen umgekehrt die Zeitfunktionen aus den vereinfachten Zeigerbildern ermittelt wer-
den, so müssen zunächst die Effektivwertlängen auf Amplitudenlängen übertragen und
dann eine Zeitlinie für t = 0 festgelegt werden, die der positiven imaginären Achse ent-
spricht und im mathematisch negativen Sinn mit der Winkelgeschwindigkeit � rotiert. Die
Projektion der Zeiger auf diese Achse ergibt die jeweiligen Augenblickswerte.
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Wie man an praktischen Beispielen sieht, ist es nicht notwendig, die Augenblickswerte
auf diese Weise zu bestimmen. Aus dem Zeigerbild können die Effektivwerte der interes-
sierenden Ströme und Spannungen und die Phasenverschiebungen abgelesen werden und
die Sinusverläufe in einem Zeitdiagramm dargestellt werden. Nachträglich lässt sich der
Zeitpunkt t = 0 durch Eintragen der Ordinate festlegen und die Augenblickswerte für
beliebige Zeitpunkte ablesen.

zum Beispiel: Reihenschaltung eines ohmschen Widerstandes und einer Induktivität.

Bild 4.11 Beispiel für den Übergang von Sinusgrößen zum Zeigerbild

Mit Hilfe des vereinfachten Zeigerbildes kann der Effektivwert I bzw. die Amplitude î des
sinusförmigen Stroms berechnet werden:

Für das „Spannungsdreieck“ gilt

U2 = UR
2 + UL

2 mit UR = R · I und UL = �L · I

U2 = R2 · I2 + �2 · L2 · I2

U2 = (R2 + �2 · L2) · I2,

woraus sich der Strom errechnen lässt:

I =
2 2 2 2 2 2

ˆU uˆbzw. i
R L R L

=
+ � + �

.

Die Phasenverschiebung � zwischen Strom i und Spannung u kann ebenfalls aus dem „Span-
nungsdreieck“ ermittelt werden:

tan � = L

R

U L I L

U R I R

� � �
= =

�

� =
L

arc tan
R

�
.

Mit der Definition für die Phasenverschiebung

� = �u – �i

bestätigt sich das Ergebnis, das durch die Lösung der algebraischen Gleichung erhalten wurde:

�i = u u
L

arc tan .
R

�
� � � = � �

Damit sind die beiden Größen î und �i des sinusförmigen Stroms i(t) bei vorgegebener Fre-
quenz ermittelt:

i(t) =
û

R2 + (�L)2
� sin �t + �u � arc tan

�L

R

�
.-

�
/�

.
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4.2.4 Das Rechnen mit komplexen Effektivwerten in Schaltungen mit
komplexen Operatoren bzw. komplexen Widerständen und komplexen
Leitwerten (Symbolische Methode)

Komplexe Operatoren

Werden die sinusförmigen Wechselgrößen in den drei Arten von Wechselstromwiderstän-
den (ohmsche, induktive und kapazitive Widerstände) in entsprechende komplexe Zeit-
funktionen abgebildet, dann entstehen reelle und imaginäre Operatoren, mit deren Hilfe
komplexe Zeitfunktionen (rotierende Zeiger), komplexe Amplituden und komplexe Effek-
tivwerte (ruhende Zeiger bei t = 0) ineinander überführt werden können:

ohmscher
Widerstand

induktiver
Widerstand

kapazitiver
Widerstand

Zeitbereich
(Originalbereich)

u = R · i

i =
u

G u
R

= �

u =
di

L
dt

u =
di

M
dt

i =
1

L
u � dt�

i =
1

M
u � dt�

u =
1

i dt
C

��

i =
du

C
dt

komplexe
Zeitfunktionen

u = R · i

i =
u

G u
R

= �

u = j�L · i

u = j�M · i

i =
u

j L�

i =
u

j M�

u =
i

j C�

i = j�C · u

komplexe
Amplituden

ˆû R i= �

ûˆ ˆi G u
R

= = �

ˆû j L i= � �

ˆû j M i= � �

û
î

j L
=

�

û
î

j M
=

�

î
û

j C
=

�

ˆ ˆi j C u= � �

komplexer
Bereich

(Bildbereich)

komplexe
Effektivwerte

U = R · I

I =
U

G U
R

= �

U = j�L · I

U = j�M · I

I =
U

j L�

I =
U

j M�

U =
I

j C�

I = j�C · U
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Von den komplexen Zeitfunktionen kommt man auf komplexe Amplituden, indem beide
Seiten der Gleichungen durch ej�t dividiert werden. Diese Gleichungen durch 2 divi-
diert, ergeben die Gleichungen für die komplexen Effektivwerte.

Für ohmsche Widerstände sind die Operatoren reell:

Widerstand R Leitwert G

für induktive Widerstände sind die Operatoren positiv und negativ imaginär:

Widerstand j�L bzw. j�M Leitwert
1

j�L
= � j

1

�L
bzw.

1

j�M
= � j

1

�M

für kapazitive Widerstände sind die Operatoren negativ und positiv imaginär:

Widerstand
1

j�C
= � j

1

�C
Leitwert j�C

Maschensatz und Knotenpunktsatz der Wechselstromtechnik

Mit den Beziehungen zwischen den Strömen und Spannungen im Zeitbereich entstehen
Differentialgleichungen aufgrund des Maschensatzes und des Knotenpunktsatzes für zeit-
lich veränderliche Spannungen und Ströme:

Die Summe der Augenblickswerte der
Spannungen (Quellspannungen und
Spannungsabfälle an den Wechselstrom-
widerständen) in einer Masche ist Null.
Wird mit Quellspannungen gerechnet,
wird jede Masche nur einmal durchlau-
fen:

Die Summe der Augenblickswerte der
EMK einer Masche ist gleich der Summe
der Augenblickswerte der Spannungsab-
fälle an den Wechselstromwiderständen.
Wird mit EMK gerechnet, dann muss je-
de Masche zweimal durchlaufen werden
(für ei und für ui):

ui(t) = 0
i=1

l

� (4.23) ei(t)
i=1

n

� = ui(t)
i=1

m

� (4.24)

In einem Knotenpunkt eines verzweigten
Wechselstromkreises ist die Summe aller
vorzeichenbehafteten Augenblickswerte
der Ströme gleich Null:

Die Summe der Augenblickswerte der
zum Knotenpunkt hinfließenden Ströme
ist gleich der Summe der Augenblicks-
werte der vom Knotenpunkt wegfließen-
den Ströme:

ii (t)
i=1

l

� = 0 (4.25) ii (t)
i=1
��

n

� = ii (t)
i=1
��

m

� (4.26)
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Werden sämtliche sinusförmigen Spannungen und Ströme auf die beschriebene Weise in
komplexe Zeitfunktionen abgebildet, ergeben sich aus den Differentialgleichungen alge-
braische Gleichungen; das sind die Maschengleichungen und Knotenpunktgleichungen in
komplexer Form:

ui(t)
i=1

l

� = 0 � ui(t)
i=1

l

� = 0 (4.27) und ii
i=1

l

� (t) = 0 � ii
i=1

l

� (t) = 0 (4.28)

Mit ui(t) = ûi ( e j(�t+)ui )

ui(t) = 2 ( Ui ( e j)ui ( e j�t

ui(t) = 2 � Ui � e
j�t

und ii(t) = îi ( e j(�t+)ii )

ii(t) = 2 ( Ii ( e j)ii ( e j�t

ii(t) = 2 � Ii � e
j�t

lauten die Maschen- und Knotenpunktgleichungen in komplexen Effektivwerten:

Ui
i=1

l

� = 0 (4.29) Ii = 0
i=1

l

� (4.30)

Symbolische Methode

Weil zwischen den komplexen Effektivwerten der Ströme und Spannungen in Wechsel-
stromwiderständen lineare Beziehungen über reelle und imaginäre Operatoren bestehen
und weil die Maschen- und Knotenpunktgleichungen in komplexen Effektivwerten gelten,
kann ein Wechselstrom-Netzwerk mit den gleichen Verfahren behandelt werden, wie sie
für die Berechnung von Gleichstrom-Netzwerken angewendet wurden. Dazu muss das
Wechselstrom-Schaltbild entsprechend umgeformt werden:

Alle sinusförmigen Zeitfunktionen werden in entsprechende komplexe Effektivwerte
überführt.

Ohmsche Widerstände R bleiben im Schaltbild unverändert, da der Operator zwischen
den komplexen Effektivwerten von Strom und Spannung R ist.

Induktivitäten L und Gegeninduktivitäten M werden wie induktive Widerstände mit den
imaginären Operatoren j�L und j�M behandelt. Die Operatoren ersetzen im Schaltbild
L und M.

Kapazitäten C werden als kapazitive Widerstände mit dem Operator 1/j�C berücksich-
tigt, weil der komplexe Effektivwert des Stroms durch Multiplikation mit dem Operator
1/j�C in den komplexen Effektivwert der Spannung überführt wird. Anstelle von C
wird im Schaltbild 1/j�C geschrieben.

Nachdem die Operatoren im Schaltbild eingetragen sind, werden die Netzberechnungs-
hilfen (Spannungs- und Stromteilerregel im Band 1, Gl. 2.34 und Gl. 2.35 bzw. Gl. 2.58
und Gl. 2.59 und im Band 2, S. 37 und S. 45) und die Netzberechnungsverfahren im
Band 1, Abschnitt 2.3 angewendet, wodurch sich die algebraischen Gleichungen in
komplexen Effektivwerten ergeben, die dann gelöst werden.

Die Lösungen in komplexen Effektivwerten müssen in Lösungen in komplexen Zeit-
funktionen überführt werden, indem sie mit 2 · ej�t multipliziert werden. Die Rück-
transformation der komplexen Zeitfunktion in die sinusförmige Zeitfunktion ist bereits
im Abschnitt 4.2.2 beschrieben worden.
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zum Beispiel: Reihenschaltung eines ohmschen Widerstandes und einer Induktivität

Bild 4.12 Beispiel für den Übergang einer Wechselstromschaltung in eine Schaltung mit
komplexen Effektivwerten und komplexen Operatoren

Maschensatz in komplexen Effektivwerten:

U = UR + UL = R · I + j�L · I

algebraische Gleichung:

U = (R + j�L) · I

Lösung der algebraischen Gleichung in komplexen Effektivwerten:

I =
U

R j L+ �

Lösung der algebraischen Gleichung in komplexen Zeitfunktionen:

i(t) =
u

R + j�L
=

û ( e j(�t+)u )

R + j�L

Rücktransformation siehe Abschnitt 4.2.2.
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4.2.5 Lösungsmethoden für die Berechnung von Wechselstromnetzen

Übersicht

Wie in den vorhergehenden Abschnitten beschrieben, gibt es vier Lösungsverfahren für
die Berechnung von Wechselstrom-Netzwerken:

Verfahren 1: Lösung der Differentialgleichung im Zeitbereich
(im Abschnitt 4.2.1 erwähnt)

Verfahren 2: Lösung der Differentialgleichung mit Hilfe von komplexen Zeitfunk-
tionen
(dargestellt im Abschnitt 4.2.2)

Verfahren 3: Lösungsmethode mit Operatoren - Symbolische Methode
(dargestellt im Abschnitt 4.2.4)

Verfahren 4: Grafische Lösung mit Hilfe von Zeigerbildern
(dargestellt im Abschnitt 4.2.3)

Die folgende Übersicht zeigt, wie die Verfahren ineinander greifen:

Im Abschnitt 4.4 werden die vier Verfahren hinsichtlich ihrer praktischen Anwendbarkeit
untersucht und Beispiele von Netzwerken durchgerechnet.
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Beispiel:

Anhand eines Schaltungsbeispiels sollen die vier Berechnungsverfahren für Wechselstrom-
Netzwerke erläutert werden, um die Vor- und Nachteile beurteilen und die Zusammenhänge
zwischen den Verfahren besser verstehen zu können.

Schaltung
mit sinusförmiger Energiequelle
und linearen Schaltelementen

gegeben: Ri, R, C und

uq(t) = q uû sin( t )( � + )

gesucht: uC(t), iC(t)

iR(t) und i(t)
Bild 4.13 Beispiel eines Wechselstromnetzes

Verfahren 1 und 2

Differentialgleichung
im Zeitbereich

uRi + uC = uq (Maschensatz für Augenblickswerte)

Ri · i + uC = uq

i = iR + iC (Knotenpunktsatz für Augenblickswerte)

i = C Cu du
C

R dt
+

Ri
C C

C q
u du

C u u
R dt

� �� + + =� �
� �

i C
C i C q

R du
u R C u u

R dt
+ � � + =

C i
i C q u

du R
ˆR C 1 u u sin ( t )

dt R

� �( ( + + ( = ( � + )� 	
� 


Verfahren 1

Lösung der
Differentialgleichung
im Zeitbereich

Die Kondensatorspannung uC kann nur einen sinusförmigen Verlauf haben, weil die Quell-
spannung uq sinusförmig ist. Der Lösungsansatz lautet deshalb

uC = C ucû sin ( t )( � + )

Nachdem der Ansatz differenziert ist

duC

dt
= ûC � � � cos(�t + )uc ) = � � ûC � sin �t +

�
2

+ )uc

�
.-

�
/�

,

wird er und die Ableitung in die Differentialgleichung eingesetzt:

i
i C uc C uc q u

R
ˆ ˆ ˆR C u sin t 1 u sin ( t ) u sin ( t )

2 R

�� � � �� � � � � � + + ) + + � � � + ) = � � + )- � - �
. / . /

i
C i uc uc q u

R
ˆ ˆu R C sin t 1 sin ( t ) u sin ( t )

2 R

	 ��� 	 � 	� � � � + + ) + + � � + ) = � � + )- 1 - 1
 2. 3 . 3
 �

C 1 v1 2 v2 q uˆ ˆ ˆ ˆu [v sin ( t ) v sin ( t )] u sin ( t )( ( � + ) + ( � + ) = ( � + )
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Der Klammerausdruck der linken Seite ist eine Überlagerung von zwei sinusförmigen Wech-
selgrößen v1 und v2 mit unterschiedlichen Amplituden und unterschiedlichen Anfangspha-
senwinkeln, die nach den Gl. (4.16), (4.17) und (4.18) zu einer resultierenden sinusförmigen
Wechselgröße vr zusammengefasst werden:

C 1 v1 2 v2 C r vrˆ ˆ ˆ ˆ ˆu [v sin ( t ) v sin ( t )] u v sin ( t )( ( � + ) + ( � + ) = ( ( � + )

mit
2

i i2
r i i uc uc

R R
v̂ ( R C) 1 2 ( R C) 1 cos( )

R R 2

�� � � �= � + + + � � � + � � 
 
 �� � � �
� � � �

2
i2

r i
R

v̂ ( R C) 1
R

� �= � + +� �
� �

mit cos (– �/2) = 0

und

i
i uc uc

vr
i

i uc uc

R
R C sin 1 sin

2 R
arc tan

R
R C cos 1 cos

2 R

�� � � �� � + ) + + � )- � - �
. / . /) =
�� � � �� � + ) + + � )- � - �

. / . /

mit uc uc uc ucsin cos und cos sin
2 2

� �� � � �� + = � � + = 
 �� 	 � 	
� 
 � 


i
i uc uc

vr
i

i uc uc

R
R C cos 1 sin

R
arc tan

R
R C sin 1 cos

R

� �� � � + + � �- �
. /� =
� �
� � � + + � �- �
. /

mit
i

uc

1

R
1 cos

R
� �+ � )� �
� �

erweitert

i
uc

i

vr
i

uc
i

R C
tan

R
1

Rarc tan
R C

tan 1
R

1
R

�
+ �

+
� =

�
	 � � +

+

mit arc tan
x y

arc tan x arc tan y
xy 1

+
= +

	 +

i i
vr uc uc

i i

R C R C
arc tan arc tan (tan ) arc tan

R R
1 1

R R

� �
) = + ) = + )

+ +

2
i i2

C i uc q u
i

R R C
ˆ ˆu ( R C) 1 sin t arc tan u sin ( t )

RR 1
R

	 
� �
� �� 
�� �( � + + ( � + ) + = ( � + )� �� 
� 


� �� �� 
+� 
� �� �� �
d. h.

q i
C uc u

2 i
i2

i
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q i
C u

2 i
i2

i

û R C
u (t) sin t arc tan

R
R 1

( R C) 1 R
R

� �
- ��

= � � + � 	- �
- �+� � - �� + + . /- �

. /

iC = C
duC

dt
, iR =

uC

R
, i = iC + iR

Verfahren 2

algebraische Gleichung in
komplexen Zeitfunktionen

i i
i C C i C q

R R
j R C u 1 u 1 j R C u u

R R


 �� � � �� � + + � = + + � � =� � � �� �� � � �	 


Lösung der
algebraischen Gleichung in
komplexen Zeitfunktionen

uC =
uq

Ri

R
+ 1

�

��
�


	
+ j�RiC

=
ûq ( e j(�t+)u )

Ri

R
+ 1

�

��
�


	

2

+ (�RiC)2 ( e j)

mit � = i

i

R C
arc tan

R
1

R

�

+

u
q j( t )

C
2

i 2
i

û
u e

R
1 ( R C)

R

� +� 	�= �
� �+ + �- �
. /

Lösung der
Differentialgleichung
im Zeitbereich

q
C u

2
i 2

i

û
u sin ( t )

R
1 ( R C)

R

= � � + � 	 �
� �+ + �- �
. /

Verfahren 3 und 4

mit � = i

i

R C
arc tan

R
1

R

�

+

Schaltung
mit komplexen Effektivwerten
und komplexen Operatoren

Bild 4.14 Beispiel für die symbolische Methode
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algebraische Gleichung in
komplexen Effektivwerten

Mit der Spannungsteilerregel ist

UC

Uq

=

R �
1

j�C

R +
1

j�C

Ri +
R �

1

j�C

R +
1

j�C

=
R �

1

j�C

Ri R +
1

j�C

�
��

�
��

+ R �
1

j�C

UC

Uq

=
R

j�CRiR + Ri + R
=

1

Ri

R
+ 1

�

��
�

��
+ j�RiC

Diese Gleichung kann mit 2 � ej�t zur algebraischen Gleichung
in komplexen Zeitfunktionen erweitert werden, die dann gelöst
und auf die beschriebene Weise rücktransformiert werden kann.

Lösung der
algebraischen Gleichung in
komplexen Effektivwerten

q
C

i
i

U
U

R
1 j R C

R

=
� �+ + �� �
� �

Lösung der
algebraischen Gleichung in
komplexen Zeitfunktionen

q
C

i
i

u
u

R
1 j R C

R

=
� �+ + �� �
� �

Die Umformung und Rücktransformation geschieht auf die
beschriebene Weise.

Verfahren 4

Zeigerbild mit
komplexen Effektivwerten

Bild 4.15 Beispiel für die
Zeigerdarstellung

Reihenfolge der Darstellung:
UC

IR = CU

R

IC = j�C · UC

I = IR + IC

URi = Ri · I

Uq = UC + URi

Das Zeigerbild stellt den Maschensatz und den Knotenpunktsatz in komplexen Effektivwerten
dar, also die algebraischen Gleichungen in komplexen Effektivwerten.

Zunächst wird UC mit der Länge UC angenommen. Dann werden die Längen IR = UC/R und
IC = �C · UC errechnet. I kann aus dem Zeigerbild abgelesen oder mit I2 = IR

2 + IC
2 errech-

net werden. Mit Ri lässt sich URi = Ri · I ermitteln, und Uq ergibt sich durch geometrische
Addition der Zeiger. Der Effektivwert Uq wird dem gegebenen Spannungswert angepasst,
wodurch sich für alle Ströme und Spannungen, auch für UC, die Werte korrigieren lassen.
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4.3 Wechselstromwiderstände und Wechselstromleitwerte

Bei der Behandlung der Symbolischen Methode im Abschnitt 4.2.4 sind die Begriffe „ohm-
scher Widerstand“, „induktiver Widerstand“ und „kapazitiver Widerstand“ vorgekommen,
ohne dass geklärt wurde, ob es bei Wechselvorgängen Widerstände in der Art von Gleich-
stromwiderständen gibt. In diesem Abschnitt sollen Strom- und Spannungsverläufe bei
ohmschen Widerständen, Induktivitäten und Kapazitäten untersucht werden und die Frage
beantwortet werden, ob der Quotient aus Spannung und Strom einen entsprechenden Wider-
stand ergibt. Die Untersuchungen werden im Zeitbereich und im komplexen Bereich vorge-
nommen.

Ohmscher Widerstand im Zeitbereich

Fließt ein sinusförmiger Wechselstrom i(t) durch einen ohmschen Widerstand R, dann
besteht in jedem Augenblick zwischen dem Augenblickswert des Stroms i(t) und dem
Augenblickswert der Spannung u(t) am ohmschen Widerstand Proportionalität:

i(t) = î · sin (�t + �i)

u(t) = R · i(t)

u(t) = R · î · sin (�t + �i)

u(t) = û · sin (�t + �u)

d. h. û = R · î bzw. U = R · I

und �u = �i Bild 4.16 Verläufe von Spannung und Strom
des ohmschen Widerstandes

Der ohmsche Widerstand R ist gleich dem Quotienten aus den Amplituden- und Effektiv-
werten von Spannung und Strom, und zwischen Strom und Spannung besteht keine Pha-
senverschiebung, denn Strom und Spannung haben den gleichen Anfangsphasenwinkel:

R =
û

î
=

U

I
(4.31) � = �u – �i = 0 (4.32)

Ohmscher Widerstand im komplexen Bereich

Werden die sinusförmigen Zeitfunktionen in komplexe Zeitfunktionen abgebildet, erge-
ben sich dieselben Zusammenhänge wie im Zeitbereich:

i(t) = î · ej(�t + �i) u(t) = R · i(t) = R · î · ej(�t + �i) = uj( t )û e � +)(

d. h. ˆû R i= � bzw. U = R · I und �u = �i

Der Operator zwischen den komplexen Amplituden und komplexen Effektivwerten von
Strom und Spannung ist gleich dem ohmschen Widerstand R, ist also reell. Im Zeigerbild
liegen Stromzeiger I und Spannungszeiger U in gleicher Richtung:

î = î � e j)i I = I � e j)i

û = û � e j)u U = U � e j)u

û = R � î U = R � I
Bild 4.17 Zeigerbild des ohmschen
Widerstandes
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Induktiver Widerstand im Zeitbereich

Fließt ein sinusförmiger Wechselstrom i(t) durch eine Induktivität, so wird in ihr eine
sinusförmige Spannung u(t) induziert:

i (t) = î � sin (�t + )i )

u(t) = L �
di(t)

dt

u(t) = �L � î � cos (�t + )i )

u(t) = �L � î � sin �t + )i +
�
2

�
.-

�
/�

u(t) = û � sin (�t + )u )

d.h. û = � � L � î bzw. U = �L � I

und )u = )i +
�
2

Bild 4.18 Verläufe von Spannung und
Strom des induktiven Widerstandes

Der induktive Widerstand XL als Quotient der Amplituden- und Effektivwerte von Span-
nung und Strom ist gleich dem Produkt �L, also frequenzabhängig, und die Spannung an
der Induktivität L eilt dem Strom um �/2, also um eine Viertelperiode, voraus:

XL = �L =
û

î
=

U

I
(4.33) � = �u 	 �i =

�
2

(4.34)

Induktiver Widerstand im komplexen Bereich

Für die komplexen Zeitfunktionen ergeben sich dieselben Beziehungen zwischen den
Amplituden- und Effektivwerten und Anfangsphasenwinkeln wie für die sinusförmigen
Zeitfunktionen:

i (t) = î ( e j(�t+)i ) u(t) = L �
d i (t)

dt
= j�L � î � e j(�t+)i ) mit j = e j� /2

u(t) = �L � î � e j(�t+)i +� /2) = û � e j(�t+)u )

d.h. û = �L � î bzw. U = �L � I und )u = )i +
�
2

Der Operator zwischen den komplexen Amplituden und komplexen Effektivwerten von
Strom und Spannung ist j�L, also imaginär.

Im Zeigerbild eilt der Spannungszeiger U dem Stromzeiger I um 90° voraus:

î = î ( e j)i I = I ( e j)i

û = û ( e j)u U = U ( e j)u

û = j�L ( î U = j�L ( I
Bild 4.19
Zeigerbild des
induktiven
Widerstandes
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Kapazitiver Widerstand im Zeitbereich

Der sinusförmige Strom i(t) durch die Zuleitungen zu einem Kondensator mit der Kapazi-
tät C ist gleich dem Verschiebungsstrom und hängt von der zeitlichen Änderung der am
Kondensator anliegenden Spannung u(t) ab:

u(t) = û � sin (�t + )u )

i (t) = C �
du(t)

dt
i (t) = � �C � û � cos (�t + )u )

i (t) = � �C � û � sin �t + )u +
�
2

�
.-

�
/�

i (t) = î � sin (�t + )i )

d.h. î = � �C � û bzw. I = �C � U

und )i = )u +
�
2

Bild 4.20 Verläufe von Spannung und
Strom des kapazitiven Widerstandes

Der kapazitive Widerstand –XC als Quotient der Amplituden- und Effektivwerte von
Spannung und Strom ist gleich dem Kehrwert des Produkts �C, also frequenzabhängig,
und der Strom durch die Kapazität C eilt der Spannung um �/2, also um eine Viertelperio-
de, voraus:

– XC =
1

�C
=

û

î
=

U

I
(4.35) � = �u 	 �i = 	

�
2

(4.36)

Kapazitiver Widerstand im komplexen Bereich

Für die komplexen Zeitfunktionen ergeben sich dieselben Beziehungen zwischen den
Amplituden- und Effektivwerten und den Anfangsphasenwinkeln wie für die sinusförmi-
gen Zeitfunktionen:

u(t) = û ( e j(�t+)u ) i (t) = C �
d u(t)

dt
= j�C � û � e j(�t+)u ) mit j = e j� /2

i (t) = �C � û � e j(�t+)u +� /2) = î � e j(�t+)i )

d.h. î = �C � û bzw. I = �C � U und )i = )u +
�
2

Der Operator zwischen den komplexen Amplituden und komplexen Effektivwerten von
Spannung und Strom ist j�C, also imaginär.

Im Zeigerbild eilt der Stromzeiger I dem Spannungszeiger U um 90° voraus.

û = û ( e j)u U = U ( e j)u

î = î ( e j)i I = I ( e j)i

î = j�C ( û I = j�C ( U
Bild 4.21
Zeigerbild des
kapazitiven
Widerstandes
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Ohmsches Gesetz der Wechselstromtechnik – der komplexe Widerstand

Wird also an einen ohmschen Widerstand, eine Induktivität oder eine Kapazität eine si-
nusförmige Spannung angelegt, dann hat der sich ergebende sinusförmige Strom die glei-
che Frequenz � wie die Spannung, eine andere Amplitude î und eine Phasenverschie-
bung � gegenüber der Spannung. Der Zusammenhang zwischen der sinusförmigen Span-
nung und dem sinusförmigen Strom in einem ohmschen, induktiven oder kapazitiven
Widerstand wird also durch zwei Größen eindeutig bestimmt:

1. Quotient der Amplituden- oder Effektivwerte von Spannung und Strom, der Scheinwi-
derstand oder die Impedanz (impedance):

Z =
û

î
=

U

I
(4.37)

2. Phasenverschiebung zwischen der Spannung und dem Strom:

� = �u – �i. (4.38)

Anzustreben ist, diese beiden Größen in einem Wechselstromwiderstand zusammenzufas-
sen. Der Quotient der Zeitfunktionen

u

i
=

û ( sin (�t + )u )

î ( sin (�t + )i )

bedeutet aber keine sinnvolle Definition eines Wechselstromwiderstandes, weil die Zeit t
enthalten bleibt, der Wechselstromwiderstand aber nicht zeitabhängig ist. Im komplexen
Bereich allerdings ergibt die Division der komplexen Zeitfunktion der Spannung u durch
die komplexe Zeitfunktion des Stroms i eine Größe, die sowohl den Scheinwiderstand Z
als auch die Phasenverschiebung � enthält: Der Betrag des komplexen Widerstandes ist
gleich dem Scheinwiderstand, das Argument des komplexen Widerstandes ist gleich der
Phasenverschiebung:

Z =
u(t)

i (t)
=

û ( e j(�t+)u )

î ( e j(�t+)i )
=

û ( e j)u ( e j�t

î ( e j)i ( e j�t

Z =
u(t)

i (t)
=

û

î
=

U

I
(4.39)

Z =
û

î
e j(�u 	�i ) =

U

I
e j(�u 	�i ) = Z ( e j� (4.40)

mit Z = Z =
û

î
=

U

I
und � = �u 	 �i

Die Gleichung U = Z · I wird „Ohmsches Gesetz in komplexer Form“ oder „Ohmsches
Gesetz der Wechselstromtechnik“ genannt, weil es dem Ohmschen Gesetz der Gleich-
stromtechnik ähnelt. Während der Gleichstromwiderstand R der tatsächlich wirkende
Widerstand im Gleichstromfeld ist, stellt der komplexe Widerstand Z lediglich die Propor-
tionalitätsgröße zwischen den abgebildeten Zeitfunktionen von Spannung und Strom dar,
nicht aber den wirksamen Widerstand zwischen den sinusförmigen Zeitfunktionen selbst.
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Die Exponentialform des komplexen Widerstandes Z lässt sich nach der Eulerschen For-
mel in die trigonometrische und algebraische Form überführen:

Z = Z · ej�

Z = Z · cos � + j · Z · sin � (4.41)

Z = R + j · X, (4.42)

wobei der Realteil Wirkwiderstand oder Resistanz (resistance) und der Imaginärteil
Blindwiderstand oder Reaktanz (reactance) genannt wird.

R = Re{Z} = Z · cos � (4.43) mit Z = R2 + X2 (4.44)

X = Im{Z} = Z · sin � (4.45) und � = arc tan
X

R
(4.46)

Komplexer Widerstand des ohmschen, induktiven und kapazitiven Widerstandes

Mit

Z =
U

I
=

U

I
e j(�u 	�i ) = Z ( e j�

ergibt sich für den
ohmschen Widerstand:

für den
induktiven Widerstand:

für den
kapazitiven Widerstand:

Z =
U

I
= R ) = 0 Z =

U

I
= �L ) =

�
2

Z =
U

I
=

1

�C
� = 	

�
2

Z = R · ej0 = R Z = �L · ej�/2 = j�L Z =
1

�C
e	 j� /2 =

1

j�C

Z = R Z =j�L = jXL Z = 	 j
1

�C
= jXC

Komplexer Widerstand der Reihenschaltung von Wechselstromwiderständen

Sind mR ohmsche Widerstände, mL Induktivitäten und mC Kapazitäten in Reihe geschal-
tet, dann ist der sinusförmige Strom i(t) an jeder Stelle gleich, und die sinusförmige Ge-
samtspannung u(t) ist in jedem Augenblick gleich der Summe von m sinusförmigen Teil-
spannungen:

u(t) = ui(t)
i=1

m

� = uRi(t)
i=1

mR

� + uLi(t)
i=1

mL

� + uCi(t)
i=1

mC

�
mit mR + mL + mC = m

Bild 4.22 Reihenschaltung von Wechselstromwiderständen
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Mit

uRi(t) = Ri · i(t) uLi(t) = Li
di(t)

dt
uCi(t) =

1

Ci

i(t)� � dt

ergibt sich für die Gesamtspannung

u(t) = Ri � i(t) + Li
di(t)

dt
+

1

Cii=1

mC

�
i=1

mL

� i(t) � dt.�
i=1

mR

�
Damit lassen sich die mR ohmschen Widerstände, mL Induktivitäten und mC Kapazitäten
der Reihenschaltung zu Ersatzgrößen Rr, Lr und Cr zusammenfassen:

u(t) = Rr � i(t) + Lr �
di(t)

dt
+

1

Cr

i � dt�
mit

Rr = Ri
i=1

mR

� Lr = Li
i=1

mL

� 1

Cr

=
1

Cii=1

mC

�
Der Index r bedeutet, dass eine Reihenschaltung vorliegt.

Bild 4.23
Ersatzgrößen der Reihenschal-
tung von Wechselstromwider-
ständen

Im komplexen Bereich können die komplexen Widerstände der ohmschen Widerstände,
Induktivitäten und Kapazitäten zu komplexen Ersatzwiderständen und zu einem komple-
xen Widerstand der gesamten Reihenschaltung Zr zusammengefasst werden, wie aus dem
Maschensatz für komplexe Zeitfunktionen und komplexe Effektivwerte herzuleiten ist:

Nach Gl. (4.27) ist

u(t) = ui(t)
i=1

m

� = uRi(t)
i=1

mR

� + uLi
i=1

mL

� (t) + uCi(t)
i=1

mC

� .

Mit

uRi(t) = Ri · i(t) uLi(t) = j�Li · i(t) uCi(t) =
1

j�Ci

� i (t)

ergibt sich

u(t) = Ri � i (t) + j�Li � i (t) +
1

j�Ci

� i (t)
i=1

mC

�
i=1

mL

�
i=1

mR

�

u(t) = Ri +
i=1

mR

� j�Li
i=1

mL

� +
1

j�Cii=1

mC

�
�

�
�
�

�



	
	
� i (t)

u(t) = Rr + j�Lr +
1

j�Cr

�

��
�

��
� i (t) = Zr � i (t)
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Wird die Reihenschaltung der Wechselstromwiderstände in die Schaltung mit komplexen
Effektivwerten und komplexen Operatoren überführt, ergibt sich die Spannungsgleichung
in komplexen Effektivwerten.

Bild 4.24 Reihenschaltung von Wechselstromwiderständen im Bildbereich und ihre Überführung in
die Ersatzschaltung

Nach Gl. (4.29) ist

U = Ui
i=1

m

� = URi
i=1

mR

� + ULi
i=1

mL

� + UCi
i=1

mC

� .

Mit

URi = Ri � I ULi = j�L � I UCi =
1

j�Ci

� I

ergibt sich für den komplexen Effektivwert der Gesamtspannung

U = Ri � I
i=1

mR

� + j�Li � I
i=1

mL

� +
1

j�Ci

� I
i=1

mC

�

U = Ri +
i=1

mR

� j�Li +
i=1

mL

� 1

j�Cii=1

mC

�
�

�
�
�

�



	
	
� I .

Damit lassen sich die mR ohmschen Widerstände, mL Induktivitäten und mC Kapazitäten
der Reihenschaltung genauso wie im Zeitbereich zu Ersatzgrößen Rr, Lr und Cr zusam-
menfassen:

Rr = Ri
i=1

mR

� j�Lr = j�Li
i=1

mL

� 1

j�Cr

=
1

j�Cii=1

mC

�

bzw. Lr = Li
i=1

mL

� bzw.
1

Cr

=
1

Cii=1

mC

� (4.47)
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Die Spannungsgleichung in komplexen Effektivwerten lautet dann:

U = Rr + j�Lr +
1

j�Cr

�

��
�

�

( I = Rr + j ( �Lr 	

1

�Cr

�

��
�

�

	

�
�
�




�
�
�
( I

U =[Rr + j · (XL + XC)] · I = [Rr + j · Xr] · I = Zr · I

mit Zr = Rr + j ( Xr = Rr + j( (XL + XC ) = Rr + j ( �Lr 	
1

�Cr

�

��
�


	
(4.48)

und Xr = XL + XC XL = �Lr XC = 	
1

�Cr

(4.49)

Die ohmschen Anteile eines komplexen Widerstandes Zr finden sich also grundsätzlich im
Realteil, die induktiven Anteile im positiven Imaginärteil und die kapazitiven Anteile im
negativen Imaginärteil.

Der komplexe Effektivwert der Gesamtspannung U teilt sich also in drei Teilspannungen
auf:

U = UR + UL + UC = Rr · I + j�Lr · I +
1

j�Cr

� I,

wobei die reelle Spannung UR auch „Wirkspannung“ Uw genannt wird. Die beiden imagi-
nären Spannungen UL und UC, die wegen der entgegengesetzten Vorzeichen gegeneinan-
der gerichtet sind, werden zur Spannung UX bzw. „Blindspannung“ Ub zusammengefasst:

U = UR + UX (4.50)

mit UR = Rr · I und UX = UL + UC = j (XL + XC) · I = jXr · I

Wird in

Zr = rj j
r rZ e Z e) )� = �

Zr = Zr · cos �r + j · Zr · sin �r = Zr · cos � + j · Zr · sin � (vgl. Gl. 4.41)

Zr = U/I berücksichtigt

Zr =
U

I
� cos)r + j �

U

I
� sin)r =

U

I
� cos) + j �

U

I
� sin)

und mit I multipliziert, dann ergibt sich die Spannungsgleichung

Zr · I = U = U · cos �r + j · U · sin �r = U · cos � + j · U · sin �,

die dem Zeigerbild im Bild 4.25 mit �i = 0 entspricht. Mit Gl. (4.50) verglichen, ist

UR = U · cos � (4.51) UX = U · sin � (4.52)

mit U = UR
2 + UX

2 . (4.53)

Der Ersatzwiderstand der Reihenschaltung von Wechselstromwiderständen hängt von der
Größe des ohmschen Widerstandes Rr, der Induktivität Lr, der Kapazität Cr und der Kreis-
frequenz � ab. Fließt durch die Reihenschaltung ein sinusförmiger Strom i, dann ist die
Gesamtspannung u bezogen auf den Strom i entweder bis �/2 voreilend, in Phase oder bis
– �/2 nacheilend.
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Der komplexe Widerstand Zr ist also entweder ein induktiver, ohmscher oder kapazitiver
Widerstand, und die Ersatzschaltung besteht entweder aus der Reihenschaltung eines
ohmschen Widerstandes Rr und einer Induktivität Lr, nur aus einem ohmschen Widerstand
Rr oder aus der Reihenschaltung eines ohmschen Widerstandes Rr und einer Kapazität Cr:

Induktiver komplexer Widerstand: Zr = Rr + jXr mit Xr > 0

1. Die Reihenschaltung besteht nur aus ohmschen Widerständen Ri und Induktivitäten Li,
die zu den Ersatzgrößen Rr und Lr zusammengefasst werden.

2. Die Reihenschaltung enthält ohmsche Widerstände Ri, Induktivitäten Li, und Kapazi-
täten Ci, die zu den Ersatzgrößen Rr, Lr und Cr zusammengefasst werden.
Sie verhält sich wie ein induktiver Wechselstromwiderstand, wenn Xr > 0 ist,
d. h. wenn �Lr > 1/�Cr.

Ohmscher komplexer Widerstand: Zr = Rr mit Xr = 0

1. Die Reihenschaltung besteht nur aus ohmschen Widerständen Ri, die zu der Ersatz-
größe Rr zusammengefasst werden.

2. Die Reihenschaltung enthält ohmsche Widerstände Ri, Induktivitäten Li, und Kapazi-
täten Ci, die zu den Ersatzgrößen Rr, Lr und Cr zusammengefasst werden.
Sie verhält sich wie ein ohmscher Widerstand, wenn Xr = 0 ist,
d. h. wenn �Lr = 1/�Cr.

Kapazitiver komplexer Widerstand: Zr = Rr + jXr mit Xr < 0

1. Die Reihenschaltung besteht nur aus ohmschen Widerständen Ri und Kapazitäten Ci,
die zu den Ersatzgrößen Rr und Cr zusammengefasst werden.

2. Die Reihenschaltung enthält ohmsche Widerstände Ri, Induktivitäten Li, und Kapazi-
täten Ci, die zu den Ersatzgrößen Rr, Lr und Cr zusammengefasst werden.
Sie verhält sich wie ein kapazitiver Wechselstromwiderstand, wenn Xr < 0 ist,
d. h. wenn �Lr < 1/�Cr.

Im Zeigerbild bilden die komplexen Effektivwerte der Spannungen ein „Spannungsdrei-
eck“ und die entsprechenden komplexen Widerstände ein „Widerstandsdreieck“, wenn der
Imaginärteil Xr positiv oder negativ ist:

Bild 4.25 Zeigerbilder der Ströme und Spannungen und komplexen Widerstände von Wechsel-
stromwiderständen
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Spannungsteilerregel

Für zwei in Reihe geschaltete Wechselstromwiderstände gilt die Spannungsteilerregel
analog wie in der Gleichstromtechnik nur im komplexen Bereich:

Die komplexen Zeitfunktionen oder die komplexen Effektivwerte der Spannungen
über zwei vom gleichen sinusförmigen Strom durchflossenen Widerstände verhalten
sich wie die zugehörigen komplexen Widerstände.

U1

U2

=
Z1

Z2

U1

U
=

Z1

Z1 + Z2

U2

U
=

Z2

Z1 + Z2

Im Zeitbereich kann eine entsprechende Regel nicht gelten, weil Ströme und Spannungen
bei Induktivitäten und Kapazitäten differentiell zusammenhängen.

Beispiel 1:

Reihenschaltung eines ohmschen Widerstandes und einer Induktivität

Zeitbereich: komplexer Bereich:

Bild 4.26 Spannungsteilerregel für die Reihenschaltung
eines ohmschen Widerstandes und einer Induktivität

r
L

r r

di
Lu dt

diu R i L
dt

=
� +

L L r

r r

u U j L

u U R j L

�
= =

+ �

Beispiel 2:

Für die skizzierte RC-Schaltung ist das Span-
nungsverhältnis U2/U1 in Abhängigkeit von R, C
und � zu ermitteln. Die Hilfsspannung Uh soll die
Lösung erleichtern.

Lösung:

2

h

U R
1U R

j C

=
+

� Bild 4.27 RC-Schaltung als Beispiel
für die Spannungsteilerregel
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+
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Beispiel 3:

Für die skizzierte Schaltung mit komplexen
Operatoren und komplexen Effektivwerten
soll das Spannungsverhältnis UC/U in Ab-
hängigkeit von �, R, RLr, Lr, und Cr (mit
RCr = 0) ermittelt werden.

Lösung:
Bild 4.28 Beispiel für die Spannungsteiler-
regel
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Der komplexe Leitwert

Wird also an einen Wechselstromwiderstand eine sinusförmige Spannung u angelegt,
dann fließt ein sinusförmiger Strom i mit der gleichen Frequenz �.

Das Amplituden- oder Effektivwertverhältnis wird durch den Scheinwiderstand

Z = ˆû / i = U/I und die Differenz der Anfangsphasenwinkel durch die Phasenverschiebung

� = �u – �i erfasst.

Selbstverständlich kann auch die Amplitude oder Effektivwert des Stroms auf die Ampli-
tude oder den Effektivwert der Spannung bezogen werden, d. h. der Kehrwert des Schein-
widerstandes erfasst das Amplituden- oder Effektivwertverhältnis:

Der Quotient der Amplituden- oder Effektivwerte von Strom und Spannung, der
Scheinleitwert oder die Admittanz (admittance) wird mit Y bezeichnet:

Y =
î

û
=

I

U
(4.54)

Beide Größen – der Scheinleitwert und die Phasenverschiebung – sollen in einem Wech-
selstromleitwert zusammengefasst werden.

Im Zeitbereich ist es nicht möglich, einen sinnvollen Wechselstromleitwert zu definieren,
weil im Quotient i/u die Zeit t erhalten bleibt.

Im komplexen Bereich allerdings ergibt die Division der komplexen Zeitfunktion des
Stroms i durch die komplexe Zeitfunktion der Spannung u eine Größe, die sowohl den
Scheinleitwert Y als auch die Phasenverschiebung � enthält. Der Betrag des komplexen
Leitwerts ist gleich dem Scheinleitwert, das Argument des komplexen Leitwerts ist gleich
der negativen Phasenverschiebung. Der komplexe Leitwert ist also der Kehrwert des
komplexen Widerstands:

Y =
1

Z
=

i (t)

u(t)
=

î ( e j(�t+)i )

û ( e j(�t+)u )
=

î ( e j)i ( e j�t

û ( e j)u ( e j�t

Y =
1

Z
=

i (t)

u(t)
=

î

û
=

I

U
(4.55)

Y =
î

û
( e	 j(�u 	�i ) =

I

U
e	 j(�u 	�i ) (4.56)

Y = Y ( e	 j� =
1

Z ( e j�
=

1

Z
(4.57)

mit Y = Y =
î

û
=

I

U
=

1

Z
=

1

Z
und � = �u – �i

Die Gleichung I = Y · U ist wegen Y = 1/Z nur eine andere Schreibweise des Ohmschen
Gesetzes in komplexer Form. Der komplexe Leitwert ist entsprechend der Proportionali-
tätsfaktor zwischen den abgebildeten Zeitfunktionen von Strom und Spannung, nicht aber
zwischen den Zeitfunktionen selbst.
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Die Exponentialform des komplexen Leitwerts lässt sich analog in die trigonometrische
und algebraische Form umwandeln:

Y =Y · e–j�

Y = Y · cos � – j · Y · sin � (4.58)
Y = G + j · B, (4.59)

wobei der Realteil Wirkleitwert oder Konduktanz (conductance) und der Imaginärteil
Blindleitwert oder Suszeptanz (susceptance) genannt wird:

G = Re{Y} = Y · cos � (4.60)

B = Im{Y} = – Y · sin � (4.61)

mit Y = G2 + B2 und � = – arc tan
B

G
.

Komplexer Leitwert des ohmschen, kapazitiven und induktiven Widerstandes

Mit

Y =
I

U
=

I

U
( e	 j(�u 	�i ) = Y ( e	 j�

ergibt sich für den
ohmschen Widerstand:

für den
kapazitiven Widerstand:

für den
induktiven Widerstand:

Y =
I

U
= G =

1

R
� = 0 Y =

I

U
= �C � = 	

�
2

Y =
I

U
=

1

�L
) =

�
2

Y = G · ej0 = G Y = �C · e–j(–�/2) = j�C Y =
1

�L
� e	 j� /2 =

1

j�L

Y = G Y = j�C = j BC Y = 	 j
1

�L
= jBL

Komplexer Leitwert der Parallelschaltung von Wechselstromwiderständen

Sind mR Widerstände, mC Kapazitäten und mL Induktivitäten parallel geschaltet, dann ist
die anliegende sinusförmige Spannung u(t) überall gleich, und der sinusförmige Gesamt-
strom i(t) ist in jedem Augenblick gleich der Summe von m sinusförmigen Teilströmen:

i(t) = ii (t)
i=1

m

� = iRi(t)
i=1

mR

� + iCi(t)
i=1

mC

� + iLi (t)
i=1

mL

�
mit mR + mC + mL = m

Bild 4.29 Parallelschaltung von Wechselstromwiderständen



4.3 Wechselstromwiderstände und Wechselstromleitwerte 41

Mit

iRi(t) =
u(t)

Ri

iCi(t) = Ci
du(t)

dt
iLi(t) =

1

Li

u(t)� � dt

ergibt sich für den Gesamtstrom

i(t) =
u(t)

Rii=1

mR

� + Ci
du(t)

dt
i=1

mC

� +
1

Lii=1

mL

� u(t)� � dt

Damit lassen sich die mR ohmschen Widerstände, mC Kapazitäten und mL Induktivitäten
der Parallelschaltung zu Ersatzgrößen Rp, Cp und Lp zusammenfassen:

i(t) =
u(t)

Rp

+ Cp �
du(t)

dt
+

1

Lp

u(t)� � dt

mit
1

Rp

=
1

Rii=1

mR

� Cp = Ci
i=1

mC

� 1

Lp

=
1

Lii=1

mL

�
Der Index p bedeutet, dass eine Parallelschaltung vorliegt.

Bild 4.30
Ersatzgrößen der Parallelschaltung von
Wechselstromwiderständen

Im komplexen Bereich können die komplexen Leitwerte der ohmschen Widerstände,
Kapazitäten und Induktivitäten zu komplexen Ersatzleitwerten und zu einem komplexen
Leitwert der gesamten Parallelschaltung pY zusammengefasst werden, wie aus der Kno-
tenpunktregel für komplexe Zeitfunktionen und komplexe Effektivwerte herzuleiten ist:

Nach Gl. (4.28) ist

i (t) = ii(t)
i=1

m

� = iRi(t)
i=1

mR

� + iCi(t)
i=1

mC

� + iLi(t)
i=1

mL

�
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� u(t)

ergibt sich

i (t) =
1

Rii=1

mR

� u(t) + j�Ciu(t)
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� u(t)
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+ j�Cp +
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j�Lp
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� � u(t) = Yp � u(t)
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Wird die Parallelschaltung der Wechselstromwiderstände in die Schaltung mit komplexen
Effektivwerten und komplexen Operatoren überführt, ergibt sich die Stromgleichung in
komplexen Effektivwerten.

Bild 4.31 Parallelschaltung von Wechselstromwiderständen im Bildbereich und ihre Überführung in
die Ersatzschaltung

Nach Gl. 4.30 ist

I = Ii
i=1
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� = IRi
i=1

mR
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Damit lassen sich die mR ohmschen Widerstände, mC Kapazitäten und mL Induktivitäten
der Parallelschaltung genauso wie im Zeitbereich zu Ersatzgrößen Rp, Cp und Lp zusam-
menfassen:

1

Rp

=
1

Rii=1

mR

� j�Cp = j�Ci
i=1

mC

� 1

j�Lp

=
1

j�Lii=1

mL

�

bzw. Cp = Ci
i=1

mC

� bzw.
1

Lp

=
1

Lii=1

mL

� (4.62)



4.3  Wechselstromwiderstände und Wechselstromleitwerte 43 

Die Stromgleichung in komplexen Effektivwerten lautet dann: 

p p
p p p p

1 1 1 1I j C U j C U
R j L R L

�  " # " #
� � � � � � � � � � �: ;$ % $ %$ % $ %� �: ;& ' & '� !

 

 
I �

1
Rp

� j � (BC � BL )
�

�
:
:

 

!
;
;
� U � [G p � j � Bp] � U � Yp � U  

mit   p p C L p
p p p p

1 1 1 1Y j B j (B B ) j C
R R R L

" #
� � � � � � � � � � � �$ %$ %�& '

 (4.63) 

und   Bp = BC + BL BC = �Cp BL = �
1

�Lp
 Gp = 1

Rp
.  (4.64) 

Die ohmschen Anteile eines komplexen Leitwertes pY finden sich also grundsätzlich im 
Realteil, die kapazitiven Anteile im positiven Imaginärteil und die induktiven Anteile im 
negativen Imaginärteil. 
Der komplexe Effektivwert des Gesamtstroms I teilt sich also in drei Teilströme auf: 

 
I � IR � IC � IL �

1
Rp

U � j�Cp � U �
1

j�Lp
� U,  

wobei der reelle Strom IR auch „Wirkstrom“ Iw genannt wird. Die beiden imaginären Strö-
me IC und IL, die wegen der entgegengesetzten Vorzeichen gegeneinander gerichtet sind, 
werden zum Strom IB bzw. „Blindstrom“ Ib zusammengefasst: 

 I � IR � IB  (4.65) 

mit 
 
IR �

1
Rp

U � G p � U  und IB � IC � IL � j(BC � BL ) � U � jBp � U  

Wird in 

 
Yp � Yp � e j�p � Yp � e� j�  

 
Yp � Yp � cos�p � j � Yp � sin�p � Yp � cos� � j � Yp � sin�  (vgl. Gl.4.58) 

Yp = I/U eingesetzt 

 
Yp �

I
U

� cos�p � j � I
U

� sin�p �
I
U

cos� � j � I
U

� sin�  

und mit U multipliziert, dann ergibt sich die Stromgleichung 

pY · U = I = I · cos �p + j · I · sin �p = I · cos � + j · I · sin(– �), 

die dem Zeigerbild im Bild 4.32 mit �u = 0 entspricht. Mit Gl. (4.65) verglichen, ist 
IR = I · cos � (4.66) und      IB = I · sin(– �) = – I · sin � (4.67) 

mit    I � IR
2 � IB

2 .  (4.68) 

Der Ersatzleitwert der Parallelschaltung von Wechselstromwiderständen hängt von der Grö-
ße des ohmschen Widerstandes pR ,  der Kapazität pC ,  der Induktivität pL  und der Kreis-
frequenz � ab. Liegt an der Parallelschaltung eine sinusförmige Spannung u, dann ist der 
Gesamtstrom i bezogen auf die Spannung u entweder bis �/2 voreilend, in Phase oder bis 
– �/2 nacheilend. 
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Der komplexe Leitwert Yp ist also entweder ein kapazitiver, ohmscher oder induktiver
Leitwert, und die Ersatzschaltung besteht entweder aus der Parallelschaltung eines ohm-
schen Widerstandes Rp und einer Kapazität Cp, nur aus einem ohmschen Widerstand Rp
oder aus der Parallelschaltung eines ohmschen Widerstandes Rp und einer Induktivität Lp:

Kapazitiver komplexer Leitwert: Yp = 1/Rp + j Bp = Gp + j Bp mit Bp > 0

1. Die Parallelschaltung besteht nur aus ohmschen Widerständen Ri und Kapazitäten Ci,
die zu den Ersatzgrößen Rp und Cp zusammengefasst werden.

2. Die Parallelschaltung enthält ohmsche Widerstände Ri, Kapazitäten Ci und Induktivitä-
ten Li, die zu den Ersatzgrößen Rp, Cp und Lp zusammengefasst werden.
Sie verhält sich wie ein kapazitiver Wechselstromleitwert, wenn Bp > 0 ist,
d. h. wenn �Cp > 1/�Lp.

Ohmscher komplexer Leitwert: Yp = 1/Rp = Gp mit Bp = 0

1. Die Parallelschaltung besteht nur aus ohmschen Widerständen Ri, die zu der Ersatz-
größe Rp zusammengefasst werden.

2. Die Parallelschaltung enthält ohmsche Widerstände Ri, Kapazitäten Ci und Induktivi-
täten Li, die zu den Ersatzgrößen Rp, Cp und Lp zusammengefasst werden.
Sie verhält sich wie ein ohmscher Leitwert, wenn Bp = 0 ist,
d. h. wenn �Cp = 1/�Lp.

Induktiver komplexer Leitwert: Yp = 1/Rp + j Bp = Gp + j Bp mit Bp < 0

1. Die Parallelschaltung besteht nur aus ohmschen Widerständen Ri und Induktivitäten
Li, die zu den Ersatzgrößen Rp und Lp zusammengefasst werden.

2. Die Parallelschaltung enthält ohmsche Widerstände Ri, Kapazitäten Ci und Induktivi-
täten Li, die zu den Ersatzgrößen Rp, Cp und Lp zusammengefasst werden.
Sie verhält sich wie ein induktiver Wechselstromleitwert, wenn Bp < 0 ist,

d. h. wenn �Cp < 1/�Lp.

Im Zeigerbild bilden die komplexen Effektivwerte der Ströme ein „Stromdreieck“ und die
entsprechenden komplexen Leitwerte ein „Leitwertdreieck“, wenn der Imaginärteil Bp
positiv oder negativ ist:

Bild 4.32 Zeigerbilder der Spannungen und Ströme und komplexen Leitwerte von Wechselstrom-
leitwerten



4.3  Wechselstromwiderstände und Wechselstromleitwerte 45 

Stromteilerregel 
Für zwei parallel geschaltete Wechselstromwiderstände gilt die Stromteilerregel analog 
wie in der Gleichstromtechnik nur im komplexen Bereich: 

Die komplexen Zeitfunktionen oder die komplexen Effektivwerte der Ströme durch 
zwei parallel geschaltete Wechselstromwiderstände, an denen die gleiche sinusför-
mige Spannung anliegt, verhalten sich wie die zugehörigen komplexen Leitwerte 
und sind umgekehrt proportional zu den komplexen Widerständen. 
Die komplexe Zeitfunktion oder der komplexe Effektivwert des Teilstroms verhält 
sich zur komplexen Zeitfunktion oder zum komplexen Effektivwert des Gesamt-
stroms wie der komplexe Widerstand, der nicht vom Teilstrom durchflossen ist, zum 
komplexen Ringwiderstand. 

1 1 2

2 2 1

I Y Z
I Y Z

� �  

                1 2

1 2

I Z
I Z Z

�
�

              2 1

1 2

I Z
I Z Z

�
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Beispiel 1: 
Parallelschaltung eines ohmschen Widerstandes und einer Kapazität 
 Zeitbereich: komplexer Bereich: 

 
Bild 4.33 Stromteilerregel für die Parallelschaltung eines ohmschen Widerstandes und einer 
Kapazität 
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Bild 4.34 Beispiel für die Stromteiler-
regel 

Beispiel 2: 
Für die skizzierte Schaltung ist der Strom IL in 
Abhängigkeit von U, �, RLp, Lp und R zu ermit-
teln. 
Lösung: 
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Beispiel 3: 
1. Für die skizzierte Schaltung ist der 

Strom IC in Abhängigkeit von U, �, 
RLr, Lr, RCp und Cp zu ermitteln. 

2 Anschließend sollen der Strom IR und 
die Spannung UC bestimmt werden. 

Lösung: 
Zu 1. 

C Cp

Cp
p

I R
1I R
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Bild 4.35 Beispiel für die Stromteilerregel 
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Komplexer Widerstand und komplexer Leitwert von gemischten Schaltungen

Gemischte Schaltungen enthalten Reihen- und Parallelschaltungen von Wechselstromwi-
derständen. Wie beschrieben, werden zunächst für die Reihenschaltungen die komplexen
Widerstände und für die Parallelschaltungen die komplexen Leitwerte addiert.

Parallel geschaltete Reihenschaltungen – äquivalente Schaltungen

Sind Reihenschaltungen parallel geschaltet, dann müssen die komplexen Widerstände der
Reihenschaltungen in komplexe Leitwerte überführt werden, d. h. die Reihenschaltungen
gehen in äquivalente Parallelschaltungen über. Anschließend lassen sich die komplexen
Leitwerte addieren.

Um die ohmschen Widerstände der Reihen- und Parallelschaltungen mit Induktivitäten
und Kapazitäten unterscheiden zu können, werden Doppelindizierungen vorgenommen.

Beispiel: Parallelschaltung von zwei Reihenschaltungen (Parallel-Resonanzkreise)

Bild 4.36 Parallelschaltung von zwei Reihenschaltungen
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mit RCp =

RCr
2 +

1
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ZLr = RLr + j�Lr

Lr r
Lp

Lr Lr r Lr r

1 1 R j L
Y

Z R j L R j L

	 �
= = (

+ � 	 �

YLp =
RLr

RLr
2 + �2Lr

2
	 j (

�Lr

RLr
2 + �2Lr

2
=

1

RLp

	 j (
1

�Lp

(4.70)

mit RLp =
RLr

2 + �2Lr
2
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(4.71)

Der komplexe Leitwert einer Reihenschaltung von Wechselstromwiderständen wird also
durch den Kehrwert des komplexen Widerstandes und durch konjugiert komplexes Erwei-
tern ermittelt:

Yp =
1

Zr

= G p + jBp =
1

Rr + jXr

�
Rr 	 jXr

Rr 	 jXr

=
Rr

Rr
2 + Xr

2
+ j �

	Xr

Rr
2 + Xr

2
(4.72)

mit G p =
Rr

Rr
2 + Xr

2
=

Rr

Zr
2

= Rr � Yr
2

und Bp = 	
Xr

Rr
2 + Xr

2
= 	

Xr

Zr
2

= 	Xr � Yr
2
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Beispiel: 
Überführung der Reihenschaltung eines ohmschen Widerstandes Rr, einer Induktivität Lr und 
einer Kapazität Cr in eine äquivalente Parallelschaltung eines ohmschen Widerstandes 
Rp, einer Induktivität Lp und einer Kapazität Cp: 
 

 
Bild 4.37 Überführung einer RLC-Reihenschaltung  
in eine äquivalente RCL-Parallelschaltung 
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In Reihe geschaltete Parallelschaltungen – äquivalente Schaltungen

Sind Parallelschaltungen in Reihe geschaltet, dann müssen umgekehrt die komplexen
Leitwerte der Parallelschaltungen in komplexe Widerstände überführt werden, d. h. die
Parallelschaltungen gehen in äquivalente Reihenschaltungen über. Anschließend lassen
sich die komplexen Widerstände addieren.

Um die ohmschen Widerstände der Parallel- und Reihenschaltungen mit Induktivitäten
und Kapazitäten unterscheiden zu können, werden Doppelindizierungen vorgenommen.

Beispiel: Reihenschaltung von zwei Parallelschaltungen

Bild 4.38 Reihenschaltung von zwei Parallelschaltungen
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(4.78)

Der komplexe Widerstand einer Parallelschaltung von Wechselstromwiderständen wird
also durch den Kehrwert des komplexen Leitwerts und durch konjugiert komplexes Er-
weitern ermittelt:
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Beispiel: 
Überführung der Parallelschaltung eines ohmschen Widerstandes Rp, einer Kapazität Cp und 
einer Induktivität Lp in eine äquivalente Reihenschaltung eines ohmschen Widerstandes Rr, 
einer Induktivität Lr und einer Kapazität Cr: 
 

 
Bild 4.39 Überführung einer RCL-Parallelschaltung  
in eine äquivalente RLC-Reihenschaltung 
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Beispiel einer gemischten Schaltung:

Bild 4.40 Transformation einer gemischten Schaltung in eine Reihenschaltung

Die Berechnung des komplexen Widerstands der im Bild 4.40 dargestellten Schaltung
erfordert vier Transformationen einer Reihenschaltung in die äquivalente Parallelschal-
tung oder umgekehrt, bei der jeweils konjugiert komplex erweitert werden muss. Deshalb
ist die Berechnung des komplexen Widerstands sehr aufwändig.

Eine einfachere Behandlung gemischter Wechselstromschaltungen ist mit Hilfe des
Kreisdiagramms möglich, das im folgenden behandelt werden soll.

Komplexe Widerstände und Leitwerte im Kreisdiagramm

Wegen des stets positiven Realteils werden komplexe Widerstände und komplexe Leit-
werte nur in der rechten Hälfte der Gaußschen Zahlenebene dargestellt.

Die Widerstände Z und Leitwerte Y werden auf einen ohmschen Widerstand R0 bzw.
Leitwert G0 bezogen, so dass dann komplexe Zahlen z in der rechten Hälfte der
z-Ebene den Widerständen und Leitwerten entsprechen:

Mit

Z = R + jX

bzw.

Y = G + jB

sind

Z' =
Z

R0

=
R

R0

+ j
X

R0

(4.83)

bzw.

Y' =
Y

G0

=
G

G0

+ j
B

G0

(4.84)

komplexe Zahlen z = x + jy.
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Mit Hilfe der analytischen Funktion

w = u + jv = f (z) =
z 	 1

z + 1
(4.85)

werden die komplexen Zahlen z = x + jy in komplexe Zahlen w = u + jv abgebildet.
Zur Darstellung dieser Funktion sind zwei Gaußsche Zahlenebenen notwendig, in
denen Punktmengen P(x,y) in der z-Ebene auf Punktmengen Q(u,v) in der
w-Ebene abgebildet werden.

Bild 4.41 Abbildung von Punkten der
z-Ebene auf Punkte der w-Ebene

Eine Funktion w = f(z) heißt analytisch, wenn sie in allen ihren Punkten differenzierbar
ist, d. h. wenn die Cauchy-Riemannschen Differentialgleichungen erfüllt sind:

�u

�x
=
�v

�y
und

�u

�y
= �

�v

�x
;

die Abbildung ist dann maßstabs- und winkeltreu. Deshalb heißt die Abbildung von kom-
plexen Zahlen z auf komplexe Zahlen w mit analytischen Funktionen
w = f(z) konforme Abbildung.

Zunächst soll die Frage beantwortet werden, weshalb die Behandlung von Wechselstrom-
schaltungen im abgebildeten Bereich einfacher wird. Wie beschrieben, ist bei gemischten
Schaltungen die Kehrwertbildung von komplexen Widerständen und komplexen Leitwer-
ten notwendig.

In der z-Ebene, in der die bezogenen komplexen Widerstände und bezogenen komplexen
Leitwerte durch Punkte oder Zeiger dargestellt werden, bedeutet die Kehrwertbildung die
Inversion von Zeigern:

z = r ( e j� zi =
1

z
=

1

r
( e� j� .

Wenn Real- und Imaginärteil des Kehrwerts gesucht sind, erfordert die Berechnung des
Kehrwerts das konjugiert komplexe Erweitern:

zi =
1

z
=

1

x + jy
=

1

x + jy
�

x � jy

x � jy
=

x

x2 + y2
+ j �

�y

x2 + y2
.

In der w-Ebene bedeutet die Inversion einer komplexen Zahl z lediglich eine Negation der
abgebildeten komplexen Zahl w:

z w = f (z) =
z � 1

z + 1

zi =
1

z
wi = f (zi ) =

zi � 1

zi + 1
=

1

z
� 1

1

z
+ 1

=
1� z

1+ z
= �

z � 1

z + 1
= �w. (4.86)
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Wird also mit dieser Funktion f eine komplexe Zahl z in eine komplexe Zahl w abgebil-
det, dann ergibt sich das Bild wi des in der z-Ebene invertierten Zeigers
zi = 1/z, indem der Zeiger w einfach um 180° gedreht wird, ohne dass sich seine Länge
ändert. Der Übergang von einem komplexen Widerstand zu einem komplexen Leitwert
oder umgekehrt ist deshalb in der w-Ebene viel einfacher möglich als in der z-Ebene.

Wie im folgenden beschrieben, werden mit Hilfe dieser analytischen Funktion die Punkte
P(x,y) der rechten z-Ebene, die bei komplexen Widerständen und komplexen Leitwerten
nur vorkommen, auf Punkte Q(u, v) einer Kreisfläche abgebildet.

Dafür werden zunächst die Funktionen u(x, y) und v(x, y) hergeleitet:

Mit

w =
z � 1

z + 1
ist

u + jv =
(x + j � y) � 1

(x + j � y) + 1
=

(x � 1) + j � y

(x + 1) + j � y
�

(x + 1) � j � y

(x + 1) � j � y

u + jv =
(x2 � 1+ y2 ) + j � y � [(x + 1) � (x � 1)]

(x + 1)2 + y2

ergibt sich

u =
x2 + y2 � 1

(x + 1)2 + y2
(4.87)

und

v =
2y

(x + 1)2 + y2
(4.88)

Mit Hilfe der Quotientenregel der Differentialrechnung lässt sich damit nachweisen, dass
die Abbildungsfunktion analytisch und die Abbildung konform ist:

�u

�x
=

2x[(x +1)2 + y2]� (2x + 2)(x2 + y2 �1)

[(x + 1)2 + y2]2
=
�v

�y
=

2[(x +1)2 + y2]� 2y (2y

[(x + 1)2 + y2]2

2x3 + 4x2 + 2x + 2xy2 � 2x3 � 2xy2 + 2x � 2x2 � 2y2 + 2= 2x2 + 4x + 2+ 2y2 � 4y2

�u

�y
=

2y[(x +1)2 + y2]� 2y(x2 + y2 �1)

[(x +1)2 + y2]2
= �

�v

�x
= �

0� (2x + 2) (2y

[(x +1)2 + y2]2

2xy2 + 4yx + 2y + 2y3 – 2yx2 – 2y3 + 2y = 4xy + 4y

Wird zu einem komplexen Widerstand ein ohmscher Widerstand in Reihe bzw. zu einem
komplexen Leitwert ein ohmscher Widerstand parallel geschaltet, dann vergrößert sich
der Realteil x des bezogenen komplexen Widerstandes bzw. des bezogenen komplexen
Leitwerts.

Wird zu einem komplexen Widerstand ein induktiver (kapazitiver) Widerstand in Reihe
bzw. zu einem komplexen Leitwert ein kapazitiver (induktiver) Widerstand parallel ge-
schaltet, dann vergrößert (verkleinert) sich der Imaginärteil y des bezogenen komplexen
Widerstandes bzw. des bezogenen komplexen Leitwerts.
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Deshalb ist es notwendig zu wissen, wie die abgebildeten x- und y-Achse und ihre Paral-
lelen in der w-Ebene aussehen.

Abbildung der positiven x-Achse:

Mit y = 0 ist

u =
x2 �1

(x +1)2
=

x �1

x +1
(4.89)

und v = 0.

Beispiele:

z-Ebene w-Ebene

P3 (0,0) Q3 (– 1,0)

P4 (1,0) Q4 (0,0)

P� (�, 0) Q� (1,0)

(siehe Bild 4.42)

Abbildung der y-Achse:

Mit x = 0 ist

u =
y2 �1

y2 +1
und v =

2y

y2 +1
(4.90)

und

u2 + v2 =
y4 � 2y2 +1+ 4y2

(y2 +1)2
=

y4 + 2y2 +1

(y2 +1)2
=

(y2 +1)2

(y2 +1)2

u2 + v2 = 1,

Beispiele:

z-Ebene w-Ebene

P1 (0,1) Q1 (0,1)

P5 (0,– 1) Q5 (0,– 1)

(siehe Bild 4.42)

Das ist ein Kreis mit dem Radius r = 1 und mit dem Mittelpunkt im Koordinatenursprung
der w-Ebene, also im Punkt Q4 (0,0).

Bild 4.42 Konforme Abbildung der rechten z-Halbebene in die w-Ebene
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Abbildung der Parallelen der positiven x-Achse:

y = cy: Um y konstant setzen zu können, muss y in Abhängigkeit von u und v ermittelt
werden:

w = u + jv =
z �1

z +1

(u + jv) · z + u + jv = z – 1

(u + jv) · z – z = – (u + jv) – 1

z = �
(u +1)+ jv

(u �1)+ jv

z = �
(u +1)+ jv

(u �1)+ jv
�
(u �1)� jv

(u �1)� jv

z = �
u2 �1+ v2 + j�v �[(u �1)� (u +1)]

(u �1)2 + v2

z = x + jy = �
u2 + v2 �1

(u �1)2 + v2
+ j�

2v

(u �1)2 + v2

d. h. y =
2v

(u �1)2 + v2
= cy und (u �1)2 + v2 =

2v

cy

. (4.91)

Mit der quadratischen Ergänzung 1/ cy
2 folgt

(u �1)2 + v2 �
2v

cy

+
1

cy
2

=
1

cy
2

,

und es ergibt sich die Gleichung von Kreisen in allgemeiner Lage mit den Radien 1/cy
und der Mittelpunktsverschiebung (1, 1/cy):

(u �1)2 + (v �1/ cy )2 =1/ cy
2. (4.92)

Der reelle Anteil der Mittelpunktsverschiebung ist für alle Kreise gleich 1, der imaginäre
Anteil der Mittelpunktverschiebung ist genauso groß wie der Radius der jeweiligen Kreise
v0 = 1/cy. Allen Kreisen ist der Punkt Q� (1,0) gemeinsam (siehe Bild 4.42)

Beispiele:

y = cy Kreisgleichung

± 1/2 (u – 1)2 + (v  2)2 = 22

± 1 (u – 1)2 + (v  1)2 = 12

± 3/2 (u – 1)2 + (v  2/3)2 = (2/3)2
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Abbildung der Parallelen zur y-Achse:

x = cx: Um x konstant setzen zu können, muss x in Abhängigkeit von u und v ermittelt
werden. Das Ergebnis für x ist bei der Abbildung der Parallelen zur positiven x-Achse
errechnet:

x = �
u2 + v2 �1

(u �1)2 + v2
= cx

– u2 – v2 +1 = cx · u2 – cx · 2u + cx + cx · v2

u2(cx + 1) – 2ucx + v2(cx +1) + cx – 1 = 0

u2 – 2u
cx

cx +1
+ v2 +

cx �1

cx +1
= 0.

Mit der quadratischen Ergänzung [cx/(cx + 1)]2 ergibt sich ebenfalls die Gleichung von
Kreisen, deren Mitttelpunkte auf der reellen Achse um u0 verschoben liegen:

u2 � 2u
cx

cx +1
+

cx

cx +1

�

��
�

�	

2

+ v2 = �
cx �1

cx +1
+

cx

cx +1

�

��
�

�	

2

u �
cx

cx +1

�

��
�

�	

2

+ v2 =
�(cx �1)(cx +1)+ cx

2

(cx +1)2
=
�cx

2 +1+ cx
2

(cx +1)2

u �
cx

cx +1

�

��
�

�	

2

+ v2 =
1

(cx +1)2
= r0

2 (4.93)

Die Addition von u0 und r0 ergibt 1:

cx

cx +1
+

1

cx +1
=1, (4.94)

d. h. jeder Kreis geht durch den Punkt Q� (1,0) (siehe Bild 4.42).

Beispiele:

x = cx Kreisgleichung

1/2
u �

1/2

1/2 + 1

�
��

�
�	

2

+ v2 =
1

1/2 + 1

�
��

�
�	

2

(u � 1/3)2 + v2 = (2/3)2

1 (u – 1/2)2 + v2 = (1/2)2

3/2

u �
3/2

3/2 + 1

�
��

�
�	

2

+ v2 =
1

3/2 + 1

�
��

�
�	

2

(u – 3/5)2 + v2 = (2/5)2
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Um das Arbeiten im Kreisdiagramm zu erleichtern, werden die Koordinatenachsen u und 
jv weggelassen und an die abgebildeten Achsen die z-Koordinaten eingetragen, wie im 
Bild 4.43 zu sehen ist. Denn aus der w-Ebene sollen der Realteil und der Imaginärteil der 
z-Größe abgelesen werden können. 
 
Auf dem reellen u-Achsenabschnitt von u = – 1 bis u = + 1, der die Abbildung der positi-
ven x-Achse mit y = 0 ist, werden folgende x-Werte eingetragen: 

x 
 

O 0,1 0,2 0,3 0,5 0,7 1,0 1,5 2 3 ? 
 

 

P3      P4    P? 

u 
 

– 1 – 0,82 – 2/3 – 0,54 – 1/3 – 0,176 0 0,2 2/3 0,5 1 
 

 

Q3      Q4    Q? 

Weitere u-Werte lassen sich mit der Formel Gl. (4.89) berechnen: 

 
 
u �

x �1
x �1

 

Auf dem Kreisumfang des Einskreises, der die Abbildung der imaginären 
y-Achse mit x = 0 ist, werden folgende y-Werte eingetragen: 

y 0 
P3 

± 0,2 ± 0,3 ± 0,4 ± 0,5 ± 0,6 ± 0,7 ± 0,8 ± 0,9 ± 1
P1
P5 

± 1,2 ± 1,5 ± 2 ± 3 ? 

u 
 
 
 
v 

– 1 
Q3 
 
 
0 

– 0,92 
 
 
 

± 0,38 

– 0,83 
 
 
 

± 0,55 

– 0,72 
 
 
 

± 0,69 

– 0,6
 
 
 

± 0,8

– 0,47
 
 
 

± 0,88

– 0,34
 
 
 

± 0,94

– 0,22
 
 
 

± 0,98

– 0,10
 
 
 

± 0,99

0 
Q1
Q5
 
± 1 

0,18
 
 
 

± 0,98

0,38
 
 
 

± 0,92 

0,6 
 
 
 

± 0,8 

0,8 
 
 
 

± 0,6 

1 
 
 
 
0 

 
Weitere u- und v-Werte lassen sich mit den Formeln Gl. (4.90) berechnen: 

u = 
 

y2 � 1
y2 � 1

und v �
2y

y2 � 1
 

Auf dem u-Abschnitt werden also reelle bezogene Widerstände und Leitwerte 
Z' = R/R0 bzw. Y' = G/G0 durch Punkte eingetragen. 
Die imaginären bezogenen Widerstände und Leitwerte Z' = jX/R0 bzw. Y' = jB/G0 werden 
auf dem Einskreis berücksichtigt. 
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Bezogene komplexe Widerstände und Leitwerte

Z' =
Z

R0

=
R

R0

+ j
X

R0

und Y' =
Y

G0

=
G

G0

+ j
B

G0

entsprechen im Kreisdiagramm den Kreuzungspunkten des Realteils und Imaginärteils.
Wie in der z-Ebene sind im Kreisdiagramm der w-Ebene die komplexen Zahlen w mit
positivem Imaginärteilen oberhalb der reellen Achse und die mit negativem Imaginärteil
unterhalb der reellen Achse zu finden.

Punkte von komplexen Zahlen, deren Realteil und Imaginärteil größer als 3 sind, können
nur noch ungenau im Kreisdiagramm eingezeichnet werden. Deshalb müssen der Be-
zugswiderstand R0 bzw. der Bezugsleitwert G0 so gewählt werden, dass sich die bezoge-
nen komplexen Widerstände und Leitwerte in der Mitte des Kreisdiagramms befinden.
Werden mehrere komplexe Widerstände und Leitwerte einer gemischten Schaltung in
einem Kreisdiagramm berücksichtigt, dann kann nur ein Bezugswiderstand R0 = 1/G0
gewählt werden.

Soll aus dem abgelesenen bezogenen Widerstand Z' der zugehörige komplexe Widerstand
Z oder aus dem bezogenen Leitwert Y' der komplexe Leitwert Y ermittelt werden, dann
ist der bezogene komplexe Zahlenwert mit R0 bzw. G0 zu multiplizieren:

Z = R0 � Z' = R0 �
R

R0

+ j � R0 �
X

R0

(4.95)

oder

Y = G0 � Y' = G0 �
G

G0

+ j �G0 �
B

G0

(4.96)

Bild 4.43 Behandlung einer gemischten Schaltung im Kreisdiagramm
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Beispiel:

Das im Bild 4.40 gezeichnete Schaltbild soll mit Hilfe des Kreisdiagramms in eine äquivalen-
te Reihenschaltung überführt werden. Gegeben sind:

RLr = 20� C1 = 31,8nF R = 100� Lr = 191μH C2 = 12,7nF f = 50kHz

Lösung: (siehe Bild 4.43)

1. Ermittlung von Z1 und Eintragung in das Kreisdiagramm:

Z1 = RLr + jXL = RLr + j�Lr

Z1 = 20� + j · 2� · 50 · 103s–1 · 191 · 10–6H

Z1 = 20� + j 60�
mit R0 = 100� gewählt, ergibt sich

Z1
' =

RLr

R0

+ j
XL

R0

= 0,2 + j � 0,6

der bezogene Widerstand '
1Z wird in der obe-

ren Hälfte des Kreisdiagramms eingetragen
(Bild 4.43).

Bild 4.44 Transformation der
Reihenschaltung RLr/Lr in die
äquivalente Parallelschaltung

2. Ermittlung von '
1Y durch Inversion:

Die Länge von Z1
' wird wegen wi = – w über den Punkt 1 hinaus abgetragen und ergibt

den bezogenen Leitwert '
1Y der äquivalenten Parallelschaltung (Bild 4.43):

'
1Y 0,5 j 1,5= � �

Kontrollrechnung:

Y1
' =

1

0,2 + j � 0,6
�

0,2 � j � 0,6

0,2 � j � 0,6
=

0,2

0,22 + 0,62
� j �

0,6

0,22 + 0,62
= 0,5 � j �1,5.

3. Ermittlung von '
2Y durch Berücksichtigung der Parallelschaltung von C1:

Die Parallelschaltung des Kondensators C1 bedeutet eine Erhöhung des Imaginärteils
des komplexen Leitwerts Y1 und des bezogenen komplexen Leitwerts '

1Y um

C1 1
1 0

0 0

j B j C
j C R

G G

�
= = � = j · 2� · 50 · 103s– 1 · 31,8 · 10–9F · 100� = j · 1

' '
2 1Y Y j 1 0,5 j ( 1,5 1) 0,5 j 0.5.= + � = + � � + = � �

Im Kreisdiagramm bedeutet die Vergrößerung des Imaginärteils ein Verschieben des

Punktes '
1Y in '

2Y auf dem Kreis mit konstantem Realteil 0,5, weil die Abbildung der Pa-

rallelen zur y-Achse auf der u-Achse verschobene Kreise sind.

4. Ermittlung von '
2Z durch Inversion:

Da zu der Parallelschaltung der Widerstand R in Reihe
geschaltet ist, muss der Widerstand der Parallelschal-
tung durch Inversion ermittelt werden (Bild 4.45).

Das Kreisdiagramm (Bild 4.43) ergibt '
2Z = 1 + j · 1.

Kontrollrechnung:

Z2
' =

1

0,5 � j � 0,5
�

0,5 + j � 0,5

0,5 + j � 0,5

Z2
' =

0,5

0,52 + 0,52
+ j �

0,5

0,52 + 0,52
= 1 + j �1

Bild 4.45 Transformation der
RLC-Parallelschaltung in die
äquivalente Reihenschaltung
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5. Ermittlung von '
3Z  durch Berücksichtigung der Reihenschaltung von R: 

 Die Reihenschaltung des ohmschen Widerstandes R bedeutet eine Erhöhung des Realteils 
des komplexen Widerstandes 2Z  und des bezogenen komplexen Widerstandes '

2Z  um 
R/R0 = 100�/100� = 1, 

' '
3 2Z Z� + 1 = (1 + 1) + j · 1 = 2 + j · 1. 

 Im Kreisdiagramm (Bild 4.43) bedeutet die Vergrößerung des Realteils ein Verschieben des 
Punktes '

2Z  in den Punkt '
3Z  auf dem Kreis mit konstantem Imaginärteil 1,0, weil die Ab-

bildung der Parallelen zur positiven x-Achse Kreise sind, die in u- und v-Richtung verscho-
ben sind. 

6. Ermittlung von '
3Y  durch Inversion: 

 
Bild 4.46 
Transformation der RLC-Reihenschaltung 
in die äquivalente Parallelschaltung 

 Da zu der Reihenschaltung die Kapazität C2 parallel geschaltet ist, muss der Leitwert der 
Reihenschaltung durch Inversion ermittelt werden. Das Kreisdiagramm (Bild 4.43) ergibt 

'
3Y = 0,4 – j · 0,2. 

 Kontrollrechnung: 

 
Y3

' �
1

2 � j �1
�

2 � j �1
2 � j �1

�
2
5

� j � 1
5

� 0,4 � j � 0,2.  

7. Ermittlung von '
4Y  durch Berücksichtigung der Parallelschaltung von C2: 

 Die Parallelschaltung des Kondensators C2 bedeutet eine Erhöhung des Imaginärteils des 
komplexen Leitwerts 3Y  und des bezogenen komplexen Leitwers '

3Y  um 

C2 2 3 1 9
2 0

0 0

jB j C j C R j 2 50 10 s 12,7 10 F 100 j 0,4
G G

� ��
� � � � � � � � � � � � � �  

' '
4 3Y Y� + j · 0,4 = 0,4 + j · (– 0,2 + 0,4) = 0,4 + j · 0,2. 

 Im Kreisdiagramm (Bild 4.43) bedeutet die Vergrößerung des Imaginärteils ein Verschie-
ben des Punktes '

3Y in den Punkt '
4Y  auf dem Kreis mit konstantem Realteil 0,4; die Pa-

rallelschaltung einer Induktivität würde eine Verminderung des Imaginärteils bewirken. 
8. Ermittlung von '

4Z  durch Inversion: 
 Für die gegebene Schaltung im Bild 4.40 ist die äquivalente Reihenschaltung gesucht. 

Deshalb ist der komplexe Widerstand durch Inversion zu ermitteln. Das Kreisdiagramm 
(Bild 4.43) ergibt '

4Z = 2 – j · 1. 
 Kontrollrechnung: 

 
Z4

' �
1

0,4 � j� 0,2
�

0,4 � j �0,2
0,4 � j �0,2

�
0,4

0,42 � 0,22
� j � 0,2

0,42 � 0,22
� 2 � j �1.  

9. Berechnung der Ersatzschaltung: 
 Da der Imaginärteil des bezogenen komplexen Widerstandes '

4Z  negativ ist, besteht die 
Ersatzschaltung für die gegebenen Größen aus der Reihenschaltung eines ohmschen Wi-
derstandes Rers und einer Kapazität Cers. Mit dem Bezugswiderstand R0 = 100� werden 
die Ersatzelemente berechnet: 

4Z = R0 · '
4Z = 100� · (2 – j) = 200� – j · 100 � = Rers – j (1/�Cers) 

d. h.    Rers = 200�    und    Cers = 1/(� · 100�) = 31,8nF. 
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Duale Schaltungen

Zwischen zwei Wechselstromwiderständen oder zwei Wechselstromschaltungen besteht Dua-
lität, wenn der komplexe Widerstand Z1 des einen Wechselstromwiderstandes oder der Wech-
selstromschaltung proportional dem komplexen Leitwert Y2 des anderen Wechselstromwider-
standes oder der anderen Wechselstromschaltung ist:

Z1 = R0
2 � Y2 oder Y2 =

1

R0
2
� Z1. (4.97)

Mit

Y2 =
1

Z2

ist Z1 � Z2 = R0
2. (4.98)

Die Proportionalitätsgröße R0
2 heißtDualitätsinvariante und hat die Dimension des Quadrats

eines Widerstandes. Duale Schaltungen haben gleiche Zeigerbilder, wie für die bereits behan-
delten dualen Schaltungen in den Bildern 4.25 und 4.32 zu sehen ist.

Beispiele:

Bild 4.47 Duale Wechselstromwiderstände

Bild 4.48 Duale Wechselstromschaltungen
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4.4  Praktische Berechnung von Wechselstromnetzen 

Anwendung der Rechenmethoden für Wechselstromnetze 
Nachdem im Abschnitt 4.2 vier Verfahren für die Berechnung von Wechselstromnetz-
werken behandelt wurden und im Abschnitt 4.3 die damit zusammenhängenden Begriffe 
„Wechselstromwiderstände“ und „Wechselstromleitwerte“ von Netzwerkteilen erklärt 
wurden, soll nun die Frage beantwortet werden, welches der Verfahren unter welchen 
Voraussetzungen angewendet wird. Wie in der Übersicht anfangs des Abschnitts 4.2.5 
dargestellt und durch ein Beispiel erläutert, stehen die vier Berechnungsverfahren im 
engen Zusammenhang zueinander. 

Das Verfahren 1, die Lösung der Differentialgleichung im Zeitbereich, ist wohl prinzipiell 
einfach, aber rechnerisch zu aufwändig und findet deshalb in der Praxis keine Anwen-
dung. 

Die Lösung der Differentialgleichung mit Hilfe von komplexen Zeitfunktionen, also das 
Verfahren 2, wird dann bevorzugt, wenn die Differentialgleichung aus anderen Gründen 
aufgestellt werden muss; z. B. bei der Behandlung von Ausgleichsvorgängen mit Wech-
selspannungserregung, bei der die Lösung der zugehörigen homogenen Differentialglei-
chung zum flüchtigen Anteil des Ausgleichsvorgangs führt (siehe Band 3, Abschnitt 
8.2.3). 

Die meist gewählten Verfahren für die Behandlung von Wechselstromnetzen sind das 
Verfahren 3 „die Lösungsmethode mit Widerstandsoperatoren“ und das Verfahren 4 „die 
grafische Lösung mit Hilfe von Zeigerbildern“. Beide Verfahren gehen von der Schaltung 
mit komplexen Operatoren und komplexen Effektivwerten aus. Die Rechenhilfen (Span-
nungsteilerregel und Stromteilerregel) und die fünf Netzberechnungsverfahren der 
Gleichstromtechnik (siehe Band 1, Abschnitt 2.3) führen ohne Differentialgleichungen zu 
Lösungen im Bildbereich, die dann auf die beschriebene Weise rücktransformiert werden 
können (siehe Abschnitte 4.2.4 und 4.2.2). Die Zeigerdarstellung ist die grafische Be-
schreibung des Rechenverfahrens. 

Im folgenden sollen einige praktische Beispiele von Wechselstromnetzen behandelt wer-
den, die nicht nur die Netzberechnungsverfahren, sondern auch äquivalente Schaltungen, 
Stern-Dreieck-Transformationen und das Kreisdiagramm betreffen. 

 
Beispiel 1: 
Ein Zweistrahl-Oszilloskop zeichnet den Strom- und Spannungsverlauf eines passiven Zwei-
pols auf, der im Bild 4.49 dargestellt ist. 

 

1. Zunächst sind die Effektivwerte von Strom 
und Spannung, die Frequenz und die Pha-
senverschiebung aus dem Oszillogramm 
abzulesen. 

2. Dann ist der passive Zweipol durch zwei 
Ersatzschaltbilder darzustellen, deren Er-
satzschaltelemente mit Hilfe der komple-
xen Rechnung zu ermitteln sind. 

3. Schließlich ist das Ergebnis mit Hilfe der 
Formeln für Widerstandstransformationen 
zu kontrollieren. 

Bild 4.49 Oszillogramm zum Beispiel 1 
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Lösung:

Zu 1.

Amplitude und Effektivwert hängen über 2 = 1,414 zusammen, d. h. die Effektivwerte
betragen mit den gegebenen Maßstäben: U = 200V und I = 2A. Wenn 3cm der Zeit von 10μs
entsprechen, beträgt die Periodendauer mit 6cm T = 20μs. Die Frequenz errechnet sich aus
dem Kehrwert:

f = 1/T = l/20μs = 50kHz.

Die Spannung u eilt dem Strom i um einen halben Zentimeter vor. Die Länge von 6cm ent-
spricht �T = 2�, und 0,5cm entsprechen �/6, d. s. + 30°. Der passive Zweipol wirkt wie ein
induktiver Wechselstromwiderstand.

Zu 2.

Die Ersatzschaltungen für den passiven Zweipol sind die Reihenschaltung eines ohmschen
Widerstandes Rr und einer Induktivität Lr und die Parallelschaltung eines ohmschen Wider-
standes Rp und einer Induktivität Lp.

Die Ersatzschaltelemente der Reihenschaltung werden mit Hilfe des komplexen Widerstandes
ermittelt:

Mit Gl. (4.41) und (4.42)

Z = Z · cos � + j · Z · sin � = Rr + j�Lr

und
U

Z
I

=

ergeben sich

r
U 200V

R cos cos 30º 86,6
I 2A

= � = = �

und aus r
U 200V

L sin sin30º 50
I 2A

� = � = = �

r 3 1

50 50 V / A
L 159 H.

2 f 2 50 10 s�
�

= = = μ
� � � �

Die Ersatzschaltelemente der Parallelschaltung werden entsprechend mit dem komplexen
Leitwert ermittelt:

Mit Gl. (4.58) und (4.59)

p p

1 1
Y Y cos j Y sin j

R L
= � � � � � � = � �

�

und mit
1 I

Y
Z U

= =

ergeben sich aus

p

1 I
cos

R U
= � )

p
U 200V

R 115,5
I cos 2A cos30º

= = = �
( � (

und aus

p

1 I
sin

L U
= ( )

�

p 3 1

U 200V
L 637 H

I sin 2 50 10 s 2A sin30º�= = = μ
� � � � � � � � �
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Zu 3.

Nach Gl. (4.70) lassen sich die Ergebnisse kontrollieren:

Rp =
Rr

2 + �2Lr
2

Rr

=
(86,6�)2 + (2� � 50 �103s�1 �159 �10�6 H)2

86,6�
= 115,5�

Lp =
Rr

2 + �2Lr
2

�2Lr

=
(86,6�)2 + (2� � 50 �103s�1 �159 �10�6 H)2

(2� � 50 �103s�1)2 �159 �10�6 H
= 637μH

Beispiel 2:

An der gezeichneten Schaltung liegt die si-
nusförmige Spannung

u1 = 1û · sin (�t + �u1)

an. Die Ausgangsspannung u2 ist zu berech-
nen, indem die Verfahren 2 und 3 (siehe Ab-
schnitt 4.2.5) angewendet werden.

Bild 4.50 Schaltbild zum Beispiel 2

1. Zunächst ist die Differentialgleichung für die Kondensatorspannung uC(t) zu entwickeln.

2. Dann ist die Differentialgleichung in die Bildgleichung (algebraische Gleichung) zu trans-
formieren und diese zu lösen.

3. Anschließend ist die Lösung der Bildgleichung (algebraische Gleichung) mit Hilfe der
Schaltung mit komplexen Operatoren und komplexen Effektivwerten zu kontrollieren.

4. Die Zeitfunktion uC(t) ist dann durch Rücktransformation der Lösung der Bildgleichung
zu ermitteln.

5. Schließlich ist die Ausgangsspannung u2(t) zu berechnen.

Lösung:

Zu 1. u1 = uC + i � (R1 + R2 ) mit i = C �
duC

dt

u1 = uC + (R1 + R2 ) � C �
duC

dt
(Differentialgleichung)

Zu 2. u1 = uC + (R1 + R2) · C · j� · uC (Bildgleichung in komplexen Zeitfunktionen)

uC = 1

1 2

u

1 j (R R )C+ � +
(Lösung der Bildgleichung in komplexen Zeitfunktionen)

Zu 3.

Nach der Spannungsteilerregel in komplexen
Effektivwerten ist

C

1
1 2

1

U j C
1U R R

j C

�=
+ +

�

und

1
C

1 2

U
U

1 j (R R )C
=

+ � +

Bild 4.51 Schaltung im Bildbereich zum
Beispiel 2

(Lösung der Bildgleichung in komplexen Effektivwerten)
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Zu 4. uC (t) =
û1 ( e j(�t+)u1 )

1 + �2 (R1 + R2 )2 C2 ( e j ( arc tan�(R1 +R2 ) C

u1 1 21 j[ t arc tan (R R )C]
C

2 2 2
1 2

û
u (t) e

1 (R R ) C

� +� � � += �
+ � +

Rücktransformation:

1
C u1 1 2

2 2 2
1 2

û
u (t) sin[ t arc tan (R R )C]

1 (R R ) C
= � � + � � � +

+ � +

Zu 5. u2 (t) = R2 � i(t) = R2 � C �
duC

dt
mit i(t) = C �

duC

dt

2 1
2 u1 1 2

2 2 2
1 2

ˆR C u
u (t) cos[ t arc tan (R R )C]

1 (R R ) C

� � � �
= � � + � � � +

+ � +

u2 (t) =
û1

1

�2R2
2C2

+
�2 (R1 + R2 )2 C2

�2R2
2C2

� sin �t + �u1 � arc tan�(R1 + R2 )C + �/2�� �	

u2 (t) =
û1

1 +
R1

R2

�

.-



��

2

+
1

�2R2
2C2

� sin �t + �u1 � arc tan�(R1 + R2 )C + �/2�
 ��

Beispiel 3:

1. Für die gezeichnete Schaltung ist die Differentialgleichung für uC aufzustellen.

2. Die Differentialgleichung ist ins Komplexe abzubilden, und die Bildgleichung ist zu lö-
sen.

3. Die Bildgleichung ist mit Hilfe der Symbolischen Methode zu kontrollieren.

4. Durch Rücktransformation der Bildgleichung ist die Zeitfunktion uC zu ermitteln.

Bild 4.52
Schaltung zum Beispiel 3

uˆu u sin ( t )= ( � + )

Lösung:

Zu 1. u = RLr � i + Lr �
di

dt
+ uC

mit i = iC + iR = Cp �
duC

dt
+

uC

RCp

und
di

dt
= Cp �

d2uC

dt2
+

1

RCp

�
duC

dt
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ergibt sich

u = RLrCp �
duC

dt
+

RLr

RCp

� uC + LrCp �
d2uC

dt2
+

Lr

RCp

�
duC

dt
+ uC

LrCp �
d2uC

dt2
+ RLrCp +

Lr

RCp

�

�
�

�

�
	 �

duC

dt
+

RLr

RCp

+ 1
�

�
�

�

�
	 � uC = u

Zu 2.

LrCp �
d2uC

dt2
+ RLrCp +

Lr

RCp

�

�
�

�

�
	 �

duC

dt
+

RLr

RCp

+ 1
�

�
�

�

�
	 � uC = u

��2LrCp ( uC + RLrCp +
Lr

RCp

�

�
�

�



	 ( j� ( uC +

RLr

RCp

+ 1
�

�
�

�



	 ( uC = u

uC =
u

RLr

RCp

+ 1 � �2LrCp

�

�
�

�



	 + j� ( RLrCp +

Lr

RCp

�

�
�

�



	

Zu 3.

Nach der Spannungsteilerregel in komplexen Effektivwerten ergibt sich

Cp
p

Cp
pC

Cp
p

Lr r

Cp
p

1
R

j C

1
R

j CU
1U R

j C
R j L

1
R

j C

�
�

+
�

=
�
�

+ � +
+

�

UC =

RCp �
1

j�Cp

(RLr + j�Lr ) � RCp +
1

j�Cp

�

�
�

�



� + RCp �

1

j�Cp

� U

UC =
1

(RLr + j�Lr ) � j�Cp +
1

RCp

�

�
�

�



� + 1

� U

C
Lr r2

Lr p r p
Cp Cp

1
U U

R L
R j C L C j 1

R R

= (
� � � + + � +

UC =
U

RLr

RCp

+ 1 � �2LrCp

�

�
�

�



	 + j� ( RLrCp +

Lr

RCp

�

�
�

�



	

(vgl. Beispiel 3 Stromteilerregel)
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Zu 4.

uC =
û � e j(�t+�u )

RLr

RCp

+ 1 � �2LrCp

�

.
-

�

/



2

+ �2 � RLrCp +
Lr

RCp

�

.
-

�

/



2

� e j�

mit � = arc tan

� ( RLrCp +
Lr

RCp

�

�
�

�



	

RLr

RCp

+ 1 � �2LrCp

uC =
û � sin(�t + �u � �)

RLr

RCp

+ 1 � �2LrCp

�

.
-

�

/



2

+ �2 � RLrCp +
Lr

RCp

�

.
-

�

/



2

Beispiel 4:

Für den gezeichneten symmetrischen Vierpol soll das
Übertragungsverhalten für sinusförmige Wechselgrö-
ßen beschrieben werden.

1. Zunächst ist das Spannungsübersetzungsverhältnis

2

1

U

U Bild 4.53 Schaltbild für Beispiel 4

bei Leerlauf am Ausgang in Form eines algebraischen Operators zu ermitteln.

2. Dann ist das Stromübersetzungsverhältnis

2

1

I

I

bei Kurzschluss am Ausgang zu ermitteln, ebenfalls in Form eines komplexen Operators.

3. Anschließend ist die Kreisfrequenz � zu berechnen, bei der der Betrag von U2/U1 und

der Betrag von I2/I1 gleich 1/ 2 = 0,707 betragen.

Lösung:

Zu 1.

Bei Leerlauf am Ausgang ist der Ausgangsstrom
i2 Null, so dass R und C in Reihe liegen. Im
Bildbereich ergibt sich aus der Spannungsteiler-
regel für komplexe Effektivwerte:

2

1

1

U 1j C
1U 1 j RCR

j C

�= =
+ �+

�

Bild 4.54 Leerlauf am Ausgang in der
Schaltung des Beispiels 4
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Zu 2.

Bei Kurzschluss am Ausgang kann im Bildbe-
reich die Stromteilerregel angewendet werden,
weil R und C parallel geschaltet sind:

2

1

1

I 1j C
1I 1 j RCR

j C

�= =
+ �+

�
Bild 4.55 Kurzschluss am Ausgang in
der Schaltung des Beispiels 4

Die Operatoren zwischen den komplexen Effektivwerten der Spannungen und der Ströme
sind gleich.

Zu 3. 2 2

21 1

U I 1 1

U I 21 ( RC)
= = =

+ �

d. h. 1 + (�RC)2 = 2, �RC = 1 und
1

.
RC

� =

Beispiel 5:

Mit der gezeichneten RC-Schaltung nach Wien lassen sich beliebige Phasenverschiebungen
zwischen den sinusförmigen Spannungen u2 und u1 erzielen.

Bild 4.56
Schaltung zum Beispiel 5 im Zeitbereich
und Bildbereich

1. Mit Hilfe der Schaltung mit komplexen Operatoren und komplexen Effektivwerten ist das
Spannungsverhältnis U2/U1 in Abhängigkeit von Rr, Rp Cr und Cp in Form eines komple-
xen Operators in algebraischer Form zu entwickeln.

Das Spannungsverhältnis ist anschließend in Betrag und Phase anzugeben.

2. Bei welcher Kreisfrequenz � ist der Betrag maximal und welche Phasenverschiebung
tritt dann zwischen den beiden Spannungen auf?

3. Auf welchen Wert sinkt bei dieser Frequenz die Amplitude der Ausgangsspannung bezo-
gen auf die Amplitude der Eingangsspannung, wenn die ohmschen Widerstände und die
Kapazitäten gleich sind?
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Lösung:

Zu 1.

p
p2

1
r

r
p

p

1
1

j C
RU

1 1U R
1 j Cj C

R

+ �

=
+ +

�+ �

U2

U1

=
1

1 + Rr +
1

j�Cr

�

��
�


�
�

1

Rp

+ j�Cp

�

�
�

�



�

U2

U1

=
1

1 +
Rr

Rp

+
Cp

Cr

�

.
-

�

/

 + j � �RrCp �

1

�RpCr

�

.
-

�

/



=
U2

U1

� e j�

mit dem Betrag

2

2 21
pr

r p
p r p r

U 1

U
CR 1

1 R C
R C R C

=
� � � �

+ + + � �� � � �� � � ��� 
 � 


und mit dem Phasenwinkel

r p
p r

pr

p r

1
R C

R C
arc tan .

CR
1

R C

� �
�

� = �
+ +

Zu 2.

Der Betrag ist maximal, wenn der Nenner des Betrags am kleinsten ist. Da im Imaginärteil eine
Differenz auftritt, kann dieser Anteil bei einer bestimmten Kreisfrequenz �0 Null werden:

0 r p
0 p r

1
R C 0

R C
� � =

�

0
r p r p

1
.

R R C C
� =

Die Phasenverschiebung � ist dann Null, weil der Operator zwischen U2 und U1 reel ist, wie
auch die Formel für � bestätigt: der Zähler ist Null und der Nenner ist ungleich Null.

Zu 3.

Mit Rr = Rp und Cp = Cr wird bei � = �0 der Betrag

2

1

U 1
.

U 3
=

Die Amplitude bzw. der Effektivwert der Ausgangsspannung u2(t) beträgt dann nur ein Drittel
der Amplitude bzw. des Effektivwertes der Eingangsspannung u1(t).
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Beispiel 6:

Für das Beispiel der Netzberechnung mit Hilfe der Kirchhoffschen Sätze mit gekoppelten In-
duktivitäten (siehe Band 1, Abschnitt 3.4.7.2, Bild 3.204) und einer sinusförmigen Quellspan-
nung uq(t) soll das geordnete Gleichungssystem mit komplexen Operatoren und komplexen
Effektivwerten aufgestellt werden.

Bild 4.57
Schaltung mit komplexen Operatoren
und komplexen Effektivwerten einer
Netzberechnung mit gekoppelten Spu-
len des Beispiels 6

Lösung:

k – 1 = 1 Knotenpunktgleichung:

k1: I1 = I2 + I3

Masche I:

Uq = (R1 + j�L1) ( I1 � j�M31 ( I3 +
1

j�C
+ j�L3

�
��

�

	
( I3 � j�M13 ( I1 + j�M23 ( I2

Masche II:

2 2 2 32 3 3 3 23 2 13 1
1

0 (R j L ) I j M I j L I j M I j M I
j C

� �
= + � ( � � ( � + � ( � � ( + � (� 	�� 


geordnetes Gleichungssystem:

0 = 1( 1) I� � 2I+ 3I+

q 1 1 13 1U (R j L j M ) I= + � � � ( 23 2 3 31 3
1

j M I j L j M I
j C

� �
+ � ( + � � � + (� 	�� 


0= 13 1 2 2 23 2 32 3 3
1

j M I (R j L j M ) I j M j L I
j C

� �
� ( + + � � � ( + � � � � (� 	�� 


geordnetes Gleichungssystem in Matrizenschreibweise:

0

Uq

0

�

�

�
�
�
�
�
�
�




�

�
�
�
�
�
�
�

=

�1 1 1

R1 + j�(L1�M13) j�M23 j ( �(L3 �M31)�
1

�C

	



�

�

�
�

j�M13 R2 + j� (L2 �M23) j ( �(M32 �L3)+
1

�C

	

�

�
��

�

�

�
�
�
�
�
�
�




�

�
�
�
�
�
�
�

(

I1

I2

I3

�

�

�
�
�
�
�
�
�




�

�
�
�
�
�
�
�



4.4 Praktische Berechnung von Wechselstromnetzen 73

Beispiel 7:

1. Für die Reihenschaltung einer verlustbe-
hafteten Spule und eines verlustbehafte-
ten Kondensators (Beispiel 3) ist der
Strom IR durch den Widerstand RCp mit
Hilfe der Zweipoltheorie zu ermitteln.
Die Schaltung mit komplexen Operato-
ren und komplexen Effektivwerten ist
dabei sowohl in die Spannungsquellen-
Ersatzschaltung als auch in die Strom-
quellen-Ersatzschaltung zu überfuhren.

Die Richtigkeit des Ergebnisses ist mit
Hilfe des Beispiels 3 zu kontrollieren.

2. Bei welcher Kreisfrequenz haben die
Spannung u und der Strom iR eine Pha-
senverschiebung von 90°?

Bild 4.58 Schaltung im Bildbereich einer
Netzberechnung mit Hilfe der Zweipoltheo-
rie des Beispiels 7

Lösung:

Zu 1.

Der Lösungsweg der Zweipoltheorie (Band 1,
Abschnitt 2.3.3) lautet:

1. Aufteilung des Netzwerkes in einen akti-
ven und einen passiven Zweipol: der ge-
suchte Strom IR wird zum Klemmen-
strom des entstehenden Grundstromkrei-
ses (siehe Bild 4.59).

Bild 4.59 Aufteilung der Schaltung im
Bildbereich des Beispiels 7 in einen aktiven
und einen passiven Zweipol

2. Berechnung der Ersatzschaltung des aktiven Zweipols:

Grundstromkreis

mit Ersatzspannungsquelle
Uqers = Ul:

mit Ersatzstromquelle
Iqers = Ik:

Bild 4.60 Ermittlung von Ul Bild 4.61 Ermittlung von Ik

p

Lr r
p

1
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1U R j L

j C

�
=

+ � +
�

l

2
r p Lr p

U
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(1 L C ) j R C
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� � + �l k
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U
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R j L
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+ �

Lr r
iers 2

r p Lr p
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Lr r

1 R j L
Z
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R j L

+ �
= =

� � + �� +
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3. Berechnung der Ersatzschaltung des passiven Zweipols Zaers:

Zaers = RCp

4. Ermittlung des gesuchten Stroms oder der gesuchten Spannung mit Hilfe der Ersatzschal-
tung (Grundstromkreis)

Grundstromkreis mit Ersatzspannungsquelle:

qers
R

iers a ers

U
I

Z Z
=

+

IR =
U

[(1 � �2LrCp ) + j�RLrCp ] (
RLr + j�Lr

(1 � �2LrCp ) + j�RLrCp

+ RCp

�

�
�
�

�

�
�
�

IR =
U

(RLr + j�Lr ) + RCp (1 � �2LrCp ) + j�RLrRCpCp

IR =
U

RLr + RCp (1 � �2LrCp )�
�

	
	 + j ( �(Lr + RLrRCpCp )�

�
	
	

Grundstromkreis mit Ersatzstromquelle:

iers qers
R

iers a ers

Z I
I

Z Z
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=

+
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I R =
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Kontrolle (Beispiel 3):

UC = RCp ( IR =
IR

1

RCp

=
U

RLr

RCp

+ 1 � �2LrCp

�

�
�

�



	 + j� ( RLrCp +

Lr

RCp

�
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�



	

Zu 2.

Zwischen der Spannung u und dem Strom iR besteht eine Phasenverschiebung von 90°, wenn
der Operator zwischen den entsprechenden komplexen Effektivwerten U und IR imaginär ist,
d. h. wenn der Realteil Null wird. Da der Realteil eine Differenz ist, kann bei einer Kreisfre-
quenz �0 die Phasenverschiebung von 90° erreicht werden:

RLr + RCp (1 � �0
2LrCp ) = 0

RLr + RCp = �0
2LrCpRCp

Lr Cp Lr
0

r p Cp Cpr p

R R 1 R
1

L C R RL C

+
� = = +
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Beispiel 8:

Mit Hilfe der Ersatzschaltung einer Eisenkernspule mit Berücksichtigung der Streuung und
Wirbelstromverlusten sollen die Zusammenhänge zwischen den Strömen und Spannungen be-
schrieben werden.

Bild 4.62
Schaltung des Beispiels 8

1. Zunächst ist qualitativ das Zeigerbild für sämtliche Ströme und Spannungen zu ent-
wickeln, wobei die Reihenfolge der Zeigerdarstellung mit entsprechenden Gleichungen
anzugeben ist, damit das Zeigerbild nachvollziehbar ist.

2. Dann sind durch ein quantitatives Zeigerbild die Effektivwerte des Gesamtstroms I und
der Gesamtspannung U und die Phasenverschiebung � zwischen i und u mit folgenden
Größen zu ermitteln:

Iw = 0,08A Rw = 1250� Rv = 2440� RCu = 156�
f = 500Hz Lw = 0,278H LFe = 0,144H L� = 0,029H

Empfohlener Maßstab für das Zeigerbild: 100mA � 1cm, 100V � 2,5cm.

3. Schließlich ist aus den ermittelten Ergebnissen der Ersatzzweipol in Reihenschaltung zu
berechnen, der der Gesamtschaltung entspricht.

Lösung:

Zul.

Qualitatives Zeigerbild: Reihenfolge der Darstellung:

Bild 4.63 Qualitatives Zeigerbild
einer Eisenkernspule mit Streuung
und Wirbelstromverlusten
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Zu 2.

Berechnung der Effektivwerte:

Iw = 0,080A � 0,8cm,

URw = Rw · Iw = 1250� · 0,080A = 100V � 2,5cm,

ULw = �Lw Iw = 2� · 500s–1 · 0,278H · 0,08A = 70V � 1,75cm,

UM = URw
2 + ULw

2 = 122V � 3,05cm,

Iv = UM/Rv = 122V/2440� = 0,050A � 0,5cm,

Iμ = UM/�LFe = 122V/(2� · 500s–1 · 0,144H) = 0,270A � 2,7cm,

die grafische Addition von Iw, Iv und Iμ ergibt I = 0,340A � 3,4cm,

URCu = RCu · I = 156� · 0,340A = 53V � 1,33cm,

U� = �L� · I = 2� · 500s–1 · 0,029H · 0,340A = 31V � 0,78cm,

die grafische Addition von UM, URCu und U� ergibt U = 172V � 4,3cm,
der Winkel � zwischen I und U beträgt � = 57,5°.

Bild 4.64
Quantitatives Zeigerbild einer Eisenspule mit
Streuung und Wirbelstromverlusten

Zu 3.

Der Gesamtschaltung kann ein induktiver komplexer Widerstand zugeordnet werden, weil die
Spannung u dem Strom i um 57,5° voreilt. Deshalb besteht die Ersatzschaltung als Reihen-
schaltung aus einem ohmschen Widerstand und einer Induktivität:

R x r rU U U R I j L I= + = � + � �

und UR = U · cos � = Rr · I

und Rr =
U cos 172V cos 57,5º

I 0,340A

� ) �
=

und Rr = 272�,

mit Ux = U · sin � = �Lr · I

und Lr =
U � sin�

�I
=

172V � sin 57,5º

2� � 500s�1 � 0,340A

und Lr = 0,136H

Anmerkung zu 3:

Die Parallelschaltung eines ohmschen Widerstandes und einer Induktivität könnte ebenfalls
als Ersatzschaltung angegeben werden, denn die Parallelschaltung ist einer Reihenschaltung
äquivalent, wenn der komplexe Widerstand und der komplexe Leitwert beider Schaltungen
gleich sind.
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Beispiel 9: 
Jeder ohmsche Widerstand Rr enthält einen störenden Induktivitätsanteil Lr, der durch einen 
parallel geschalteten Kondensator Cp zum Teil kompensiert werden kann. Rp wird dann nahe-
zu frequenzunabhängig, wenn der Blindanteil des komplexen Leitwerts Null wird. 

 
Bild 4.65 
Äquivalente Schaltungen des Beispiels 9 

 

1. Zunächst ist die Formel für den Wirkanteil Rp anzugeben, wenn Rr und Lr gegeben sind 
und � variabel ist. 

2. Dann ist die Kreisfrequenz � zu ermitteln, bei der der Wirkanteil Rp nur um 1 % größer 
ist als der Nennwiderstand Rr. 

3. Ein ohmscher Widerstand Rr = 1k� enthält einen Induktivitätsanteil Lr = 40�H. Zu be-
rechnen ist die Kreisfrequenz �, bei der ebenfalls eine Widerstandsabweichung von 1 % 
besteht. 

4. Schließlich ist die Kapazität Cp für den ohmschen Widerstand Rr = 1k� mit Lr = 40�H 
und der berechneten Frequenz � zu bestimmen, die den Blindanteil des Leitwerts Null 
werden lässt. 

Lösung: 

Zu 1. Nach Gl. (4.70) ist Rp =
Rr

2 � �2 � Lr
2

Rr
 

Zu 2. Rp = Rr · 1,01 = Rr · [1 + 0,01] 

Rp =
22 2

r r
r r

r r

L LR R 1
R R

�  " #� � �: ;� � � � $ %
: ;& '� !

 

d. h.    
2 2

r r2
2

r r

L L 0,01
R R

" #�
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und   r r

r r

R R0,01 0,1
L L

� � � � �  

Zu 3. 6 1
6
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�
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Zu 4. 

Mit j
2 2 2

r r
p p p p 2

p p r

1 1 R LC 0 ist C , so dass sich C mit Gl. (4.70) L
L L L

" # � �
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berechnen lässt: 

 

Cp �
1

�2Lp
�

Lr

Rr
2 � �2Lr

2
�

Lr

Rr
2 � 0,01 � Rr

2
�

Lr

1,01 � Rr
2

�
40�H

1,01 � (1k�)2
� 39,6 pF

mit   �
2Lr

2 � 0,01 � Rr
2  
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Beispiel 10:

Mit Hilfe der Illiovici-Wechselstrombrücke, die im Abschnitt 4.6.3 behandelt wird, lassen
sich Spulen (verlustbehaftete Induktivitäten) messtechnisch erfassen.

Wird die Wechselstrombrücke in eine Schaltung mit komplexen Operatoren und komplexen
Effektivwerten transformiert, dann kann die Brücke durch eine Dreieck-Stern-Transformation
oder eine Stern-Dreieck-Transformation in eine Brücke mit den komplexen Widerständen
Z1, Z2, Z3 und Z4 überführt werden.

Bild 4.66 Transformation der Illiovici-Brücke im Beispiel 10

Für diese Wechselstrombrücke gilt die analoge Abgleichbedingung wie bei der Wheatstone-
Gleichstrombrücke für Gleichstromwiderstände (siehe Band 1, Abschnitt 2.2.7, Gl. 2.108)
entsprechend für komplexe Widerstände, wie im Abschnitt 4.6.3 erläutert wird:

1 3 1 3

2 4 2 4

R R Z Z

R R Z Z
= = (4.99)

1. Zunächst sind in Analogie zur Gleichstromtechnik, die Transformationsgleichungen für
die Dreieck-Stern-Umwandlung und die Stern-Dreieck-Umwandlung anzugeben.

2. Dann ist die Illiovici-Brücke in die Brücke mit Z1 bis Z4 durch Dreieck-Stern-Transfor-
mation und durch Stern-Dreieck-Transformation zu überführen.

3. Schließlich sind die Gleichungen für den ohmschen Anteil R r1 und den induktiven Anteil
Lr1 der Spule zu bestimmen.

Lösung:

Zu 1.

Die Umwandlung einer Dreieckschaltung in eine Sternschaltung und umgekehrt für die
Gleichstromtechnik (siehe Band 1, Abschnitt 2.2.10) setzt voraus, dass die Spannungen zwi-
schen zwei Eckpunkten der Sternschaltung und der Dreieckschaltung jeweils gleich sein sol-
len. Der Gleichstromwiderstand zwischen zwei Punkten der Sternschaltung muss dann gleich
dem Gleichstromwiderstand zwischen zwei entsprechenden Punkten der Dreieckschaltung
sein.

Für die Wechselstromtechnik gilt entsprechendes für komplexe Widerstände, also nur für
Schaltungen mit komplexen Operatoren und komplexen Effektivwerten.
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Dreieck-Stcrn-Transformation:

Bild 4.67 Transformation einer Dreieckschaltung in eine Sternschaltung

In Analogie zu den Gleichungen (2.147) bis (2.149) ergibt sich für die komplexen Widerstän-
de der Sternschaltung:

2 3'
1

1 2 3

Z Z
Z

Z Z Z

�
=

+ +
(4.100)

3 1'
2

1 2 3

Z Z
Z

Z Z Z

�
=

+ +
(4.101)

1 2'
3

1 2 3

Z Z
Z

Z Z Z

�
=

+ +
(4.102)

Merkregel:

Sternwiderstand =
Produkt der beiden Dreieckwiderstände

Summe aller Dreieckwiderstände

Stern-Dreieck-Transformation:

Bild 4.68 Transformation einer Sternschaltung in eine Dreieckschaltung

In Analogie zu den Gleichungen (2.153) bis (2.155) ergibt sich für die komplexen Widerstän-
de der Dreieckschaltung:

' ' ' ' ' ' ' '
2 3 1 2 2 3 1 3'

1 2 3 ' '
1 1

Z Z Z Z Z Z Z Z
Z Z Z

Z Z

� � + � + �
= + + =' (4.103)

' ' ' ' ' ' ' '
1 3 1 2 2 3 1 3' '

2 1 3 ' '
2 2

Z Z Z Z Z Z Z Z
Z Z Z

Z Z

� � + � + �
= + + = (4.104)

' ' ' ' ' ' ' '
1 2 1 2 2 3 1 3' '

3 1 2 ' '
3 3

Z Z Z Z Z Z Z Z
Z Z Z

Z Z

� � + � + �
= + + = (4.105)
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Zu 2.

Dreicck-Stcrn-Transformation in der Illiovici-Brücke:

Bild 4.69 Umwandlung der Illiovici-Brücke durch Dreieck-Stern-Transformation

5
2 3' '

1 3 3 1
1 2 3

4 5

1
R

Z Z j C
Z ergibt Z R Z

1Z Z Z R R
j C

�
� �= = = +

+ + + +
�

4
3 1' '

2 4 2
1 2 3

4 5

1
R

Z Z j C
Z ergibt Z Z

1Z Z Z R R
j C

�
� �= = =

+ + + +
�

1 2 4 5'
3

1 2 3
4 5

Z Z R R
Z

1Z Z Z R R
j C

� �
= =

+ + + +
�

'
3Z liegt im Diagonalzweig der Brücke, der bei Abgleich der Brücke stromlos ist.

Stern-Dreicck-Transformation in der Illiovici-Brücke:

Bild 4.70 Umwandlung der Illiovici-Brücke durch Stern-Dreieck-Transformation

5' '
2 3'' ' ' ''

1 2 3 5 4 4 1'
31

1
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Z Z 1 j C
Z Z Z R ergibt Z R || Z

j C RZ

�
� �= + + = + + =

�
' '
1 3 3 5'' ' ' ''

2 1 3 3 5 3 2'
2

Z Z R R
Z Z Z R R er gibt Z Z

1Z
j C

� �
= + + = + + =

�

3' '
1 2'' ' '

3 1 2 3'
53

1
R

Z Z 1 j C
Z Z Z R

j C RZ

�
� �= + + = + +

�

''
3Z beeinflusst die Brücke nicht, denn ''

3Z ist parallel zur Brücke geschaltet
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Zu 3.

Die Abgleichbedingung für die transformierte Brücke wird nach Z1 aufgelöst, weil Rr1 und
Lr1 gesucht sind und getrennt im Realteil und Imaginärteil von Z1 zu finden sind:

3
1 r1 r1 2

4

Z
Z R j L Z

Z
= + � = �

Dreieck-Stern-Transformation:

Mit 3 3 1 4 2Z R Z und Z Z= + =' '

ist

5

3

4 5

r1 r1 2

4

4 5

1
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j C
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R R

j C
R j L R

1
R

j C
1

R R
j C

�
�+

+ +
�+ � = �

�
�

+ +
�

3 4 5 5

r1 r1 2

4

1 1
R R R R

j C j C
R j L R

1
R

j C

� �
+ + + �� 	� �� 
+ � = �

�
�

2
r1 r1 3 5 3 4 5

4

R
R j L [(R R ) j CR (R R )]

R
+ � = + + � +

d. h. 2 5
r1 3 5 r1 2 3

4 4

R R
R (R R ) und L CR R 1

R R

� �
= + = +� �

� �
Stern-Dreieck-Transformation:
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Z R Z
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Beispiel 11:

Bei einer Frequenz f = 200MHz ist die Ersatzschaltung einer Antenne die Reihenschaltung
des ohmschen Widerstandes R1 = 120� und der Kapazität C1 = 2,21pF. Der damit gegebene
komplexe Widerstand Z1 soll durch Parallelschalten einer Induktivität Lp und Reihenschalten
einer Kapazität Cr in einen reellen Widerstand Z3 = R3 = 240� transformiert werden. Mit die-
ser Widerstandstransformation wird die Antenne an den ohmschen Wellenwiderstand der Lei-
tung angepasst.

Bild 4.71Widerstandstransformation einer Antenne im Beispiel 11

1. Mit Hilfe des Kreisdiagramms sind die Induktivität Lp und die Kapazität Cr zu ermitteln,
wobei ein Bezugswiderstand R0 = 1/G0 = 600� zu wählen ist.

Das Ergebnis ist anschließend durch die Widerstandsberechnung der Schaltung zu kon-
trollieren.

2. Auf dieselbe Weise soll nun versucht werden, die Reihenschaltung des ohmschen Wider-
standes R1 = 240� und der Kapazität C1 = 6,62pF bei f = 200MHz in den ohmschen Wi-
derstand Z3 = 360� durch Zuschaltung von Lp und Cr zu transformieren. Falls das nicht
möglich ist, soll die Zuschaltung vertauscht werden: zuerst wird eine Induktivität Lr in
Reihe und dann eine Kapazität Cp parallel geschaltet.

Das Ergebnis ist anschließend durch die Widerstandsberechnung der Schaltung zu kon-
trollieren.

Lösung:

Zu 1.

Z1 = R1 � j
1

�C1

= 120� � j �
1

2� � 200 �106 s�1 � 2,21 �10�12 F

1Z 120 j 360= � � ( �

und mit

R0 = 600�
ist der im Kreisdiagramm darstellbare bezogene komplexe Widerstand

1'
1

0

Z 120 360
Z j

R 600 600

� �
= = � (

� �

' ' '
1 1 1Z R j X 0,2 j 0,6= + � = � �

und der angestrebte bezogene komplexe Widerstand

3'
3

0

Z 240
Z

R 600

�
= =

�

' ' ' '
3 3 3 3Z R j X 0,4 mit X 0= + � = =
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Der bezogene komplexe Widerstand '
1Z  soll durch Parallelschalten einer Induktivät Lp in den 

bezogenen komplexen Widerstand '
2Z so transformiert werden, dass der Realteil von '

2Z mit 
dem reellen bezogenen Widerstand '

3Z übereinstimmt. 

Wie behandelt, erfordert die Parallelschaltung zunächst eine Inversion von '
1Z  in den bezo-

genen komplexen Leitwert 

' ' '
1 1 1Y G j B 0,5 j 1,5� � � � � �  

und dann ein Zusammenfassen der Blindleitwerte. Die Parallelschaltung der unbekannten In-
duktivtät Lp bedeutet, dass der Realteil von '

1Y  konstant bleibt und der bezogene komplexe 
Leitwert '

2Y  auf dem Kreis liegen muss, der durch 0,5 geht. 

Werden Punkte dieses Kreises invertiert, dann entsteht ein Kreis, der durch '
1Z  und den Punkt 

0 verläuft. Werden zu einem komplexen Widerstand Induktivitäten parallel geschaltet, dann 
wird dieser Kreis im Gegenuhrzeigersinn durchlaufen; werden Kapazitäten parallel geschal-
tet, dann wird er im Uhrzeigersinn durchlaufen. 

Auf diesem Kreis muss der bezogene komplexe Widerstand '
2Z  liegen, für den der Realteil 

noch festgelegt werden kann. Dieser ergibt sich im Schnittpunkt dieses Kreises durch '
1Z und 

0 und dem Kreis mit dem geforderten Realteil von ' '
3 3Z R� , im Beispiel durch '

3Z = 0,4 fest-
gelegt: 

' ' '
2 2 2Z R j X 0,4 j 0,8� � � � � �  

 

 

Bild 4.72 Ermittlung von Lp und Cr für die Transformation eines komplexen Widerstandes in 
einen reellen Widerstand 
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Der bezogene komplexe Widerstand '
2Z ist dann in '

2Y zu invertieren

' ' '
2 2 2Y G j B 0,5 j 1,0= + � = � �

damit die Induktivität Lp berechnet werden kann:

' ' '
p 2 1B B B 1,0 1,5 2,5= � = � � = �

'
p'

p 0 p
0 p

B 1
B G B

R L
= ( = = �

�

0
p ' 6 1

p p

1 R 600
L 191 nH

B B 2 200 10 s 2,5�
�

= � = � = =
� � � � � �

Schließlich ist aus '
2Z und '

3Z die in Reihe zu schaltende Kapazität Cr zu berechnen:

Xr
' = X3

' � X2
' = �0,8 mit X3

' = 0

'
r 0 r

r

1
X R X

C
= ( = �

�

r ' 6 1
r 0 r

1 1 1
C 1,66pF

X R X 2 200 10 s 600 0,8�= � = � = =
� � � � � � � � �

Auf die gleiche Weise ließen sich zu einem induktiven komplexen Widerstand '
1Z eine Kapa-

zität Cp parallel und eine Induktivität Lr in Reihe schalten, um einen reellen Widerstand zu
erhalten.

Kontrollrechnung:

1 1 1Z R j X 120 j 360= + ( = � � ( �

1
1

1
Y

Z
= Bild 4.73 Transformierte Schaltung

im Beispiel 11, Teil 1

Y1 =
1

120 � � j ( 360 �
(
120 � + j ( 360 �
120 � + j ( 360 �

1Y = 0,833mS + j · 2,5mS

2Y = 1Y + j · Bp = G1 + j · (B1 + Bp)

2Y = 0,833mS + j · (2,5 – 4,17)mS = 0,833mS – j · 1,67mS = G2 + j · B2

Z2 =
1

Y2

=
1

0,833mS � j �1,67 mS
�

0,833mS + j �1,67 mS

0,833mS + j �1,67 mS

2 2 2Z R j X 240 j 479,4= + � = � + � �

3 2 r 2 2 rZ Z j X R j (X X ) 240 j (479,4 479,4 )= + ( = + ( + = � + ( � � �

3Z 240= �
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Zu 2.

Z1 = R1 � j
1

�C1

= 240� � j �
1

2� � 200 �106 s�1 � 6,62 �10�12 F

Z1 = 240 � � j (120 �

und mit R0 = 600� ist der im Kreisdiagramm darstellbare bezogene komplexe Widerstand

1'
1

0

Z 240 120
Z j

R 600 600

� �
= = � (

� �

' ' '
1 1 1Z R j X 0,4 j 0,2= + � = � �

und der angestrebte bezogene komplexe Widerstand

3'
3

0

Z 360
Z

R 600

�
= =

�

' ' ' '
3 3 3 3Z R j X 0,6 mit X 0= + � = =

Der Kreis durch '
1Z und 0 und der Kreis mit dem Realteil 0,6 haben keinen Schnittpunkt für

'
2Z . Mit parallel geschalteter Induktivität und in Reihe geschalteter Kapazität in dieser Zu-

schaltung ist der angestrebte Widerstand nicht zu erreichen.

Wird aber die Zuschaltung von Blindwiderständen umgekehrt, also zuerst eine Induktivität Lr
in Reihe und dann eine Kapazität Cp parallel geschaltet, dann ist die Transformation in den
reellen Widerstand möglich, wie im folgenden gezeigt wird.

Bild 4.74 Geänderte Widerstandstransformation im Beispiel 11, Teil 2

Sollte also eine Widerstandstransformation nicht durchführbar sein, weil sich kein Schnitt-
punkt der beiden Kreise ergibt, dann muss die Zuschaltung in umgekehrter Reihenfolge ge-
schehen. Welche der beiden in Frage kommenden Schaltungen zum Ergebnis führt, muss aus-
probiert werden.



86 4  Wechselstromtechnik 

Der bezogene komplexe Widerstand '
1Z soll durch Reihenschalten einer Induktivität Lr in den 

bezogenen komplexen Widerstand '
2Z so transformiert werden, dass der Realteil von '

2Z  mit dem 
reellen bezogenen Widerstand '

3Z  übereinstimmt. 

Wie behandelt, bedeutet die Reihenschaltung einer Induktivität Lr eine Erhöhung des Blind-
anteils, d. h. der bezogene komplexe Widerstand '

2Z  muss auf dem Kreis liegen, der durch 
0,4 geht. 

Werden die Punkte dieses Kreises invertiert, dann entsteht ein Kreis, der durch '
1Y  und den 

Punkt 0 verläuft. Um den Kreis zeichnen zu können, muss '
1Z  in '

1Y  invertiert werden: 

' ' '
1 1 1Y G j B 2 j 1� � � � � �  

Werden zu einem komplexen Widerstand Induktivitäten in Reihe geschaltet, dann wird dieser 
Kreis im Uhrzeigersinn durchlaufen; werden Kapazitäten in Reihe geschaltet, dann wird er im 
Gegenuhrzeigersinn durchlaufen. 

Auf diesem Kreis muss der bezogene Leitwert '
2Y  liegen, für den der Realteil noch festgelegt 

werden kann. Dieser ergibt sich im Schnittpunkt dieses Kreises durch 1Y'  und 0 und dem 
Kreis mit dem geforderten Realteil von '

3Y =1/ '
3Z =1/ ' '

3 3R G� , im Beispiel durch 

 Y3
' =1/ '

3Z = 1/0,6 = 1,67  festgelegt: 

' ' '
2 2 2Y G j B 1,67 j 1,2� � � � � �  

 

 
Bild 4.75 Ermittlung von Lr und Cp für die Transformation eines komplexen Widerstandes in 
einen reellen Widerstand 

 



4.4 Praktische Berechnung von Wechselstromnetzen 87

Der bezogene komplexe Leitwert '
2Y ist dann in '

2Z zu invertieren

' ' '
2 2 2Z R j X 0,4 j 0,28= + � = + �

damit die Induktivität Lr berechnet werden kann:

' ' '
r 2 1X X X 0,28 0,2 0,48= � = + =

'
r 0 r rX R X L= � = �

'
0 r

r 6 1

R X 600 0,48
L 229nH

2 200 10 s�
� � �

= = =
� � � �

Schließlich ist aus '
2Y und '

3Y die parallel zu schaltende Kapazität Cp zu berechnen:

' ' ' '
p 3 2 3B B B 1,2 mit B 0= � = =

'
p'

p 0 p p
0

B
B G B C

R
= � = = �

'
p

p 6 1
0

B 1,2
C 1,59 pF

R 2 200 10 s 600�= = =
� � � � � �

Auf die gleiche Weise ließen sich zu einem induktiven komplexen Widerstand '
1Z eine Kapa-

zität Cr in Reihe und eine Induktivität Lp parallel schalten, um einen reellen Widerstand zu
erhalten.

Bild 4.76
Transformierte Schaltung im Beispiel 11, Teil 2

Kontrollrechnung:

1Z = R1 + j · X1 = 240� – j · 120�

2Z = Z1 + j · Xr = R1 + j · (X1 + Xr)

2Z = 240� + j · (– 120 + 288)�

2Z = 240� + j · 168�

2Y = 1/ 2Z

Y2 =
1

240 � + j (168�
(

240 � � j (168�
240 � � j (168�

2 2 2Y 2,8mS j 2,0mS G j B= � � = + �

3 2 p 2 2 pY Y j B G j (B B ) 2,8mS j ( 2,0 2,0)mS= + � = + � + = + � � + +

Y3 = 2,8 mS

und 3 3Z 1/ Y 1/ 2,8 mS 360= = = �
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Zusammenfassung der Widerstandstransformation:

Mit der Zuschaltung von zwei Blindwiderständen lässt sich jeder komplexe Widerstand Z1
in einen anderen komplexen Widerstand Z3 überführen. Bei Anpassungsproblemen ist der
gewünschte Widerstand Z3 meist reell. Dabei wird zuerst ein Blindwiderstand parallel und
dann ein Blindwiderstand in Reihe geschaltet oder umgekehrt zuerst ein Blindwiderstand in
Reihe und dann ein Blindwiderstand parallel geschaltet. Welche der beiden möglichen
Schaltungen zum gewünschten komplexen Widerstand Z3 führt, muss im Kreisdiagramm
ausprobiert werden.

Z1 || jXp = Z2 und Z2 + jXr = Z3 oder Z1 + jXr = Z2 und Z2 || jXp = Z3

1. Berechnung von Z1
' und Z3

' mit R0:

Z1
' =

R1

R0

+ j
X1

R0

Z3
' =

R3

R0

+ j
X3

R0

und Eintragen in das Kreisdiagramm.

1. Berechnung von Z1
' und Z3

' mit R0:

Z1
' =

R1

R0

+ j
X1

R0

Z3
' =

R3

R0

+ j
X3

R0

Eintragen in das Kreisdiagramm und
Inversion von Z1

' in Y1
' und Z3

' in Y3
'

2 Transformation von Z1
' in Z2

' durch
das Parallelschalten eines Blindwider-
standes Xp zu Z1 (Kapazität Cp oder
Induktivität Lp), wodurch die Forde-
rung nach dem Wirkanteil R3 von Z3
erfüllt wird:

Zeichnen des Kreises, der durch Z1
'

und 0 geht.

Ermittlung von Z2
' im Schnittpunkt des

gezeichneten Kreises und des Kreises
mit dem geforderten Wirkwiderstand
R3

' .

2. Transformation von Y1
' in Y2

' durch
das Reihenschalten eines Blindleitwer-
tes Br zu Y1 (Induktivität Lr oder Ka-
pazität Cr), wodurch die Forderung
nach dem Wirkanteil G3 von Y3 erfüllt
wird:

Zeichnen des Kreises, der durch Y1
'

und 0 geht.

Ermittlung von Y2
' im Schnittpunkt

des gezeichneten Kreises und des Krei-
ses mit dem geforderten Wirkleitwert
G3

' .

3. Transformation von Z2
' in Z3

' durch
das Reihenschalten eines Blindwider-
standes Xr zu Z2 (Induktivität Lr oder
Kapazität Cr), wodurch die Forderung
nach dem Blindanteil X3 von Z3 erfüllt
wird.

3. Transformation von Y2
' in Y3

' durch
das Parallelschalten eines Blindleitwer-
tes Bp zu Y2 (Kapazität Cp oder Induk-
tivität Lp), wodurch die Forderung nach
dem Blindanteil B3 von Y3 erfüllt
wird.

4. Ermittlung von Bp aus Z1
' und Z2

' :
Inversion von Z1

' in Y1
' und Z2

' in Y2
'

Ablesen von B2
' und B1

' und

Ermitteln von Bp = G0 ( B2
' – B1

' )

Berechnen von Cp oder Lp:

Cp = Bp/� oder Lp = – 1/�Bp

4. Ermittlung von Xr aus Z1
' und Z2

' :
Inversion von Y2

' in Z2
'

Ablesen von X2
' und X1

' und

Ermitteln von Xr = R0 ( X2
' – X1

' )

Berechnen von Lr oder Cr:

Lr = Xr/� oder Cr = – 1/�Xr

5. Ermittlung von Xr aus Z2
' und Z3

' :

Ablesen von X3
' und X2

' und

Ermitteln von Xr = R0 ( X3
' – X2

' )

Berechnen von Lr oder Cr:

Lr = Xr/� oder Cr = – 1/�Xr

5. Ermittlung von Bp aus Y2
' und Y3

' :
Ablesen von '

3B und 2B' und

Ermitteln von Bp und G0 ( B3
' – B2

' )

Berechnen von Cp, oder Lp:

Cp = Bp/� oder Lp = – 1/�Bp
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Übungsaufgaben zu den Abschnitten 4.1 bis 4.4

4.1 Eine Spule mit einer Windungszahl w = 1000 und einer Querschnittfläche von 100cm2 befin-
det sich in einem homogenen Magnetfeld, das sich sinusförmig mit der Frequenz f = 50Hz
verändert. Der Maximalwert der magnetischen Induktion beträgt B̂ = 5 · 10–9Vs/cm2.
1. Leiten Sie die Formel für die in der Spule induzierte Spannung her und berechnen Sie die

Spannungsamplitude.

2. Auf welchen Wert verändert sich die Spannungsamplitude, wenn die Frequenz von 50Hz
auf 5kHz vergrößert wird?

4.2 Mit einem Einweg-Gleichrichter wird mit einem Drehspulspannungsmesser eine Spannung
von 40V gemessen. Berechnen Sie die Amplitude der gleichgerichteten Sinusspannung.

4.3 Zwei Spannungsquellen liefern sinusförmige Spannungen mit den Effektivwerten Uq1 = 100V
und Uq2 = 120V, die eine Phasenverschiebung von 60° zueinander haben. Die Spannung uq1
hat den Anfangsphasenwinkel 0°.
1. Berechnen Sie den Effektivwert und den Anfangsphasenwinkel der resultierenden Span-

nung, wenn die beiden Spannungsquellen in Reihe geschaltet sind.
2. Auf welchen Wert ändert sich der Spannungseffektivwert, wenn die zweite Spannungs-

quelle umgedreht wird, also mit der ersten Quelle eine Gegenreihenschaltung darstellt?

3. Kontrollieren Sie das Ergebnis mit Hilfe von Zeigerbildern.

4.4 Nacheinander werden an verschiedene Spulen, für die die ohmschen Verluste vernachlässigt
werden sollen, sinusförmige Wechselspannungen mit dem Effektivwert 1000V und den Fre-
quenzen f = 20, 30, 40, 50, 60, 70, 80, 90 und 100Hz angelegt.

1. Berechnen Sie die Induktivitäten der einzelnen Spulen, wenn der Strom durch die Spulen
konstant 2A gehalten wird.

2. Stellen Sie die Abhängigkeit der Induktivitäten L von den Frequenzen f dar.

4.5 Eine Wechselstromleitung der Länge von 1km besteht aus zwei parallel liegenden Drähten
mit gleichem Durchmesser von 2r = 2mm und einem Abstand a = 0,1m.
1. Berechnen Sie die Kapazität der Doppelleitung.

2. Wird an die Leitung eine sinusförmige Spannung U = 1000V, f = 50Hz bei offenem Lei-
tungsende angelegt, dann fließt ein sinusförmiger Strom. Berechnen Sie den kapazitiven
Widerstand –XC und den Effektivwert des Stroms I.

4.6 Ein Zweistrahl-Oszilloskop zeichnet den
Strom- und Spannungsverlauf eines passiven
Zweipols auf, der im Bild 4.77 dargestellt ist.
1. Lesen Sie aus dem Oszillogramm die Ef-

fektivwerte von Strom und Spannung,
die Frequenz und die Phasenverschie-
bung ab.

2. Stellen Sie den passiven Zweipol durch
Ersatzschaltbilder dar und zwar durch
zwei in Reihe und zwei parallel geschal-
tete Schaltelemente.

Bild 4.77 Übungsaufgabe 4.6

3. Berechnen Sie die Ersatzschaltelemente mit Hilfe der komplexen Rechnung.
4. Kontrollieren Sie das Ergebnis mit Hilfe der Formeln für Widerstandstransformationen.

4.7 An einer verlustbehafteten Kapazität (Reihenschaltung von Rr und Cr) liegt eine sinusförmige
Wechselspannung an: u = û · sin (�t + �u).

1. Stellen Sie für diesen Vorgang die Differentialgleichung für uC auf und lösen Sie diese
mit dem Ansatz uC = Cû · sin (�t + �uc) (Verfahren 1).

2. Kontrollieren Sie das Ergebnis durch Transformation der Differentialgleichung und Rück-
transformation (Verfahren 2).
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4.8 An der gezeichneten Schaltung liegt eine sinusförmige Wechselspannung an:
u = û · sin (�t + �u).

Bild 4.78
Übungsaufgabe 4.8

1. Stellen Sie die Differentialgleichung für iL auf.

2. Bilden Sie die Differentialgleichung ins Komplexe ab und lösen Sie die Bildgleichung.

3. Kontrollieren Sie die Lösung der Bildgleichung mit Hilfe der Schaltung mit komplexen
Effektivwerten und komplexen Operatoren.

4. Ermitteln Sie die Zeitfunktion iL(t) durch Rücktransformation der Lösung der Bildglei-
chung.

5. Berechnen Sie schließlich uL(t).

4.9 Berechnen Sie den sinusförmig veränderlichen Wechselstrom durch den ohmschen Wider-
stand RCp mit Hilfe der Spannungs- und Stromteilerregel und durch Anwendung der Kirch-
hoffschen Sätze, nachdem Sie die Schaltung mit Zeitfunktionen in die Schaltung mit komple-
xen Effektivwerten und komplexen Operatoren transformiert haben. Vergleichen Sie das Er-
gebnis mit dem 3. Beispiel der Stromteilerregel (Bild 4.35).

Bild 4.79
Übungsaufgabe 4.9

4.10 1. Für die Schaltung im Bild 4.80 ist der Strom IL in Abhängigkeit von U1, �, RLp, Lp, RCr
und Cr zu ermitteln.

2. Berechnen Sie anschließend den Strom IR und die Spannung U2.

Bild 4.80
Übungsaufgaben 4.10 und 4.11

4.11 1. Für die Schaltung im Bild 4.80 ist das Spannungsverhältnis

2
uf

1

U
V

U
=

in Form eines komplexen Operators in algebraischer Form zu ermitteln, wodurch das
Ergebnis der Aufgabe 4.10 kontrolliert wird.

2. Geben Sie den Betrag | Vuf | an. Bei welcher Kreisfrequenz � ist der Betrag maximal?

3. Ermitteln Sie Vuf und | Vuf |, wenn der Kondensator ideal angenommen wird. Bei welcher
Kreisfrequenz � ist dann | Vuf | maximal und wie lautet dann die Formel für Vuf?
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4.12 Durch die gezeichnete Phasendrehbrücke kann die Phasenverschiebung zwischen der anlie-
genden Spannung

u1 = 1û sin t� �

und der Brückenspannung

u2 = ( )2û sin t( � + )

durch R1 und C geändert werden.

Bild 4.81
Übungsaufgabe 4.12

1. Leiten Sie mit Hilfe der komplexen Rechnung die Beziehung für die Phasenverschiebung
� in Abhängigkeit von R1, C und � her, indem Sie zunächst das Spannungsverhältnis
U2/U1 entwickeln und dann � angeben. Verwenden Sie dabei die Beziehung

j 2 arc tan z 1 j z
e

1 j z
� � + �

=
� �

2. Geben Sie das Amplitudenverhältnis der beiden Spannungen an.

3. Ermitteln Sie die Phasenverschiebung �, wenn 1/�C = R1 ist. Bestätigen Sie das Ergebnis
mit Hilfe eines Zeigerbildes.

4.13 In der im Bild 4.82 dargestellten Schaltung sind die Quellspannungen um 90° phasenverschoben:

uq1 = qû sin t� �

uq2 = qû cos t� �

Bild 4.82
Übungsaufgabe 4.13

1. Transformieren Sie die Schaltung in den Bildbereich und berechnen Sie mit Hilfe des
Überlagerungssatzes in komplexer Form den Strom IC und dann den sinusförmigen Strom
iC durch die Kapazität C.

2. Bestätigen Sie das Ergebnis, indem Sie das Maschenstromverfahren anwenden.

3. Wie ist der Strom iC zu berechnen, wenn die Amplitude und die Anfangsphasenwinkel
der Quellspannungen unterschiedlich sind?
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4.14 1. Mit Hilfe der Zweipoltheorie ist der Strom I3 durch den Diagonalzweig der Brückenschal-
tung zu berechnen, die im Bild 4.83 dargestellt ist.

2. Kontrollieren Sie das Ergebnis durch Anwendung der Zweigstromanalyse (Netzberech-
nungsverfahren mit Hilfe der Kirchhoffschen Sätze).

3. Geben Sie die Bedingung für die Schaltelemente an, damit der Strom i3 gegenüber der
anliegenden Spannung u um 90° phasenverschoben ist.

Bild 4.83
Übungsaufgabe 4.14

4.15 Entwickeln Sie qualitativ das Zeigerbild der im Bild 4.84 dargestellten Schaltung. Geben Sie
die Reihenfolge der gezeichneten Zeiger und die Gleichungen an, aus denen sich die weiteren
Zeiger ergeben. Die anliegende Spannung ist

u = uû sin( t )( � + )

Bild 4.84
Übungsaufgabe 4.15

4.16 1. Entwickeln Sie qualitativ das Zeigerbild einer Eisenspule mit Eisenkern, deren Ersatz-
schaltung im Bild 4.85 dargestellt ist. Der Strom Iμ ist gegeben. Die Ersatzschaltelemente
erfassen die Kupferverluste durch RCu, die Eisenverluste durch RFe und die Streuung
durch die Streuinduktivität L
. Geben Sie die Reihenfolge der gezeichneten Zeiger an.

2. Mit RCu = 120�, L
 = 0,5H, RFe = 708� und L = 1,5H ist anschließend ein quantitatives
Zeigerbild zu entwickeln, wenn der Strom Iμ = 300mA bei f = 50Hz beträgt. Empfohlener
Maßstab: 100 V =̂ 2,5 cm, 0,1 A =̂ 1 cm.

Bild 4.85
Übungsaufgabe 4.16
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4.17 Reaktanz-Vierpole sind Wechselstromschaltungen, die zwei Eingangsklemmen und zwei
Ausgangsklemmen besitzen und nur Reaktanzen (Blindwiderstände) enthalten. Vierpole wer-
den im Band 3, Kapitel 10 behandelt. Die beiden im Bild 4.86 gezeichneten Vierpole, die als
Symmetrierglieder für Kabelverbindungen verwendet werden können, sollen äquivalent sein.
Aus dem gegebenen �-Vierpol (Collins-Filter), der der Dreieckschaltung entspricht, sollen die
Bauelemente L1, L2 und C des T-Vierpols, der eine Sternschaltung darstellt, errechnet wer-
den.

Bild 4.86 Übungsaufgabe 4.17

4.18 Mit der im Bild 4.87 gezeichneten Anderson-Wechselstrombrücke lassen sich genauso wie
mit der Illiovici-Brücke (Bild 4.66) Spulen (verlustbehaftete Induktivitäten) messtechnisch
ermitteln.

1. Wandeln Sie zunächst die Anderson-Brücke in die Brücke mit Z1 bis Z4 durch Dreieck-
Stern-Transformation und durch Stern-Dreieck-Transformation um.

2. Dann sind die Gleichungen für den ohmschen Anteil Rr1 und den induktiven Anteil Lr1
der Spule zu bestimmen.

Bild 4.87 Übungsaufgabe 4.18

4.19 Für das Beispiel 11 (S. 82 ff, Bild 4.71) lässt sich die Widerstandstransformation von

Z1 = 120� – j · 360� in Z3 = 240� auch durch zwei Induktivitäten Lp und Lr erreichen.
1. Ermitteln Sie mit Hilfe des Kreisdiagramms im Bild 4.72 die Induktivitäten.

2. Bestätigen Sie das Ergebnis durch eine Kontrollrechnung.
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4.5 Die Reihenschaltung und Parallelschaltung von ohm-
schen Widerständen, Induktivitäten und Kapazitäten

Die Ausführungen über Wechselstromwiderstände und deren Reihen- und Parallelschal-
tungen im Abschnitt 4.3 sollen erweitert werden.

4.5.1 Die Reihenschaltung von Wechselstromwiderständen –
die Reihen- oder Spannungsresonanz

Berechnung des Stromverlaufs bei gegebener anliegender Sinusspannung

Für das im Bild 4.88 gezeichnete Schaltbild eines Reihenschwingkreises gilt die Differen-
tialgleichung

u = uR + uL + uC mit u = û ( sin (�t + )u )

u = Rr � i + Lr �
di

dt
+

1

Cr

� i � dt,� (4.106)

die in die algebraische Gleichung abgebildet

u = uR + uL + uC

u = Rr � i + j�Lr � i +
1

j�Cr

� i (4.107) Bild 4.88 Reihenschwingkreis

und gelöst werden kann:

i =
u

Rr + j� �Lr �
1

�Cr

�

.-
�

/�

=
û �e j(�t+�u )

Rr
2 + �Lr �

1

�Cr

�

.-
�

/�

2

�e j�arc tan (�Lr �1/�Cr )/ Rr

i =
û

Zr

� e j(�t+�u ��r ) (4.108)

mit

�r = arc tan

�Lr �
1

�Cr

Rr

und Zr = Rr
2 + �Lr �

1

�Cr

�

��
�

�	

2

Die Rücktransformation von i führt zur Lösung im Zeitbereich:

i =
û

Zr

� sin (�t + �u � �r )

i =
û

Rr
2 + �Lr �

1

�Cr

�

.-
�

/�

2
� sin �t + �u � arc tan

�Lr �
1

�Cr

Rr

�

.

-
--

�

/

�
�� (4.109)
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Aus der Stromgleichung lassen sich die Spannungen berechnen: 
 

� 
r
R r u r

r

ˆR uu R i sin t
Z
�

� � � � � � � � �  (4.110) 

r r
L r u r u r

r r

ˆ ˆdi L u L uu L cos( t ) sin t
dt Z Z 2

� � � � �" #� � � � �� �� � � � �� �� �$ %
& '

 (4.111) 

C u r u r
r r r r r

ˆ ˆ1 u uu i dt cos( t ) sin t
C C Z C Z 2

� �" #� � � � � �� �� � � � �� �� �$ %� � � � & '�  

 (4.112) 
 
Der Strom i kann gegenüber der Spannung u nacheilend, voreilend und mit der Spannung 
u in Phase sein, wie durch entsprechende Zeigerbilder veranschaulicht werden kann. Aus 
der Schaltung im Bildbereich, das ist die Schaltung mit komplexen Operatoren und kom-
plexen Effektivwerten (Bild 4.89) lassen sich die algebraischen Gleichungen für die Zei-
gerbilder ablesen: 
 

 

 U � UR � UL � UC � UR � UX  

 
U � Rr � I � j�Lr � I �

1
j�Cr

� I  

r r
r

1U R j L I
j C

" #
� � � � �$ %�& '

 

r r
r

1U R j L I
C

�  " #
� � � � � �: ;$ %�& '� !

 Bild 4.89 Schaltbild des 
Reihenschwingkreises im Bildbereich 

rjr L C r r r r
r r

r

U U U U UI
R j (X X ) R j X Z Z e1R j L

C

�
� � � � �
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� � � �$ %�& '

 

mit 
 
Zr � Zr � Rr

2 � Xr
2 � Rr

2 � (XL � XC )2  

2
2r r r

r

1Z R L
C

" #
� � � �$ %�& '

 

und �r = arc Zr � arc tan
Xr
Rr

� arc tan
XL � XC

Rr
 

 �r = arc tan
�Lr �

1
�Cr

Rr
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Ist Xr = XL + XC > 0, dann ist der komplexe
Widerstand Zr induktiv und die induktive
Spannung UL ist größer als die kapazitive
Spannung UC.

Ist Xr = XL + XC < 0, dann ist der kom-
plexe Widerstand Zr kapazitiv und die
kapazitive Spannung UC ist größer als die
induktive Spannung UL.

Bild 4.90 Zeigerbild des Reihenschwingkreises
mit Xr > 0

Bild 4.91 Zeigerbild des Reihenschwingkreises
mit Xr < 0

Für das Spannungsdreieck, das aus den Spannungen UR, UX und U gebildet wird, gelten
folgende Beziehungen:

U2 = UR
2 + UX

2 = UR
2 + (UL � UC )2 = Rr

2 ( I2 + �Lr �
1

�Cr

�

��
�

�	

2

( I2

I =
U

Rr
2 + �Lr �

1

�Cr

�

��
�

	�

2

tan �r =
UX

UR

=
UL � UC

UR

=

�Lr �
1

�Cr

�

��
�

�	
( I

Rr ( I
=

�Lr �
1

�Cr

�

��
�

�	

Rr

�r = �u – �i = arc tan

�Lr �
1

�Cr

�

��
�

�	

Rr

und �i = �u � �r
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Reihenresonanz, Spannungsresonanz

Ist der Blindanteil Xr = XL + XC = 0, dann ist der komplexe Widerstand gleich dem ohm-
schen Widerstand:

Zr = Zr = Rr

mit Xr = XL + XC = �Lr �
1

�Cr

= 0

Eingangsspannung u und Eingangsstrom i sind dann in Resonanz, d. h. sie haben keine
Phasenverschiebung:

�r = arc tan
Xr

Rr

= arc tan

�Lr �
1

�Cr

Rr

= 0.

Die Resonanzbedingung lautet also

�Lr =
1

�Cr

. (4.113)

Sind induktiver Widerstand XL = �Lr und kapazitiver Widerstand –XC = 1/�Cr im Reso-
nanzfall gleich, dann kompensieren sich auch die Blindspannungen, wie aus dem Zeiger-
bild ersichtlich ist:

Bild 4.92 Zeigerbild des Reihenschwingkreises bei Xr = 0

Resonanzfrequenz

Bei entsprechender Wahl von Lr, Cr und � kann der Zustand der Resonanz in der Reihen-
schaltung laut Resonanzbedingung erfüllt werden.

Sind Lr und Cr gegeben, dann tritt die Resonanz nur bei einer Resonanzkreisfrequenz �0
auf:

�0 =
1

LrCr

(4.114)
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Induktiver und kapazitiver Widerstand bei Resonanz

Im Resonanzfall sind also induktiver Widerstand und kapazitiver Widerstand gleich und
ergeben bei vorgegebener Induktivität Lr und Kapazität Cr:

XL = �0 � Lr =
Lr

LrCr

=
Lr

2

LrCr

=
Lr

Cr

= �XC =
1

�0Cr

=
LrCr

Cr

=
LrCr

Cr
2

=
Lr

Cr

Der induktive Widerstand, der bei Resonanz gleich dem kapazitiven Widerstand ist, wird
Kennwiderstand des Resonanzkreises genannt und hat die Dimension eines Widerstandes:

XL = �XC = Xkr =
Lr

Cr

mit [Xkr ] = 1� . (4.115)

Der Zustand der Resonanz bedeutet für einen passiven Zweipol mit Induktivität, Kapazität
und kleinem ohmschen Widerstand, dass sich trotz der Blindwiderstände hohe Ströme und
an den Blindwiderständen hohe Spannungen einstellen können, die ein Mehrfaches der
anliegenden Spannung betragen. Da sich die Spannungen an den Blindwiderständen kom-
pensieren, wird der Strom nur noch durch den ohmschen Widerstand begrenzt, und die
anliegende Sinusspannung ist gleich der Spannung am ohmschen Widerstand.

Frequenzabhängigkeit der Blindwiderstände

Sind Induktivität Lr und Kapazität Cr eines Resonanzkreises konstant und wird die Kreis-
frequenz � verändert, dann überwiegt bei niedrigeren Frequenzen als die Resonanzfre-
quenz �0 der kapazitive Widerstand und bei höheren Frequenzen als �0 der induktive
Widerstand. Für die Darstellung der Frequenzabhängigkeit der Blindwiderstände XL, XC
und Xr = XL + XC wird die Kreisfrequenz � auf die Resonanzkreisfrequenz �0 bezogen:

� = x · �0 mit 0 � x < �.

In Abhängigkeit von x = �/�0 hat der induktive Widerstand einen linearen und der kapazi-
tive Widerstand einen hyperbolischen Verlauf:

XL = �Lr = x · �0 · Lr = Xkr · x

XC = �
1

�Cr

= �
1

x (�0 ( Cr

= �Xkr (
1

x
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Die Frequenzabhängigkeit des Blindwiderstandes Xr lässt sich durch punktweises Überla-
gern der XL-Kurve mit der XC-Kurve darstellen. 
 

 
Bild 4.93 Frequenzabhängigkeit der Blindwiderstände 
 
Analytisch kann Xr in Abhängigkeit von der relativen Verstimmung 
r beschrieben  
werden: 
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1
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 (4.116) 

mit    
r  = x �
1
x

�
�
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�
�0
�

�
f
f0

�
f0
f

 

 
Ist  � A �0  bzw.  f A f0, 
dann ist  
r A 0, 

Ist  � B �0  bzw.  f < f0, 
dann ist  
r B 0, 

1
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2
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3
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Wird der komplexe Widerstand Zr auf den Widerstand Zr = Rr bei Resonanzfrequenz
� = �0 bezogen, dann können die Kreisgüte und die normierte Verstimmung des Reihenre-
sonanzkreises definiert werden:

Zr

Rr

=
Rr + j � Xr

Rr

= 1+ j �
Xr

Rr

= 1+ j �
Xkr

Rr

� �r

Zr

Rr

= 1+ j �Qr � �r = 1+ j � Vr (4.117)

mit Qr =
Xkr

Rr

=

Lr

Cr

Rr

als Kreisgüte, Gütefaktor oder Resonanz-
schärfe des Kreises

(4.118)

und Vr = Qr ( �r = Qr ( x �
1

x

�
��

�
�	

= Qr (
f

f0

�
f0

f

�

��
�

�	
als normierte
Verstimmung (4.119)

Bandbreite

Wird bei einem Resonanzkreis mit gegebenen Rr, Lr und Cr, also bei bekannter Güte Qr,
für die anliegende Spannung u = û · sin (2� · f · t + �u)

einmal die Frequenz f von f0 ausgehend auf fg2 erhöht, so dass der Blindwiderstand Xr
genauso groß ist wie der ohmsche Widerstand Rr und die normierte Verstimmung +1
ist:

Xr = Rr und Vr2 = + 1

und wird

zum anderen die Frequenz f von f0 ausgehend auf fg1 erniedrigt, so dass der negative
Blindwiderstand –Xr genauso groß ist wie der ohmsche Widerstand Rr und die nor-
mierte Verstimmung –1 ist:

– Xr = Rr und Vr1 = – 1,

dann handelt es sich um die so genannte 45°-Verstimmung, mit der die Bandbreite definiert
wird.

Die Bandbreite eines Reihen-Resonanzkreises ist gleich der Differenz der Grenzfre-
quenzen fg2 und fg1:

�f = fg2 – fg1. (4.120)

Soll die Frequenzabhängigkeit des bezogenen komplexen Widerstandes in der Gaußschen
Zahlenebene durch Zeiger dargestellt werden, dann müsste eine dichte Schar von Zeigern
gezeichnet werden, deren Spitzen auf der Parallelen zur imaginären Achse liegen; durch
Variation der Kreisfrequenz ändert sich nur der Imaginärteil. Die Spur der Zeigerspitzen
heißt Ortskurve, die im Kapitel 5 behandelt wird.



4.5  Die Reihenschaltung und Parallelschaltung von R, L und C 101 

Im Bild 4.94 sind drei spezielle Zeiger für den bezogenen komplexen Widerstand einge-
zeichnet: für die Resonanzfrequenz f0 und für die beiden Grenzfrequenzen fg1 und fg2. Der 
Begriff „45°-Verstimmung“ ist damit erklärt: die Frequenz f der anliegenden Spannung ist, 
ausgehend von der Resonanzfrequenz f0, so lange erhöht bzw. erniedrigt worden, bis die 
beiden Zeiger mit der reellen Achse jeweils einen Winkel von 45° bilden. 

 

Mit 
Vr2 = Qr · 
g2 = + 1 

und 
Vr1 = Qr · 
g1 = – 1 

ergibt sich für die beiden bezogenen komplexen 
Widerstände 

 

Zr2
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Bild 4.94 Bezogener komplexer 
Widerstand bei 45°-Verstimmung 

d. h.  Vr2 = – Vr1, Qr · 
g2 = – Qr · 
g1 
und   
g2 = – 
g1 (4.121) 

g2 g1 g10 0 0

0 g2 0 g1 0 g1

f f ff f f
f f f f f f

" #
� � � � � � �$ %$ %

& '
 

g1 g2 0 0
0

0 0 g2 g1 g2 g1

f f f f 1 1f
f f f f f f

" #
� � � � � �$ %$ %

& '
 

 

fg1 � fg2

f0
� f0 �

fg1 � fg2

fg1 � fg2
 

 

1
f0

2
�

1
fg1 � fg2

   bzw.        f0
2 � fg1 � fg2  (4.122) 

oder      
 

f0
fg1

�
fg2

f0
und

f0
fg2

�
fg1

f0
 (4.123) 

Damit lassen sich die relativen Verstimmungen 
r1 und 
r2 durch die Kreisgüte Qr an-
geben: 

 


g1 �
fg1
f0

�
f0
fg1

�
fg1
f0

�
fg2
f0

� �
�f
f0

� �
1

Qr


g2 �
fg2

f0
�

f0
fg2

�
fg2

f0
�

fg1

f0
�

�f
f0

�
1

Qr
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Die Kreisgüte Qr und die Bandbreite �f sind also umgekehrt proportional:

Qr =
1

�rg

=
f0

�f
=
�0

��
(4.124)

Je größer die Kreisgüte Qr ist, umso kleiner ist die Bandbreite �f.

Da die Kreisgüte Qr wesentlich die Abhängigkeit des Stroms von der Frequenz beeinflusst,
wird bei den Strom-Resonanzkurven der Zusammenhang zwischen der Güte und der Band-
breite deutlich.

Frequenzabhängigkeit des Stroms und der Spannungen

Bei Resonanz ist die anliegende Spannung u gleich dem Spannungsabfall über dem ohm-
schen Widerstand Rr, und die Effektivwerte sind gleich:

U = UR = Rr · I .

Außerdem sind bei Resonanz die Effektivwerte der Spannungen über der Induktivität und
der Kapazität gleich:

UL = �0Lr · I = Xkr · I UC =
1

�0Cr

� I = Xkr � I

Damit ist

UL

U
=

UC

U
=

Xkr

Rr

= Qr (4.125)

Für eine beliebige Kreisfrequenz � = x · �0 wird der Strom I durch den komplexen Wider-
stand Zr begrenzt, d. h. der Effektivwert des Stroms I wird durch die Impedanz Zr be-
stimmt:

I =
U

Zr

=
U

Rr
2 + Xr

2
=

U

Rr
2 + �Lr �

1

�Cr




��
�

�	

2

I =
U

Rr
2 + x (�0Lr �

1

x (�0Cr

�

��
�


	

2
=

U

Rr
2 + Xkr

2 ( x �
1

x

�
��

�

	

2

I =
U

Rr
2 + Xkr

2 � �r
2

=
U

Xkr �
1

Qr
2

+ �r
2

I =
U

Rr ( 1+ Qr
2 ( x �

1

x

�
��

�

	

2
=

U

Rr ( 1+ Qr
2 ( �r

2
(4.126)

Der Strom hat sein Maximum bei Resonanz, also bei x = 1 und beträgt Imax =
U

Rr

.
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Der Effektivwert der Spannung an der Induktivät beträgt

UL = �Lr · I = x · �0Lr · I = x · Xkr · I

UL =
x ( U

1

Qr
2

+ x �
1

x

�
��

�

	

2
=

x ( U

1

Qr
2

+ �r
2

(4.127)

und der Effektivwert der Spannung am Kondensator

UC =
1

�Cr

� I =
I

x ��0Cr

=
Xkr � I

x

UC =
U

x (
1

Qr
2

+ x �
1

x

�
��

�

	

2
=

U

x (
1

Qr
2

+ �r
2

(4.128)

Die Maxima der induktiven und der kapazitiven Spannung liegen symmetrisch zu x = 1
und lassen sich durch Differentiation und Nullsetzen der 1. Ableitung errechnen:

UL =
U

1

x2Qr
2

+ 1�
1

x2

�
��

�
��

2

UL

U
=

1

x2Qr
2

+ 1�
1

x2

�
��

	
/


2�









�

�






� 1
2

d
UL

U




��
�

��

dx
= �

�
2

x3Qr
2
+ 2 � 1�

1

x2



��

�
��
� +

2

x3



��

�
��

2 �
1

x2Qr
2

+ 1�
1

x2



��

�
��

2


	

�
�

�

�






3/2
= 0

1

Qr
2
� 2 +

2

x2
= 0

x = xL =
�UL max

�0

=
1

1�
1

2Qr
2

> 1

(4.129)

UC =
U

x2

Qr
2

+ (x2 � 1)2

UC

U
=

x2

Qr
2

+ (x2 � 1)2
�

�
�
�

�

�
�
�

� 1
2

d
UC

U




��
	


�

dx
= �

2x

Qr
2
+ 2 � (x2 �1) � 2x

2 �
x2

Qr
2
+ (x2 �1)2




�
�
�




�
�
�

3/2
= 0

1

Qr
2

+ 2x2 � 2 = 0

x = xC =
�UC max

�0

= 1�
1

2Qr
2

<1

(4.130)

wobei xL · xC = 1 ist.
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Der Maximalwert der induktiven Spannung ist gleich dem Maximalwert der kapazitiven
Spannung, wie durch Einsetzen von xL und xC nachgewiesen werden kann:

UL max

U
=

UC max

U
=

1

1�
1

2Qr
2

Qr
2

+
1

4Qr
4

=
1

1

Qr
2
�

1

2Qr
4

+
1

4Qr
4

UL max

U
=

UC max

U
=

1

1

Qr
2
� 1�

1

4Qr
2




�
�

�

�
	

=
Qr

1�
1

4Qr
2

Frequenzabhängigkeit der Phasenverschiebung

�r = arc tan

�Lr �
1

�Cr

Rr

= arc tan

x ��0Lr �
1

x ��0Cr

Rr

�r = arc tan
Xkr

Rr

x �
1

x



��

�
�	

= arc tan Qr x �
1

x



��

�
�	

(4.131)

Bei x = 1 ist �r = 0,

bei x = 0 ist �r = arc tan (– �) = – �/2 und

bei x = � ist �r = arc tan (�) = �/2.

Für eine Güte Qr = 2 haben die Resonanzkurven I(x), UL(x), UC(x) und �r(x) die im Bild
4.95 gezeichneten Verläufe.

Bild 4.95 Resonanzkurven für Qr = 2 mit linearem Maßstab
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Wird für den Bereich 0 � x � 1 ein linearer Maßstab und für 1 � x � � ein reziproker Maß-
stab gewählt, dann entstehen symmetrische Resonanzkurven, die im Bild 4.96 für die glei-
che Güte Qr = 2 dargestellt sind.

Bild 4.96
Symmetrische Resonanzkurven mit
Qr = 2

Mit größer werdendem Gütefaktor Qr rücken die Maxima näher aneinander und nehmen
höhere Werte an.

Mit der Stromkurve in Abhängigkeit von x = �/�0 nach Gl. (4.126)

I

U / Rr

=
1

1+ Qr
2 ( x �

1

x

�
��

�

	

2
=

1

1+ Qr
2 ( �r

2
=

1

1+ Vr
2

(4.132)

wird die Abhängigkeit der Bandbreite �f von der Güte Qr deutlich: Bei 45°-Verstimmung
ist Vr = ± 1 und

I

U / Rr

=
1

2
= 0,707.

Dieser Wert wird mit den messtechnisch ermittelten Stromkurven zum Schnitt gebracht,
wodurch sich jeweils die �x-Werte ablesen lassen:

�x =
��
�0

=
�g2 � �g1

�0

=
�g2

�0

�
�g1

�0

= xg2 � xg1

mit �� = 2� · �f .

Die Güte kann dann nach Gl. (4.124) berechnet werden:

Qr =
f0

�f
=
�0

��
=

1

�x
.
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Beispiel:

In einer Versuchsschaltung (Schaltung im Bild 4.97) lässt sich mittels eines RC-Generators die
Frequenz f im Bereich von 30Hz bis 300kHz einer sinusförmigen Spannung variieren, die ei-
nen Reihenschwingkreis mit zwei Festwiderständen (1k�, 10k�), einer Induktivitätsdekade
(0,1H … 1H) und einer Kapazitätsdekade (1nF … 1μF) einspeist. Für die Strom- und Span-
nungsmessung wird ein Zweistrahloszilloskop verwendet. Die in der Tabelle angegebenen
Werte ergeben die im Bild 4.98 gezeichneten Stromkurven, die mit Hilfe der Versuchsschal-
tung bestätigt werden können.

Rr Lr Cr f0 Qr

k� H nF kHz 1

10
1
1
1

0,1
0,1
0,1
1

1
10

1
1

15,9
5,0

15,9
5,0

1
3,16

10
31,6

Bild 4.97 Schaltbild eines
Reihenschwingkreises

Bild 4.98 Stromkurven eines Reihenschwingkreises

Die Bandbreite �f ist also ein Maß für die Fähigkeit eines Reihenschwingkreises, die Re-
sonanzkurve von den Resonanzkurven anderer Resonanzkreise mit naheliegenden Reso-
nanzfrequenzen zu trennen, das ist die Selektionseigenschaft eines Kreises.
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4.5.2 Die Parallelschaltung von Wechselstromwiderständen –
die Parallel- oder Stromresonanz

Parallelschaltung von idealen Induktivitäten, Kapazitäten und ohmschen Widerständen

Da es zu jeder Reihenschaltung von Wechselstromwiderständen im Bildbereich eine äqui-
valente Parallelschaltung gibt, können die ohmschen Spulenverluste und die ohmschen
Verluste eines Kondensators durch Reihenschaltung oder Parallelschaltung erfasst werden.

Sind Spule und Kondensator in Reihe geschaltet, wie im vorigen Abschnitt behandelt,
dann wird als Ersatzschaltung die Reihenschaltung von idealer Induktivität und ohmschen
Widerstand und idealer Kapazität und ohmschen Widerstand verwendet, und die ohmschen
Anteile können im Widerstand Rr berücksichtigt werden.

Für die Parallelschaltung von Spule und Kondensator muss die Parallelschaltung von idea-
ler Induktivität und ohmschen Widerstand und die Parallelschaltung von idealer Kapazität
und ohmschen Widerstand gewählt werden, um die Parallelschaltung von idealen Bauele-
menten zu erhalten. Die ohmschen Anteile werden im parallel geschalteten Widerstand Rp
zusammengefasst.

Zunächst wird also die Parallelschaltung von idealer Induktivität, idealer Kapazität und
idealem ohmschen Widerstand behandelt, die der Reihenschaltung von entsprechenden
Schaltelementen äquivalent ist (siehe Bilder 4.37 und 4.39).

Dann werden die Ersatzschaltungen einer Spule und eines Kondensators als Reihenschal-
tungen parallel geschaltet, in äquivalente Parallelschaltungen überführt und wie die Paral-
lelschaltung idealer Bauelemente behandelt.

Schließlich wird der Praktische Parallelresonanzkreis behandelt, bei dem die ohmschen
Verluste des Kondensators vernachlässigt sind.

Für das im Bild 4.99 gezeichnete Schaltbild eines Parallelschwingkreises gilt die Differen-
tialgleichung

i= iR + iC + iL mit i= î (sin (�t +)i ) (4.133)

i =
1

Rp

� u + Cp �
du

dt
+

1

Lp

� u � dt� , (4.134)

die in die algebraische Gleichung abgebildet
Bild 4.99 Parallelschwingkreis

i = iR + iC + iL =
1

Rp

� u + j�Cp � u +
1

j�Lp

� u

und gelöst werden kann:

u =
i

1

Rp

+ j� �Cp �
1

�Lp

�

.
-

	

/



=
î � e j(�t+�i )

1

Rp
2
+ �Cp �

1

�Lp

�

.
-

	

/



2

�e j�arc tan Rp �(�Cp �1/�Lp )

(4.135)
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Die Rücktransformation von u führt zur Lösung im Zeitbereich: 

u = i p p2 p

p2 pp

î 1sin t arc tan R C
L

1 1C
LR

�  " #
� � �� � � �: ;$ %$ %�: ;& '� !" #

� � �$ %$ %�& '

 (4.136) 

Die Spannung u kann gegenüber dem Strom i nacheilend, voreilend und mit dem Strom i 
in Phase sein, wie durch entsprechende Zeigerbilder veranschaulicht werden kann. 
Mit der Schaltung im Bildbereich (Bild 4.100) entstehen die Gleichungen für die Zeiger-
bilder: 
 

 

 I � IR � IC � IL � IR � IB  

 
I �

1
Rp

� U � j�Cp � U �
1

j�Lp
� U  

p
p p

1 1I j C U
R j L

" #
� � � � �$ %$ %�& '

 Bild 4.100 Schaltbild des Parallel-
schwingkreises im Bildbereich 

p
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�
� � � � �

� � � � �" # �
� � � �$ %$ %�& '

 

mit 
 
Yp � Yp � G p

2 � Bp
2 � G p

2 � (BC � BL )2  

 
2

2p p p
p

1Y G C
L

" #
� � � �$ %$ %�& '

 

und �p =
 
arc Yp � arc tan

Bp

G p
� arc tan

BC � BL
G p

 

 �p =
 
arc tan

�Cp �
1

�Lp
G p
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Ist Bp = BC + BL > 0, dann ist der komplexe
Leitwert Yp kapazitiv und der kapazitive
Strom IC ist größer als der induktive Strom IL.

Ist Bp = BC + BL < 0, dann ist der kom-
plexe Leitwert Yp induktiv und der
induktive Strom IL ist größer als der
kapazitive Strom IC.

Bild 4.101 Zeigerbild des Parallelschwingkreises
mit Bp > 0

Bild 4.102 Zeigerbild des Parallelschwing-
kreises mit Bp < 0

Für das Stromdreieck, das aus den Strömen IR, IB und I gebildet wird, gelten folgende
Beziehungen:

I2 = IR
2 + IB

2 = IR
2 + (IC � IL )2 = G p

2 (U2 + �Cp �
1

�Lp

�

�
�

�

�
	

2

(U2

U =
I

G p
2 + �Cp �

1

�Lp




�
�

�

	



2

tan �p =
IB

IR

=
IC � IL

IR

=

�Cp �
1

�Lp

�

�
�

�

�
	 (U

G p (U
=

�Cp �
1

�Lp

�

�
�

�

�
	

G p

(4.137)

�p =�i ��u = arc tan

�Cp �
1

�Lp

G p

und �r = �u ��i = ��p , �u = �i ��p = �i +�r .
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Parallelresonanz, Stromresonanz

Ist der Blindanteil Bp = BC + BL = 0, dann ist der komplexe Leitwert gleich dem ohmschen
Leitwert:

Yp = Yp = G p =
1

Rp

mit Bp = BC + BL =�Cp �
1

�Lp

= 0 .

Eingangsstrom i und Eingangsspannung u sind dann in Resonanz, d. h. sie haben keine
Phasenverschiebung:

�p = arc tan
Bp

G p

= arc tan

�Cp �
1

�Lp

G p

= 0 .

Die Resonanzbedingung lautet also

�Cp =
1

�Lp

. (4.138)

Sind kapazitiver Leitwert BC = �Cp und induktiver Leitwert – BL = 1/�Lp im Resonanz-
fall gleich, dann kompensieren sich auch die Blindströme, wie aus dem Zeigerbild ersicht-
lich ist:

Bild 4.103 Zeigerbild des Parallelschwingkreises bei Bp = 0

Resonanzfrequenz

Bei entsprechender Wahl von Cp, Lp und � kann der Zustand der Resonanz in der Parallel-
schaltung laut Resonanzbedingung erfüllt werden.

Sind Cp und Lp gegeben, dann tritt die Resonanz nur bei einer Resonanzkreisfrequenz �0
auf:

�0 =
1

CpLp

.
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Kapazitiver und induktiver Leitwert bei Resonanz

Im Resonanzfall sind also kapazitiver Leitwert und induktiver Leitwert gleich und ergeben
bei vorgegebener Kapazität Cp und Induktivität Lp:

BC = �0 �Cp =
Cp

CpLp

=
Cp

2

CpLp

=
Cp

Lp

= �BL =
1

�0 ( Lp

=
CpLp

Lp

=
CpLp

Lp
2

=
Cp

Lp

.

Der kapazitive Leitwert, der bei Resonanz gleich dem induktiven Leitwert ist, wird Kenn-
leitwert des Resonanzkreises genannt und hat die Dimension eines Leitwertes:

BC = �BL = Bkp =
Cp

Lp

mit [Bkp] = 1�–1 = 1S. (4.139)

Der Zustand der Resonanz im Parallel-Resonanzkreis bedeutet, dass der Gesamtstrom
gleich dem Strom durch den ohmschen Widerstand Rp ist; die Blindströme kompensieren
sich und können ein Mehrfaches des Gesamtstroms betragen. Bei konstanter Spannung u
ist der Strom i bei Resonanz minimal, weil der Leitwert außerhalb der Resonanz größer
wird und damit der Strom größer ist. Wird die Einströmung konstant gehalten, entstehen
bei Resonanz in Abhängigkeit von der Güte Qp die höchsten Spannungswerte U.

Frequenzabhängigkeit der Blindleitwerte

Sind Kapazität Cp und Induktivität Lp eines Resonanzkreises konstant und wird die Kreis-
frequenz � verändert, dann überwiegt bei niedrigeren Frequenzen als die Resonanzfre-
quenz �0 der induktive Leitwert und bei höheren Frequenzen als �0 der kapazitive Leit-
wert. Für die Darstellung der Frequenzabhängigkeit der Blindleitwerte BC, BL und
Bp = BC + BL wird die Kreisfrequenz � auf die Resonanzkreisfrequenz �0 bezogen:

� = x · �0 mit 0 � x < �.

In Abhängigkeit von x = �/�0 hat der kapazitive Leitwert einen linearen und der induktive
Leitwert einen hyperbolischen Verlauf:

BC = �Cp = x · �0 · Cp = Bkp · x

BL = �
1

�Lp

= �
1

x (�0 ( Lp

= �Bkp (
1

x
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Die Frequenzabhängigkeit des Blindleitwertes Bp lässt sich durch punktweises Überlagern 
der BC-Kurve mit der BL-Kurve darstellen. 
 

 
Bild 4.104 Frequenzabhängigkeit der Blindleitwerte 

 
Analytisch kann Bp in Abhängigkeit von der relativen Verstimmung 
p beschrieben  
werden: 
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 (4.140) 

mit    
p = x �
1
x
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�
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�C
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�
f
f0

�
f0
f

 

Ist  � A �0  bzw.  f A f0, 
dann ist  
p A 0, 
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1
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Wird der komplexe Leitwert Yp auf den Leitwert Yp = Gp = 1/Rp bei Resonanzfrequenz
� = �0 bezogen, dann können entsprechend die Kreisgüte und die normierte Verstimmung
des Parallelresonanzkreises definiert werden:

Yp

G p

=
G p + j � Bp

G p

= 1+ j �
Bp

G p

= 1+ j �
Bkp

G p

� �p

Yp

G p

= 1+ j �Qp � �p = 1+ j � Vp (4.141)

mit Qp =
Bkp

G p

=

Cp

Lp

G p
als Kreisgüte, Gütefaktor oder
Resonanzschärfe des Kreises

(4.142)

und Vp = Qp ( �p = Qp ( x �
1

x

�
��

�
�	

= Qp (
f

f0

�
f0

f

�

��
�

�	
als normierte
Verstimmung

(4.143)

Bandbreite

Genauso wie beim Reihenschwingkreis wird die Bandbreite durch die 45°-Verstimmung
definiert:

Wird bei einem Parallelschwingkreis mit gegebenen Rp, Cp und Lp, also bei bekannter
Güte Qp, für die anliegende Spannung u = û · sin (2 � · f · t + �u)

einmal die Frequenz f von f0 ausgehend auf fg2 erhöht, so dass der Blindleitwert Bp
genauso groß ist wie der ohmsche Leitwert Gp und die normierte Verstimmung +1 ist:

Bp = Gp und Vp2 = + 1,

und wird

zum anderen die Frequenz f von f0 ausgehend auf fg1 erniedrigt, so dass der negative
Blindleitwert –Bp genauso groß ist wie der ohmsche Leitwert Gp und die normierte
Verstimmung –1 ist:

– Bp = Gp und Vp1 = – 1,

dann handelt es sich um die so genannte 45°-Verstimmung, mit der die Bandbreite ent-
sprechend definiert wird.

Die Bandbreite eines Parallel-Resonanzkreises ist gleich der Differenz der Grenzfre-
quenzen fg2 und fg1:

�f = fg2 – fg1. (4.144)

Die Frequenzabhängigkeit des bezogenen komplexen Leitwerts in der Gaußschen Zahlen-
ebene dargestellt, ergibt genauso wie beim Reihenschwingkreis eine Ortskurve, die parallel
zur imaginären Achse im Abstand 1 vom Nullpunkt verläuft.



114 4  Wechselstromtechnik 

Im Bild 4.105 sind drei spezielle Zeiger für den bezogenen komplexen Leitwert einge-
zeichnet: für die Resonanzfrequenz f0 und für die beiden Grenzfrequenzen fg1 und fg2. Der 
Begriff „45°-Verstimmung“ wird damit auch hier deutlich: die Frequenz f der anliegenden 
Spannung ist, ausgehend von der Resonanzfrequenz f0, so lange erhöht bzw. erniedrigt 
worden, bis die beiden Zeiger mit der reellen Achse jeweils einen Winkel von 45° bilden. 
 

 

Mit 
Vp2 = Qp · 
g2 = + 1 

und 
Vp1 = Qp · 
g1 = – 1 

ergibt sich für die beiden bezogenen komplexen Leitwerte 

 

Yp2

G p
� 1� j � Qp � 
g2 � 1 � j �1  

 

Yp1

G p
� 1 � j � Qp � 
g1 � 1� j �1 

mit    
 

Yp1

G p
�

Yp2

G p
� 2,  

Bild 4.105 Bezogener komplexer 
Leitwert bei 45°-Verstimmung 

d. h.   Vp2 = – Vp1, Qp · 
g2 = – Qp · 
g1 
und     
g2 = – 
g1. (4.145) 

 
Der Zusammenhang zwischen der Güte Qp und der Bandbreite �f ist der gleiche wie beim 
Reihenresonanzkreis, denn die Herleitung ist die gleiche wie von der Gl. (4.121) bis 
(4.124): 

Qp =

 

1

pg

�
f0
�f

�
�0
��

.  (4.146) 

Je größer die Kreisgüte Qp ist, umso kleiner ist die Bandbreite �f. 
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Frequenzabhängigkeit der Spannung und der Ströme

Wird der Strom I konstant gehalten, dann ändern sich die Spannung U und die Ströme IC
und IL. Die Formeln für den Parallelschwingkreis sind analog zu den Formeln des Reihen-
schwingkreises:

U =
I

G p
2 + Bkp

2 ( x �
1

x

�
��

�
�	

2
=

I

G p
2 + Bkp

2 ( �p
2

(4.147)

IC =
x ( I

1

Qp
2

+ x �
1

x

�
��

�
�	

2
=

x ( I

1

Qp
2

+ �p
2

(4.148)

IL =
I

x (
1

Qp
2

+ x �
1

x

�
��

�
�	

2
=

I

x (
1

Qp
2

+ �p
2

(4.149)

Die Resonanzkurven für U, IC und IL des Parallelschwingkreises entsprechen den Reso-
nanzkurven für I, UL und UC des Reihenschwingkreises (Bilder 4.95, 4.96 und 4.98).

Parallelschaltung verlustbehafteter Blindwiderstände

Werden für Spulen und Kondensatoren in Parallelschwingkreisen Reihenschaltungen von
idealisierten Bauelementen Lr und RLr bzw. Cr und RCr gewählt, dann kann der Parallel-
schwingkreis in die äquivalente Parallelschaltung von idealisierten Bauelementen über-
führt werden, die gerade behandelt wurde.

Bild 4.106 Parallelschwingkreis mit parallel geschalteten Reihenschaltungen

Um die Resonanzbedingung angeben zu können, muss der Leitwertoperator zwischen dem
Strom I und der Spannung U reell sein:

I = ICr + ILr = (YCp + YLp ) � U = Yp � U

mit YCp = GCp + j � BCp =
1

RCp

+ j�Cp

und YLp = G Lp + j ( BLp =
1

RLp

� j
1

�Lp
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I = [(GCp + G Lp ) + j � (BCp + BLp )] � U

I =
1

RCp

+
1

RLp

�

�
�

�

�

 + j ( �Cp �

1

�Lp

�

�
�

�

�



	



�
�




�
�
�
( U

I = IRC + IRL + IC + IL

mit Gl. (4.71)

I =
RCr

RCr
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(4.150)

I = IRC + IRL + IC + IL = IR + IC + IL

mit IR = IRC + IRL

Die Parallelresonanz oder Stromresonanz ist erfüllt, wenn sich die Blindkomponenten der
Zweigleitwerte YCp und YLp und die Blindströme IC und IL kompensieren:

Bp = BCp + BLp = 0

oder – BLp = BCp

�Lr

RLr
2 + �2Lr

2
=

1

�Cr

RCr
2 +

1

�2Cr
2

. (4.151)

Sind RCr, Cr, RLr und Lr gegeben, dann ist der Parallelkreis nur dann in Resonanz, wenn
die Kreisfrequenz � = �0 reell ist:

�0
2LrCr � RCr

2 +
1

�0
2Cr

2




�
�

�

	

 = RLr

2 + �0
2Lr

2

�0
2LrCrRCr

2 +
Lr

Cr

= RLr
2 + �0

2Lr
2

�0
2LrCr ( RCr

2 �
Lr

Cr

�

��
�

�	
= RLr

2 �
Lr

Cr

�0 =
1

LrCr

(
RLr

2 �
Lr

Cr

RCr
2 �

Lr

Cr

(4.152)
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Interpretation der Bedingungsgleichung für die Resonanz-Kreisfrequenz:

1. RLr � RCr:

Resonanz ist möglich, wenn RLr
2 > Lr/Cr und RCr

2 > Lr/Cr

oder RLr
2 < Lr/Cr und RCr

2 < Lr/Cr.

Ein negativer Wert unter der Wurzel ergibt keine reelle Resonanzkreisfrequenz �0,
d. h. eine Resonanz zwischen Strom i und Spannung u ist nur möglich, wenn jeweils
beide Bedingungen erfüllt sind.

2. RLr = RCr � r rL / C :

Der Parallel-Resonanzkreis befindet sich bei der Resonanzkreisfrequenz �0 in Reso-
nanz, die der Resonanzfrequenz des Reihenschwingkreises entspricht:

�0 =
1

LrCr

(4.153)

wegen
RLr

2 � Lr / Cr

RCr
2 � Lr / Cr

= 1.

3. RLr =RCr = r rL / C R :=
Mit dieser Bedingung ergibt die Formel für �0 einen unbestimmten Ausdruck 0/0. Die
Resonanzbedingung Gl. (4.151)

�Lr

RLr
2 + �2Lr

2
=

1

�Cr

RCr
2 +

1

�2Cr
2

bzw. �2LrCrR2 +
Lr

Cr

= R2 + �2Lr
2

ist mit R2 = Lr/Cr für alle Frequenzen erfüllt, weil für � keine Einschränkung erfolgen
muss:

�2LrCr �
Lr

Cr

+
Lr

Cr

= R2 + �2Lr
2 .

Diesen Zustand des Parallel-Resonanzkreises nennt man ewige Resonanz, weil für jede
Frequenz der Strom i und die Spannung u in Resonanz sind; die Parallelschaltung ver-
hält sich wie der ohmsche Widerstand R:

Z =
ZLr ( ZCr

ZLr + ZCr

=

(R + j�Lr ) ( R � j
1

�Cr

�

��
�

�	

2R + j ( �Lr �
1

�Cr

�

��
�

�	

=

R2 +
Lr
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+ j ( R ( �Lr �
1

�Cr
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��
�

�	

2R + j ( �Lr �
1

�Cr

�

��
�

�	
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Lr

Cr

= R2 ist
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Z =
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.(4.154)

Das Zeigerbild für die Ströme und die anliegende Spannung bei ewiger Resonanz er-
gibt sich mit folgenden Gleichungen:

I = ICr + ILr =
U

R

mit ICr = YCp � U = (GCp + jBCp ) � U

und ILr = YLp � U = (G Lp + jBLp ) � U

Die Winkelbeziehungen lassen sich mit Hilfe der Umrechnungsformeln für die Trans-
formation der Reihenschaltung in die Parallelschaltung Gl. (4.69) und (4.70) angeben:

tan �C =
BCp

GCp

=

1

�Cr

ZCr
2

RCr

ZCr
2

=

1

�Cr

RCr

=

1

�Cr

R

tan �L =
BLp

G Lp

=

�
�Lr

ZLr
2

RLr

ZLr
2

= �
�Lr

RLr

= �
�Lr

R

Bild 4.107 Zeigerbild des Parallelresonanz-
kreises bei ewiger Resonanz

tan (�C – �L) =
tan�C � tan�L
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tan (�C – �L) = �

�C � �L = �C + (��L ) =
�
2

Beispiel:

Mit dem RC-Generator, den Festwiderständen, der Induktivitäs- und der Kapazitätsdekade der
Versuchsschaltung des Reihenresonanzkreises (Abschnitt 4.5.1) lässt sich der Parallel-
Resonanzkreis mit RLr = RCr = 1k�, Lr = 0,1H und Cr1 = 1nF (f0 = 15,9kHz) bzw.
Cr2 = 0,1μF (ewige Resonanz) aufbauen und das Resonanzverhalten untersuchen.

4. RCr = 0: (Spezialfall von 1.)

In Praktischen Parallel-Resonanzkreisen ist der Verlustwiderstand des Kondensators
RCr vernachlässisgbar klein gegenüber Lr / Cr .

Die Formel für die Resonanzkreisfrequenz (siehe Gl. 4.152) kann dann umgeschrieben
werden in

�0 =
1

LrCr

(
RLr

2 �
Lr

Cr

�
Lr

Cr

=
1

LrCr

( 1�
RLr

2 ( Cr

Lr
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1

LrCr

�
RLr

Lr




��
�

	


2

(4.155)

Den komplexen Leitwert des Praktischen Parallel-Resonanzkreises zu errechnen be-
deutet, die Transformation der Reihenschaltung RLr – Lr in die äquivalente Parallel-
schaltung nach Gl. (4.70) vorzunehmen und den Leitwert des Kondensators zu berück-
sichtigen:

Yp =
RLr

RLr
2 + �2Lr

2
+ j ( �Cr �

�Lr

RLr
2 + �2Lr

2

�

�
�

�

�
	 =

1

RLp

+ j ( �Cp �
1

�Lp

�

�
�

�

�
	 (4.156)

Bild 4.108
Transformation des Praktischen Parallel-
Resonanzkreises
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Um die Güte des Praktischen Parallel-Resonanzkreises berechnen zu können, muss eben-
falls die äquivalente Parallelschaltung idealer Bauelemente herangezogen werden:

Mit Gl. (4.142)

Qp =
Bkp

G p

= RLp ��0Cp

mit Gp =
1

Rp

=
1

RLp

und Bkp = �0 Cp

und

RLp =
RLr
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2
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2
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2
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�
	 ( Lr

2
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=
Lr

RLrCr

=
Lr

RLrCp

ergibt sich für die Güte des Praktischen Parallel-Resonanzkreises:
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Lr

RLrCp
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� 1 . (4.157)

Der komplexe Widerstand des Praktischen Parallel-Resonanzkreises kann aus der Formel
für zwei parallel geschaltete Widerstände und anschließendem Erweitern bestimmt wer-
den:

Z=
(RLr + j�Lr ) (

1

j�Cr

RLr + j�Lr +
1

j�Cr

=
RLr + j�Lr

(1� �2LrCr ) + j�RLrCr
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(1� �2LrCr ) � j�RLrCr

(1� �2LrCr ) � j�RLrCr

Z =
RLr � RLr�

2LrCr + j�Lr (1� �2LrCr ) � j�RLr
2Cr + �2LrRLrCr

(1� �2LrCr )2 + (�RLrCr )2

Z =
RLr

(1� �2LrCr )2 + (�RLrCr )2
+ j� (

Lr (1� �2LrCr) � RLr
2Cr

(1� �2LrCr )2 + (�RLrCr )2
(4.158)
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Übungsaufgaben zum Abschnitt 4.5

4.20 Behandeln Sie rechnerisch den skizzierten Resonanzkreis, an dem eine sinusförmige Spannung
variabler Frequenz anliegt.

Bild 4.109
Übungsaufgabe 4.20

1. Berechnen Sie die Resonanzkreisfrequenz, den Kennwiderstand und die Kreisgüte.

2. Errechnen Sie für � = 250, 500, 750, 900, 1000, 1111, 1333, 2000 und 4000s–1 die Reso-
nanzkurve

0

I
f (x) mit x

U / R

�
= =

�

und stellen Sie sie grafisch dar.

3. Ermitteln Sie aus der Resonanzkurve die Bandbreite �f und die Grenzfrequenzen fg1
und fg2.

4.21 Für die Übertragung eines Signals mit der Bandbreite �f = 5kHz und einer Güte Qr = 100 steht
eine hochfrequente Trägerschwingung zur Verfügung, die durch einen Schwingkreis erzeugt
wird.

1. Bei welcher Frequenz ist die Übertragung des Signals vorgesehen?

2. Ermitteln Sie die Schaltelemente des Schwingkreises in Reihenschaltung, wenn der Kenn-
widerstand 500� beträgt.

4.22 Die Ersatzschaltungen einer Spule und eines Kondensators sind Reihenschaltungen mit RCr = 10�,
Cr = 2μF und RLr = 100�, Lr = 0,1H, die parallel geschaltet sind.

1. Untersuchen Sie, ob eine Resonanz zwischen der anliegenden Spannung u und dem sinus-
förmigen Strom i möglich ist. Falls Resonanz erreicht werden kann, berechnen Sie die Re-
sonanzfrequenz f0 und die dann wirksame Impedanz Z0 des Parallelresonanzkreises.

2. Um wie viel Prozent ändert sich die Resonanzfrequenz, wenn der Verlustwiderstand RCr
des Kondensators vernachlässigt wird?

4.23 1. Für den praktischen Parallel-Resonanzkreis mit vorgeschaltetem Widerstand sind die
Ströme ILr. und IC in Abhängigkeit von U, R, Lr, RLr, Cr und � zu ermitteln.

2. Anschließend ist die Spannung UC zu bestimmen und das Ergebnis mit dem Beispiel 3 der
Spannungsteilerregel (Abschnitt 4.3, Bild 4.28) zu vergleichen.

3. Bei welcher Kreisfrequenz � sind die Spannung uC und u in Phase und bei welcher Kreis-
frequenz ist der Strom iC gegenüber der Spannung u um 90° phasenverschoben?

Bild 4.110
Übungsaufgabe 4.23
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4.24 1. Für den praktischen Parallel-Resonanzkreis mit RLr = 100�, Lr = 0,1H und Cr = 2μF sind
drei quantitative Zeigerbilder bei � = 1000s–1, � = 2000s–1 und � = 3000s–1 zu entwi-
ckeln, wobei der Strom ILr jeweils 10mA betragen soll. Geben Sie für die drei Fälle die Ef-
fektivwerte von U und I und die Phasenverschiebung � an und errechnen Sie jeweils den
komplexen Leitwert.

2. Kontrollieren Sie rechnerisch die Ergebnisse für die komplexen Leitwerte.

Bild 4.111
Übungsaufgabe 4.24

4.25 Für den gleichen Parallel-Resonanzkreis mit RLr = 100�, Lr = 0,1H und Cr = 2μF ist die Re-
sonanzkurve zu ermitteln, indem der Resonanzkreis in einen Parallelresonanzkreis mit idealen
Bauelementen überführt wird (Bild 4.112).

1. Berechnen Sie zunächst die Resonanzkreisfrequenz und die Ersatzgrößen RLp, Lp und Cp
und die Güte Qp.

2. Leiten Sie die Formel für die frequenzabhängige Spannung bezogen auf die Maximalspan-
nung I/Gp

p 0

U
f (x) mit x

I / G

�
= =

�

in Analogie zum Reihen-Resonanzkreis her.

3. Berechnen Sie für � = 500s–1, 1000s–1, 1500s–1, 2000s–1, 2666s–1, 4000s–1 und 8000s–1 die
Resonanzkurven und stellen Sie sie dar.

Bild 4.112
Übungsaufgabe 4.25
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4.6  Spezielle Schaltungen der Wechselstromtechnik 

4.6.1 Schaltungen für eine Phasenverschiebung von 90° zwischen Strom und 
Spannung 

Hummelschaltung 
In einer stromdurchflossenen Spule ist die Phasenverschiebung zwischen dem Strom und 
der anliegenden sinusförmigen Spannung wegen der ohmschen Verluste kleiner als 90°. 
Wird als Ersatzschaltung der Spule die Reihenschaltung des ohmschen und induktiven 
Widerstandes gewählt, dann teilt sich die sinusförmige Spannung u1 in die ohmsche 
Spannung uR1 und die induktive Spannung uL1 auf. 
Wird die Schaltung in den Bildbereich transformiert, dann beschreiben die entsprechen-
den komplexen Effektivwerte im Zeigerbild die Zusammenhänge zwischen Strom und 
Spannungen (Bild 4.113): 

 U1 � UR1 � UL1 

 U1 � Rr1 � I1 � j�Lr1 � I1  

 U1 � (Rr1 � j�Lr1) � I1  

 

Bild 4.113 
Schaltung und Zeigerbild einer 
Spule 

 
Zur Messung der Blindleistung, die im Abschnitt 4.7 behandelt wird, ist es allerdings 
notwendig, dass zwischen dem Strom und der Spannung eine Phasenverschiebung von 
exakt 90° besteht. Mit der Hummelschaltung (Bild 4.114) kann diese Bedingung erfüllt 
werden, wie im folgenden nachgewiesen werden soll. 
 

 
Bild 4.114 
Hummelschaltung 

 
An die Spule wird ein bestimmter ohmscher Widerstand Rp parallel und eine Spule mit 
bekanntem Rr2 und Lr2 in Reihe geschaltet. Die Phasenverschiebung von 90° soll zwi-
schen der Spannung u und dem Spulenstrom i1 eingestellt werden können. Für die kom-
plexen Effektivwerte U und I1 ist damit der Operator herzuleiten, mit dem diese ineinan-
der überführt werden können. Anschließend ist dessen Realteil Null zu setzen, denn wenn 
der Operator imaginär ist, sind auch die Zeitfunktionen um 90° phasenverschoben: 
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Mit Hilfe der Stromteilerregel ergibt sich 

 

I1
I2

�
Rp

Rp � Rr1 � j�Lr1
mit I2 �

U
Rp(Rr1 � j�Lr1)
Rp � Rr1 � j�Lr1

� Rr2 � j�Lr2

 

 
I1 �

Rp � U
Rp(Rr1 � j�Lr1) � (Rp � Rr1 � j�Lr1)(Rr2 � j�Lr2 )

 

1 2r1 r2 r1 r2 r2 r1 r1 r2
r1 r2 r1 r2

p p p p

UI
R R L L L R L RR R j L L

R R R R

�
" # " #� � � �

� � � � � � � � �$ % $ %$ % $ %
& ' & '

 
Rr1 � Rr2 �

Rr1 � Rr2
Rp

�
�2 � Lr1Lr2

Rp
� 0  (4.159) 

 
Rp(Rr1 � Rr2 ) � Rr1 � Rr2 � �2 � Lr1 � Lr2 � 0  

Sind die ohmschen Widerstände und die Induktivitäten der beiden Spulen und die Kreis-
frequenz der sinusförmigen Spannung bekannt, dann ergibt sich der parallel geschaltete 
Widerstand aus folgender Gleichung: 

 
Rp �

�2 � Lr1 � Lr2 � Rr1 � Rr2
Rr1 � Rr2

 (4.160) 

Beispiel: 
1. Für die Hummelschaltung ist der erforderliche Widerstand Rp zu errechnen, der eine Pha-

senverschiebung von 90° zwischen dem Strom i1 und der Spannung u ermöglicht, wenn 
Rr1 = 200�, Lr1 = 400mH, Rr2 = 100�, Lr2 = 200mH und die Frequenz der anliegenden 
Spannung f = 200Hz betragen. 

2. Das Ergebnis soll durch ein quantitatives Zeigerbild kontrolliert werden, indem für den 
Spulenstrom I1 = 20mA angenommen wird. 

 

Lösung: 
Zu 1. 

 
1 2

p
(2 200s ) 0,4H 0,2H 200 100R

200 100

�� � � � � � � �
�

� � �
 

 pR 354,4� �  
Zu 2. Reihenfolge der Zeigerdarstellung: 
I1 
UR1 = Rr1 · I1 
UL1 = j�Lr1 · I1 
U1 = UR1 + UL1 

I1 = 20mA 
UR1 = 4V 
UL1 = 10,05V 
U1 = 10,82V 

Ip = 1

p

U
R

 Ip = 30,53mA 

I2 = I1 + Ip 
UR2 = Rr2 · I2 
UL2 = j�Lr2 · I2 
U2 = UR2 + UL2 
U = U1 + U2 

I2 = 42mA 
UR2 = 4,2V 
UL2 = 10,56V 
U2 = 11,4V 
U = 20,7V  

Bild 4.115 Quantitatives Zei-
gerbild der Hummelschaltung 

Im quantitativen Zeigerbild der Hummelschaltung im Bild 4.115 schließen der Zeiger des 
Spulenstroms I1 und der Zeiger der Gesamtspannung U einen Winkel von 90° ein. 
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Polekschaltung 
Wird in der Hummelschaltung der ohmsche Parallelwiderstand Rp durch einen Kondensa-
tor mit vernachlässigbaren Verlusten ersetzt, dann kann zwischen dem Spulenstrom i1 und 
der anliegenden Spannung u ebenso eine Phasenverschiebung von 90° erreicht werden. 
Die erforderliche Kapazität lässt sich mit folgender Formel berechnen: 
 

 

Cp =
 

Rr1 � Rr2
�2(Lr1 �Rr2 � Lr2 �Rr1)

 

                                       (4.161) 
Bild 4.116 Polekschaltung 

 

Brückenschaltung für eine 90°-Phasenverschiebung 

Um eine Phasenverschiebung von exakt 90° zwischen einem sinusförmigen Strom und 
einer sinusförmigen Spannung zu erhalten, werden zwei gleiche Spulen und zwei gleiche 
ohmsche Widerstände in einer Brücke mit ohmschem Diagonalzweig zusammengeschal-
tet, die in Reihe mit einer anderen Spule liegt. Für die Spulen sollen jeweils Reihenschal-
tungen verwendet werden. 
 

 

Bild 4.117 
Brückenschaltung für eine 
90°-Phasenverschiebung 

 
Zwischen dem Spulenstrom i1 und der anliegenden Spannung u soll die geforderte Pha-
senverschiebung bestehen. Deshalb ist der Operator zwischen I1 und U zu errechnen und 
dessen Realteil Null zu setzen. Aus Symmetriegründen der Schaltung können die jeweils 
gleichen Ströme I1 und I2 zweimal eingetragen werden, so dass das Gleichungssystem 
nach dem Kirchhoffschen Netzberechnungsverfahren reduziert werden kann: 
Knotenpunktgleichungen: 

k1:  I1 = I2 + I3 oder    I3 = I1 – I2 

k2:  I = I1 + I2 

Maschengleichung für die Masche I: 

U = R2 · I2 + Z1 · I1 + Z · I 

U = R2 · I2 + Z1 · I1 + Z · (I1 + I2) 

U = (Z1 + Z) · I1 + (R2 + Z) · I2 
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Maschengleichung für die Masche II: 

Z1 · I1 · R3 · I3 – R2 · I2 = 0 

Z1 · I1 + R3 · (I1 – I2) – R2 · I2 = 0 

(Z1 + R3) · I1 – (R2 + R3) · I2 = 0 

I2 =
 

Z1 � R3
R2 � R3

� I1 

Die Gleichung für I2 in die Maschengleichung für die Masche I eingesetzt, ergibt den 
Widerstandsoperator zwischen I1 und U: 

 
U � (Z1 � Z) � I1 � (R2 � Z) �

Z1 � R3
R2 � R3

� I1 � Z1 � Z �
(R2 � Z) � (Z1 � R3)

R2 � R3

�

�
:

 

!
; � I1  

und mit Z1 = Rr1 + j�Lr1  und  Z = Rr + j�Lr  ist 

 
U � Rr1 � j�Lr1 � Rr � j�Lr �

(R2 � Rr � j�Lr ) � (Rr1 � j�Lr1 � R3)
R2 � R3

�

�
:

 

!
; � I1  

 (4.162) 

Zwischen i1 und u besteht die Phasenverschiebung von 90°, wenn der Realteil des Wider-
standsoperators Null ist: 

Rr1 + Rr +
(R2 � Rr ) � (Rr1 � R3) � �2LrLr1

R2 � R3
� 0  (4.163) 

4.6.2 Schaltung zur automatischen Konstanthaltung des Wechselstroms – 
die Boucherot-Schaltung 

Prinzip 
In der im Bild 4.118 gezeichneten Spannungsteilerschaltung kann der Zweigstrom i3 
unabhängig vom Belastungs-Wechselstromwiderstand werden, wenn die beiden Wechsel-
stromwiderstände des Spannungsteilers eine verlustlose Spule und ein verlustloser Kon-
densator sind, die sich in Resonanz befinden. Da es verlustlose Spulen und Kondensato-
ren nicht gibt, kann die Boucherot-Schaltung nur angenähert einen von der Belastung 
unabhängigen Strom garantieren. Bei Anwendung der Schaltung ist deshalb ein Vergleich 
des erreichbaren und des geforderten Toleranzbereiches notwendig. 
 

Bild 4.118 
Prinzip der Boucherotschaltung 

  



4.6  Spezielle Schaltungen der Wechselstromtechnik 127 

Nachweis mit Hilfe der Schaltung im Bildbereich 
Mit Hilfe der Stromteilerregel lässt sich der Belastungsstrom I3 durch den Belastungswi-
derstand Z3 ermitteln. 

 

 

I3
I1

�
Z2

Z2 � Z3
mit I1 �

U

Z1 �
Z2Z3

Z2 � Z3

 

 

 

I3 �
Z2

Z2 � Z3
�

U

Z1 �
Z2Z3

Z2 � Z3

 Bild 4.119 Boucherotschaltung 
im Bildbereich 

 
I3 �

Z2 � U
Z1Z2 � Z1Z3 � Z2Z3

�
Z2 � U

Z1Z2 � Z3 � (Z1 � Z2 )
.  (4.164) 

Soll I3 unabhängig vom komplexen Widerstand Z3 sein, dann muss  Z3 · (Z1 + Z2)  Null 
sein, d. h. Z1 + Z2 = 0. Werden die Spule und der Kondensator als Reihenschaltungen mit 
Z1 = R1 + jX1  und  Z2 = R2 + jX2  aufgefasst, dann kann die Bedingung nur erfüllt wer-
den, wenn die Summe der ohmschen Widerstände Null sind und die Blindwiderstände 
sich aufheben: 

R1 + R2
!� 0   und   X1 + X2 !� 0 (4.165) 

Die Bedingung für die ohmschen Widerstände lässt sich natürlich nicht erfüllen, weil sich 
vor allem die Spulenverluste nicht vernachlässigen lassen. Der Strom i3 lässt sich deshalb 
nur in gewissen Grenzen konstant halten. 
Für die Boucherot-Schaltung gibt es also zwei Möglichkeiten der Realisierung: entweder 
ist Z1 ein kapazitiver Widerstand und Z2 ein induktiver Widerstand oder umgekehrt Z1 ist 
ein induktiver Widerstand und Z2 ein kapazitiver Widerstand, die in Resonanz sind: 

 
Z1 � Z2 �

1
j�C

� j�L  

1 2
1Z Z j L 0
C

" #� � � � � � �$ %�& '
 

 
mit 1

�C
� �L  

 
bzw. Z1 � Z2 � j�L �

1
j�C

 

1 2
1Z Z j L 0
C

" #� � � � � �$ %�& '
 

mit  �L �
1

�C
 

Der Belastungsstrom i3 ist dann der anliegenden Spannung u um 90° voreilend bzw. um 
90° nacheilend, weil der Operator zwischen I3 und U positiv imaginär bzw. negativ ima-
ginär ist: 

 
I3 �

Z2 � U
Z1Z2 � Z3 � (Z1 � Z2 )

�
Z2 � U
Z1Z2

�
U
Z1

� Y1 � U  

 
I3 � j�C � U � j � C

LC
� U bzw. I3 �

1
j�L

� U � � j � LC
L

� U  

 
I3 � j � C

L
� U  I3 � � j � C

L
� U  
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4.6.3  Wechselstrom-Messbrückenschaltungen 

Anwendung von Wechselstrom-Messbrücken 
Wechselstrom-Messbrücken werden zur Bestimmung von unbekannten Scheinwiderstän-
den, Induktivitäten und Gegeninduktivitäten, Kapazitäten, Verlustwinkeln von Spulen 
und Kondensatoren und Spannungs- und Stromfrequenzen verwendet. 

Grundsätzlicher Aufbau und Abgleichbedingung 
Die Wechselstrombrücke, dargestellt im Bildbereich mit komplexen Effektivwerten und 
komplexen Operatoren, heißt „abgeglichen“, wenn der Diagonalzweig CD stromlos ist,   
d. h. wenn iA = 0 bzw. IA = 0 und die Spannung uCD = 0 bzw. UCD = 0 sind. 
 

Bild 4.120 
Grundsätzlicher Aufbau der Wechsel-
strombrücke im Bildbereich  

 
Da die Punkte C und D dann gleiches Potential haben, sind auch die Spannungen über 
den Widerständen Z1 und Z3 bzw. Z2 und Z4 gleich: 

 

UCA � UDA UBC � UBD
Z1 � I1 � Z3 � I3 Z2 � I2 � Z4 � I4

 

Werden beide Gleichungen dividiert 

 

Z1 � I1
Z2 � I2

�
Z3 � I3
Z4 � I4

 

und berücksichtigt, dass  I1 = I2  und  I3 = I4, dann vereinfacht sich der Quotient beider 
Gleichungen: 

 

Z1
Z2

�
Z3
Z4

. (4.166) 

Ist die Wechselstrombrücke abgeglichen, dann stehen die komplexen Widerstände in 
einem bestimmten Verhältnis zueinander. Sind drei komplexe Widerstände bekannt, dann 
lässt sich ein vierter unbekannter komplexer Widerstand bestimmen. 
Die Abgleichbedingung der Wechselstrombrücke erinnert an die Abgleichbedingung der 
Gleichstrombrücke nach Wheatstone (siehe Band 1, Abschnitt 2.2.7, Gl.2.108): 

 

R1
R2

�
R3
R4

. 
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Werden die komplexen Widerstände in Betrag und Phase dargestellt, dann sind die Quo-
tienten der entsprechenden Scheinwiderstände und die Differenzen der Phasenwinkel 
gleich: 

 

Z1 � e j�1

Z2 � e j�2
�

Z3 � e j�3

Z4 � e j�4
oder

Z1
Z2

e j(�1��2 ) �
Z3
Z4

e j(�3��4 )  

oder 

 

Z1
Z2

�
Z3
Z4

und �1 � �2 � �3 � �4. (4.167) 

Die Wechselstrombrücke muss „nach Betrag und Phase abgeglichen“ werden. 

Vergleich von Wechselstromwiderständen gleicher Art 
Soll ein unbekannter Kondensator mit einem bekannten Normalkondensator oder eine 
unbekannte Spule mit einer bekannten Normalspule verglichen werden, dann sind diese in 
der Wechselstrombrücke jeweils nebeneinander anzuordnen. Die beiden restlichen neben-
einander liegenden Wechselstromwiderstände sind ohmsche Widerstände: 
 

Bild 4.121 
Vergleich von Wechselstromwiderständen 
gleicher Art 

 
 
Die Abgleichbedingung lautet dann allgemein 

 

R1
R2

�
Z3
Z4

und �3 � �4  (4.168) 

 mit �1 � 0 und �2 � 0  

 
Beispiel 1: Vergleich zweier idealer Kondensatoren: „Kapazitäts-Messbrücke“ 

 

 
Mit 

1 1 2 2

3 4
3 4

Z R Z R
1 1Z Z

j C j C

� �

� �
� �

 

lautet die Abgleichbedingung: Bild 4.122 Kapazitäts-Messbrücke 

 

R1
R2

�
j�C4
j�C3

�
C4
C3

 (4.169) 
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Ist die Kapazität C3 = Cx unbekannt und die ohmschen Widerstände R1 und R2 und die Kapa-
zität C4 sind bekannt, dann wird nach Erreichen des Abgleichs mit einem Strommesser 
oder einem Oszilloskop Cx berechnet: 

Cx = 2
3 4

1

RC C
R

�  (4.170) 

Beispiel 2: Vergleich zweier verlustbehafteter Kondensatoren: 
Wird für verlustbehaftete Kondensatoren jeweils die Reihenschaltung als Ersatzschaltung 
gewählt, dann betragen die komplexen Widerstände der Messbrücke: 

 

1 1 2 2

3 r3 4 r4
r3 r4

Z R Z R
1 1Z R Z R

j C j C

� �

� � � �
� �

 

Die Abgleichbedingung lautet dann 

r3
1 r3

2 r4
r4

1R
R j C

1R R
j C

�
�

�
�

�

                (4.171) Bild 4.123 Wechselstrombrücke mit 
verlustbehafteten Kondensatoren 

Ist der verlustbehaftete Kondensator Z3 unbekannt und sind die übrigen Elemente der 
Brückenschaltung durch den Abgleich ermittelt, dann empfiehlt es sich, die Abgleichbedin-
gung nach Z3 aufzulösen, weil die gesuchten Größen Rr3 und Cr3 im Real- und Imaginärteil 
getrennt auftreten: 

 
Z3 �

R1
R2

Z4 �
R1
R2

Rr4 �
R1
R2

1
j�Cr4

� Rr3 �
1

j�Cr3
 

d.h.    Rr3 � Rrx �
R1
R2

Rr4 und Cr3 � Crx �
R2
R1

Cr4  (4.172) 

Sind die ohmschen Widerstände R1 und R2 gleich, dann ist Rr3 = Rr4 und Cr3 = Cr4. 
 
Beispiel 3:  Vergleich zweier Spulen 
Die Ersatzschaltungen zweier Spulen, deren ohmschen Verluste nicht zu vernachlässigen 
sind, sollen Reihenschaltungen sein. Die komplexen Widerstände betragen dann: 

 

1 1 2 2

3 r3 r3 4 r4 r4

Z R Z R
Z R j L Z R j L

� �
� � � � � �

 

Die Abgleichbedingung lautet dann 
 

1 r3 r3

2 r4 r4

R R j L
R R j L

� �
�

� �
 

Bild 4.124 Vergleich zweier Spulen 
 
 oder    R1Rr4 + j�R1Lr4 = R2Rr3 + j�R2Lr3 (4.173) 
 
Durch Vergleich des Realanteils und des Imaginäranteils beider Seiten der Gleichung ergibt 
sich 

    R1Rr4 = R2Rr3   und   R1Lr4 = R2Lr3 

oder    1 r3 1 r3

2 r4 2 r4

R R R Lund .
R R R L

� �  (4.174)  

In der Messtechnik werden Spulen nicht mit Spulen, sondern mit Kondensatoren verglichen, 
weil Normalkapazitäten genauer als Normalinduktivitäten herstellbar sind. 



4.6  Spezielle Schaltungen der Wechselstromtechnik 131 

Vergleich von Wechselstromwiderständen verschiedener Art 
Soll eine unbekannte Spule mit einem bekannten Normalkondensator oder ein unbekann-
ter Kondensator mit einer bekannten Normalspule verglichen werden, dann sind diese in 
der Wechselstrombrücke jeweils gegenüber anzuordnen. Die beiden restlichen gegenüber 
liegenden Wechselstromwiderstände sind ohmsche Widerstände: 

Bild 4.125 
Vergleich von Wechselstromwiderständen       
verschiedener Art 

 
 

Die Abgleichbedingung lautet dann allgemein 

 

R1
Z2

�
Z3
R4

 und – �2 = �3 (4.175) 

mit   �1 = 0 und �4 = 0 
 

Beispiel: Vergleich eines verlustbehafteten Kondensators mit einer Spule: „Maxwell-Wien-
Brücke“ 
Für den verlustbehafteten Kondensator wird die Parallelschaltung und für die Spule die Rei-
henschaltung verwendet. Die komplexen Widerstände betragen dann: 

 

1 1 2
p2

p2

3 r3 r3 4 4

1Z R Z 1 j C
R

Z R j L Z R

� �
� �

� � � �

 

Die Abgleichbedingung lautet dann mit 

1 3
2 4

1 1R Z
Z R

� � �  

1 p2 r3 r3
p2 4

1 1R j C (R j L )
R R

" #
� � � � � � �$ %$ %
& '

 
Bild 4.126 Maxwell-Wien-Brücke 

 

R1
Rp2

� j�R1Cp2 �
Rr3
R4

� j� �
Lr3
R4

 (4.176) 

Durch Vergleich des Realanteils und des Imaginäranteils beider Seiten der Gleichung ergibt 
sich: 

1 r3 r3
1 p2

p2 4 4

R R Lund R C .
R R R

� �  (4.177) 

Wie erwähnt, werden Spulen mit Kondensatoren verglichen, weil Normalkapazitäten genauer 
herstellbar sind: die Maxwell-Wien-Brücke ermöglicht die messtechnische Ermittlung von 
Spulendaten Rr3 und Lr3 mit Hilfe der restlichen Brückenelemente:  
Der Abgleich der Brücke erfolgt zunächst mit Gleichstrom, bis die Gleichstrom-
Abgleichbedingung erfüllt ist. Für Gleichstrom bedeutet die Induktivität Lr3 kurzgeschlossen 
und der Kondensator Cp2 eine Unterbrechung. 
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Der anschließende Wechselstrom-Abgleich bei beliebiger Frequenz wird mit einem Oszil-
loskop kontrolliert: die Widerstände Rp2 und R4 müssen gleichzeitig variiert werden, damit 
die Gleichstrom-Abgleichbedingung erfüllt bleibt. Für die veränderliche Kapazität Cp2 stehen 
Normkondensatoren mit geringen Verlusten zur Verfügung. 
Schließlich werden die unbekannten Spulen-Ersatzelemente mit den ermittelten Brückenele-
menten errechnet: 

1
3 r3 r3 4 1 4 p2

p2

RZ R j L R j R R C
R

� � � � � �  

d. h.   Rr3 � Rrx �
R1

Rp2
R4 und Lr3 � Lrx � R1R4Cp2  (4.178) 

Zahlenbeispiel: 
Eine Spule mit unbekannten Daten ist mit veränderlichen ohmschen Widerständen R1, R4, 
Rp2 und der veränderlichen Kapazität Cp2 zur Maxwell-Wien-Brücke zusammengeschaltet 
und ergibt bei Abgleich mit Gleich- und Wechselspannung 

R1 = 144� R4 = 50� Rp2 = 600� Cp2 = 5,6�F. 
Die Spulendaten betragen dann 

Rr3 = 6
rx r3 rx

144R 50 12 L L 144 50 5,6 10 F 40mH
600

��
� � � � � � � � � � � � �

�
 

Andersonbrücke und Illiovicibrücke 
Die Daten von Spulen lassen sich nicht nur mit Hilfe der Maxwell-Wien-Brücke, sondern 
auch mit der Illiovicibrücke und der Andersonbrücke messtechnisch erfassen. Wegen der 
Kapazität C in der Illiovicibrücke und wegen des ohmschen Widerstands R4 in der An-
dersonbrücke kann die allgemeine Abgleichbedingung für Wechselstrombrücken nicht 
einfach verwandt werden. 
Deshalb wurden im Abschnitt 4.4 im Beispiel 10 für die Illiovicibrücke und in der 
Übungsaufgabe 4.18 für die Andersonbrücke (Lösung im Anhang) Dreieck-Stern-
Transformationen und Stern-Dreieck-Transformationen vorgenommen, damit die allge-
meine Abgleichbedingung verwendet werden kann. 
 

 
 

Bild 4.127 Illiovicibrücke Bild 4.128 Andersonbrücke 
 
Die Abgleichbedingungen für die beiden Brücken können aber auch mit Hilfe der Strom-
teilerregel hergeleitet werden, indem von der Gleichheit von Spannungen bei Abgleich 
ausgegangen wird, genauso wie bei der Herleitung der allgemeinen Abgleichbedingung 
zu Beginn dieses Abschnitts. Die Herleitung soll hier nur für die Andersonbrücke erfol-
gen: 
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Da die Punkte C und D gleiches Potential haben, sind auch die entsprechenden Spannun-
gen gleich: 

CA DA BC BD

1 3 2 4

r1 r1 1 3 3 5 5 2 2 4

U U U U
U U U U

1(R j L ) I R I R I R I I
j C

� �
� �

� � � � � � � � � �
�

 

Werden beide Gleichungen dividiert 

r1 r1 1 3 3 5 5

2 2 4

(R j L ) I R I R I
1R I I

j C

� � � � �
�

� �
�

 (4.179) 

und berücksichtigt, dass I1 = I2 und I4 = I5, dann vereinfacht sich der Quotient beider 
Gleichungen: 

3r1 r1
3 5

2 5

IR j L j R C j R C.
R I
� �

� � � � �  

Mit der Stromteilerregel ergibt sich für das Verhältnis der Ströme 
5 4

3 4 5

I R ,
1I R R

j C

�
� �

�

 

eingesetzt in die obige Gleichung: 

 

Rr1 � j�Lr1
R2

� j�R3C �
R4 � R5 �

1
j�C

R4
� j�R5C  

r1 r1 5
3 5

2 2 4 4

R L R 1j j R C 1 j R C
R R R j R C

" #
� � � � � � � � � �$ %�& '

 

 

Rr1
R2

� j� �
Lr1
R2

� j�R3C � j�R3C �
R5
R4

�
R3
R4

� j�R5C  

Durch Vergleich des Realanteils und des Imaginäranteils beider Seiten der Gleichung 
folgt die Abgleichbedingung der Andersonbrücke: 

r1 3 r1 3 5
3 5

2 4 2 4

R R L R Rund C R R
R R R R

" #
� � � � �$ %

& '
 (4.180) 

Die Gleichungen für die Spulendaten lauten 

2 5 5
r1 3 r1 2 3

4 4 3

R R RR R und L CR R 1 .
R R R

" #
� � � � � �$ %

& '
 (4.181) 

Für die Illiovicibrücke lassen sich die Gleichungen für die Spulendaten völlig analog 
herleiten und ergeben: 

2 5
r1 3 5 r1 2 3

4 4

R RR (R R ) und L CR R 1
R R

" #
� � � � �$ %

& '
 (4.182) 
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Schering-Messbrücke 
Um Verluste von Hochspannungskabeln in Abhängigkeit von der Spannung erfassen zu 
können, werden Kabelproben hergestellt (Ersatzschaltung: Reihenschaltung von Rr2 und 
Cr2) und in der Schering-Messbrücke mit einem Normalkondensator (mit Pressgas gefüll-
ter Zylinderkondensator, C4) und mit variierbaren Normwiderständen (R1 und Rp3) und 
mit variierbaren Normkondensatoren (Cp3) verglichen. 

 

Mit 

 

Z1 � R1 Z2 � Rr2 �
1

j�Cr2

Z3 �
1

1
Rp3

� j�Cp3

Z4 �
1

j�C4

 

Bild 4.129 Schering-Messbrücke 
 

ergibt sich für den unbekannten Wechselstromwiderstand 

1
2 1 4 p3 r2

3 4 p3 r2

1 R 1 1Z Z Z j C R
Z j C R j C

" #
� � � � � � � � �$ %$ %� �& '

 

 
Rr2 �

1
j�Cr2

�
1

j�C4
�

R1
Rp3

� R1 �
Cp3
C4

 

und damit 

 
Rr2 � R1 �

Cp3
C4

und Cr2 � C4 �
Rp3
R1

. (4.183) 

Der Verlustwinkel �r ist der Ergänzungswinkel des Phasenverschiebungswinkel �r zu 
90° und damit ein Maß für die Verluste (Isolationsfähigkeit) von Hochspannungskabeln. 
In Zeigerbildern lässt sich der Zusammenhang zwischen Verlustwinkel, Verschiebungs-
winkel und Widerständen ablesen: 
Für den Tangens des Verlustwinkels ergibt sich 

 

 

tan�r �
Rr2

1
�Cr2

� � � Rr2 � Cr2  (4.184)

und mit der Abgleichbedingung 
p3 p3

r 1 4
4 1

C R
tan R C

C R
" # " #

� � � � � � �$ % $ %
& ' & '

 

 
tan�r � � � Rp3 � Cp3  (4.185)

Bild 4.130 Zeigerbilder der Schering-
Messbrücke 
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Die Ersatzschaltung der Kabelprobe kann auch als äquivalente Parallelschaltung ange-
nommen werden. Bei Abgleich der Brücke ist der tan�p = �Rp3Cp3  gleich, wenn die 
gleiche Kabelprobe untersucht wird. 

Frequenz-Messbrücken 
Um Spannungs- oder Stromfrequenzen mittels Messbrücken ermitteln zu können, muss 
die Abgleichbedingung frequenzabhängig sein. Sie kann aus der allgemeinen Abgleich-
bedingung (Gl. 4.166) hergeleitet werden. Für die im Bild 4.131 dargestellte Frequenz-
Messbrücke nach Wien betragen die komplexen Widerstände: 

 

 

Z1 � R1 Z2 � R2

Z3 � Rr3 �
1

j�Cr3
Z4 �

1
1

Rp4
� j�Cp4

 

Die Abgleichbedingung lautet dann 
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Bild 4.131 Frequenz-Messbrücke 
nach Wien 
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d. h.    
 

R1
R2

�
Rr3
Rp4

�
Cp4

Cr3
und �Rr3Cp4 �

1
�Rp4Cr3

 

bzw.   

 

� �
1

Rr3Cr3Rp4Cp4
 (4.186) 

Die Wien-Brücke lässt sich mit 

R1 = 2 · R2, Cr3 = Cp4 = C und Rr3 = Rp4 = R 

in die Wien-Robinson-Brücke überführen. Dadurch wird die Gleichung für die zu mes-
sende Kreisfrequenz � einfacher: 

 
� �

1
R � C

. (4.187) 

Der Messbereich der Frequenz-Messbrücken umfasst Frequenzen f von 30Hz bis 100kHz. 
 
 
 
 



136 4 Wechselstromtechnik

Übungsaufgaben zum Abschnitt 4.6

4.26 1. Entwickeln Sie für die Polekschaltung (Bild 4.116) den Widerstandsoperator zwischen den
komplexen Effektivwerten I1 und U.

2. Bestätigen Sie die Formel für die parallel geschaltete Kapazität Cp (Gl. 4.161), bei der
zwischen dem Strom i1 und der Spannung u eine Phasenverschiebung von 90° besteht.

3. Bei welcher Kreisfrequenz � sind der Strom i1 und die Spannung u in Phase und bei wel-
cher Kreisfrequenz � sind sie um 180° phasenverschoben? Ermitteln Sie für beide Fälle die
Ersatzwiderstände der Schaltung.

4.27 1. Für die Polekschaltung (Bild 4.116) ist die erforderliche Kapazität Cp zu errechnen, die eine
Phasenverschiebung von 90° zwischen dem Strom i1 und der Spannung u ermöglicht, wenn

Rr1 = 200�, Lr1 = 400mH, Rr2 = 100�, Lr2 = 200mH

und die Frequenz der anliegenden Spannung f = 200Hz betragen.

2. Das Ergebnis soll durch ein quantitatives Zeigerbild kontrolliert werden, indem für den
Strom I1 = 20mA angenommen werden.

3. Für die berechnete Parallelkapazität Cp können aber auch Phasenverschiebungen von
0° und 180° zwischen dem Strom i1 und der Spannung u bei verschiedenen Kreisfrequen-
zen � auftreten. Ermitteln Sie die Kreisfrequenzen und die Ersatzwiderstände.

Kontrollieren Sie das Ergebnis für die Phasenverschiebung von 180° mit Hilfe eines quanti-
tativen Zeigerbildes, indem Sie wieder von I1 = 20mA ausgehen.

4.28 Mit Hilfe der dargestellten Wechselstrom-Messbrücke können ohmsche Widerstände und
Induktivitäten von verlustbehafteten Spulen messtechnisch ermittelt werden.

1. Entwickeln Sie aus der allgemeinen Abgleichbedingung für Wechselstrombrücken die
Formeln für Rr3 und Lr3. Ist der Abgleich frequenzabhängig?

2. Vergleichen Sie das Ergebnis mit dem der Maxwell-Wien-Brücke.

3. Vereinfachen Sie die Formeln für Rr3 und Lr3 mit � · Rr2 · Cr2 = 1.

Ist dann der Abgleich frequenzabhängig?

Bild 4.132
Übungsaufgabe 4.28

4.29 Drei Wechselstrombrücken mit ohmschen Widerständen und Kapazitäten sollen verglichen
werden.

Bild 4.133 Übungsaufgabe 4.29

Leiten Sie die Abgleichbedingungen der drei Brücken her. Sind die Abgleichbedingungen frequenz-
abhängig oder nicht? Wozu werden die drei Wechselstrombrücken gebraucht?
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4.30  Mit Hilfe der Illiovici-Brücke (siehe Bild 4.127) können verlustbehaftete Spulen messtech-
nisch erfasst werden. 

  1. Leiten Sie die Abgleichbedingung mit Hilfe der Stromteilerregel her und entwickeln Sie 
daraus die Formeln für Rr1 und Lr1, wenn die restlichen Brückenelemente gegeben sind. 

  2. Ist der Abgleich frequenzabhängig? 
 
4.31  Mit Hilfe der im Bild 4.134 dargestellten Wechselstrombrücke können Gegeninduktivitäten 

M messtechnisch ermittelt werden. 
 

 

Bild 4.134 
Übungsaufgabe 4.31 

 
  1. Leiten Sie die Abgleichbedingung für die Brücke her. 
  2. Die Abgleichbedingung bedeutet eine Transformation der Brücke in eine Wechsel-

strombrücke mit den vier komplexen Widerständen, die anzugeben sind. 
 
4.32  Das Ersatzschaltbild des unbekannten verlustbehafteten Kondensators in der Schering-

Messbrücke soll eine Parallelschaltung von Rp2 und Cp2 sein. 
 
 

 
Bild 4.135 
Übungsaufgabe 4.32 

 
 
  1. Ermitteln Sie aus der allgemeinen Abgleichbedingung für Wechselstrombrücken die 

Formeln für Rp2 und Cp2. 
  2. Für den Verlustwinkel �p = �/2 – �p ist dann der tan �p in Abhängigkeit von den be-

kannten Brückenelementen zu bestimmen. Nehmen Sie das Zeigerbild des verlustbehaf-
teten Kondensators (Parallelschaltung) und das Leitwertdreieck zu Hilfe. 

  3. Kontrollieren Sie das Ergebnis für tan �p, indem Sie die Parallelschaltung in die äquiva-
lente Reihenschaltung umwandeln und die Formel für tan �r verwenden. 

 
 
 
 



138 4  Wechselstromtechnik 

4.7  Die Leistung im Wechselstromkreis 

4.7.1 Augenblicksleistung, Wirkleistung, Blindleistung, Scheinleistung und 
komplexe Leistung 

Gleichstromleistung – Wechselstromleistung 
In einem Gleichstromkreis ist die Leistung zeitlich konstant, weil die Spannung und der 
Strom zeitlich konstant sind: 

P = U · I. 
In Wechselstromkreisen sind die Spannung und der Strom sinusförmig veränderliche 
Größen, so dass auch das Produkt – die Augenblicksleistung – zeitlich veränderlich sein 
muss: 

p = u · i. (4.188) 
Um die Wechselstromleistung mit der Gleichstromleistung vergleichen zu können, wird 
der arithmetische Mittelwert der Augenblicksleistung gebildet: 

P =

 

1
T

p(t)
0

T

� � dt �
1

2�
p(�t)

0

2�

� � d(�t) . (4.189) 

Im Folgenden soll beschrieben werden, wie die Wechselstromleistung im ohmschen, 
induktiven und kapazitiven Widerstand und schließlich im beliebigen Wechselstromwi-
derstand erfasst werden kann. 

Leistung im ohmschen Widerstand 
Spannung u und Strom i sind im ohmschen Widerstand R in Phase, die Phasenverschie-
bung � ist Null: 

� = �u – �i = 0 
Werden die Anfangsphasenwinkel �u = �i = 0 gewählt, dann ergibt sich 

mit   u = û · sin �t   und   i = î · sin �t 

für die Augenblicksleistung 

p = 2
ˆû iˆˆu i u i sin t (1 cos 2 t)

2
�

� � � � � � � � �  

weil 

sin2�t =
 

1
2

� (1� cos 2�t).  

Mit 
ˆû iU und I

2 2
� �  

ergibt sich für die Augenblicksleistung im ohmschen Widerstand R 

p = u · i = U · I · (1 – cos2�t). (4.190) 
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Da die Kosinusfunktion die Werte zwischen – 1 und + 1 annehmen kann, schwankt der
Augenblickswert der Leistung im ohmschen Widerstand mit der doppelten Kreisfrequenz
2� zwischen den Werten 0 und 2·U·I (siehe Bild 4.136).

Der arithmetische Mittelwert lässt sich durch Integration der Augenblicksleistung über die
Periode berechnen:

P =
1

2�
p(�t)

0

2�

� ( d(�t)

P =
U � I

2�
� (1� cos 2�t)

0

2�

, � d(�t)

P =
U � I

2�
� d(�t)

0
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� � cos 2�t

0
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0

2� �
sin 2�t

2

2�

0

�

�
	
	

�

�





P =
U � I

2�
� 2�

P = U · I (4.191)

Mit

U = R · I und I =
U

R

ist der Mittelwert der Augenblicksleistung auch

P = R � I2 =
U2

R
. (4.192)

Der arithmetische Mittelwert P wird Wirkleistung genannt, weil er hinsichtlich der Joule-
schen Wärme im Widerstand der gleichen Wirkung entspricht wie die Gleichstromleis-
tung P. Deshalb wird die Wirkleistung mit dem gleichen Buchstaben P gekennzeichnet.

Bild 4.136 Spannung, Strom und Augenblicksleistung im ohmschen Widerstand
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Leistung und magnetische Energie im induktiven Widerstand

Im induktiven Wechselstromwiderstand eilt die Spannung u dem Strom i um �/2 voraus.
Wird der Anfangsphasenwinkel des Stroms Null gewählt, dann ergibt sich mit

i = î · sin �t und u = û · sin (�t + �/2)

mit �i = 0 mit �u =
�
2

für die Augenblicksleistung

p = u · i = ˆû i� · sin �t · sin (�t + �/2)

mit

sin (�t + �/2) = cos �t und sin �t · cos �t =
1

2
sin 2�t

p =
û � î

2
� sin 2�t

und mit

û

2
= U und

î

2
= I

p = U · I · sin 2�t. (4.193)

Der Augenblickswert der Leistung im induktiven Wechselstromwiderstand ändert sich
sinusförmig mit der doppelten Kreisfrequenz 2� zwischen den Werten – U · I und + U · I
(siehe Bild 4.137).

Da

U = �L · I,

ist

p = �L · I2 · sin 2�t. (4.194)

Der arithmetische Mittelwert der Augenblicksleistung in der Induktivität L über die Periode
ist Null:
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P = 0 (4.195)
Der arithmetische Mittelwert der Augenblicksleistung in einem induktiven Wechsel-
stromwiderstand ohne ohmsche Anteile ist Null. In einer von einem sinusförmigen Strom
durchflossenen Induktivität entsteht keine Joulesche Wärme, weil die Energie nur aufge-
nommen und abgegeben wird, nicht aber in Wärme umgesetzt wird. Die Wirkleistung P
ist deshalb Null.
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Der Augenblickswert der magnetischen Energie ist dem Quadrat des Stroms i proportional
(siehe Band 1: Abschnitt 3.4.8.1, Gl. 3.383):

wm =
L � i2

2

wm =
L

2
� î2 � sin2 �t

und mit

sin2 �t =
1

2
( (1� cos 2�t)

wm =
L ( î2

2
(

1

2
( (1� cos 2�t)

und

î

2
= I bzw.

î2

2
= I2

ergibt sich

wm =
L ( I2

2
( (1� cos 2�t). (4.196)

Die magnetische Energie ändert sich mit der doppelten Kreisfrequenz 2� zwischen den
Werten 0 und L · I2, weil die Kosinusfunktion zwischen – 1 und + 1 pendelt.

Bei gleicher Richtung von Strom i und Spannung u wächst die gespeicherte magnetische
Energie in der Induktivität, bei entgegengesetzter Richtung von Strom i und Spannung u
wird die gespeicherte magnetische Energie kleiner, d. h. sie wird der Wechselstromquelle
zurückgeführt (siehe Bild 4.137).

Die Leistung p und die magnetische Energie wm hängen differentiell voneinander ab:

p =
d wm

dt
=

L ( I2

2
(

d

dt
(1� cos 2�t)

p = �L · I2 · sin2�t (vgl.Gl. 4.194)

Bild 4.137 Strom, Spannung, Augenblicksleistung und magnetische Energie im induktiven
Wechselstromwiderstand ohne ohmschen Anteil
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Leistung und elektrische Energie im kapazitiven Widerstand

Im kapazitiven Wechselstromwiderstand eilt der Strom i der Spannung u um �/2 voraus.
Wird der Anfangsphasenwinkel der Spannung Null gewählt, dann ergibt sich mit

u = û · sin �t und i = î · sin(�t + �/2)

mit �u = 0 mit �i = �/2

für die Augenblicksleistung

p = u · i = ˆû i� · sin �t · sin (�t + �/2)

mit

sin (�t + �/2) = cos �t und sin �t · cos �t =
1

2
sin 2�t

p =
û � î

2
� sin 2�t

und mit

û

2
= U und

î

2
= I

p = U · I · sin 2�t. (4.197)

Der Augenblickswert der Leistung im kapazitiven Wechselstromwiderstand ändert sich
sinusförmig mit der doppelten Kreisfrequenz 2� zwischen den Werten – U · I und + U · I
(siehe Bild 4.138).

Da

I = �C · U,

ist

p = �C · U2 · sin 2�t. (4.198)

Der arithmetische Mittelwert der Augenblicksleistung in der Kapazität C über die Periode
ist genauso wie in der Induktivität Null:

P =
1

2�
( p(�t)

0

2�

� ( d(�t)

P =
U ( I

2�
( sin 2�t

0

2�

� ( d(�t)

P = 0 (4.199)

Der arithmetische Mittelwert der Augenblicksleistung in einem kapazitiven Wechsel-
stromwiderstand ohne ohmsche Anteile ist Null. In einer von einem sinusförmigen Strom
durchflossenen Kapazität entsteht keine Joulesche Wärme, weil die Energie nur aufge-
nommen und abgegeben wird, nicht aber in Wärme umgesetzt wird. Die Wirkleistung P
ist deshalb Null.
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Der Augenblickswert der elektrischen Energie ist dem Quadrat der Spannung u proportio-
nal (siehe Band 1: Abschnitt 3.3.5, Gl. 3.109):

we =
C � u2

2

we =
C

2
� û2 � sin2 �t

und mit

sin2�t =
1

2
( (1� cos2 �t)

we =
C ( û2

2
(

1

2
( (1� cos 2�t)

und

û

2
= U bzw.

û2

2
= U2

ergibt sich

we =
C ( U2

2
( (1� cos 2�t). (4.200)

Die elektrische Energie ändert sich mit der doppelten Kreisfrequenz 2� zwischen den
Werten 0 und C · U2, weil die Kosinusfunktion zwischen – 1 und + 1 pendelt. Bei gleicher
Richtung von Strom i und Spannung u wächst die gespeicherte elektrische Energie in der
Kapazität, bei entgegengesetzter Richtung von Strom i und Spannung u wird die gespei-
cherte elektrische Energie kleiner, d. h. sie wird der Wechselstromquelle zurückgeführt
(siehe Bild 4.138).

Die Leistung p und die elektrische Energie we hängen differentiell voneinander ab:

p =
d we

dt
=

C ( U2

2
(

d

dt
(1� cos 2�t)

p = �C · U2 · sin2�t (vgl. Gl.4.198)

Bild 4.138 Strom, Spannung, Augenblicksleistung und elektrische Energie im kapazitiven
Wechselstromwiderstand ohne ohmschen Anteil
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Augenblicksleistung eines beliebigen Wechselstromwiderstandes

Wirkleistung, Blindleistung, Scheinleistung

Bei einem beliebigen Wechselstromwiderstand besteht zwischen dem Strom i und der
Spannung u eine Phasenverschiebung � mit – �/2 < � < �/2. Wird der Anfangsphasen-
winkel der Spannung Null gewählt, dann ergibt sich mit

u = û · sin �t und i = î · sin(�t – �)

mit �u = 0 mit �i = �u – � = – �

für die Augenblicksleistung

p = u · i = ˆû i� · sin �t · sin (�t – �)

mit sin � � sin � =
1

2
� [cos(� � �) � cos(� + �)]

und � = �t und � = �t – �

p =
û � î

2
� [cos(�t � �t + �) � cos(�t + �t � �)]

und mit
û

2
= U und

î

2
= I

p = U · I · cos � – U · I · cos(2�t – �) (4.201)

Die Wirkleistung P ist gleich dem arithmetischen Mittelwert der Augenblicksleistung:
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mit sin (4� – �) = – sin � und sin (– �) = – sin �

P = U · I · cos � (4.202)

Die Augenblicksleistung p im beliebigen Wechselstromwiderstand schwankt um den
Mittelwert P = U · I · cos � mit der doppelten Kreisfrequenz 2� mit der Amplitude U · I
(siehe Bilder 4.139 und 4.140).
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Im Bild 4.139 sind in einem Diagramm die Verläufe des Stroms, der Spannung und der
Augenblicksleistung für einen verlustbehafteten induktiven Wechselstromwiderstand
dargestellt, wobei der Anfangsphasenwinkel der Spannung Null und die Phasenverschie-
bung � = �/3 bzw. 60° sind:

Bild 4.139 Strom, Spannung und Augenblicksleistung im verlustbehafteten induktiven
Wechselstromwiderstand

Für einen verlustbehafteten kapazitiven Wechselstromwiderstand ist die Phasenverschie-
bung � negativ. Im Bild 4.140 sind die Verläufe des Stroms, der Spannung und der Au-
genblicksleistung für eine Phasenverschiebung � = – �/3 bzw. – 60° dargestellt. Der
Anfangsphasenwinkel der Spannung ist unverändert Null:

Bild 4.140 Strom, Spannung und Augenblicksleistung im verlustbehafteten kapazitiven
Wechselstromwiderstand

Die Augenblicksleistung p pendelt also mit der doppelten Kreisfrequenz 2� mit der Amp-
litude U · I um den Mittelwert P = U · I · cos �.

Bei verlustlosen induktiven und kapazitiven Wechselstromwiderständen pendelt sie mit
� = �/2 bzw. � = – �/2 und P = 0 um die �t-Achse (siehe Bilder 4.137 und 4.138).

Mit steigenden ohmschen Anteilen wird die Wirkleistung P größer, um den die Augen-
blicksleistung p pendelt (siehe Bilder 4.139 und 4.140).

Bei ohmschen Wechselstromwiderständen erreicht die Wirkleistung P mit � = 0 das
Maximum, und die Augenblicksleistung p pendelt auf der �t-Achse um P = U · I (siehe
Bild 4.136).

Der Maximalwert der Wirkleistung bei � = 0 und cos � = 1, also bei ohmschenWechsel-
stromwiderständen, wird Scheinleistung S genannt:

S = U · I (4.203)
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Die Abweichung der Wirkleistung P bei beliebigen Wechselstromwiderständen von der
Scheinleistung S bei ohmschen Widerständen wird durch den Leistungsfaktor cos) er-
fasst:

cos) =
P

S
. (4.204)

Die Augenblicksleistung p kann auch als Überlagerung von zwei sinusförmigen Anteilen
aufgefasst werden, wodurch durch die Einführung einer Blindleistung ein Maß für die
gespeicherte Leistung gefunden wird. Dabei wird die Gl. (4.201) folgendermaßen umge-
schrieben:

p = U · I · cos � – U · I · cos (2�t – �)

p = P – S · cos (2�t – �)

mit cos (� – �) = cos � · cos � + sin � · sin �

und � = 2�t und � = �
ergibt sich

p = P – S · cos 2�t · cos � – S · sin 2�t · sin �

p = P – S · cos � · cos 2�t – S · sin � · sin 2�t

p = P – P · cos 2�t – Q · sin 2�t

p = P · (1 – cos 2�t) – Q · sin 2�t (4.205)

wobei Q = S · sin � (4.206)

Blindleistung genannt wird. Für induktive Wechselstromwiderstände ist sie wegen der
positiven Phasenverschiebung (� > 0) positiv, für kapazitive Wechselstromwiderstände ist
sie wegen der negativen Phasenverschiebung (� < 0) negativ. Nach Gl. (4.205) besteht
damit die Augenblicksleistung p aus zwei sinusförmigen Anteilen (Bild 4.141):

P · (1 – cos 2�t)

ist die Augenblicksleistung für ohmsche Widerstände (Gl.4.190) mit P = U · I und
cos) = 1 und entspricht damit bei beliebigen Wechselstromwiderständen der Leistung,
die im ohmschen Anteil in Wärme umgesetzt wird.

– Q · sin 2�t

ist die zwischen Wechselstromquelle und induktiven bzw. kapazitiven Widerstand pen-
delnde Leistung. Der Mittelwert der zeitlichen Blindleistung – Q · sin 2�t ist Null. Des-
halb ist die Blindleistung Q im Sinne der Wirkleistung P kein Mittelwert, sondern eine
angenommene Leistung. Sie belastet die Energiequelle im Mittel nicht, weil keine Ener-
gieumformung vor sich geht. Eine strommäßige Belastung von der Wechselstromquelle
zum Speicherelement ist allerdings vorhanden, die auf den Leitungen ohmsche Leistungs-
verluste mitsichbringt.

Leistungseinheiten

Zur Unterscheidung der drei Leistungsarten werden die Einheiten nach DIN 40110 festge-
legt:

Scheinleistung S in VA (Voltampere)
Wirkleistung P in W (Watt)
Blindleistung Q in Var (Voltampere reaktiv, d. h. über die Leitungen

zur Energiequelle „rückwirkend“)
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Beispiel:

Für einen verlustbehafteten induktiven Wechselstromwiderstand soll die Augenblicksleistung
p nach Gl. (4.205) als Überlagerung des Wirkanteils P · (1 – cos2�t) und des Blindanteils
(– Q · sin 2�t) dargestellt werden, wenn die Scheinleistung S = U · I = 2kVA und die Pha-
senverschiebung � = �/3 bzw. 60° betragen.

Lösung:

Im Bild 4.139 ist der Verlauf der Augenblicksleistung p eines verlustbehafteten induktiven
Wechselstromwiderstands mit S = U · I = 2kVA und � = �/3 dargestellt. Nach Gl. (4.202) ist
die Wirkleistung

P = U · I · cos � = S · cos � = 2kVA · cos(�/3) = 2kVA · 0,5 = 1kW

und nach Gl. (4.206) die Blindleistung

Q = U · I · sin � = S · sin � = 2kVA · sin (�/3) = 2kVA ·
1

3
2

= 1,73kVar.

Nach Gl. (4.205) ergibt sich dann für die Augenblicksleistung p

p = P · (1 – cos 2�t) – Q · sin 2�t = 1kVA · (1 – cos 2�t) – 1,73kVA · sin 2�t

in Abhängigkeit von cot von 0 bis �:

�t 1 0 �/6 �/3 �/2 2�/3 5�/6 �

P (1 – cos 2�t) kVA 0 0,5 1,5 2,0 1,5 0,5 0

– Q · sin 2�t kVA 0 – 1,5 – 1,5 0 1,5 1,5 0

p kVA 0 – 1,0 0 2,0 3,0 2,0 0

Bild 4.141 Zerlegung der Augenblicksleistung in einen Wirkanteil und einen Blindanteil
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Sollen für einen beliebigen Wechselstromwiderstand die Wirkleistung P, die Blindleistung
Q und die Scheinleistung S berechnet werden, dann ist zunächst zu unterscheiden, welche
der äquivalenten Ersatzschaltungen – Reihenschaltung oder Parallelschaltung – für den
beliebigen Wechselstromwiderstand gewählt ist:

Reihenschaltung Parallelschaltung

Bild 4.142 Ersatzschaltung
eines Wechselstromwiderstandes
als Reihenschaltung

Bild 4.143 Ersatzschaltung
eines Wechselstromwiderstandes
als Parallelschaltung

Die Wirkleistung als Maß für die im ohmschen Widerstand umgesetzte Leistung ist

bei Reihenschaltung gleich dem Produkt
aus dem Strom I und der mit diesem in
Phase liegenden Spannungskomponente
UR:

bei Parallelschaltung gleich dem Produkt
aus der Spannung U und der mit dieser in
Phase liegenden Stromkomponente IR:

P = I · (U · cos �)

mit U · cos � = UR

(siehe Gl. 4.51)

P = I · UR

P = U · (I · cos �)

mit I · cos � = IR

(siehe Gl. 4.66)

P = U · IR

und mit UR = Rr · I und mit IR = G p � U =
U

Rp

P = I2 · Rr . (4.207) P = U2 �G p =
U2

Rp

. (4.208)

Die Wirkleistung ist für die Reihen- und Parallelschaltung gleich, wenn die Schaltungen
äquivalent sind. Wird in der Formel für P der Strom I durch die Spannung U und den
Scheinwiderstand Zr ersetzt

I =
U

Zr

=
U

Rr
2 + Xr

2
bzw. I2 =

U2

Zr
2

=
U2

Rr
2 + Xr

2

P = I2 � Rr =
U2 � Rr

Rr
2 + Xr

2
= U2 �G p,

dann bestätigt sich die Aussage durch die Transformationsgleichung (vgl. Gl. 4.72)

Gp =
Rr

Rr
2 + Xr

2
=

Rr

Zr
2

.
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Die Blindleistung Q als Maß für die gespeicherte Leistung ist

bei Reihenschaltung gleich dem Produkt
aus dem Strom I und der Spannungs-
komponente Ux, die um �/2 phasenver-
schoben ist:

bei Parallelschaltung gleich dem Produkt
aus der Spannung U und der Stromkom-
ponente –IB, die um �/2 phasenverscho-
ben ist:

Q = I · (U · sin �)

mit U · sin � = UX

(siehe Gl. 4.52)

Q = I · UX

Q = U · (I · sin �)

mit I · sin � = – IB

(siehe Gl. 4.67)

Q = U · (– IB)

und mit UX = Xr · I und mit IB = Bp · U

Q = I2 · Xr . (4.209) Q = – U2 · Bp . (4.210)

Für einen induktiven Wechselstromwiderstand ist die Blindleistung mit � > 0 positiv:

Q = I2 · �Lr (4.211) Q = U2 ·
p

1

L�
(4.212)

mit Xr = �Lr . mit Bp = �
1

�Lp

.

Für einen kapazitiven Wechselstromwiderstand ist die Blindleistung mit � < 0 negativ:

Q = – I2 ·
1

�Cr

(4.213) Q = – U2 · �Cp (4.214)

mit Xr = �
1

�Cr
. mit Bp = �Cp.

Die Blindleistung ist für die Reihen- und Parallelschaltung gleich, wenn die Schaltungen
äquivalent sind. Wird in der Formel für Q der Strom I durch die Spannung U und den
Scheinwiderstand Zr ersetzt

I =
U

Zr

=
U

Rr
2 + Xr

2
bzw. I2 =

U2

Zr
2

=
U2

Rr
2 + Xr

2

Q = I2 � Xr =
U2 � Xr

Rr
2 + Xr

2
= �U2 � Bp,

dann bestätigt sich die Aussage entsprechend durch die Transformationsgleichung
(Gl. 4.72):

Bp = �
Xr

Rr
2 + Xr

2
= �

Xr

Zr
2

.
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Die Scheinleistung S als Maß für die gesamte Leistung, d. h. die im ohmschen Widerstand
umgesetzte und die in den induktiven und kapazitiven Widerständen gespeicherte Leis-
tung, ist gleich dem Produkt aus der Spannung U und dem Strom I:

S = U · I

Bei Reihenschaltung ist Bei Parallelschaltung ist

U = Zr · I = Rr
2 + Xr

2 � I

und damit

S = I2 · Zr

S = I2 � Rr
2 + Xr

2 (4.215)

I = Yp � U = G p
2 + Bp

2 � U

und damit

S = U2 · Yp

S = U2 � G p
2 + Bp

2 (4.216)

Für einen induktiven Wechselstromwiderstand ist die Scheinleistung

S = I2 � Rr
2 + �2Lr

2 (4.217) S = U2 �
1

Rp
2

+
1

�2Lp
2

(4.218)

und für einen kapazitiven Wechselstromwiderstand

S = I2 � Rr
2 +

1

�2Cr
2

(4.219) S = U2 �
1

Rp
2

+ �2Cp
2 (4.220)

Die Scheinleistung ist für die Reihen- und Parallelschaltung gleich, wenn die Schaltungen
äquivalent sind. Wird in der Formel für S der Strom I durch die Spannung U und den
Scheinwiderstand Zr ersetzt

I =
U

Zr

bzw. I2 =
U2

Zr
2

S = I2 � Zr =
U2

Zr
2
� Zr =

U2

Zr

= U2 � Yp,

dann bestätigt sich die Aussage, denn für äquivalente Reihen- und Parallelschaltungen ist
der Scheinleitwert Yp der Parallelschaltung gleich dem Kehrwert des Scheinwiderstandes
Zr der Reihenschaltung:

Yp =
1

Zr

.

Beispiel:

An einen passiven Zweipol wird eine sinusförmige Wechselspannung mit dem Effektivwert
U = 220V und der Frequenz f = 50Hz angelegt, wodurch sich ein sinusförmiger Strom mit
einem Effektivwert I = 9,1A mit einer Phasenverschiebung � = – 60° einstellt.

1. Die Ersatzschaltbilder mit den Ersatzschaltelementen sind zu ermitteln.

2. Wirkleistung, Blindleistung und Scheinleistung für die beiden Ersatzschaltbilder sind zu
errechnen.

Anmerkung: Die Verläufe von u, i und p sind im Bild 4.140 dargestellt.
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Lösung:

Zu 1. Die Ersatzschaltungen sind wegen � < 0 die Reihenschaltung von Rr und Cr und die
Parallelschaltung von Rp und Cp:

Zr = Rr � j �
1

�Cr

= Zr � e j�

Zr =
U

I
cos) + j �

U

I
sin)

r
U 220 V

R cos cos( 60º )
I 9,1 A

= � = ( �

rR 12,1= �

r
I

C
U sin

= �
� � � �

r 1

9,1 A
C

2 50s 220 V sin ( 60º )�= �
� ( ( ( �

rC 152 F= μ

j
p p p

p

1
Y j C Y e

R
� �= + � = �

Yp =
I

U
cos� � j �

�
U

sin�

p
U 220 V

R
I cos 9,1 A cos( 60º )

= =
( � ( �

pR 48,4= �

p
I

C sin
U

= � � �
�

p 1

9,1 A sin ( 60º )
C

2 50s 220 V�
( �

= �
� ( (

pC 114 F= μ

Zu2. P = U · I · cos � = 220V · 9,1A · cos (– 60° ) = 1kW

P = I2 · Rr P =
2

p

U

R

P = (9,1A)2 · 12,1� = 1kW P =
2(220 V)

48,4 �
= 1kW

Q = U · I · sin � = 220V · 9,1A · sin (– 60° ) = – 1,73kVar

Q = 2 2
r

r

1
I X I

C

� �
( = ( �� ��	 


Q = – U2 · Bp = – U2 · �Cp

Q = 2
1

1
(9,1 A)

2 50s 152 F�
� �

( �� �� ( ( μ	 

Q = – (220V)2 · 2� · 50s–1 · 114μF

Q = – 1,73kVar Q = – 1,73kVar

S = U · I = 220V · 9,1A = 2kVA

S = I2 � Rr
2 +

1

�2Cr
2

S = U2 �
1

Rp
2 + �2Cp

2

mit
1

�2Cr
2

=
1

(2� �50s�1 �152μF)2
mit �2Cp

2 = (2� � 50s�1 �114 μF)2

1

�2Cr
2

= 438,5�2 �2Cp
2 = 1,283 (10�3S2

S = (9,1 A)2 · (12,1�)2 + 438,5�2 S = (220 V)2 ·
1

(48,4 �)2
+ 1,283 (10�3S2

S = 2kVA S = 2kVA
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Leistungsdreieck, Phasenverschiebung, Verlustfaktor

Sind zwei der drei Leistungen – Wirkleistung P, Blindleistung Q und Scheinleistung S –
bekannt, dann lässt sich mit

P2 + Q2 = S2 (4.221)

die dritte Leistung berechnen. Der Zusammenhang zwischen den drei Leistungen wird mit
P = S · cos � und Q = S · sin � nachgewiesen:

S2 · cos2� + S2 · sin2� = S2 · (cos2� + sin2�) = S2

mit cos2� + sin2� = 1.

Zwischen der Phasenverschiebung �, der Wirkleis-
tung P und der Blindleistung Q besteht der Zusam-
menhang

tan � =
Q

P
(4.222)

weil tan � =
S � sin)
S � cos)

.

Bild 4.144 Leistungsdreieck

Die Zusammenhänge zwischen den drei Leistungen und der Phasenverschiebung lassen
sich im Leistungsdreieck veranschaulichen (Bild 4.144), das mit der Definition der kom-
plexen Leistung in der Gaußschen Zahlenebene dargestellt wird (siehe Gl. 4.239 bis
Gl. 4.241).

Für Spulen und Kondensatoren ist der Phasenverschiebungswinkel � wegen der ohmschen
Verluste P kleiner als ein rechter Winkel:

| � | < �/2.

Je kleiner die Verluste sind, umso größer ist der Phasenverschiebungswinkel � und der
tan �, der Gütefaktor (auch Güte der Spule bzw. Güte des Kondensators) genannt wird:

g = tan) =
Q

P
. (4.223)

Entsprechend ist der Ergänzungswinkel des Phasenverschiebungswinkels � zu 90° bzw.
–90° ein Maß für die Verluste einer Spule bzw. eines Kondensators. Je größer die Verluste
P sind, umso größer ist der Verlustwinkel �:

� = �/2 – | � |. (4.224)

Der Verlustfaktor

d = tan � =
P

Q
(4.225)

ist also der Kehrwert des Gütefaktors:

d =
1

g
. (4.226)



4.7 Die Leistung im Wechselstromkreis 153

Ist die Ersatzschaltung der Spule oder
des Kondensators die

Reihenschaltung,

dann ergibt sich mit den Gl. (4.207) und
Gl. (4.209) für den Gütefaktor:

g = tan � =
Q

P
=

I2 � Xr

I2 � Rr

g = tan � =
Xr

Rr

(4.227)

und für den Verlustfaktor:

d = tan � =
Rr

Xr

. (4.229)

Ist die Ersatzschaltung der Spule oder
des Kondensators die

Parallelschaltung,

dann ergibt sich mit den Gl. (4.208) und
Gl. (4.210) für den Gütefaktor:

g = tan � =
Q

P
=

U2 � Bp

U2 �G p

g = tan � =
Bp

G p

(4.228)

und für den Verlustfaktor:

d = tan � =
G p

Bp

. (4.230)

Für Spulen lauten die Gleichungen für den Güte- und Verlustfaktor:

bei Reihenschaltung:

gL = tan �L =
�Lr

RLr

(4.231)

dL = tan �L =
RLr

�Lr

(4.233)

bei Parallelschaltung:

gL = tan �L =
RLp

�Lp

(4.232)

dL = tan �L =
�Lp

RLp

(4.234)

Bei Spulen ohne Eisenkern bestehen die Verluste P nur aus den Wicklungs- oder Kupfer-
verlusten, während bei Spulen mit Eisenkernen noch Wirbelstrom- und Hystereseverluste
hinzukommen. In der Ersatzschaltung von Spulen mit Eisenkern können die Wicklungs-
verluste durch RCu und die Kern- oder Eisenverluste durch RKr erfasst werden, wobei RKr
aus Rw (Wirbelstromverluste) und Rh (Hystereseverluste) besteht.

RLr = RCu (für Spule ohne Kern)

RLr = RCu + RKr = RCu + Rw + Rh (für Spule mit Kern)

Bei Spulen mit Eisenkern kann für bestimmte Frequenzen die Reihenschaltung von Lr und
RKr in eine äquivalente Parallelschaltung mit Lp und RKp überführt werden, wobei der Pa-
rallelwiderstand RKp auch Eisenverlustwiderstand Rv genannt wird.

Für Kondensatoren lauten die Gleichungen für den Güte- und Verlustfaktor

bei Reihenschaltung:

gC = tan �C =
1

�RCrCr

(4.235)

dC = tan �C =�RCrCr . (4.237)

bei Parallelschaltung:

gC = tan �C =�RCpCp (4.236)

dC = tan �C =
1

�RCpCp

. (4.238)

Der Verlustfaktor für Kondensatoren ist frequenzabhängig und liegt in der Größenord-
nung von 10–1 (Keramik) bis 10–4 (Kunststoffen). Außerdem hängt er von der Größe der
Spannung und von der Temperatur ab.
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Komplexe Leistung

Da in der Wechselstromtechnik mit komplexen Zeitfunktionen und komplexen Effektiv-
werten gerechnet wird, ist die Frage naheliegend, ob eine komplexe Leistung sinnvoll
definiert werden kann. Eine Definition einer komplexen Leistung darf nicht im Wider-
spruch zu den bisherigen Leistungsdefinitionen im Zeitbereich stehen.

Wie im Zeitbereich für die Augenblicksleistung p = u · i möchte man entsprechend eine
komplexe Augenblicksleistung p als Produkt der komplexen Zeitfunktionen von Span-
nung und Strom definieren:

u i u ij( t ) j( t ) j2 t j( )ˆ ˆˆ ˆu i u e i e u i e e� +) � +) � ) +)( = ( ( ( = ( ( (

Genauso wie bei der Augenblicksleistung kommt wohl die doppelte Kreisfrequenz 2�
vor, aber die Summe der Anfangsphasenwinkel ließe sich nicht für die komplexe Leistung
verwenden, weil sowohl in der Wirkleistung als auch in der Blindleistung mit der Diffe-
renz der Anfangsphasenwinkel gerechnet werden muss.

Um die Differenz der Anfangsphasenwinkel in der komplexen Leistung zu erhalten, könn-
te die komplexe Zeitfunktion des Stroms konjugiert komplex verwendet werden:

u � i * = û � e j(�t+�u ) � î � e� j(�t+�i ) = 2 � U � I � e j(�u ��i ) ,

aber das ergäbe auch keine sinnvolle Definition einer komplexen Augenblicksleistung
ohne die Zeit t in der Formel.

Wird aber das Produkt aus dem komplexen Effektivwert der Spannung U und dem konju-
giert komplexen Effektivwert des Stroms *I gebildet, dann wird in der komplexen Leis-
tung S die Differenz der Anfangsphasenwinkel – die Phasenverschiebung � – berücksich-
tigt, und Wirk- und Blindleistung können gleichzeitig erfasst werden:

S = U � I* (4.239)

mit U = U ( e j�u und I* = I ( e� j�i

S = U ( I ( e j(�u ��i ) = S ( e j�

mit S = U · I und � = �u – �i

S = S · cos � + j · S · sin � = P + j · Q (4.240)

mit P = S · cos � und Q = S · sin �.

Der Realteil der komplexen Leistung S ist damit gleich der Wirkleistung P und der Imagi-
närteil ist gleich der Blindleistung Q:

P = Re{S} und Q = Im{S)

Die Scheinleistung S ist gleich dem Betrag der komplexen Leistung S:

S = | S | = P2 + Q2 (4.241)
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Mit der Formel für die komplexe Leistung

S = U � I*

ist es möglich, durch nur eine Berechnung die drei Leistungen zu ermitteln, wenn die
Spannung U und der Strom I bekannt sind.

Ist der Strom I oder die Spannung U gegeben, dann können die Leistungen mit dem kom-
plexen Widerstand Z oder dem komplexen Leitwert Y der Schaltung berechnet werden:

Mit

U = Z � I , U* = Z* � I* und I* =
U*

Z*

ist

S = Z � I � I* bzw. S =
U � U*

Z*

und mit

I ( I* = I ( e j�i ( I ( e� j�i = I2

U ( U* = U ( e j�u ( U ( e� j�u = U2

ist

S = Z � I2 =
I2

Y
(4.242)

und

S =
U2

Z*
= Y* � U2 (4.243)

Weitere Beispiele:

Beispiel 1:

Zwei Spulen (Ersatzschaltung: Reihenschaltung)

mit Rr1 = 10�, Lr1 = 50mH und Rr2 = 15�, Lr2 = 65mH

sind in Reihe geschaltet und werden von einem sinusförmigen Wechselstrom mit dem Effek-
tivwert I = 5A und der Frequenz f = 50Hz durchflossen.

1. Zu berechnen sind die Wirkleistungen, Blindleistungen und Scheinleistungen der beiden
Spulen und der Reihenschaltung.

2. Das Ergebnis für die Einzelspulen ist mit dem für die Reihenschaltung zu überprüfen.

3. Schließlich sind die Leistungsfaktoren der Spulen und der Reihenschaltung zu berechnen.

Lösung:

Zu 1. Die komplexe Leistung wird für Reihenschaltungen nach Gl. (4.242) berechnet:

Für Spule 1:

S1 = Z1 · I2

Z1 = Rr1 + j�Lr1 = 10� + j · 2� · 50s–1 · 50mH

Z1 = (10 + j · 15,7)�
S1 = (10 + j · 15,7)� · (5A)2
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S1 = (250 + j · 392)VA mit P1 = 250W und Q1 = 392Var

S1 = P1
2 + Q1

2 = 2502 + 3922 VA = 465VA

Für Spule 2:

S2 = Z2 · I2

Z2 = Rr2 + j�Lr2 = 15� + j · 2� · 50s–1 · 65mH

Z2 = (15 + j · 20,4)�

S2 = (15 + j · 20,4)� · (5A)2

S2 = (375 + j · 511)VA mit P2 = 375W und Q2 = 511Var

S2 = P2
2 + Q2

2 = 3752 + 5112 VA = 633 VA

Für die Reihenschaltung beider Spulen:

S = Z · I2

Z = Z1 + Z2 = (Rr1 + Rr2) + j�(Lr1 + Lr2)

Z = (10 + 15)� + j · 2� · 50s–1 (50 + 65)mH

Z = (25 + j · 36,1)�

S = (25 + j · 36,1)� · (5A)2

S = (625 + j · 903)VA mit P = 625W und Q = 903Var

S = 2 2 2 2P Q 625 903 VA 1098VA+ = + =

Zu 2. Kontrolle: Die Gesamtleistung ist gleich der Summe der Einzelleistungen.

P = P1 + P2 Q = Q1 + Q2 aber S = | S1 + S2 |

625W = (250 + 375)W 903Var = (392 + 511)Var S = 2 2
1 2 1 2(P P ) (Q Q )+ + +

Zu 3. Die Leistungsfaktoren werden nach Gl. (4.204) errechnet:

cos �1 = 1

1

P 250VA
0,54

S 465VA
= =

cos �2 = 2

2

P 375VA
0,59

S 633VA
= =

cos � =
P 625VA

0,57
S 1098VA

= =

Beispiel 2:

Zwei Kondensatoren sind in Reihe geschaltet und von einem sinusförmigen Strom mit
I = 0,5A, f = 50Hz durchflossen. Der eine Kondensator hat eine Kapazität Cr1 = 10μF und
eine Verlustleistung P1 = 1W, der andere eine Kapazität Cr2 = 5μF und eine Verlustleistung
P2 = 0,5W.

1. Die Verlustfaktoren dC1 und dC2 der beiden Kondensatoren sind zu berechnen.

2. Dann soll die Formel für den Verlustfaktor dC der Reihenschaltung in Abhängigkeit von
den beiden Kapazitäten und den Verlustfaktoren entwickelt und der Verlustfaktor mit den
angegebenen Zahlenwerten berechnet werden.

3. Schließlich soll das Ergebnis für dC über die Leistungen kontrolliert werden.

Lösung:

Zu 1. Nach Gl. (4.225) und Gl. (4.213) sind

dC1 = 1 3
C1

1

P 1 VA
tan 12,6 10

Q 80 VA
�� = = = (

mit Q1 = 2 2
1 6

r1

1 1
I (0,5A) 80Var

C 2 50s 10 10 F� �� � = � � = �
� � � � �
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und

dC2 = 2 3
C2

2

P 0,5 VA
tan 3,14 10

Q 159 VA
�� = = = (

mit Q2 = 2 2
1 6

r2

1 1
I (0,5A) 159Var

C 2 50s 5 10 F� �� � = � � = �
� � � � �

Zu 2. Nach Gl. (4.237) ist

dC = � · RCr · Cr

und

dC1 = � · RCr1 · Cr1 und dC2 = � · RCr2 · Cr2

Mit

RCr = RCr1 + RCr2

ergibt sich

C C1 C2

r r1 r2

d d d

C C C
= +

� � �

dC = C1 C2 r1 r2 C1 r2 C2 r1
r

r1 r2 r1 r2 r1 r2

d d C C d C d C
C

C C C C C C


 � � � + �
� + = �� �� � + �� 	

mit Cr = r1 r2

r1 r2

C C

C C

�
+

dC = C1 r2 C2 r1

r1 r2

d C d C

C C

� + �
+

dC =
3 6 3 6

3
6

12,6 10 5 10 F 3,14 10 10 10 F
6,3 10

(10 5) 10 F

� � � �
�

�
� � � + � � �

= �
+ �

Zu 3. dC = 1 2 3
C

1 2

P P P (1 0,5)VA
tan 6,3 10

Q Q Q (80 159)VA
�+ +

� = = = = (
+ +

Beispiel 3:

Eine verlustbehaftete Spule (RLr = 20�, Lr = 0,1H) und ein verlustbehafteter Kondensator
(RCr = 4�, Cr = 200μF) bilden einen Reihenschwingkreis, der an einer sinusförmigen Span-
nung mit U = 110V und f = 50Hz angeschlossen ist.

1. Zu berechnen sind die Wirkleistung, Blindleistung und Scheinleistung des Reihen-
schwingkreises.

2. Das Ergebnis soll mit Hilfe des Stroms I kontrolliert werden.

3. Bei welcher Kreisfrequenz � besteht Resonanz und wie groß sind dann die induktive und
kapazitive Blindleistung?

Lösung:

Zu 1. Nach Gl. (4.243) ist

2

*

U
S

Z
=

und mit

Z = ZL + ZC = (RLr + RCr ) + j ( �Lr �
1

�Cr

�

	�
�


�

Z* = (RLr + RCr ) � j ( �Lr �
1

�Cr

�

	�
�


�
ist
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S =
U2

(RLr + RCr ) � j ( �Lr �
1

�Cr

�

	�
�


�

(

(RLr + RCr ) + j ( �Lr �
1

�Cr

�

	�
�


�

(RLr + RCr ) + j ( �Lr �
1

�Cr

�

	�
�


�

S =

(RLr + RCr ) + j ( �Lr �
1

�Cr

�

	�
�


�

(RLr + RCr )2 + �Lr �
1

�Cr

�

	�
�


�

2
( U2 = P + j ( Q

P =
2

Lr Cr
2

2
Lr Cr r

r

(R R ) U

1
(R R ) L

C

+ (

� �
+ + � �� ��	 


P =
(20 + 4)� � (110V)2

(20 + 4)2�2 + 2� � 50s�1 � 0,1H �
1

2� � 50s�1 � 200 �10�6 F

�
.-

	
/


2

P = 356W

Q =
r

r 2
2

2
Lr Cr r

r

1
L

C
U

1
(R R ) L

C

� �
� (
� �

+ + � �� ��	 


Q =

2� � 50s�1 � 0,1H �
1

2� � 50s�1 � 200 �10�6 F

�
.-

	
/

� (110V)2

(20 + 4)2�2 + 2� � 50s�1 � 0,1H �
1

2� � 50s�1 � 200 �10�6 F

�
.-

	
/


2

Q = 230 Var

S = 2 2 2 2P Q 356 230 VA 423,5VA+ = + =

Zu 2. I =
U

Z
=

110V

28,6�
( e� j(32,9º = 3,85A ( e� j(32,9º

mit U =110V · �e j�0º

und Z = (24 + j · 15,5)� = 28,6� · e j�32,9º

S = U � I* = 110V � 3,85A � e j�32,9º = 423,5VA � e j�32,9º

S 423,5VA cos32,9º j 423,5VA sin32,9º 356W j 230Var= � + � � = + �

Zu 3. Nach Gl. (4.114) besteht Resonanz für den Reihenschwingkreis bei

�0 = 1

Lr Crr r

1 1 U 110 V
224s , wobei I 4,58 A

R R 24L C 0,1H 200 F
�= = = = =

+ �( μ
Mit Gl. (4.211) beträgt die induktive Blindleistung bei Resonanz

QL = I2 · �0Lr = (4,58 A)2 · 224s–1 · 0,1 H = 470 Var

und mit Gl. (4.213) beträgt die kapazitive Blindleistung bei Resonanz

QC = 2 2
1 6

0 r

1 1
I (4,58A) 470Var

C 224s 200 10 F� �� ( = � ( = �
� ( (
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Beispiel 4:

In der im Bild 4.145 gezeichneten Schaltung sind die Wirk-
und Blindleistung über die komplexe Leistung zu berechnen.
Gegeben sind der Strom I = 400mA (Frequenz f = 100Hz),
Lr = 20mH, RLr = 30� und R = 100�.

1. Zu berechnen sind die Leistungen, nachdem die Reihen-
schaltung in eine äquivalente Parallelschaltung transfor-
miert wurde.

2. Das Ergebnis ist mit dem komplexen Leitwert der Schal-
tung zu kontrollieren. Bild 4.145 Beispiel 4 der

Leistungsberechnung
Lösung:

Zu 1.

Bild 4.146 Beispiel 4 der
Leistungsberechnung -
Schaltungstransformation

Nach Gl. (4.70) sind

1

RLp

=
RLr

RLr
2 + �2Lr

2
=

30�

(30�)2 + (2� �100s�1 � 0,02 H)2
= 28,36 mS ,

die Parallelschaltung der beiden ohmschen Widerstände ergibt dann

1

R
+

1

RLp

=
1

100�
+ 28,36mS = 10mS + 28,36mS = 38,36mS,

und die Induktivität

1

�Lp

=
�Lr

RLr
2 + �2Lr

2
=

2� �100s�1 � 0,02 H

(30�)2 + (2� �100s�1 � 0,02 H)2
= 11,88mS

Lp =
1

1 1
134 mH

11,88mS 2 100s 11,88mS�= =
� � � � �

.

Nach Gl. (4.242) ist

2
2 I

S Z I
Y

= � =

mit
Lp p

1 1 1
Y j 38,36mS j 11,88mS

R R L

� �
= + � = � (� �� � �	 


2(0,4A) (38,36 j 11,88)mS
S

(38,36 j 11,88)mS (38,36 j 11,88)mS

+ �
= �

� � + �

2

2 2

(0,4A) (38,36 j 11,88)mS
S 3,81W j 1,18Var

(38,36mS) (11,88mS)

� + �
= = + �

+

S = P + j · Q d. h. P = 3,81W und Q = 1,18Var
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Zu 2. Nach Gl. (4.242) ist

2I
S

Y
=

mit
r

Lr

r r
Lr Lr

G
1 j G L

G1
Y G

1 1
j L j L

G G


 �
+ + � � �� �

� 	= + =
+ � + �

Lr Lr r

Lr r

(G G ) j G G L
Y

1 j G L

+ + � � � �
=

+ � � �

und

Lr r2

Lr Lr r

1 j G L
S I

(G G ) j G G L

+ � � �
= �

+ + � � � �

Lr
r2

Lr r Lr

Lr LrLr
r r

Lr Lr

G G
1 j L

I 1 j G L G G
S

G G G GG G 1 j L 1 j L
G G G G

(
� � (

+ � ( ( += ( (
( (+ + � ( � � (
+ +

Lr
Lr r r2

Lr
2

Lr Lr
r

Lr

G G
(1 j G L ) 1 j L

G GI
S

G G G G
1 L

G G

� �(
+ � ( ( � � (� �+	 
= (

+ � �(
+ � (� �+	 


S =
I2

G + G Lr

(

1 + �2 ( G Lr (
G ( G Lr

G + G Lr

( Lr
2

�

	�
�


�
+ j�Lr G Lr �

G ( G Lr

G + G Lr

�

	�
�


�

1 + �
G ( G Lr

G + G Lr

( Lr

�

	�
�


�

2

S P j Q= + �

mit Lr Lr

Lr

Lr

1 1

G G 10mS 33,3mSR R
7,69mS

1 1G G 10mS 33,3mS
R R

�
� �

= = =
+ ++

und � = 2� · f = 2� · 100s–1 = 628,3 s–1

ergibt sich für die Wirkleistung

P =
2 2 2 2 2

1 2

(0,4A) 1 628,3 s 33,3mS 7,69mS 0,02 H

43,3mS 1 (628,3s 7,69mS 0,02H)

�

�
+ � � �

�
+ � �

= 3,81W

und für die Blindleistung

Q =
(0,4 A)2

43,3mS
�

628,3s�1 � 0,02 H � (33,3mS � 7,69mS)

1 + (628,3s�1 � 7,69mS � 0,02 H)2
= 1,18Var
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4.7.2 Die Messung der Wechselstromleistung 

Messung der Scheinleistung 
Die Scheinleistung S = U · I wird durch eine Strom-Spannungs-Messung in Effektivwer-
ten ermittelt. Dabei wird wie bei der Widerstandsmessung und Leistungsmessung mit 
Gleichstrom (siehe Band 1, Abschnitt 2.2.7, Bilder 2.40 und 2.41 und Abschnitt 2.4.3.2, 
Bilder 2.119 bis 2.122) eine stromrichtige und eine spannungsrichtige Messung unter-
schieden: 
 

  

Bild 4.147 Spannungsrichtige Messung  
der Scheinleistung 

Bild 4.148 Stromrichtige Messung  
der Scheinleistung 

 
Die Messinstrumente sind Drehspulinstrumente, die Brücken-Gleichrichterschaltungen 
enthalten, so dass Gleichrichtwerte gemessen und Effektivwerte angezeigt werden. Aus 
den Effektivwerten von Spannung und Strom wird die Scheinleistung durch Multiplikati-
on errechnet. 

Messung der Wirk- und Blindleistung mit elektrodynamischem Leistungsmesser 
Auch bei der Messung der Wirk- und Blindleistung mit einem elektrodynamischen 
Leistungs-Messgerät kann spannungsrichtig und stromrichtig gemessen werden. Bei der 
Wirkleistungsmessung ist im Spannungspfad ein ohmscher Widerstand R und bei der 
Blindleistungsmessung die Hummel- oder Polekschaltung (siehe Abschnitt 4.6.1) zu ver-
wenden (Bilder 4.149, 4.150 und 4.152, 4.153): 
 

  
Bild 4.149 Spannungsrichtige Messschaltung 
mit einem elektrodynamischen Messwerk für 
die Wirkleistungsmessung 

Bild 4.150 Stromrichtige Messschaltung mit 
einem elektrodynamischen Messwerk für die 
Wirkleistungsmessung 

 
Ströme, Spannungen und Leistungen können mit Hilfe von Drehspulinstrumenten gemes-
sen werden. Der Wirkungsmechanismus der Drehspulinstrumente beruht auf der Kraft-
wirkung, die sich bei bewegten Ladungen (elektrischer Strom) im magnetischen Feld 
einstellt (siehe Band 1, Abschnitt 3.4.8.2). 
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Bei der Messung von Gleichströmen oder gleichgerichteten Wechselströmen wird das
Magnetfeld durch einen Dauermagneten erzeugt, in dem sich die stromdurchflossene
drehbare Spule bewegt.

Das elektrodynamische Messwerk, das für die Leistungsmessung angewendet wird, ist
ebenfalls ein Drehspulmesswerk, aber mit elektromagnetischer Erregung: das magnetische
Feld wird nicht durch einen Dauermagneten, sondern durch einen Strom hervorgerufen.

Prinzipiell werden zwei Bauarten unterschieden: das eisengeschlossene Messwerk (siehe
Band 1, Bild 2.118) und das eisenlose Messwerk. Beim Messwerk mit Eisenkreis entsteht
durch ein rundes Eisenstück ein radial-homogenes Feld im Luftspalt (siehe Band 1, Bild
3.244), wobei die Luftspaltinduktion BL nahezu konstant ist. Messwerke ohne Eisenkreis
können mit „kurzer“ Feldspule und mit „langer“ Feldspule ausgeführt sein. Bei der kurzen
Feldspule mit wenig Windungen und dickem Draht kann auch ein angenähert radial-
homogenes magnetisches Feld erreicht werden.

Bild 4.151 Elektrodynamische Leistungsmesser mit eisengeschlossenen und eisenlosen Messwerken
mit kurzer und langer Feldspule

Die Luftspaltinduktion BL wird durch den Strom i1 in der feststehenden Feldspule mit
der Windungszahl w1 verursacht. Die Feldspule wird in den Strompfad des Leistungs-
messers geschaltet, so dass der Messstrom i der Erregerstrom ist. In der eisenlosen An-
ordnung ist bei Vernachlässigung des magnetischen Widerstandes des Eisens und in der
eisenlosen Anordnung nach dem Durchflutungssatz

�1 = HL � lL bzw. i1 � w1 =
BL

μ0

� lL .

Die Luftspaltinduktion BL ist proportional dem Messstrom i1:

BL = μ0 �
i1 � w1

lL
.

Die drehbare Spule mit der Windungszahl w2, die sich in dem radial-homogenen magneti-
schen Feld bewegen kann, erfährt ein Drehmoment M, wenn durch sie der Strom i2 fließt,
der durch die Messspannung u entsteht. Das Drehmoment M ist proportional der Luft-
spaltinduktion BL, der Spulenfläche A = a · b, der Windungszahl der Spule w2 und dem
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Strom i2, wobei sin � = 1 ist, denn die Vektoren v
�

und LB
�

stehen senkrecht aufeinander
(siehe Band 1, Abschnitt 3.4.8.2):

M = BL · A · i2 · w2 (4.244)

M = μ0 �
i1 � w1

lL
� A � i2 � w2 = K � i1 � i2 . (4.245)

Nur bei einer eisenlosen Anordnung mit „langer“ Feldspule geht der Neigungswinkel �
der drehbaren Spule zur Feldrichtung ein (siehe Band 1, Abschnitt 3.4.8.2, Bild 3.233,
Beispiel 2):

M = μ0 �
i1 � w1

lL
� A � i2 � w2 � sin� . (4.246)

Sind in der Messanordnung mit radial-homogenem Feld die Ströme i1 und i2 sinusförmig,
dann ist ein Mittelwert des Drehmoments wirksam:

Mit

i1 = î1 ( sin�t und i2 = î2 ( sin(�t + ))

ist

M = K (
î1 ( î2

T
( sin�t

0

T

� ( sin (�t + )) ( dt

und mit sin � · sin � =
1

2
� [cos(� � �) � cos(� + �)]

M = K �
î1 � î2
2 � T

� cos

0

T

� (�t � �t � �) � dt � cos

0

T

� (2�t + �) � dt
�

�

	
	




�

�
�

mit
î1

2
= I1 und

î2

2
= I2

M = K �
I1 � I2

T
� cos(��) � t

T

0

�
sin (2�t + �)

2�

T

0

�

�
	
	

�

�





M = K · I1 · I2 · cos � . (4.247)

Der Strom durch die bewegliche Spule I1 ist gleich dem Messstrom I und der Strom durch
die Feldspule I2 wird durch die ohmschen Widerstände der Feldspule Rv und den in Reihe
geschalteten Widerstand R (siehe Bilder 4.149, 4.150) begrenzt.

Mit

I1 = I und I2 =
U

Rv + R

ergibt sich für den Mittelwert des Drehmoments, der proportional der Wirkleistung ist:

M =
K

Rv + R
� U � I � cos) = K* � P . (4.248)
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Bei der Messung der Blindleistung Q mit Hilfe von dynamometrischen Messwerken ist
die Drehung der Stromphase im Spannungspfad um genau 90° erforderlich. Deshalb wird
in den Spannungspfad die Hummel- oder Polekschaltung (Bilder 4.114 und 4.116) einge-
fügt.

Bild 4.152 Blindleistungsmessung
mit der Hummelschaltung

Bild 4.153 Blindleistungsmessung
mit der Polekschaltung

Messung der Wirk- und Blindleistung mit der Drei-Voltmeter-Methode

Die in einem beliebigen Wechselstromwiderstand auftretende Wirkleistung und Blindleis-
tung können mit Hilfe von drei Spannungsmessern ermittelt werden. Dem beliebigen
Wechselstromwiderstand, der im Bild 4.154 dem komplexen Widerstand Z entspricht,
wird ein ohmscher Vorwiderstand Rv in Reihe geschaltet, so dass die drei Spannungsmes-
ser die Gesamtspannung U1 und die Teilspannungen U2 und U3 anzeigen. Die Innenwi-
derstände der Spannungsmesser müssen so hochohmig sein, dass die durch sie fließenden
Ströme vernachlässigbar klein gegenüber den Strömen durch die Widerstände sind. Unter
dieser Voraussetzung sind die Ströme durch den Vorwiderstand Rv und dem beliebigen
Widerstand Z gleich, und die Spannungen teilen sich wie bei in Reihe geschalteten Wider-
ständen auf, wie im Zeigerbild veranschaulicht werden kann (Bild 4.155).

Bild 4.154
Drei-Voltmeter-Methode
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Die Wirkleistung

P = I · U3 cos � = I · UR3

und die Blindleistung

Q = I · U3 · sin � = I · UX3

werden durch die Spannungen U1, U2 und U3 gemessen und anschließend errechnet.
Gleichzeitig kann auch der Leistungsfaktor cos � bestimmt werden.

Bild 4.155
Zeigerbild für die Drei-Voltmeter-Methode

Für das Dreieck mit den Seiten U1, U2 und U3 im Zeigerbild gilt der Kosinussatz:

U1
2 = U2

2 + U3
2 � 2 ( U2 ( U3 ( cos (180º��)

mit cos (180° – �) = – cos �

U1
2 = U2

2 + U3
2 + 2 � U2 � U3 � cos) . (4.249)

Wird als Ersatzschaltung des komplexen Widerstandes Z die Reihenschaltung angenom-
men, d. h. Z = Rr + j · Xr, dann teilt sich die Spannung U3 in eine Wirkspannung UR3 und
eine Blindspannung UX3 auf. Die Wirkspannung ist nach Gl. (4.52) und mit Gl. (4.249)

UR3 = U3 ( cos� =
U1

2 � (U2
2 + U3

2 )

2 ( U2

, (4.250)

so dass sich für die Wirkleistung P ergibt:

P = I � UR3 = I �
U1

2 � (U2
2 + U3

2 )

2 � U2

(4.251)

P =
U1

2 � (U2
2 + U3

2 )

2 � Rv

mit I =
U2

Rv

. (4.252)

Die Gleichung (4.249) kann auch nach dem Leistungsfaktor aufgelöst werden:

cos � =
U1

2 � (U2
2 + U3

2 )

2 � U2 � U3

. (4.253)

Für die Blindleistung Q muss die Blindspannung UX3 errechnet werden:

Mit

UX3 = U3
2 � UR3

2
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und mit Gl. (4.250)

UX3 = U3
2 �

U1
2 � (U2

2 + U3
2 )

2 � U2




�
�

�

	
�

2

und mit

I =
U2

Rv

Q = I � UX3 =
U2

Rv

� U3
2 �

U1
2 � (U2

2 + U3
2 )

2 � U2




�
�

�

	
�

2

(4.254)

Messung der Wirk- und Blindleistung mit der Drei-Amperemeter-Methode

Die in einem beliebigen Wechselstromwiderstand auftretende Wirkleistung und Blindleis-
tung können aber auch mit Hilfe von drei Strommessern ermittelt werden. Dem beliebigen
Wechselstromwiderstand, der im Bild 4.156 dem komplexen Widerstand Z entspricht,
wird ein ohmscher Widerstand Rp parallel geschaltet, so dass die drei Strommesser den
Gesamtstrom I1 und die Teilströme I2 und I3 anzeigen. Die Innenwiderstände der Strom-
messer müssen so niederohmig sein, dass die an ihnen abfallenden Spannungen vernach-
lässigbar klein gegenüber den Spannungen an den Widerständen sind. Unter dieser Vor-
aussetzung sind die Spannungen an dem Parallelwiderstand Rp und an dem beliebigen
Widerstand Z gleich, und die Ströme teilen sich wie bei parallel geschalteten Widerstän-
den auf.

Bild 4.156
Drei-Amperemeter-Methode

Die Herleitung der Formeln für die Wirkleistung P, der Blindleistung Q und den Leis-
tungsfaktor cos) in Abhängigkeit von den drei Strömen ist analog wie bei der Drei-
Voltmeter-Methode. Dabei muss für die Ersatzschaltung des beliebigen Widerstandes Z
die Parallelschaltung angenommen werden. Die Formeln lauten:

P = Rp �
I1

2 � (I2
2 + I3

2 )

2
(4.255)

cos � =
I1

2 � (I2
2 + I3

2 )

2 � I2 � I3

(4.256)

Q = I2 � Rp � I3
2 �

I1
2 � (I2

2 + I3
2 )

2 � I2




�
�

�

	
�

2

(4.257)
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4.7.3 Verbesserung des Leistungsfaktors – Blindleistungskompensation

Notwendigkeit der Verbesserung des Leistungsfaktors

In Wechselspannungsnetzen wird elektrische Energie von Wechselspannungsquellen über
Zuleitungen an beliebige Wechselstromwiderstände übertragen. In den Widerständen
werden Wirkleistungen P = U · I · cos � umgesetzt.

Wird in einem Wechselstromwiderstand eine bestimmte Wirkleistung bei vorgegebener
Spannung U benötigt, dann ist der Strom I umso größer, je kleiner der Leistungsfaktor
cos) ist:

I =
P

U
�

1

cos)
.

Der größere Strom bei kleinerem Leistungsfaktor bedeutet in den Zuleitungen eine Zu-
nahme der Verlustleistung Pv, die vor allem vom Querschnitt A der Leitungen abhängig
ist:

Pv = I2 � RL = I2 �
2 � l
� � A

, (4.258)

wobei RL der ohmsche Widerstand der Doppelleitung ist:

RL =
2 � l
� � A

.

Mit obiger Stromgleichung ergibt sich für die Verlustleistung

Pv =
P2

U2
(

2 ( l
� ( A

(
1

cos2 )
. (4.259)

Nach der Fläche A der Zuleitung aufgelöst,

A =
P2

Pv

(
2 ( l

� ( U2
(

1

cos2 )
(4.260)

wird deutlich, warum der Leistungsfaktor verbessert werden muss:

Bei der Übertragung einer Wirkleistung P bei gegebener Spannung U und bei einer
festgelegten zulässigen Verlustleistung Pv der Leitung beeinflusst der Leistungsfaktor
cos � den Leitungsquerschnitt A quadratisch.
Beispiel:

Weicht der Leistungsfaktor vom angestrebten Wert 1 auf 0,707 ab, dann ist der doppelte
Querschnitt der Leitungen notwendig, um eine konstante Verlustleistung beizubehalten:

22
2 12

2 2
1 2

2
1

K

A cos 1 1cos
2.

KA 0,5cos 0,707
cos

))= = = = =
)

)

Da eine Leistungsübertragung bei einem niedrigeren Leistungsfaktor unwirtschaftlich ist,
darf ein Mindestleistungsfaktor von 0,8 … 0,9 nicht unterschritten werden.

Der Leistungsfaktor cos) kann erhöht werden, wenn die Blindleistung Q möglichst klein
ist:

cos � =
P

S
=

P

P2 + Q2
. (4.261)
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Blindleistungskompensation 
In den meisten Anwendungsfällen ist der Verbraucherwiderstand induktiv, z. B. durch 
Asynchronmotoren, Spulen und Transformatoren. Deshalb muss zum induktiven Wech-
selstromwiderstand ein Kondensator zugeschaltet werden, wenn die Blindleistung kom-
pensiert werden soll. Prinzipiell kann zum passiven Zweipol ein Kondensator Cr in Reihe 
oder ein Kondensator Cp parallel geschaltet werden. 

Bei der Reihen-Kompensation wird ein 
Kondensator Cr in Reihe zum induktiven 
Zweipol geschaltet. Um die Ergebnisse 
des Reihenschwingkreises (Abschnitt 
4.5.1) verwenden zu können, ist als Er-
satzschaltung für den induktiven Zweipol 
die R/L-Reihenschaltung zu verwenden. 

Die Parallel-Kompensation bedeutet die 
Zuschaltung eines Kondensators Cp paral-
lel zum induktiven Zweipol. Entsprechend 
lassen sich die Ergebnisse des Parallel-
schwingkreises (Abschnitt 4.5.2) über-
nehmen, wenn für den induktiven Zweipol 
als Ersatzschaltung die R/L-Parallelschal-
tung berücksichtigt wird. 

 
 

Bild 4.157 Reihen-Kompensation Bild 4.158 Parallel-Kompensation 

Durch die stromdurchflossene Kapazität 
Cr entsteht eine Spannung UC, die die 
Spannung UL teilweise oder ganz kom-
pensiert. Nach der Kompensation stellt 
sich eine verminderte Spannung UKr. 
und eine verminderte Phasenverschie-
bung �K ein, wie im Zeigerbild deutlich 
wird. 

Infolge der anliegenden Spannung U 
fließt durch die parallelgeschaltete Kapa-
zität Cp ein Strom IC, der den Strom IL 
teilweise oder ganz kompensiert. Nach 
der Kompensation stellt sich ein vermin-
derter Strom IKp und eine verminderte 
Phasenverschiebung �K ein, wie im Zei-
gerbild veranschaulicht wird (siehe auch 
Abschnitt 7.2, Beispiel 3). 

  

Bild 4.159 Zeigerbild der teilweisen 
Reihen-Kompensation 

Bild 4.160 Zeigerbild der teilweisen 
Parallel-Kompensation 
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Anzustreben ist eine Kompensation, bei
der sich die Blindspannungen UL und UC
aufheben und die Phasenverschiebung
�K zwischen UKr und IKr = 1 Null ist.

Die Kompensation, bei der sich die
Blindströme IL und IC aufheben und die
Phasenverschiebung �K zwischen IKp
und UKp = U Null ist, soll erreicht wer-
den.

Bild 4.161 Zeigerbild der vollständigen
Reihen-Kompensation

Bild 4.162 Zeigerbild der vollständigen
Parallel-Kompensation

Der für die vollständige Kompensation
notwendige Kondensator mit der Kapazi-
tät Cr lässt sich dann berechnen, weil die
Summe der kapazitiven und induktiven
Blindleistungen Null sein muss:

Der für die vollständige Kompensation
notwendige Kondensator mit der Kapazi-
tät Cp kann berechnet werden, weil die
Summe der kapazitiven und induktiven
Blindleistungen Null sein muss:

QC + QL = 0

– QC = QL

mit

QC = �UC
2 (�Cr

und

QL = P · tan �

ist

UC
2 (�Cr = P ( tan)

Cr =
P ( tan)
� ( UC

2
(4.262)

Da

UC = UL und UL = UKr · tan �
ist

Cr =
P

� ( UKr
2 ( tan)

(4.264)

mit

UKr = UR

QC + QL = 0

– QC = QL

mit

QC = �U2 (�Cp

und

QL = P · tan �
ist

U2 (�Cp = P ( tan)

Cp =
P ( tan)
� ( U2

(4.263)

oder

Cp =
P ( tan)
� ( UKp

2
(4.265)

mit

UKp = U
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Durch die Zuschaltung von Cr in Reihe
zu Rr und Lr wird wohl die induktive
Blindleistung QL kompensiert, aber auch
die Spannung U auf

UKr = UR = U · cos �
vermindert.

Durch die Zuschaltung von Cp parallel zu
Rp und Lp wird wohl die induktive
Blindleistung QL kompensiert, aber auch
der Strom I auf

IKp = IR = U/Rp
verringert.

Bei der Blindleistungskompensation mit Parallelkondensator ist die anliegende Netzspan-
nung U vor und nach der Kompensation gleich, denn die Schaltelemente sind parallel
geschaltet. Die Wirkleistung und die zu kompensierende Blindleistung bleiben somit
unverändert.

Wird aber bei der Reihenkompensation die Netzspannung U, die vor der Kompensation
am induktiven Verbraucher gelegen hat, an den Reihenschwingkreis angelegt, wie es in
der Praxis üblich ist, dann fällt diese Spannung U wegen Resonanz nur am ohmschen
Widerstand ab. Die Spannung Ukr = UR wird auf den Spannungswert U erhöht, wodurch
sich der Strom von IKr = UR/Rr auf IKr

' = U/Rr vergrößert. Damit erhöht sich auch die
Wirkleistung auf

P' = IKr
' 2 � Rr =

U2

Rr

(4.266)

und die zu kompensierende Blindleistung auf

Q' = IKr
' 2 ��Lr =

UL
' 2

�Lr

. (4.267)

Aus dem Zeigerbild ist ersichtlich, dass für die Spannungen UKr und U der Zusammen-
hang

UKr = U · cos � bzw.
U

UKr

=
1

cos)
besteht. Die Wirkleistung erhöht sich also mit dem Quadrat der Spannung:

P'

P
=

U2

Rr

UKr
2

Rr

=
U2

UKr
2

=
1

cos2 )
(4.268)

bzw.

P =
UKr

2

U2
� P' = P' � cos2 ) .

Die Formel für die notwendige Kapazität lautet dann in Abhängigkeit von der Netzspan-
nung U

Cr =
P'

� ( U2 ( tan)
mit P' =

P

cos2 )
(4.269)

und bei Berücksichtigung der ursprünglichen Wirkleistung P

Cr =
P

� ( U2 ( tan) ( cos2 )
=

P

� ( U2 ( sin) ( cos)
(4.270)

Die Kapazität ändert ihren Wert gegenüber dem ursprünglichen Wert nicht, weil die
Wirkleistung und die Spannung gleichzeitig geändert wurden.
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Ein Vergleich der Kapazitätswerte Cr und Cp bei gleicher Gesamtspannung UKr
' = U und

UKp = U ist damit möglich:

Cp

Cr

=
P ( tan)
� ( U2

(
� ( U2 ( sin) ( cos)

P
=

sin)
cos)

( sin) ( cos)

Cp

Cr

= sin2 ) < 1 . (4.271)

Liegen an den beiden Kompensationsschaltungen – der Reihenschwingkreis und der Pa-
rallelschwingkreis – die gleiche Spannung U, dann ist die Reihenkapazität Cr größer als
die Parallelkapazität Cp, wobei die Wirkleistung des Reihenschwingkreises größer ist als
die Wirkleistung des Parallelschwingkreises.

Die erhöhte Spannung an der Reihenkapazität UC
' ist allerdings kleiner als die Spannung

an der Parallelkapazität U, wenn der tan � < 1 ist:

UC
' = U · tan �. (4.272)

Allerdings ist zu beachten, dass bei der Reihenkompensation die an dem induktiven
Verbraucher anliegende Spannung durch die Kompensation vergrößert wird.

Beispiel:

Für einen zu kompensierenden induktiven Wechselstromwiderstand sind gegeben: U = 220V
bei f = 50Hz, P = lkW und cos � = 0,8.

1. Zu ermitteln sind die Elemente der Ersatzschaltungen, die Wirkleistung, die Blindleis-
tung, die Scheinleistung, sämtliche Ströme und Spannungen und das Zeigerbild.

2. Dann sollen die Kompensationskapazitäten Cr und Cp berechnet werden, wenn die an der
Gesamtschaltung anliegende Spannung 220V beträgt. Die Zusammenhänge sollen anhand
von quantitativen Zeigerbildern erläutert werden.

Lösung:

Zu 1.Die Ersatzschaltungen sind die Reihenschaltung von Rr und Lr und die Parallelschaltung
von Rp und Lp, die äquivalent sind.

Reihenschaltung: Parallelschaltung:

Mit

P =
UR

2

Rr

= 1 kW

und

UR = U · cos � = 220V · 0,8 = 176V

ergibt sich

Rr =
UR

2

P
=

(176 V)2

1000 VA
= 31�

und mit

tan � = r

r

L

R

�

ist

Lr = r
1

R tan 31 0,75
74mH

2 50s�
� � � �

= =
� � �

Mit

P =
2

p

U
1 kW

R
=

ergibt sich

Rp =
2 2U (220V)

48,4
P 1000 VA

= = �

und mit

tan � =
p p

p

p

1

L R

1 L
R

�
=
�

ist

Lp =
p

1

R 48,4
205 mH

tan 2 50s 0,75�
�

= =
� � � � � �
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Die induktive Blindleistung ist für die Reihen- und Parallelschaltung gleich:

Q = P · tan � = 1000 VA · 0,75 = 750Var,

ebenso ist die Scheinleistung gleich

S = 2 2 2 2P Q (1000 VA) (750 VA) 1250 VA+ = + =

Für das Zeigerbild der Reihen-
schaltung betragen

UR = 176V

UL = U · sin � = 220V · 0,6 = 132V

Für das Zeigerbild der Parallel-
schaltung betragen

IR =
p

U 220 V
4,55 A

R 48,4
= =

�

IL =IR tan � = 4,55 A · 0,75 = 3,41 A

und I =
S 1250 VA

5,68 A
U 220 V

= =

Bild 4.163 Reihen-Ersatzschaltung
des induktiven Wechselstromwiderstandes

Bild 4.164 Parallel-Ersatzschaltung des in-
duktiven Wechselstromwiderstandes

Bild 4.165 Zeigerbild des Reihen-
Ersatzschaltbildes

Bild 4.166 Zeigerbild des Parallel-
Ersatzschaltbildes

Zu 2.

Reihen-Kompensation: Parallel-Kompensation

Bild 4.167 Reihenkompensation Bild 4.168 Parallelkompensation
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Berechnung der Reihenkapazität:

Nach Gl. (4.262) oder Gl. (4.264) ist

Cr =
P ( tan)

� ( UC
2

=
P

� ( UKr
2 ( tan)

mit

UC = UL = 132 V

Cr =
1 2

1000 VA 0,75
137 F

2 50s (132 V)�
(

= μ
� ( (

oder

Cr =
1000 VA

2� ( 50s�1 ( (176 V)2 ( 0,75
= 137 μF

mit

UKr = UR = U · cos � = 220 V · 0,8 = 176V

Berechnung der Parallelkapazität:

Nach Gl. (4.263) ist

Cp =
2

P tan

U

( )
� (

Cp =
1000 VA ( 0,75

2� ( 50s�1 ( (220 V)2
= 49,3μF

Bild 4.170 Zeigerbild für die
Parallel-Kompensation

Bild 4.169 Zeigerbild für die
Reihen-Kompensation

Bild 4.171 Zeigerbild für die
Reihenkompensation bei 220 V

Liegt die Spannung U = 220V an dem Rei-
henschwingkreis in Resonanz, dann ist die
Wirkleistung auf P' erhöht. Die Reihenkapa-
zität Cr kann dann nach der Gl. (4.269) be-
rechnet werden:

Cr =
'

2

P

U tan� ( ( )

Cr =
3

1 2

1,56 10 VA

2 50s (220 V) 0,75�
(

� ( ( (

Cr = 137μF

mit

P' =
2 2

r

U (220 V)
1,56 kW

R 31
= =

�

oder P' =
2 2

P 1000 W
1,56 kW

cos (0,8)
= =

)
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Dabei betragen der vergrößerte Strom

IKr
' =

U

Rr

=
220V

31�
= 7,1A

und die erhöhte Blindleistung

Q' = P' · tan � = 1,56kW · 0,75 = 1,17kVar

oder

Q' = �IKr
2 ( �Lr =

�UL
2

�Lr

= 1,17kVar

mit

UL
' = �Lr ( IKr

' = 165V und UL
' = UC

' = U ( tan) = 165V .

Mit Gl. (4.271) wird das Ergebnis für die Kompensationskondensatoren kontrolliert:

Cp

Cr

=
49,3μF

137μF
= 0,36 = sin2 ) .

4.7.4 Wirkungsgrad und Anpassung

Wirkungsgrad

Die elektrische Energieübertragung von einer Quelle zu einem Verbraucher ist mit Ver-
lusten verbunden.

Im Gleichstromkreis wird die genutzte Energie bzw. Nutzleistung (umgewandelte, d. h.
abgegebene Energie) ins Verhältnis gesetzt zur aufgewendeten Gesamtenergie bzw. auf-
gewendeten oder zugeführten Gesamtleistung und Wirkungsgrad � genannt (siehe Band 1,
Abschnitt 2.4.4).

Im Wechselstromkreis wird analog das Verhältnis der genutzten Wirkenergie bzw. ge-
nutzten Wirkleistung zur aufgewendeten Wirkenergie bzw. aufgewendeten oder zugeführ-
ten Wirkleistung mit Wirkungsgrad � bezeichnet. Die in Blindwiderständen vorkommen-
den Blindleistungen können weder genutzt werden, noch führen sie direkt zu Verlusten.
Sie ergeben aber Wirkleistungsverluste in den Zuleitungen, die durch die Blindleistungs-
kompensation vermieden werden (Abschnitt 4.7.3). Die Gleichung für den Wirkungsgrad
ist formal identisch mit der Wirkungsgrad-Gleichung im Gleichstromkreis (vgl. Bd. 1,
Gl. 2.206):

� =
PN

Pges

=
PN

PN + PV

(4.273)

mit PN: genutzte Wirkleistung

Pges: zugeführte gesamte Wirkleistung

Pv: Wirkleistungsverluste
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Wirkungsgrad im Grundstromkreis

Wie behandelt, kann jedes Wechselstromnetz in einen Grundstromkreis überführt werden,
so dass die Ermittlung des Wirkungsgrades eines Grundstromkreises von Bedeutung ist.
Die Energiequelle – als Ersatzspannungsquelle oder Ersatzstromquelle betrachtet – liefert
die gesamte Wirkleistung (erzeugte Wirkleistung PE), im Außenwiderstand kann die
Wirkleistung (äußere Wirkleistung Pa) genutzt werden und im Innenwiderstand muss eine
Verlust-Wirkleistung (innere Wirkleistung Pi) in Kauf genommen werden.

Der Wechselstrom-Grundstromkreis kann entweder mit Ersatzspannungsquelle oder mit
Ersatzstromquelle dargestellt werden. Bei Anwendung der Symbolischen Methode wer-
den alle sinusförmigen Ströme und Spannungen komplexe Effektivwerte, und der Innen-
widerstand der Spannungsquelle und der Außenwiderstand des Verbrauchers sind kom-
plex:

Zi = Ri + jXi Za = Ra + jXa

Grundstromkreis mit Ersatzspannungsquelle:

Die in der Spannungsquelle aufgewendete
Wirkleistung ist

PE = Pi + Pa = I2 · (Ri + Ra)

und die im Verbraucher genutzte Wirkleistung

Pa = I2 · Ra. Bild 4.172 Grundstromkreis
mit Ersatzspannungsquelle
für sinusförmige Größen im
Bildbereich

Damit ergibt sich für den Wirkungsgrad des Grundstromkreises mit Ersatzspannungsquelle
für sinusförmige Wechselgrößen dieselbe Formel wie im Gleichstromkreis (vgl. Band 1,
Gl. 2.207):

� =
Pa

PE

=
Pa

Pa + Pi

=
1

1+
Pi

Pa

=
1

1+
I2 � Ri

I2 � Ra

� =
1

1+
Ri

Ra

. (4.274)

Der Wirkungsgrad ist maximal, wenn Ri/Ra gegen Null geht, d. h. wenn Ri gegen Null
geht, denn Ra gegen Unendlich bedeutet Leerlauf; fließt kein Strom, kann eine Energie-
umwandlung nicht erfolgen.

Um den Wirkungsgrad der Umwandlung von der in der Spannungsquelle erzeugten elek-
trischen Wirkenergie in äußere Wirkenergie im Grundstromkreis mit Ersatzspannungs-
quelle am größten zu bekommen, muss der Innenwiderstand der Spannungsquelle mini-
mal sein.

Bei der starkstromtechnischen Energieübertragung wird aus Gründen der Wirtschaftlich-
keit ein hoher Wirkungsgrad angestrebt.
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Grundstromkreis mit Ersatzstromquelle:

Die in der Stromquelle aufgewendete Wirkleistung ist

PE = Pi + Pa = U2 �
1

Ri

+
1

Ra

�

��
�

��

und die im Verbraucher genutzte Wirkleistung

Pa =
U2

Ra

.

Bild 4.173 Grundstromkreis
mit Ersatzstromquelle für sinus-
förmige Größen im Bildbereich

Damit ergibt sich für den Wirkungsgrad für den Grundstromkreis mit Ersatzstromquelle
für sinusförmige Wechselgrößen dieselbe Formel wie im Gleichstromkreis (vgl. Band 1,
Gl. 2.208):

� =
Pa

RE

=
Pa

Pa + Pi

=
1

1+
Pi

Pa

=
1

1+
U2 / Ri

U2 / Ra

� =
1

1+
Ra

Ri

. (4.275)

Der Wirkungsgrad ist maximal, wenn Ra/Ri gegen Null geht, d. h. wenn Ri gegen Unend-
lich oder der Innenleitwert Gi gegen Null strebt.

Die Abhängigkeit des Wirkungsgrades � von Ra/Ri ist also durch unterschiedliche For-
meln und Verläufe beschrieben. Die im Band 1 im Bild 2.125 dargestellten Verläufe ha-
ben also auch für die Wechselstromtechnik Gültigkeit.

Anpassung

In der Nachrichtentechnik soll der Verbraucher die maximale Wirkleistung aus dem Ge-
neratorzweipol aufnehmen. Dieser Fall wird genauso wie in der Gleichstromtechnik (siehe
Band 1, Abschnitt 2.4.5) Anpassung genannt, denn der Widerstand des passiven Zweipols
wird an den Widerstand des aktiven Zweipols angepasst.

Die Berechnungen für die Widerstandsanpassung lassen sich auf den Grundstromkreis
beschränken, weil jedes Wechselstrom-Netzwerk in einen Grundstromkreis mit aktiven
und passiven Zweipol überführt werden kann.

Die Grundstromkreise mit Ersatzspannungsquelle und mit Ersatzstromquelle werden im
Bildbereich mit komplexen Effektivwerten und komplexen Operatoren behandelt. Der
komplexe Widerstand bzw. komplexe Leitwert des aktiven und passiven Zweipols sind
dann

Zi = Ri + j ( Xi = Zi ( e j�i Za = Ra + j ( Xa = Za ( e j�a

Yi = Gi + j ( Bi = Yi ( e� j�i Ya = Ga + j ( Ba = Ya ( e� j�a
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Grundstromkreis mit Ersatzspannungsquelle:

Die vom passiven Zweipol (Verbraucher) aufgenommene Wirkleistung Pa soll maximal
sein:

Pa = I2 · Ra

mit I =
Uq

Zi + Za

=
Uq

(Ri + Ra ) + j � (Xi + Xa )

und I =
Uq

(Ri + Ra )2 + (Xi + Xa )2

Pa =
Uq

2 � Ra

(Ri + Ra )2 + (Xi + Xa )2
= f (Ra , Xa ) . (4.276)

Die Wirkleistung Pa ist eine Funktion der beiden Variablen Ra und Xa. Werden die ersten
partiellen Ableitungen Null gesetzt, dann kann die Wirkleistung maximal sein (notwendi-
ge Bedingung):

�Pa

�Xa

= �Uq
2 (

Ra ( 2(Xi + Xa )

[(Ri + Ra )2 + (Xi + Xa )2]2
= 0

d. h. Xi + Xa = 0

oder Xa = – Xi. (4.277)

�Pa

�Ra

= Uq
2 (

(Ri + Ra )2 + (Xi + Xa )2 � 2(Ri + Ra ) ( Ra

[(Ri + Ra )2 + (Xi + Xa )2]2
= 0

d. h. Ri
2 + 2RiRa + Ra

2 + (Xi + Xa )2 � 2RiRa � 2Ra
2 = 0

oder Ra
2 = Ri

2 + (Xi + Xa )2 . (4.278)

Wird das erste Ergebnis (Gl. 4.277) im zweiten Ergebnis (Gl. 4.278) berücksichtigt, dann
ist

Ra = Ri, (4.279)

das ist dieselbe Anpassungsbedingung wie für den Gleichstromkreis.

Die hinreichende Bedingung für ein Maximum

�2Pa

�Ra
2
�
�2Pa

�Xa
2

>
�2Pa

�Ra � �Xa

mit

�2Pa

�Ra
2

< 0 und
�2Pa

�Xa
2

< 0

soll nicht überprüft werden. Wie die folgende Interpretation der Lösungen zeigt, existiert
ein Maximum für die Wirkleistung.
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Die beiden Anpassungsbedingungen lassen sich zusammenfassen:

Za = Zi
* (4.280)

mit Ra + j·Xa = Ri – j·Xi oder Za ( e j�a = Zi ( e� j�i .

Die Anpassung im Wechselstromkreis wird wegen dieser Bedingung auch komplexe An-
passung genannt:

Der komplexe Widerstand des passiven Zweipols muss gleich dem konjugiert kom-
plexen Widerstand des aktiven Zweipols sein.

Bei Anpassung beträgt dann die im passiven Zweipol (Verbraucher) genutzte Wirkleis-
tung:

Pa max =
Uq

2 � Ri

(2 � Ri )
2

=
Uq

2 � Ri

4 � Ri
2

=
Uq

2

4 � Ri

(4.281)

und die im aktiven Zweipol (Generator) erzeugte Leistung

PE = Pa + Pi = I2 · (Ra + Ri)

PE =
Uq

2

(Ra + Ri )
2
� (Ra + Ri )

PE =
Uq

2

Ra + Ri

=
Uq

2

2 � Ri

. (4.282)

Nur die Hälfte der vom aktiven Zweipol (Generator) abgegebenen Wirkleistung wird bei
Anpassung im passiven Zweipol (Verbraucher) genutzt. Der Wirkungsgrad � beträgt also
nur 50 %. In der Nachrichtentechnik wird also ein schlechter Wirkungsgrad in Kauf ge-
nommen, um eine maximale Verbraucherleistung zur Verfügung zu haben.

Grundstromkreis mit Ersatzstromquelle:

Die vom passiven Zweipol (Verbraucher) aufgenommene Wirkleistung Pa soll maximal
sein:

Pa =
U2

Ra

= U2 �Ga

mit U =
Iq

Yi + Ya

=
Iq

(Gi + Ga ) + j� (Bi + Ba )

und U =
Iq

(Gi + Ga )2 + (Bi + Ba )2

Pa =
Iq

2 �Ga

(Gi + Ga )2 + (Bi + Ba )2
= f (Ga , Ba ) . (4.283)
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Die partiellen Ableitungen

�Pa

�Ba

und
�Pa

�Ga

lassen sich analog berechnen, Null setzen und ergeben:

Die Wirkleistung Pa ist maximal, wenn sich die Blindanteile der beiden komplexen Leit-
werte kompensieren

Ba = – Bi (4.284)

und wenn die Realanteile der komplexen Leitwerte gleich sind:

Ga = Gi . (4.285)

Die beiden Anpassungsbedingungen lassen sich wieder zusammenfassen:

Ya = Yi
* (4.286)

mit Ga + j·Ba = Gi – j·Bi bzw. Ya · ej�a = Yi · e–j�i.

Die komplexe Anpassung bedeutet, dass der komplexe Leitwert des passiven Zweipols
gleich dem konjugiert komplexen Leitwert des aktiven Zweipols ist. Bei Anpassung be-
trägt dann die im passiven Zweipol (Verbraucher) genutzte Wirkleistung:

Pa max =
Iq

2 �Gi

(2 �Gi )
2

=
Iq

2 �Gi

4 �Gi
2

=
Iq

2

4 �Gi

, (4.287)

die mit Iq · Ri =
Iq

Gi

= Uq

genauso groß ist wie die genutzte Wirkleistung im Grundstromkreis mit Ersatzstromquel-
le, wenn die aktiven und passiven Zweipole äquivalent sind. Damit ist auch die im aktiven
Zweipol (Generator) erzeugte Wirkleistung PE gleich:

PE = Pa + Pi = U2 · (Ga + Gi)

PE =
Iq

2

(Ga + Gi )
2
� (Ga + Gi )

PE =
Iq

2

(Ga + Gi )
=

Iq
2

2Gi

�
Gi

Gi

=
Uq

2

2Ri

. (4.288)

Auch für den Grundstromkreis mit Ersatzstromquelle bestätigt sich, dass bei Anpassung
nur die Hälfte der vom aktiven Zweipol (Generator) abgegebenen Wirkleistung im passi-
ven Zweipol (Verbraucher) genutzt wird. Der Wirkungsgrad � beträgt nur 50%.

Bei der Überführung eines Wechselstromnetzwerkes in einen der beiden Grundstromkrei-
se werden nach der Zweipoltheorie die Ersatzelemente Uqers, Iqers, Ziers, Zaers ermittelt.
Die Anpassungsbedingungen lauten dann

aersZ = Ziers
* bzw. Yaers = Yiers

* (4.289)
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Darstellung der Wirkleistungsfunktion:

Da die Wirkleistung Pa und die maximale Wirkleistung Pa max für den Grundstromkreis
mit Ersatzspannungsquelle und für den Grundstromkreis mit Ersatzstromquelle gleich
sind, genügt es, wenn die Funktion Pa = f(Ra, Xa) interpretiert wird, denn die Funktion
Pa = f (Ga, Ba) ergibt die gleichen Ergebnisse.

Eine Funktion z = f (x, y) mit zwei unabhängigen Variablen stellt im kartesischen Koordi-
natensystem eine Fläche im Raum dar. Die Variablen x, y und z sind reelle Zahlen, also
bezogene Größen:

Mit den Gl. (4.276) und (4.281) ist

Pa

Pa max

=

Uq
2 � Ra

(Ri + Ra )2 + (Xi + Xa )2

Uq
2

4Ri

=
4 � Ri � Ra

(Ri + Ra )2 + (Xi + Xa )2

Pa

Pa max

=
4 �

Ra

Ri

1+
Ra

Ri

�

��
�

��

2

+
Xi + Xa

Ri

�

��
�

��

2
(4.290)

z =
4 � x

(1+ x)2 + y2
(4.291)

mit z =
Pa

Pa max

, x =
Ra

Ri

und y =
Xi + Xa

Ri

.

Die Fläche im Raum, die diese Funktion z = f (x, y) darstellt, ähnelt einem Berg mit einem
abgeplatteten Gipfel über dem Punkt (1, 0), einem steil abfallenden Hang zur y-Achse zu
und einem flachen Hang in Richtung x-Achse (siehe Bild 4.174).

Bild 4.174 Räumliche Darstellung der Wirkleistungsfunktion
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Die räumliche Darstellung gibt nur ein verzerrtes Bild und lässt keine quantitativen Aus-
sagen zu. Deshalb werden Schnittflächen mit z = z0, x = x0 und y = y0 festgelegt und
die dort sich befindlichen Schnittkurven untersucht.

Wird z nacheinander gleich einer konstanten Zahl zwischen 0 und 1 gesetzt, dann entste-
hen Kurven, in deren Punkten die Wirkleistung konstant ist. Diese Kurven heißen Höhen-
linien, weil sie im räumlichen Bild der Funktion Punkte gleicher Höhe enthalten. Für
z = Pa/Pa max = konstant sind die Höhenlinien Kreise mit unterschiedlichen Radien und
auf der x-Achse verschobenen Mittelpunkten:

(1 + x)2 + y2 =
4x

z

y2 + 1 + 2x –
4x

z
+ x2 = 0

y2 + x2 � 2x �
2

z
� 1

�
��

�
	�
+

2

z
� 1

�
��

�
	�

2

=
2

z
� 1

�
��

�
	�

2

� 1

y2 + x �
2

z
� 1

�
��

	
/


�

�
�

�

�



2

=
4

z2
�

4

z
+ 1� 1

y2 + x �
2

z
� 1

�
��



��




	
�

�

�



2

=
4

z
�

1

z
� 1

�
��



��

(4.292)

y2 + (x – xM)2 = r2

mit xM =
2

z
� 1

und r = 2 �
1

z
�

1

z
� 1

�
��

�
	�

.

Für z =
Pa

Pa max

= 1 … 0,5 ergeben sich dann folgende kreisförmige Höhenlinien (siehe

Bild 4.175):

z 1 0,95 0,9 0,8 0,7 0,6 0,5

xM 1 1,11 1,22 1,5 1,86 2,33 3,0

r 0 0,47 0,70 1,12 1,56 2,11 2,82

Parallel zu der z, y-Ebene und der z, x-Ebene sind die Ebenen für die Anpassungsbedin-
gung Ra = Ri und Xa = – Xi interessant. Die Gleichungen der Schnittkurven (siehe Bild
4.175) ergeben sich nach Gl. (4.291)

mit x = x0 =
Ra

Ri

= 1 : z = f (1, y) =
4

4 + y2
(4.293)

y 0 ± 0,25 ± 0,5 ± 0,75 ± 1,0 ± 1,5 ± 2,0

z 1 0,985 0,941 0,877 0,8 0,64 0,5
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und mit

y = y0 =
Xi + Xa

Ri

= 0 : z = f (x,0) =
4 � x

(1+ x)2
(4.294)

x 0 0,25 0,5 0,75 1,0 1,25 1,5 2,0 3,0

z 0 0,64 0,89 0,98 1,0 0,99 0,96 0,89 0,75

Wie in den Bildern 4.174 und 4.175 zu
ersehen, ist der Maxima-Gipfel der Funk-
tion z = f(x, y) nicht spitz, sondern abge-
plattet. Deshalb darf die Widerstandsan-
passung relativ ungenau sein, ohne dass
eine große Abweichung vom Maximalwert
hingenommen werden muss, wie folgendes
Beispiel zeigt.

Bild 4.175 Schnittkurven der
Wirkleistungsfunktion
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Beispiel:

In einem Grundstromkreis mit Ersatzspannungsquelle sind gegeben:

Uq = 20V

Za = Ra + j · Xa = 10� + j · 10�

Zi = Ri + j · Xi = 10� – j ·10�.
Mit Gl. (4.280) ist die Anpassungsbedingung erfüllt, so dass die Wirkleistung am passiven
Zweipol maximal ist:

Pa max =
Uq

2

4 � Ri

=
(20 V)2

4 �10 �
= 10W.

Weicht der ohmsche Anteil des Außenwiderstandes Ra um –10% vom ursprünglichen Wert
von 10� ab, dann beträgt die Abweichung der Wirkleistung vom Maximalwert nur 0,28%,
wie folgende Rechnung zeigt:

x = a
2 2

i

R 9 4 x 4 0,9
0,9 y 0 z 0,9972

R 10 (1 x) (1 0,9)

� � �
= = = = = =

� + +
.

Die Wirkleistung beträgt dann Pa = z · Pamax = 0,9972 · 10W = 9,972W.

Bei einer Abweichung von +10% ist mit x = 11/10 = 1,1 die Wirkleistung gleich 9,977W.

Weicht der Blindanteil des Außenwiderstandes Xa um –10% vom ursprünglichen Wert von
10� ab, dann beträgt die Abweichung der Wirkleistung vom Maximalwert nur 0,25%, wie
berechnet werden kann:

x = 1 i a

i

X X ( 10 9)
y 0,1

R 10

+ � + �
= = = �

� 2 2

4 4
z 0,9975

4 y 4 ( 0,1)
= = =

+ + �

Die Wirkleistung beträgt dann Pa = z · Pamax = 0,9975 · 10W = 9,975W.

Bei einer Abweichung von +10% ist mit y = (– 10 + 11)/10 = + 0,1 die Wirkleistung gleich.

Weichen ohmscher Anteil und Blindanteil jeweils um –10% von den gleichen ursprünglichen
Werten ab, dann beträgt die Abweichung der Leistung 0,55%:

x = 0,9 y = – 0,1
2 2 2 2

4 x 4 0,9
z 0,9945

(1 x) y (1 0,9) ( 0,1)

� �
= = =

+ + + + �
.

Die Wirkleistung beträgt dann Pa = z · Pa max = 0,9945 · 10W = 9,945W.

Bei einer Abweichung um jeweils +10% ist die Wirkleistung gleich 9,945W.

Diese Ergebnisse können im Schnittlinienbild der Funktion z = f (x, y) kontrolliert werden
(siehe Bild 4.175).
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Übungsaufgaben zum Abschnitt 4.7

4.33 Für einen verlustbehafteten kapazitiven Wechselstromwiderstand soll die Augenblicksleis-
tung p nach Gl. (4.205) als Überlagerung des Wirkanteils P · (1 – cos2�t) und des Blindan-
teils – Q · sin2�t dargestellt werden, wenn die Scheinleistung S = U · I = 2kVA und die
Phasenverschiebung � = – �/3 bzw. – 60° betragen.

4.34 An einen passiven Zweipol wird eine sinusförmige Wechselspannung mit dem Effektivwert
U = 220V und der Frequenz f = 50Hz angelegt, wodurch sich ein sinusförmiger Strom mit
dem Effektivwert I = 9,1A mit einer Phasenverschiebung � = 60° einstellt.

1. Ermitteln Sie die Ersatzschaltbilder mit den Ersatzelementen.

2. Errechnen Sie die Wirkleistung, die Blindleistung und die Scheinleistung für die beiden
Ersatzschaltbilder.

4.35 Durch eine Magnetspule fließt bei einer Spannung U = 110V mit der Frequenz f = 50Hz ein
Strom von 5,2A bei einem Leistungsfaktor cos � = 0,25.

1. Berechnen Sie die Scheinleistung, die Wirkleistung und die Blindleistung.

2. Für die Parallelschaltung (Ersatzschaltung) ermitteln Sie dann die Wirkkomponente und
die Blindkomponente des Stroms.

3. Berechnen Sie schließlich für die Reihenschaltung (Ersatzschaltung) den Scheinwider-
stand, den ohmschen Widerstand, den induktiven Widerstand und die Induktivität.

4.36 Zwei Kondensatoren sind parallel geschaltet und liegen an einer Spannung von 220V, 50Hz.
Der eine Kondensator hat eine Kapazität Cp1 = 12μF und eine Verlustleistung P1 = 1,2W, der
andere eine Kapazität Cp2 = 4μF und eine Verlustleistung P2 = 0,8W.

1. Berechnen Sie die Verlustfaktoren dC1 und dC2 der beiden Kondensatoren.

2. Entwickeln Sie die Formel für den Verlustfaktor dC der Parallelschaltung in Abhängigkeit
von den beiden Kapazitäten Cp1 und Cp2 und berechnen Sie den Verlustfaktor mit den an-
gegebenen Zahlenwerten.

3. Kontrollieren Sie das Ergebnis für dC über die Leistungen.

4.37 Für den Praktischen Parallel-Resonanzkreis (Bild 4.108) sind die Leistungen zu berechnen,
wenn die anliegende Spannung gegeben ist.

1. Entwickeln Sie die Formeln für die Wirk- und Blindleistung über die komplexe Leistung.

2. Kontrollieren Sie die Formeln mit Hilfe der Transformationsgleichungen.

3. Berechnen Sie die Wirk- und Blindleistung mit

RLr = 100� Lr = 0,1H Cr = 2μF U = 20V mit � = 1000s–1.

4.38 In der dargestellten Schaltung sind die Spannung u, die Kapazität Cp und die ohmschen Wi-
derstände RCp und R gegeben:

U = 220V, f = 50Hz R = 20�
RCp = 100� Cp = 60μF.

Bild 4.176 Übungsaufgabe 4.38
1. Berechnen Sie die Wirk- und Blindleistung, nachdem Sie die Parallelschaltung in die

äquivalente Reihenschaltung transformiert haben.

2. Kontrollieren Sie das Ergebnis mit dem komplexen Widerstand der Schaltung.

4.39 Für die Drei-Amperemeter-Methode sind das Zeigerbild und die Formeln für die Wirkleistung
P, den Leistungsfaktor cos � und die Blindleistung Q zu entwickeln.
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4.40 Mit Hilfe der Drei-Voltmeter-Methode lassen sich nicht nur die Wirk- und Blindleistung eines
Wechseltromwiderstandes bestimmen, sondern auch die Ersatzelemente einer verlustbehafte-
ten Spule Rr und Lr. Bei einem Vorwiderstand Rv = 200� wurden bei f = 50Hz folgende Ef-
fektivwerte gemessen:

U1 = 220V U2 = 90V U3 = 160V

1. Zeichnen Sie ein quantitatives Zeigerbild für sämtli-
che Spannungen und den Strom und lesen Sie UR3
und UL3 ab.

2. Berechnen Sie aus den Ergebnissen des Zeigerbildes
Rr und Lr.

3. Kontrollieren Sie die Ergebnisse rechnerisch, indem
Sie zunächst den Leistungsfaktor ermitteln. Bild 4.177 Übungsaufgabe 4.40

4.41 Für einen Einphasenmotor für U = 220V, f = 50Hz mit der Wirkleistung von 5kW und einem
Leistungsfaktor cos � = 0,85 soll mit einem parallel geschalteten Kondensator der Leistungs-
faktor auf 1 angehoben werden.

1. Berechnen Sie die Blindleistung und die notwendige Kapazität.

2. Berechnen Sie die Stromaufnahme vor und nach der Kompensation.

3. Kontrollieren Sie das Ergebnis durch ein Zeigerbild.

4. Wie groß wäre die notwendige Kapazität eines Kondensators bei welcher Spannung, wenn
bei 220V Netzspannung eine Reihenkompensation vorgenommen werden würde? Kontrol-
lieren Sie das Ergebnis mit dem Kapazitätsverhältnis.

4.42 Ein Transformator ist bei U = 220V, f = 50Hz maximal mit 200kVA belastbar und durch
einen angeschlossenen Motor mit P1 = 150kW, cos �1 = 0,6 überlastet. Dennoch soll noch ein
zweiter Motor mit P2 = 40kW, cos �2 = 0,8 an den Transformator angeschlossen werden.

1. Weisen Sie nach, dass der Transformator durch den ersten Motor überlastet ist.

2. Untersuchen Sie, ob beide Motoren angeschlossen werden können, wenn eine Blindleis-
tungskompensation erfolgt. Berechnen Sie die Blindleistungen und die notwendigen Kapa-
zitäten für die Parallel- und Reihenkompensation.

Bild 4.178 Übungsaufgabe 4.43

4.43 Der aktive Zweipol in der gezeichneten
Schaltung soll an den passiven Zweipol,
dessen Bauelemente gegeben sind, ange-
passt werden.
1. Entwickeln Sie aus der Anpassbedin-

gung die Formeln für Ri und Li, indem
Sie den komplexen Widerstand des pas-
siven Zweipols ermitteln.

2. Kontrollieren Sie das Ergebnis, indem
Sie die Parallelschaltung des Kondensa-
tors in die äquivalente Reihenschaltung
überführen.

4.44 1. Für die gezeichnete Schaltung ist der
Außenwiderstand Za gesucht, der an den
aktiven Zweipol angepasst werden kann.

2. Entwickeln Sie die Formel für die ma-
ximale Leistung, die der passive Zwei-
pol aus dem aktiven Zweipol aufnimmt.

3. Berechnen Sie Za und Pa max für

Uq = 9V bei f = 3000Hz

Ri = 4�
RLr = 6� Lr = 424μH

RCp = 500� Cp = 10,6μF
Bild 4.179 Übungsaufgabe 4.44
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5 Ortskurven

5.1 Begriff der Ortskurve

Zeigerbild und Ortskurve

Durch ein Zeigerbild wird ein bestimmter Betriebszustand eines Wechselstromnetzes bei
konstanten Parametern (Amplituden und Frequenz der einspeisenden sinusförmigen
Quellspannungen und Quellströme, Netzparameter R, L, M und C) durch komplexe Effek-
tivwerte von Strömen und Spannungen beschrieben.

Komplexe Widerstände und komplexe Leitwerte von Wechselstromschaltungen lassen
sich ebenfalls durch Zeiger in der Gaußschen Zahlenebene darstellen, wenn die Frequenz
und die Netzparameter konstant sind.

Mit variablen Parametern ändern sich die Zeigerbilder mit komplexen Effektivwerten und
entsprechend die Zeigerbilder für komplexe Widerstände und komplexe Leitwerte. Wird
nur die Änderung einer bestimmten Größe des Wechselstromnetzes infolge der Änderung
eines Parameters untersucht, dann entsteht für diese Größe eine Menge von Zeigern. Die
Zeigerspitzen werden verbunden, die Kurve der Zeigerspitzen wird Ortskurve genannt.

Jede Ortskurve wird mit reellen Parametern p versehen. Im Ortskurvenpunkt für p = 1
endet der Zeiger, der dem Ausgangszustand der untersuchten Größe entspricht. Zu den
Ortskurvenpunkten für p � 1 gehören die Zeiger, die den geänderten Anteil der untersuch-
ten Größe bezogen auf den Ausgangszustand berücksichtigen.

Durch Ortskurven lassen sich also verschiedene Betriebszustände eines Wechselstromnet-
zes, d. h. bei geänderten Parametern, in einem Bild erfassen.

Beispiele:

1. Ortskurve des komplexen Widerstandes der Reihenschaltung eines variablen ohmschen
Widerstandes Rr = p · Rr0 mit dem Parameter 0 
 p < � und einer konstanten Induktivität
Lr bei konstanter Kreisfrequenz �:

Die Ortskurvengleichung lautet

Z = j � Lr + p · Rr0

Bild 5.1
Ortskurve des komplexen
Widerstandes der R/L-
Reihenschaltung bei variab-
lem ohmschen Widerstand
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2. Ortskurve des bezogenen komplexen Widerstan-
des des Reihenschwingkreises mit

Zr

Rr

= 1 + j � Qr � �r

und des bezogenen komplexen Leitwerts des Pa-
rallelschwingkreises mit

Yp

G p

= 1 + j � Qp � �p

bei veränderlicher Frequenz f.

Bei der Behandlung der Bandbreite bei 45°-Ver-
stimmung wurden jeweils drei Ortskurvenpunkte
berechnet (siehe Abschnitt 4.5, Bilder 4.94 und
4.105).

Bild 5.2 Ortskurve des bezogenen
komplexen Widerstandes und des
bezogenen Leitwerts eines
Schwingkreises

Die zu untersuchende Größe, für die die Ortskurve entwickelt werden soll, kann der kom-
plexe Effektivwert eines Stroms oder einer Spannung, ein komplexer Widerstand oder ein
komplexer Leitwert, ein Spannungsverhältnis oder ein Stromverhältnis, ein Frequenzgang
und ähnliches sein.

Allgemeine Ortskurvengleichung

Die allgemeine Form der Ortskurvengleichung lautet

O =
A + p � B + p2 �C + p3 � D + ...

�A + p � �B + p2 � �C + p3 � �D + ...
, (5.1)

wobei p ein reeller Parameter und A, �A , B, �B , C, �C , D, �D , … komplexe Größen
sind.

(Anmerkung:

Die mit einem Strich versehenen komplexen Größen sollen selbstverständlich keine
differenzierten Größen sein. Um Missverständnisse zu vermeiden, werden bei den
folgenden Ortskurvengleichungen keine Striche mehr verwendet).

Beispiel:

Für das angegebene Beispiel 1 ist

O = Z = j�Lr + p · Rr0

mit A = j�Lr B = Rr0 C = D = … = 0

A' = 1 und B' = C' = D' = … = 0

Ermittlung der Ortskurve

Jeder Punkt der Ortskurve könnte für ein gewähltes p errechnet und in der Gaußschen Zah-
lenebene eingetragen werden. Die Punkte verbunden ergeben die Ortskurve. Bei Ortskurven
höherer Ordnung bleibt auch nichts anderes übrig, als die Ortskurve auf diese Weise zu
ermitteln, weil sie nicht konstruiert werden kann.

Sind die Ortskurven einfach wie Geraden, Kreise und Parabeln oder handelt es sich um
überlagerte einfache Ortskurven, dann sollten die Ortskurven nach Konstruktionsanleitun-
gen konstruiert werden. Beispielsweise wäre die punktweise Ermittlung eines Kreises als
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Ortskurve zu aufwendig und ungenau. Einfacher und genauer lässt sich ein Kreis durch
Bestimmung der Mittelpunktslage und des Radius zeichnen.

Bei der Überlagerung von einfachen Ortskurven werden zunächst die einfachen Ortskur-
ven konstruiert und anschließend die Zeiger für gleiche Parameter p überlagert. Bei der
Ermittlung einer Ortskurve sollte nach folgenden Schritten vorgegangen werden:

1. Ermittlung der Gleichung für die Größe, für die die Ortskurve ermittelt werden soll.
2. Einführung des Parameters p in den variablen Teil der Größe, wodurch sich die

Ortskurvengleichung ergibt.
3. Konstruktion der Ortskurve, falls es sich um eine einfache Ortskurve oder um überla-

gerte einfache Ortskurven handelt.

Gerade: G = A + p · B

Kreis durch den Nullpunkt: K = 
1

G
=

1

A + p � B

Kreis in allgemeiner Lage: K = 
A + p � B

C + p � D
= L +

1

E + p � F

Parabel: P = A + p � B + p2 �C

zirkulare Kubik: O = 
A + p � B + p2 �C

D + p � E
= R + p �S +

1

D

F
+ p �

E

F

(das ist die Überlagerung eines Kreises mit einer Geraden)
oder

Berechnung der einzelnen Ortskurvenpunkte bei Variation des reellen Parameters p. Hier-
bei genügen meist einige Ortskurvenpunkte für ganze p, um den Verlauf der Ortskurve zu
erkennen. Zwischenwerte der Ortskurve für gebrochene p-Werte lassen sich nachträglich
errechnen und in das Ortskurvenbild eintragen.

5.2 Ortskurve „Gerade“

Gleichung in allgemeiner Form und

Darstellung

G = A + p · B (5.2)

mit – � < p < �

speziell:

G = A + p �
1

p

�
��

�
	


· B (5.3)

mit 0 < p < �

Die Ortskurve geht durch die Spitze des
Zeigers A mit p = 0 (speziell: p = 1) und
verläuft parallel zum Zeiger B.

Bild 5.3 Ortskurve „Gerade“ G = A + p · B
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Konstruktionsanleitung 
Zuerst werden die Zeiger A und B gezeichnet, dann wird parallel zum Zeiger B eine Ge-
rade gezeichnet und schließlich werden mit der Länge des Zeigers B die Parameter 
p = 0, ± 1, ± 2, ± 3, … eingetragen. 
Kann der Parameter p nur Null und positive Zahlen annehmen, dann besteht die Ortskur-
ve aus einer entsprechenden Teilgeraden. Bevor die Ortskurve gezeichnet wird, sollte 
überprüft werden, ob der Parameter auch negativ werden kann. 
 

Beispiel 1: 
Ortskurve des komplexen Widerstandes der Reihen-
schaltung zweier Spulen, bei der die eine Spule verän-
derlich ist: 

Rr1 = 500� Rr2 = 200 … 2000� 
Lr1 = 1mH Lr2 = 2 … 20mH bei   f = 50kHz 
Z = Rr1 + j�Lr1 + Rr2 + j�Lr2 

mit Rr2 = p · Rr0 Rr0 = 200� 
Lr2 = p · Lr0 Lr0 = 2mH  
p = 1 … 10 

Z = Rr1 + j�Lr1 + p · (Rr0 + j�Lr0) 
wobei   A = Rr1 + j�Lr1 und  B = Rr0 + j�Lr0 

Z = 500� + j · 2� · 50 · 103s–1 · 1 · 10–3H + 
 + p · (200� + j · 2� · 50 · 103s–1 · 2 · 10–3H) 

Z = (500 + j · 314)� + p · (200 + j · 628)��
mit    p = 1, …,10 

Bild 5.4 Schaltbild und Ortskurve 
der Reihenschaltung einer konstan-
ten und einer veränderlichen Spule 

 

 

Beispiel 2: 
Ortskurve der Spannung über der Reihenschaltung eines 
konstanten ohmschen Widerstandes und einer variablen 
Kapazität bei konstantem Strom: 

U = (Rr + j · Xr) · I = r
r

1R j
C

" #
� �$ %�& '

· I 

Die Spannung nimmt mit größer werdender Kapazität 
ab bzw. mit größer werdendem Blindanteil des komple-
xen Widerstandes zu: 

U = Rr · I – j ·
 

1
� � p � Cr0

· I 

mit  Cr = p · Cr0 
Um auf die allgemeine Form der Geradengleichung zu 
kommen, muss ein Parameter p* eingeführt werden, der 
reziprok zu p ist: 

U = Rr · I + p* · j · Xr0 · I = Rr · I + p* ·
r0

j I
C

" #�
�$ %� �& '

 

mit  p* = 1
p

   und    Xr = p* · Xr0 = p* · �1
� � Cr0

 
Bild 5.5 Ortskurve der 
Spannung am Kondensator 
bei variabler Kapazität 
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Die Ortskurve für die Spannung am Kondensator beginnt auf der reellen Achse bei der ohm-
schen Spannung UR = Rr · I und verläuft parallel zur negativen imaginären Achse. Als Para-
meter können sowohl p als auch p* verwendet werden, die nur positive Zahlen annehmen,
weil negative Kapazitäten ausgeschlossen sind.

Die Ortskurve für die Spannung an der Reihenschaltung eines konstanten ohmschen Wider-
standes und einer variablen Induktivität beginnt auf der reelen Achse bei UR und verläuft pa-
rallel zur positiven imaginären Achse.

Entsprechendes gilt für die Ströme durch die Blindwiderstände von Parallelschaltungen von
Rp und variablen Lp bzw. Cp, wenn die anliegende Spannung konstant ist.

Beispiel 3: Ortskurven

des komplexen Widerstandes der Reihenschaltung eines variablen ohmschen Widerstandes,
einer konstanten Induktivität, einer konstanten Kapazität bei konstanter Frequenz und des
komplexen Leitwerts der Parallelschaltung eines variablen ohmschen Widerstandes, einer
konstanten Induktivität, einer konstanten Kapazität bei konstanter Frequenz:

Reihenschaltung

Z r = Rr + j · Xr

Z r = p · Rr0 + j ( �Lr �
1

�Cr

�

	�
�

��

Parallelschaltung:

Y p =
1

Rp

+ j · Bp

Y p =
1

p·Rp0

+ j ( �Cp �
1

�Lp

�

	
�

�

�
�

Bild 5.6 Ortskurven von Schwingkreisen mit variablem ohmschen Widerstand
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Beispiel 4:

Ortskurven des komplexen Widerstandes der Reihenschaltung und des komplexen Leitwerts der
Parallelschaltung eines konstanten ohmschen Widerstandes und einer variablen Induktivität oder
einer variablen Kapazität bei konstanter Frequenz:

Reihenschaltung

Z r = Rr + j · Xr = Rr + p · j · Xr0

mit Xr = p · Xr0 und 0 
 p < �

Parallelschaltung:

Y p = Gp + j · Bp = Gp + p · j · Bp0

mit Bp = p · Bp0 und 0 
 p < �

Bild 5.7 Ortskurven des komplexen Widerstandes der Reihenschaltung und des komplexen Leit-
werts der Parallelschaltung von ohmschen Widerständen und veränderlichen Blindwiderständen

Beispiel 5:

Ortskurven des komplexen Widerstandes der Reihenschaltung und des komplexen Leitwerts der
Parallelschaltung eines konstanten ohmschen Widerstandes und einer konstanten Induktivität oder
Kapazität bei variabler Frequenz � = p · �0 mit 0 
 p < �:

Reihenschaltung

Z r = Rr + j · Xr

Z r = Rr + j�Lr Z r = Rr – j �
1

�Cr

Z r = Rr + jp�0Lr Z r = Rr – j �
1

p�0Cr

Parallelschaltung:

Y p = Gp + j · Bp

Y p = Gp + j�Cp Y p = Gp – j �
1

�Lp

Y p = Gp + jp�0Cp Y p = Gp – j �
1

p�0Lp

Bild 5.8 Ortskurven des komplexen Widerstands der Reihenschaltung und des komplexen Leitwerts
der Parallelschaltung von ohmschen Widerständen und konstanten Induktivitäten oder Kapazitäten
bei veränderlicher Frequenz



192 5 Ortskurven

Beispiel 6:

Ortskurven des komplexen Widerstandes der Reihenschaltung und des komplexen Leitwerts der
Parallelschaltung eines konstanten ohmschen Widerstandes, einer konstanten Induktivität und einer
konstanten Kapazität bei variabler Frequenz � = p · �0 mit 0 < p < �:

Die Kreisfrequenz � muss auf die Resonanzkreisfrequenz �0 des Reihen- bzw. Parallelschwingkrei-
ses bezogen werden, damit der variable Imaginärteil Null werden kann.

Reihenschaltung

Z r = Rr + j · Xr

Z r = Rr + j · �Lr �
1

�Cr

�

��
�

	�

Z r = Rr + j · p�0Lr �
1

p�0Cr

�

��
�

	�

mit �0 =
1

LrCr

Z r = Rr + j · Xkr � p �
1

p

�
��

�
	�

mit dem Kennwiderstand

Xkr =�0Lr =
1

�0Cr

=
Lr

Cr

(vgl. Abschnitt 4.5.1, Gl. 4.115)

Parallelschaltung:

Y p = Gp + j · Bp

Y p = Gp + j · �Cp �
1

�Lp

�

�
�

�

	
�

Y p = Gp + j · p�0Cp �
1

p�0Lp

�

�
�

�

	
�

mit �0 =
1

CpLp

Y p = Gp + j · Bkp � p �
1

p

�
��

�
	�

mit dem Kennleitwert:

Bkp =�0Cp =
1

�0Lp

=
Cp

Lp

(vgl. Abschnitt 4.5.2, Gl. 4.139)

Der Parameter p entspricht also dem Parameter x in den Gleichungen 4.116 und 4.140:

Xr = Xkr · p �
1

p

�
��

�
	


= Xkr · 	r Bp = Bkp · p �
1

p

�
��

�
	


= Bkp · 	p

Bei Resonanzkreisfrequenz �0 ist der komplexe Widerstand Zr gleich dem ohmschen Widerstand Rr
und der komplexe Leitwert Yp gleich dem ohmschen Leitwert Gp. Bei höheren Frequenzen � als �0
sind die Imaginärteile positiv, bei niedrigeren Frequenzen � als �0 sind die Imaginärteile negativ:

Bild 5.9 Ortskurven des komplexen Widerstandes des Reihenschschwingkreises und des komplexen
Leitwerts des Parallelschschwingkreises bei veränderlicher Frequenz
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5.3 Ortskurve „Kreis durch den Nullpunkt“

Gerade und Kreis durch den Nullpunkt

Die Ortskurve des veränderlichen komplexen Widerstandes Zr einer Reihenschaltung von
Wechselstromwiderständen und des veränderlichen komplexen Leitwerts Yp einer Paral-
lelschaltung von Wechselstromwiderständen sind Geraden mit der Ortskurvengleichung

G = A + p · B bzw. G = A + p �
1

p

�
��

�
	


· B .

Der veränderliche komplexe Leitwert Yr der Reihenschaltung und der veränderliche kom-
plexe Widerstand Zp der Parallelschaltung bedeutet mit

Yr =
1

Zr
und Zp =

1

Yp

eine Inversion der Geraden, der so genannten Nennergeraden (G steht im Nenner):

K =
1

G
=

1

A + p � B
mit – � < p < � (5.4)

und speziell

K =
1

G
=

1

A + p �
1

p

�
��

�
	�
� B

mit 0 < p < � . (5.5)

Die Ortskurve, die durch die Kehrwertbildung (Inversion) der Geradenzeiger entsteht, ist
ein Kreis durch den Nullpunkt, wie im folgenden nachgewiesen werden soll.

Nachweis für die Ortskurve „Kreis durch den Nullpunkt“

Die Ortskurvengleichung

K =
1

A + p � B

besteht aus den Zeigern A = A · ej�, B = B · ej� und K = K · ej�.

K ist der Kreiszeiger, der im Koordinatenursprung beginnt und mit dem variablen Para-
meter p in den entsprechenden Kreispunkten endet.

Werden Zähler und Nenner durch A dividiert, dann ergibt sich

K =

1

A

1+ p �
B

A

=
K0

1+ p �C

mit C =
B

A
=

B

A
� e j(���) = C � e j� mit � = � – �

und K0 =
1

A
=

1

A ( e j�
=

1

A
( e� j� = K0 ( e j(� �) .
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K0 ist der Kreiszeiger für p = 0, wie aus der Kreisgleichung zu ersehen ist. Er liegt auf
dem Strahl vom Koordinatenursprung mit dem Winkel – � und hat den Betrag 1/A. Wird
der Nenner 1 + pC auf die linke Seite gebracht, dann ergibt sich eine Gleichung von drei
Zeigern:

K + pC · K = K0

oder

K + D = K0

mit D = p · C · K = D · ej� = D · ej(�+2�)

und pC =
D

K
=

D

K
� e j(���)

pC = pC · ej� = pC · ej(� – �)

wobei � = � – �

bzw. � + � = � = � + 2�

Bild 5.10
Kreis durch den Nullpunkt:
Ortskurvengleichung und Darstel-
lung

Die drei Zeiger K , D und K0 bilden ein geschlossenes Dreieck. Wird der Parameter p
variiert, dann ändern sich die beiden Zeiger K und D , der Zeiger K0 bleibt unverändert.

Der Winkel �, der zwischen den Zeigern D und K liegt, bleibt bei Variation des Parame-
ters p ebenfalls unverändert, weil er durch � und � feststeht.

Sind von einem Dreieck eine Seite K0 = 1/A und der gegenüberliegende Winkel � – � bei
Variation der beiden übrigen Seiten K und D konstant, dann liegt das Dreieck in einem
Kreis, denn über einer Sehne K0 eines Kreises bleibt der gegenüberliegende Peripherie-
winkel � – � konstant.
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Herleitung der Konstruktionsvorschrift

Ein Kreis, der durch den Koordinatenursprung verläuft, ist allein durch die Lage des Mit-
telpunktes M bestimmt, denn der Radius ist dann durch die Strecke M0 festgelegt. Aus
den gegebenen Zeigern A und B der Ortskurvengleichung muss also die Lage des Kreis-
mittelpunktes eindeutig ermittelt werden können:

Der Mittelpunkt M ergibt sich aus dem Schnittpunkt der Mittelsenkrechten auf dem
Kreiszeiger K0 = 1/A und des Lotes auf der Kreistangenten im Koordinatenursprung, die
mit der Richtung des konjugiert komplexen Zeigers B* und des negativen konjugiert
komplexen Zeigers –B* übereinstimmt.

Bild 5.11
Herleitung der Konstruktionsvor-
schrift der Ortskurve „Kreis durch den
Nullpunkt“

Aus dem Zeiger A lässt sich der konjugiert komplexe Zeiger A* durch Spiegelung an der
reellen Achse ermitteln. Damit liegt die Gerade fest, auf der der Kreiszeiger K0 liegt, denn
die Zeiger A* und K0 = 1/A. haben die gleiche Richtung. Auf dieser Geraden wird im
Abstand 0,5/A = 1/(2A) die Senkrechte, die Mittelsenkrechte auf K0, gezeichnet.

Aus dem Zeiger B kann ebenfalls durch Spiegelung an der reellen Achse der konjugiert
komplexe Zeiger B* bestimmt werden. Dieser liegt auf der Tangente, auf der im Koordi-
natenursprung die Senkrechte zu bilden ist.

Dass die Zeiger B* bzw. –B* auf der Kreistangenten im Koordinatenursprung liegen,
muss noch nachgewiesen werden:

Bei einem Kreis ist der Peripheriewinkel � – � gleich dem Sehnen-Tangenten-Winkel,
der zwischen der Sehne K0 und der Tangente liegt. Zwischen der Tangente und der reellen
Achse tritt damit der Winkel (� – �) – � auf, der gleich dem Argument des negativen
konjugiert komplexen Zeigers –B* ist:

(� – �) – � = � – (� + �)

mit � = � – � bzw. � = � + �

(�– �) – � = � – �

– B* = – B · e– j� = B · e j(� – �) mit ej� = – 1.
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Die konjugiert komplexen Zeiger A* und B*, die das Zeichnen des Kreises ermöglichen,
bilden die gespiegelte Nennergerade

G* = A* + p · B*. (5.6)

Diese verläuft parallel zum Zeiger B*, so dass auch auf der gespiegelten Nennergeraden
die Senkrechte gezeichnet werden kann, um den Mittelpunkt zu erhalten.

Die gespiegelte Nennergerade muss gezeichnet werden, weil mit ihrer Hilfe die Parame-
ter p auf dem Kreis gefunden und eingetragen werden können. Für einen bestimmten
Parameter p haben der Zeiger an den Kreis K und der Zeiger an die gespiegelte Nenner-
gerade G* die gleiche Richtung, wie folgende Gleichung zeigt:

K = K · ej� =
1

G
=

1

G ( e� j�
=

G

G2
( e j� =

1

G2
( G

*
. (5.7)

Die beiden Zeiger K und G* für einen gleichen Parameter p unterscheiden sich nur durch
ihren Betrag, also durch ihre Länge. Punkte des Kreises K und der konjugiert komplexen
Nennergeraden G* mit gleichen p-Werten liegen deshalb jeweils auf einer Geraden, die
durch den Koordinatenursprung geht. Die p-Werte auf dem Kreis werden also mit Hilfe
eines Lineals ermittelt, das an den Koordinatenursprung 0 und an die Punkte der Geraden
G* angelegt wird. Die Parameterwerte der Geraden G* werden dann jeweils auf den Kreis
übertragen.

Bild 5.12
Ermittlung der Parameterwerte auf der
Ortskurve „Kreis durch den Null-
punkt“ mit Hilfe der konjugiert kom-
plexen Nennergeraden

Die Geraden durch den Koordinatenursprung 0 zur Bestimmung der p-Werte des Kreises
sind im Bild 5.12 nur zum besseren Verständnis der Zusammenhänge eingetragen. Sie
werden selbstverständlich bei den Ortskurvenkonstruktionen weggelassen, damit das
Ortskurvenbild übersichtlich bleibt. Die auf den Kreis zu übertragenden p-Werte werden
auf dem Kreis nur markiert.
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Konstruktionsanleitung für die Ortskurve „Kreis durch den Nullpunkt“

Bei der Konstruktion der Ortskurve eines Kreises, der durch den Koordinatenursprung
verläuft, sollte nach Erkennen der Ortskurvengleichung

K =
1

A + p � B
=

1

G
bzw. K =

1

A + p �
1

p

�
��

�
��
� B

=
1

G

nach folgenden Schritten vorgegangen werden (siehe Bild 5.13):

Nachdem auf der reellen und imaginären Achse gleiche Maßstäbe gewählt sind, kann mit
der Konstruktion begonnen werden.

1. Zeichnen der Nennergeraden G = A + p · B.

2. Spiegelung der Nennergeraden an der reellen Achse ergibt G* = A* + p · B*.

3. Zeichnen der Senkrechten auf der gespiegelten Nennergeraden G*, die durch den
Nullpunkt verläuft.

4. Berechnen von 1/(2A), Festlegen des Maßstabs für 1/(2A) und Zeichnen der Senkrech-
ten auf A* im Abstand 1/(2A). Die Festlegung der Länge von 1/(2A) bestimmt die
Größe des Kreises.

5. Schnittpunkt der beiden Senkrechten ergibt den Mittelpunkt M des Kreises.
Zeichnen des Kreises mit dem Radius M0 .

6. Bezifferung des Kreises mit den Parameterwerten p entsprechend der gespiegelten
Nennergeraden G*.

Bild 5.13
Konstruktion der Ortskurve
„Kreis durch den Nullpunkt“
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Beispiel 1:

Ortskurve des komplexen Leitwerts der Reihenschaltung zweier Spulen, bei der die eine Spu-
le veränderlich ist:

Rr1 = 23� Rr2 = 0 … 36� mit Rr0 = 12�

Xr1 = 10� Xr2 = 0 … 66� Xr0 = 22� d. h. p = 0 … 3

Die Gleichung der Nennergeraden lautet:

Z = Rr1 + jXr1 + p · (Rr0 + jXr0) = (23 + j · 10)� + p · (12 + j · 22)�
Die Inversion der Nennergerade ergibt die Kreisgleichung:

Y =
1

Z
=

1

Rr1 + j � Xr1 + p � (Rr0 + j � Xr0 )
=

1

(23 + j �10)� + p � (12+ j � 22)�

Dabei ist

A = (23 + j · 10)�

A = 232 + 102� = 25�
und 1/(2A) = 20mS � 2cm.

Bild 5.14
Schaltung und Ortskurven der
Reihenschaltung einer konstanten
und einer veränderlichen Spule

Sowohl die Ortskurve des komplexen Widerstands als auch die des komplexen Leitwerts ist
nur für positive Parameter sinnvoll.

Die Ortskurvenpunkte des komplexen Leitwerts lassen sich rechnerisch kontrollieren:

p = 0 Z0 = (23 + j · 10)�

Y0 =
1

(23 + j ·10)�
(

(23 � j ·10)�
(23 � j ·10)�

=
(23 � j ·10)�

629 �2
= (36,6 � j (15,9)mS
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p = 1 Z1 = (23 + j · 10)� + 1 · (12 + j · 22)� = (35 + j · 32)�

Y1 =
1

(35 + j · 32)�
(

(35 � j · 32)�
(35 � j · 32)�

=
(35 � j · 32)�

2249 �2
= (15,6 � j (14,2)mS

p = 2 Z2 = (23 + j · 10)� + 2 · (12 + j · 22)� = (47 + j · 54)�

Y2 =
1

(47 + j · 54)�
(

(47 � j · 54)�
(47 � j · 54)�

=
(47 � j · 54)�

5125�2
= (9,2 � j (10,5)mS

p = 3 Z3 = (23 + j · 10)� + 3 · (12 + j · 22)� = (59 + j · 76)�

Y3 =
1

(59 + j · 76)�
(

(59 � j · 76)�
(59 � j · 76)�

=
(59 � j · 76)�

9257 �2
= (6,4 � j ( 8,2)mS

Beispiel 2:

Ortskurve des Stroms durch die Reihenschaltung eines konstanten ohmschen Widerstandes
und einer variablen Kapazität bei konstanter Spannung:

I =
U

Rr + j � Xr

I =
U

Rr � j (
1

�Cr

I =
U

Rr � j (
1

� p Cr0

I =
1

Rr

U
� j (

1

p ( � Cr0 U

oder

I =
1

Rr

U
� j ( p* (

1

� Cr0 U

mit Cr = p · Cr0 =
1

p*
� Cr0

Dabei sind

A =
Rr

U
, B = – j ·

1

�Cr0 U

und

1

2A
=

U

2Rr

Bild 5.15 Ortskurve des
Stroms durch den Kondensa-
tor bei variabler Kapazität

Bei p = 0 ist der kapazitive Widerstand unendlich groß, so dass der Strom Null ist. Wird die
Kapazität sehr groß, dann ist der kapazitive Widerstand vernachlässigbar klein; bei p = 	 ist
der Strom nur noch durch den ohmschen Widerstand Rr begrenzt.

(vgl. mit Beispiel 2 der Ortskurve „Gerade“)
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Beispiel 3:

Ortskurven

des komplexen Leitwerts der Reihenschaltung eines variablen ohmschen Widerstandes, einer
konstanten Induktivität, einer konstanten Kapazität bei konstanter Frequenz und des komple-
xen Widerstandes der Parallelschaltung eines variablen ohmschen Widerstandes, einer kon-
stanten Induktivität, einer konstanten Kapazität bei konstanter Frequenz:

(vgl. mit Beispiel 3 der Ortskurve „Gerade“)

Reihenschaltung

Yr =
1

Zr

=
1

Rr + j � Xr

Yr =
1

p ( Rr0 + j ( �Lr �
1

�Cr

�

��
�


�

mit A = j · Xr und
1

2A
=

1

2Xr

Parallelschaltung:

Zp =
1

Yp

=
1

1

Rp

+ j � Bp

Zp =
1

1

p ( Rp0

+ j ( �Cp �
1

�Lp

�

�
�

�



�

mit A = j · Bp und
1

2A
=

1

2Bp

Bild 5.16 Ortskurven von Schwingkreisen mit variablem ohmschen Widerstand
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Beispiel 4:

Ortskurven des komplexen Leitwerts der Reihenschaltung und des komplexen Widerstandes der
Parallelschaltung eines konstanten ohmschen Widerstandes und einer variablen Induktivität oder
einer variablen Kapazität bei konstanter Frequenz:

(vgl. mit Beispiel 4 der Ortskurve „Gerade“)

Reihenschaltung

Yr =
1

Zr

=
1

Rr + j � Xr

=
1

Rr + p � j � Xr0

mit Xr = p · Xr0 und 0 � p < 	

und A = Rr und
1

2A
=

1

2Rr

Parallelschaltung:

Zp =
1

Yp

=
1

G p + j � Bp

=
1

G p + p � j � Bp0

mit Bp = p · Bp0 und 0 � p < 	

und A = Gp und
1

2A
=

1

2G p

=
Rp

2

Bild 5.17 Ortskurven des komplexen Leitwerts der Reihenschaltung und des komplexen Widerstan-
des der Parallelschaltung von ohmschen Widerständen und veränderlichen Blindwiderständen
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Beispiel 5:

Ortskurven des komplexen Leitwerts der Reihenschaltung und des komplexen Widerstandes der
Parallelschaltung eines konstanten ohmschen Widerstandes und einer konstanten Induktivität oder
Kapazität bei variabler Frequenz � = p · �0 mit 0 < p < 	:

(vgl. mit Beispiel 5 der Ortskurve „Gerade“)

Reihenschaltung

Yr =
1

Zr

=
1

Rr + j � Xr

Yr =
1

Rr + j�Lr

Yr =
1

Rr � j (
1

�Cr

Yr =
1

Rr + jp�0Lr

Yr =
1

Rr � j
1

p�0Cr

mit A = Rr und
1

2A
=

1

2Rr

Parallelschaltung:

Zp =
1

Yp

=
1

G p + j � Bp

Zp =
1

G p + j�Cp

Zp =
1

G p � j
1

�Lp

Zp =
1

G p + jp�0Cp

Zp =
1

G p � j
1

p�0Lp

mit A = Gp und
1

2A
=

1

2G p

=
Rp

2

Bild 5.18 Ortskurven des komplexen Leitwerts der Reihenschaltung und des komplexen Widerstan-
des der Parallelschaltung von ohmschen Widerständen und konstanten Induktivitäten oder Kapazitä-
ten bei veränderlicher Frequenz
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Beispiel 6:
Ortskurven des komplexen Leitwerts der Reihenschaltung und des komplexen Widerstandes
der Parallelschaltung eines konstanten ohmschen Widerstandes, einer konstanten Induktivität
und einer konstanten Kapazität bei variabler Frequenz � = p · �0 mit 0 < p < 	:
(vgl. mit Beispiel 6 der Ortskurve „Gerade“)

Die Kreisfrequenz � muss auf die Resonanzkreisfrequenz �0 des Reihen- bzw. Parallel-
schwingkreises bezogen werden, damit der variable Imaginärteil Null werden kann.

Reihenschaltung

Yr =
1

Zr

=
1

Rr + j � Xr

Yr =
1

Rr + j ( �Lr �
1

�Cr

�

��
�


�

Yr =
1

Rr + j ( p�0Lr �
1

p�0Cr

�

��
�


�

mit �0 =
1

LrCr

Yr =
1

Rr + j � Xkr � p �
1

p

�
��

�
��

mit dem Kennwiderstand

Xkr = �0Lr =
1

�0Cr

=
Lr

Cr

(vgl. Abschnitt 4.5.1, Gl. 4.115)

Parallelschaltung:

Zp =
1

Yp

=
1

G p + j � Bp

Zp =
1

G p + j ( �Cp �
1

�Lp

�

�
�

�



�

Zp = 1

G p + j ( p�0Cp �
1

p�0Lp

�

�
�

�



�

mit �0 =
1

CpLp

Zp =
1

G p + j � Bkp � p �
1

p

�
��

�
��

mit dem Kennleitwert

Bkp = �0Cp =
1

�0Lp

=
Cp

Lp

(vgl. Abschnitt 4.5.2, Gl. 4.139)

Bild 5.19 Ortskurven des komplexen Leitwerts des Reihenschschwingkreises und des kom-
plexen Widerstandes des Parallelschschwingkreises bei variabler Frequenz
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Der Parameter p entspricht also dem Parameter x in den Gleichungen 4.116 und 4.140:

Xr = Xkr · p �
1

p

�
��

�
	


= Xkr · 	r Bp = Bkp · p �
1

p

�
��

�
	


= Bkp · 	p

Bei Resonanzkreisfrequenz �0 ist der komplexe Leitwert Yr = 1/Zr = 1/Rr und der komplexe
Widerstand Zp = 1/Yp = 1/Gp = Rp .

Für die Konstruktion der Kreise sind jeweils die Abschnitte 1/(2A) zu ermitteln:

A = Rr und
1

2A
=

1

2Rr
A = Gp und

1

2A
=

1

2G p

=
Rp

2

Beispiel 7:

Ortskurve des Spannungsverhältnisses U2/U1 in Abhängigkeit von der Frequenz für die ge-
zeichnete RC-Schaltung:

U2

U1

=

1

1

RCp

+ j�Cp

1

1

RCp

+ j�Cp

+ R

U2

U1

=
1

1 + R �
1

RCp

+ j�Cp

�

�
�

�

�
�

Bild 5.20 RC-Schaltung des Beispiels 7

U2

U1

=
1

1 +
R

RCp

+ j�RCp

=
1

1 +
R

RCp

�

�
�

�

	

 + jp�0RCp

mit � = p · �0

Wird die Bezugsfrequenz �0 = 1/(RCp) gewählt und das Verhältnis der Widerstände r = R/RCp
variiert, dann lautet die Gleichung für die Ortskurve:

U2

U1

=
1

(1 + r) + jp

mit A = 1 + r

und
1

2A
=

1

2(1+ r)

Die Ortskurven sind Halbkreise, deren
Mittelpunkt auf der reellen Achse ver-
schoben sind. Im Bild 5.21 sind die beiden
Ortskurven

für r = 1 d. h. R = RCp

und r = 0 d. h. RCp 
 	
dargestellt.

Bild 5.21 Ortskurve einer RC-Schaltung
im Beispiel 7
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Beispiel 8:

Ortskurve des Spannungsverhältnisses U2/U1 in Abhängigkeit von der Frequenz für die ge-
zeichnete RC-Schaltung nach Wien:

(vgl. mit Beispiel 5 des Abschnitts 4.4)

Gegeben sind:

Rr = 5k� Cr = 2nF

Rp = 10k� Cp = 1nF

U2

U1

=

1

1

Rp

+ j�Cp

1

1

Rp

+ j�Cp

+Rr +
1

j�Cr

Bild 5.22 RC-Schaltung des Beispiels 8

U2

U1

=
1

1+ Rr +
1

j�Cr

�

��
�

	

1

Rp

+ j�Cp

�

�
�

�

	



=
1

1 +
Rr

Rp

+
Cp

Cr

�

�
�

�



� + j ( �RrCp �

1

�Rp Cr

�

�
�

�



�

U2

U1

=
1

1 +
Rr

Rp

+
Cp

Cr

�

�
�

�



� + j ( p�0RrCp �

1

p�0 Rp Cr

�

�
�

�



�

mit � = p · �0

Die Ortskurvengleichung ist vom gleichen Typ wie die Gleichungen für den Reihen- und Pa-
rallelschwingkreis (siehe Beispiel 6). Die Bezugsfrequenz �0 wird errechnet, indem der Ima-
ginärteil der Nennergeraden mit p = 1 Null gesetzt wird:

�0 Rr Cp =
1

�0 Rp Cr

oder

�0 =
1

RrCrRpCp

=
1

5 �103� � 2 �10�9 F �10 �103� �1 �10�9 F
= 100 �103s�1 .

Mit

�0 Rr Cp = 100 �103s�1 � 5 �103� �1 �10�9 F = 0,5

und

1

�0 Rp Cr

=
1

100 �103s�1 �10 �103� � 2 �10�9 F
= 0,5

lautet dann die Ortskurvengleichung mit Zahlenwerten

U2

U1

=
1

1 +
1

2
+

1

2

�
��

�
��

+ j � p � 0,5 �
0,5

p

�
��

�
��

=
1

2 + j � 0,5 � p �
1

p

�
��

�
��
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Für den Mittelpunkt des Kreises ist A = A = 2 und 1/(2A) = 1/4.

Bild 5.23 Ortskurve der RC-Schaltung nach Wien

Die konstruierten Ortskurvenpunkte können rechnerisch kontrolliert werden, z.B. für p = 1/2:

U2

U1

=
1

2 + j � 0,5 �
1

2
� 2

�
��

�
��

=
1

2 � j � 0,75
�

2 + j � 0,75

2 + j � 0,75
= 0,44 + j � 0,16

Sind wie im Beispiel 5 (3. Teil) des Abschnitts 4.4 die ohmschen Widerstände und die Kapa-
zitäten gleich (Rr = Rp, Cr = Cp), dann stellt U2/U1 ein Kreis mit dem Durchmesser 1/A = 1/3
dar, der im Bild 5.23 gestrichelt eingetragen ist. Bei � = �0 ist der Betrag |U2/U1| = 1/3.

Da die Kreise sehr klein sind und sich deshalb die Zahlenwerte nur ungenau ablesen lassen,
sollten die Kreise vergrößert werden, indem für 1/(2A) eine größere Länge gewählt wird. Die-
ser Maßstab gilt dann nur für die Kreise.
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5.4 Ortskurve „Kreis in allgemeiner Lage“

Ortskurvengleichung und Herleitung der Konstruktionsvorschrift

Die Konstruktion der Ortskurve eines Kreises, der nicht durch den Koordinatenursprung
verläuft und der Ortskurvengleichung

K =
A + p � B

C + p � D
= L +

1

E + p � F
(5.8)

genügt, wird mit Hilfe der Konstruktion der Ortskurve „Kreis durch den Nullpunkt“ (siehe
Abschnitt 5.3) vorgenommen.

Zunächst wird die Ortskurvengleichung durch Division in eine Gleichung 1/(E + pF) über-
führt, wobei noch ein Verschiebezeiger L entsteht:

K = (pB + A) : (pD + C) =
B

D
+ A �

B

D
C

�
��

�
��
�

1

C + pD

Rest:

� pB +
B

D
C

�
��

�
	


A �
B

D
C

K = L +
N

C + pD
= L +

1

C

N
+ p

D

N

= L +
1

E + pF
. (5.9)

Um die Konstruktionsvorschrift für die Ortskurve „Kreis durch den Nullpunkt“ anwenden
zu können, muss zunächst der Zeiger

N = A –
B �C

D
= N � e j� (5.10)

errechnet werden, der die Ortskurvengleichung 1/(E + pF) mitbestimmt. Dann kann die
Ortskurve „Kreis durch den Nullpunkt“ mit der Parametrierung konstruiert werden.
Schließlich müsste nach obiger Gleichung jeder Zeiger an den Kreis mit L addiert werden,
d. h. der Kreis müsste insgesamt verschoben werden. Praktischer ist es, wenn der Kreis
durch den Nullpunkt unverändert bleibt und der Koordinatenursprung um –L verschoben
wird.

Konstruktionsanleitung für die Ortskurve „Kreis in allgemeiner Lage“

Nach Erkennen der Ortskurvengleichung

K =
A + p � B

C + p � D
= L +

1

E + p � F

sollte bei der Konstruktion der Ortskurve nach folgenden Schritten vorgegangen werden:

1. Errechnen des Zeigers N = A –
B C

D
= N � e j�

2. Errechnen und Zeichnen der Nennergeraden G =
C

N
+ p �

D

N
= E + p � F

3. Spiegelung der Nennergeraden an der reellen Achse ergibt G* = E* + p · F*
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4. Zeichnen der Senkrechten auf der gespiegelten Nennergeraden G*, die durch den
Nullpunkt verläuft.

5. Berechnen von 1/(2E) = N/(2C), Festlegen des Maßstabs für 1/(2E) und Zeichnen der
Senkrechten auf E* im Abstand 1/(2E). Die Festlegung der Länge von 1/(2E) bestimmt
die Größe des Kreises.

6. Schnittpunkt der beiden Senkrechten ergibt den Mittelpunkt M des Kreises. Zeichnen
des Kreises mit dem Radius M0 .

7. Bezifferung des Kreises mit den Parameterwerten p entsprechend der gespiegelten
Nennergeraden G*.

8. Errechnen des Zeigers –L = –
B

D
und Verschieben des Koordinatenursprungs um –L.

Beispiel 1:

Ortskurve des komplexen Widerstandes der Reihenschaltung einer verlustbehafteten Spule
(Ersatzschaltung Parallelschaltung) und eines ohmschen Widerstandes bei variabler Frequenz

Z = R +
1

1

RLp

+
1

j�Lp

mit � = p · �0

Z = R +
1

1

RLp

� j (
1

p ( �0 ( Lp

Beispiel 5.24 RL-Schaltung des Beispiels 1

Z = R +
1

1

RLp

� j ( p* 1

�0 ( Lp

= L +
1

E + p* ( F
mit p* =

1

p

Der Vergleich mit der allgemeinen Form der Ortskurvengleichung ergibt:

L = R, E = 1/RLp und F = – j/�0Lp,

so dass das Errechnen des Zeigers N entfallen kann.

Zu den einzelnen Schritten der Konstruktion:

Zu 1. entfällt

Zu 2. G =
1

RLp

� j ( p* 1

�0 ( Lp

Zu 3. G* =
1

RLp

+ j � p* 1

�0 � Lp

Zu 4. siehe Bild 5.25

Zu 5.
1

2E
=

1

2 �
1

RLp

=
RLp

2

Zu 6. und 7. siehe Bild 5.25
Zu 8. – L = – R

Bild 5.25 Ortskurve der RL-Schaltung des Beispiels 1
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Beispiel 2:

Ortskurve des Spannungsverhältnisses U2/U1 in Abhängigkeit von der Frequenz für die ge-
zeichnete symmetrische X-Schaltung (Allpassglied)

Mit

U1 = UC + UR

U2 = UC – UR
ergibt sich

U2

U1

=
UC � UR

UC + UR

=

1

j�C
� R

�
��

�

�
( I

1

j�C
+ R

�
��

�

�
( I

U2

U1

=
1 � j�RC

1 + j�RC
=

1 � j ( p�0RC

1 + j ( p�0RC

U2

U1

=
1 � p � j

1 + p � j
=

A + p � B

C + p � D

mit � = p · �0 und �0 =
1

R � C Bild 5.26 Symmetrische X-Schaltung des
Beispiels 2

Die Ortskurve wird nach folgenden Schritten konstruiert:

Zu 1. N = A –
B C

D

N = 1 –
� j �1

j
= 2

Zu 2. G =
C

N
+ p

D

N
= E + pF

G =
1

2
+ p

j

2

Zu 3. G*=
1

2
� p

j

2
Zu 4. siehe Bild 5.27

Zu 5.
N

2C
=

1

2E
= 1

Zu 6. und 7. siehe Bild 5.27

Zu 8. –L = –
B

D
= �

� j

j
= 1

Bild 5.27 Ortskurve der symmetrischen
X-Schaltung des Beispiels 2

Zwei Ortskurvenpunkte können einfach kontrolliert werden:

Für p = 0 (� = 0) haben die beiden Kondensatoren einen unendlichen Widerstand, so dass die
Eingangsspannung gleich der Ausgangsspannung ist, d. h. U2/U1 = 1.

Für p = 	 (� = 	) sind die beiden Kondensatoren kurzgeschlossen. Dadurch entsteht ein Um-
poler, d. h. die Ausgangsspannung ist umgekehrt gerichtet wie die Eingangsspannung:

U2/U1 = –1.
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5.5  Ortskurven höherer Ordnung 

Ortskurve „Parabel“ 
Die Ortskurvengleichung für die Parabel lautet 

P = A + p · B + p2 · C . (5.11) 
Sie kann entweder aus der Geraden A + p · B und dem Anteil  p2 · C  oder aus der Gera-
den  A + p2 · C  und dem Anteil  p · B  durch Überlagerung der Zeiger zusammengesetzt 
werden, wie im Bild 5.28 erläutert ist. 
 

Bild 5.28 
Konstruktion der Ortskurve „Parabel“ 

 
 
 
 

Beispiel: 
Ortskurve für das Spannungsverhältnis UC/U des an einer Spannungsquelle angeschlossenen 
Reihenschwingkreises bei variabler Frequenz 

 

U
UC

�
Rr � j�Lr �

1
j�Cr

1
j�Cr

 

 

U
UC

� j�CrRr � �2LrCr � 1  

mit   � = p · �0 

            
 

U
UC

� 1 � p � j�0Cr Rr � p2�0
2LrCr . 

 
Bild 5.29 Schaltung für das Beispiel 
einer Parabel-Ortskurve 

 

Mit   �0 =

 

1
LrCr

  und  
 

1
�0CrRr

=
Xkr
Rr

� Qr      (vgl. Gl. 4.118) 

ist 

 

U
UC

� 1 � p � j � 1
Qr

� p2.  

Durch Vergleich mit der allgemeinen Ortskurvengleichung ergibt sich: 

A = 1,   B = 
 

j
Qr

   und    C = –1. 
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Wird die Güte des Resonanzkreises wie im
Beispiel des Abschnitts 4.5.1 (siehe Bild
4.95) Qr = 2 gewählt, dann lautet die
Ortskurvengleichung

U

UC

= 1 + p �
j

2
� p2 = 1 � p2 + j �

p

2
,

deren Ortskurve im Bild 5.30 dargestellt ist.

Bei Resonanz des Reihenschwingkreises ist

Bild 5.30 Beispiel einer Parabel-Ortskurve

� = �0 , also p = 1, und das Spannungsverhältnis ist imaginär:

U

UC

= j �
1

Qr

=
j

2
mit

U

UC

=
1

Qr

bzw.
UC

U
= Qr (vgl. Gl. 4.125).

Wie im Abschnitt 4.5.1 im Bild 4.96 (siehe S.105) zu sehen ist, wird in den Resonanzkurven
das Spannungsverhältnis UC/U dargestellt. Die zugehörige Ortskurvengleichung

UC

U
=

1

1 + p �
j

Qr

� p2

=
1

1 + p �
j

2
� p2

gehört nicht zu den „einfachen“ Ortskurven und müsste Punkt für Punkt ermittelt werden, in-
dem verschiedene p-Werte in die Ortskurvengleichung eingesetzt werden, die komplexen
Größen jeweils berechnet und in die Gaußsche Zahlenebene gezeichnet werden.

Wie im Bild 5.31 gezeigt, kann die Ortskurve aber auch durch Inversion der Parabel ermittelt
werden, indem die Zeiger für bestimmte Parameter invertiert werden. Dabei werden die Län-
gen der Parabelzeiger abgegriffen und der Kehrwert der Beträge jeweils auf dem Strahl mit
umgekehrten Winkel angetragen.

Die dadurch entstehende Ortskurve ent-
hält nicht nur die Beträge des Span-
nungsverhältnisses wie die Resonanz-
kurve im Bild 4.96, sondern auch die
Phasenlage der beiden Spannungszeiger
zueinander. Um die Beträge der
Ortskurve mit den Resonanzkurven im
Bild 4.96 vergleichen zu können, muss
die Identität p = x beachtet werden.

Mit der Gl. (4.130) lässt sich auch der
Parameterwert errechnen, bei der die
Kondensatorspannung ihr Maximum
hat: Bild 5.31 Inversion der Parabel

p = x = xc = 1 �
1

2Qr
2

= 1 �
1

8
= 0,935 .

Der Ortskurvenpunkt kann dann mit der Ortskurvengleichung berechnet werden:

UC

U
=

1

1 � p2 + j � p/2

UC

U
= =

1

1 � 0,9352 + j � 0,468
= 0,533 – j · 1,996 = 2,066 · e– j 75°
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Ortskurve „Zirkulare Kubik“ 
Die allgemeine Ortskurvengleichung der zirkulären Kubik 

O =
 

A � p � B � p2 � C
D � p � E

 (5.12) 

kann durch Division in die Summe einer Geradengleichung und einer Kreisgleichung 
überführt werden: 

(p2C + pB + A): (pE + D) = p

C DB
C D C D 1E A B
E E E E D pE

�
�  " #

� � � � �: ;$ % �& '� !
 

    

2 C Dp C p
E

C Dp B A
E

" #
� �$ %
& '

" #
� �$ %

& '

 

        

C D D C Dp B B
E E E

D C DRest : A B
E E

�  " # " #
� � � �: ;$ % $ %

& ' & '� !
" #

� �$ %
& '

 

O = R + p · S +

 

F
D � p � E

� R � p �S �
1

D
F

� p �
E
F

. (5.13) 

Wird also die Ortskurvengleichung in der allgemeinen Form (Gl. 5.12) erkannt, dann 
muss diese zuerst in die Summenform der beiden Ortskurvengleichungen (Gl. 5.13) über-
führt werden, ehe die Konstruktion erfolgen kann. 
Dann werden der Kreis durch den Nullpunkt nach der Anleitung im Abschnitt 5.3 und die 
Gerade (siehe Abschnitt 5.2) getrennt konstruiert. 
Anschließend werden für gleiche Parameterwerte die jeweiligen beiden Zeiger durch 
Addition der Realteile und Imaginärteile überlagert. 

Beispiel: 
Ortskurven für den komplexen Leitwert und den komplexen Widerstand des Praktischen Pa-
rallel-Resonanzkreises in Abhängigkeit von der Frequenz (Schaltbild siehe Bild 5.32 oder 
Bild 4.108, S. 119). 

Y = j�Cr + 
 

1
RLr � j�Lr

�
1+j�RLrCr � �2LrCr

RLr � j�Lr
 

Y = p · j�CCr +
 

1
RLr � p � j�0Lr

�
1 � p � j�0RLrCr � p2�0

2LrCr
RLr � p � j�0Lr

   mit  
 
� � p ��0 . 

Die rechte Seite obiger Gleichung entspricht der allgemeinen Form der Ortskurvengleichung 
der zirkulären Kubik (Gl. 5.12). Die Division kann entfallen, weil die Summe der Gera-
dengleichung und einer Kreisgleichung sofort aus der Schaltung (Bild 5.32) abgelesen wer-
den kann (linke Seite obiger Gleichung). 
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Als Bezugsfrequenz �C sollte die Resonanzfrequenz gewählt werden, die nach der Gl. (4.155) 
berechnet werden kann: 

2 2
Lr 1

0 6
r r r

1 R 1 100 2000s .
L C L 0,05H0,05H 2,5 10 F

�
�

" # " #�
� � � � � �$ % $ %� �& ' & '

 

Die Ortskurvengleichung in Zahlenwerten lautet dann 

Y = p · j · 2 · 103s–1 · 2,5 · 10–6 
As
V

+ 1
100� � p � j � 2 �103s�1 � 0,05Vs/A

 

Y = p · j · 5 mS + 
 

1
100� � p � j �100�

. 

Die Gerade ist identisch mit der positiven imaginären Achse, und der Kreis durch den Null-
punkt hat den Mittelpunkt bei  1/(2A) = 1/(200�� = 5mS. Die Ortskurve für den komplexen 
Leitwert ergibt sich durch Überlagerung der Zeiger mit jeweils gleichem Parameterwert (sie-
he Bild 5.32). 
Aus der Ortskurve für den komplexen Leitwert  Y = Y · e–j�  lassen sich Betrag und Argu-
ment für die p-Werte ablesen und die entsprechenden komplexen Widerstände  Z = Z · ej�  
berechnen und in die Gaußsche Zahlenebene einzeichnen: 

p 1 0 0,6 0,8 1,0 1,2 1,5 2,0 ? 
Y 

– � 
mS 

Grad 
10 
0 

7,5 
– 11 

6,1 
– 8 

5,0 
0 

4,2 
+ 15 

4,1 
+ 42 

6,4 
+ 71 

? 
+ 90 

Z = 1/Y 
��

��
Grad 

100 
0 

133 
+ 11 

164 
+ 8 

200 
0 

238 
– 15 

244 
– 42 

156 
– 71 

0 
– 90 

 

 

Bild 5.32 
Ortskurven des komplexen 
Leitwerts und komplexen 
Widerstands des Praktischen 
Parallel-Resonanzkreises 
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Die Ortskurve für den frequenzabhängigen komplexen Widerstand Z kann natürlich nicht ge-
nau sein, weil sie über abgelesene Y-Werte ermittelt wurde. Deshalb soll die „nicht einfache“ 
Ortskurve punktweise mit der Ortskurvengleichung errechnet werden. Nach Gl. 4.158 lautet 
die Formel für den komplexen Widerstand des Praktischen Parallel-Resonanzkreises mit 
� = p · �0: 

 
Z �

RLr � j�Lr

1 � j�RLrCr � �2LrCr
�

RLr � p � j�0Lr

1 � p � j�0RLrCr � p2�0
2LrCr

 

und mit Zahlenwerten 

 
Z �

100� � p � j �100�
(1 � p2 � 0,5) � p � j � 0,5

. 

 
Für p = 0,6 ergibt sich beispielsweise 

 
Z0,6 �

100� � j � 60�
0,82 � j � 0,3

�
116,6� � e j�31F

0,873 � e j�20,1F
� 133,6� � e j�10,9F . 

 
Die auf diese Weise berechneten Widerstandswerte sind in folgender Tabelle zusammenge-
stellt: 
 

p 1 0 0,6 0,8 1,0 1,2 1,5 2,0 
Z �� 100 133,6 162,3 200 235,9 237,1 158,1 
�� Grad 0 10,9 8,2 0 – 14,8 – 43,2 – 71,6 
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Übungsaufgaben zu den Abschnitten 5.1 bis 5.5

5.1 Für die Reihenschaltung eines ohmschen Widerstands Rr = 200� und einer variablen Induk-
tivität Lr = 100 … 300mH sind

1. die Ortskurve für die Spannung bei konstantem Strom I = 10mA bei f = 200Hz und
2. die Ortskurve für den Strom bei konstanter Spannung U = 10V bei f = 200Hz zu ermitteln.
3. Kontrollieren Sie rechnerisch die Ortskurvenpunkte des Stroms für die Induktivitäten

Lr = 100, 200 und 300mH.

5.2 Mit Hilfe von Ortskurven soll die Frequenzabhängigkeit der komplexen Widerstände und
Leitwerte der Reihenschaltung und Parallelschaltung eines ohmschen Widerstandes und
einer Kapazität untersucht werden.

1. Entwickeln Sie die Ortskurven des komplexen Widerstandes und komplexen Leitwerts
der Reihenschaltung von Rr = 17,3� und Cr = 318μF.

2. Ermitteln Sie anschließend die Ortskurven des komplexen Leitwerts und des komplexen
Widerstandes der Parallelschaltung von Rp = 23,1� und Cp = 79,6μF.
Die Bezugsfrequenz f0 soll so gewählt werden, dass für p = 1 die Reihenschaltung und
die Parallelschaltung äquivalent sind. Es ist also zu untersuchen, ob die Bedingungsglei-
chung für Äquivalenz bei einer bestimmten Frequenz erfüllbar ist.

3. Kontrollieren Sie anhand der Ortskurve, ob die Scheinwiderstände und Scheinleitwerte
für p = 1 gleich sind.

5.3 1. Für den Reihen- und Parallelschwingkreis sollen die Ortskurven für den komplexen
Widerstand und den komplexen Leitwert bei Variation der Frequenz ermittelt werden.
Die ohmschen Widerstände, die Induktivitäten und Kapazitäten der Reihen- und Paral-
lelschaltung sollen gleich sein:

Rr = Rp = 200� Lr = Lp = 0,04H Cr = Cp = 1μF

2. Lesen Sie aus der Ortskurve für den komplexen Leitwert des Reihenschwingkreises die
Strom-Resonanzkurve ab.

5.4 Für die Reihen- und Parallelschaltungen von Induktivität/ohmscher Widerstand und Kapazi-
tät/ohmscher Widerstand sind die Ortskurven für die Verhältnisse der Teilspannungen zur
Gesamtspannung bzw. Teilströme zum Gesamtstrom in Abhängigkeit von der Frequenz zu
entwickeln, wobei die Bezugsfrequenz jeweils festgelegt ist:

�0 = Rr/Lr, Rp/Lp, 1/RpCp, 1/RrCr.

5.5 An den Eingang des gezeichneten Vierpols wird eine sinusförmige Spannung mit veränder-
licher Frequenz angelegt.

Bild 5.33
Übungsaufgabe 5.5

1. Stellen Sie die Gleichung für das Spannungsverhältnis U 2/U1 in Abhängigkeit von RLr,
Lr , R und � auf.

2. Konstruieren Sie die Ortskurve des Spannungsverhältnis in Abhängigkeit von � = p ·�0,
nachdem Sie die Gleichung mit R = RLr und �0 = R/Lr vereinfacht haben. Geben Sie
mindestens fünf Ortskurvenpunkte mit den entsprechenden p-Werten an.

3. Ergänzen Sie die Ortskurve durch entsprechende Ortskurven für

RLr/R = 0, 1/2 und 2.

4. Ermitteln Sie aus der Ortskurvenschar für p = 1 die Funktion

Lr2

1

U R
f

U R

� �= � �
� �

und stellen Sie sie dar.
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5.6 Die Ortskurve des Spannungsverhältnis UR/U des Reihenschwingkreises bei variabler Fre-
quenz � = p · �0 ist zu ermitteln.

Deuten Sie die Ortskurvenpunkte für p = 0, 1 und 	.

Bild 5.34
Übungsaufgabe 5.6

5.7 Für die gezeichnete Schaltung ist die Ortskurve für U2/U1 in Abhängigkeit von der Frequenz
zu konstruieren.

1. Leiten Sie zunächst die Ortskurvengleichung allgemein und dann mit den Zahlenwerten her.
2. Konstruieren Sie die Ortskurve mit den Ortskurvenpunkten p = 0, 1/3, 1/2, 1, 2, 3 und 	.
3. Erklären Sie den Ortskurvenpunkt für p = 1.

Bild 5.35
Übungsaufgabe 5.7

5.8 1. Entwickeln Sie die Ortskurve für den komplexen Leitwert Y der skizzierten Schaltung
im Frequenzbereich

� = 100s–1 … 1000s–1

in Schritten von 100s–1.

Bild 5.36
Übungsaufgabe 5.8

2. Kontrollieren Sie rechnerisch die Ortskurvenpunkte für � = 0, �= 500s–1 und � = 	.
3. Ermitteln Sie aus der Ortskurve den Graphen der Funktion Y = f (�) und stellen Sie ihn

dar.
Tragen Sie den Wert ein, den die Kurve für hohe Kreisfrequenzen anstrebt (Asymptote).
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5.9 1. Für einen Reihenschwingkreis mit der Güte Qr = 2, angeschlossen an eine Wechsel-
spannungsquelle, ist die Ortskurve des Spannungsverhältnisses U/UL in Abhängigkeit
von der Frequenz zu entwickeln.

Bild 5.37
Übungsaufgabe 5.9

2. Anschließend ist durch Inversion der Zeiger die Ortskurve des Spannungsverhältnisses
UL/U zu ermitteln.
Die Ortskurvenpunkte für p = 0, 1/2, 2/3, 1, 2 und 	 sind rechnerisch zu kontrollieren.

3. Schließlich sind die Beträge UL/U für die unter 2. angegebenen Parameterwerte mit Hil-
fe der Formeln des Abschnitts 4.5.1 zu kontrollieren. Das Maximum des Spannungsver-
hältnisses ist zu berechnen. Die Ergebnisse sind mit der Resonanzkurve (Bild 4.95) zu
vergleichen.

5.10 1. Konstruieren Sie die Ortskurve des komplexen Leitwerts der skizzierten Schaltung in
einem Frequenzbereich � = 10000s–1 … 100000s–1 im Abstand von 10000s–1, indem
Sie einfache Ortskurven überlagern.

Bild 5.38
Übungsaufgabe 5.10

2. Lesen Sie aus der Ortskurve die Frequenz � ab, bei der der komplexe Leitwert reell ist.
Weisen Sie die abgelesene Frequenz und den reellen Leitwert rechnerisch nach.

5.11 1. Bei welchen Kreisfrequenzen � ist der komplexe Widerstand der Schaltung reell?

Bild 5.39
Übungsaufgabe 5.11

2. Entwickeln Sie die Ortskurve des komplexen Widerstandes durch Überlagerung einfa-
cher Ortskurven, indem Sie eine der Kreisfrequenzen unter 1. als Bezugsfrequenz wäh-
len. Die Ortskurve ist für p = 0, 1/2, 1, 1,5 und 2 zu konstruieren.

3. Kontrollieren Sie rechnerisch die Ortskurvenpunkte für p = 0 und p = 1.
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6 Der Transformator

6.1 Übersicht über Transformatoren

Umspanner, Übertrager und Hochfrequenz-Transformatoren

Werden Stromkreise magnetisch gekoppelt, dann wird diese Anordnung „Transformator“
genannt. Die Ausführungen von Transformatoren sind sehr vielfältig, weil die Anforde-
rungen an Transformatoren sehr unterschiedlich sind. Grundsätzlich werden je nach Ver-
wendungszweck unterschieden:

1. Transformatoren der Starkstrom- oder Energietechnik – die „Umspanner“
2. Niederfrequenz-Transformatoren (NF-Transformatoren) – die „Übertrager“ der Fern-

melde- und Verstärkertechnik
3. Hochfrequenz-Transformatoren (HF-Transformatoren) für Anpassungszwecke.

Transformatoren der Starkstromtechnik dienen der Transformation (Umwandlung)
von Wechselspannungen, um elektrische Energie über Strecken wirtschaftlich übertragen
zu können. Bei hohen Spannungen sind die Verluste auf den Leitungen geringer als bei
niedrigen Spannungen (siehe Formel für die Verlustleistung Pv, Gl. 4.259). Die für Leis-
tungstransformatoren verwendeten Bauformen sind im Bild 6.1 dargestellt. Für Einpha-
sensysteme werden Kerntransformatoren (a) und Manteltransformatoren (b) hergestellt. In
Dreiphasensystemen (Abschnitt 7) werden Dreiphasen-Leistungstransformatoren als Drei-
schenkelanordnungen (c), Fünfschenkelanordnungen (d), Dreimanteltransformatoren (e)
und als Tempeltyp (f) ausgeführt, oder es werden drei Einphasentransformatoren (g) ver-
wandt. Im Bild 6.1 bedeutet „1“ der Platz für die Primärwicklung und „2“ der Platz für die
Sekundärwicklung.

Bild 6.1 Bauformen von Transformatoren der Starkstromtechnik

Für Prüfzwecke gibt es in der Hochspannungstechnik Einphasentransformatoren und für
die Einspeisung von Hochspannungskaskaden für die Erzeugung von Stoßspannungswel-
len spezielle Transformatoren. Der Kern dieser Transformatoren besteht aus dünnen Ble-
chen, die durch Papier, Lack oder Öl voneinander isoliert sind.
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NF-Transformatoren sind Übertrager der Fernmelde- und Verstärkertechnik für einen
breiten Frequenzbereich. Sie dienen neben der Übersetzung von Spannungen und Strömen
der Anpassung von Widerständen, der galvanischen Trennung von Stromkreisen und zur
Phasenumkehr. Die Kerne bestehen aus dünnen Eisenblechen hoher Permeabilität oder
aus Eisenpulverkernen.

Außerdem können Netz-Kleintransformatoren zur Versorgung von Geräten und Geräte-
gruppen dieser Gruppe zugeordnet werden, die aus genormten Kernen und Spulenkörpern
bestehen.

HF-Transformatoren haben die Aufgabe, unterschiedliche Widerstände reflexionsfrei
aneinander anzupassen. Übliche Transformationsarten (siehe Bild 6.2) sind der Wick-
lungstransformator mit getrennten Wicklungen (a) oder in Sparschaltung (b), der durch
Resonanztransformatoren als 	-Glied (c) oder als T-Glied (d) ersetzt werden kann:

Bild 6.2 Hochfrequenz-Transformationsarten

Die Wicklungstransformatoren besitzen Kerne aus Spezialeisenpulver oder werden ohne
Kerne betrieben. Sie werden bei Frequenzen bis etwa 100MHz verwendet.

Weitere Transformationsarten sind die �/4-Leitung, die inhomogene Leitung und die auf
einem Ferritkern aufgewickelte Doppelleitung.

In den folgenden Ausführungen wird nur der Einphasen-Wicklungstransformator mit zwei
Wicklungen und in Sparschaltung und mit einem magnetischen Kreis mit konstanter Ge-
geninduktivität M behandelt. Dabei wird auf die grundsätzliche Behandlung des Trans-
formators im Band 1, Abschnitte 3.4.7.2 und 3.4.7.3 Bezug genommen.

Der Einphasen-Transformator stellt das Bindeglied zwischen zwei Spannungsebenen
eines Einphasensystems dar. Er besteht aus einem magnetischen Kreis mit geblechtem
Kern, Ferritkern oder Luft, durch den zwei Spulen magnetisch gekoppelt sind. An die
Primärspule 1 wird eine Spannung angelegt, wodurch sich in der Sekundärspule 2 auf-
grund der Kopplung eine Spannung anderer Größe ergibt. Die Energieflussrichtung geht
also von der Primärspule zur Sekundärspule.

Bei allen Arten von Wicklungstransformatoren der Starkstromtechnik, der NF-und HF-
Technik gelten die grundsätzlichen Gesetzmäßigkeiten, die sich aus dem Durchflutungs-
satz, dem Induktionsgesetz und den Kirchhoffschen Sätzen (siehe Band 1) ergeben.
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6.2 Transformatorgleichungen und Zeigerbild

Bei der Behandlung der Gegeninduktion im Band 1, Abschnitt 3.4.7.2 ist auch der Trans-
formator mit zwei Wicklungen für zeitlich veränderliche Ströme und Spannungen be-
schrieben worden. In den meisten Anwendungsfällen sind die Ströme und Spannungen im
Transformator sinusförmig, so dass die allgemeinen Ausführungen im Band 1 auf sinus-
förmige Vorgänge übertragen werden müssen. Die folgenden Herleitungen setzen die
Kenntnis der Gegeninduktionsvorgänge im Transformator voraus.

Die Vorteile der Berechnung sinusförmiger Vorgänge im Komplexen (Abschnitt 4.2)
werden selbstverständlich auch bei der Behandlung des Transformators genutzt. Aus den
Gl. (3.353) bis (3.356) entstehen dann algebraische Gleichungen, die „Transformatoren-
gleichungen“, die in der Gaußschen Zahlenebene Zeigerbildern entsprechen.

Transformator mit gleichsinnigem Wickelsinn und Belastung mit einem beliebigen Wech-

selstromwiderstand, speziell bei induktiver Belastung

Bild 6.3 Transformator mit gleichsinnigem Wickelsinn (vgl. Bild 3.205 im Band 1, S.333)

Die Maschengleichungen für den Primärkreis und Sekundärkreis und die Gleichung für
die Belastung des Transformators (siehe Gl. (3.353) und (3.354) im Band 1), hier für in-
duktive Belastung,

u1 = uR1 + uL1 � uM1 = R1 � i1 + L1
di1
dt

� M21
di2
dt

u2 = �uR2 � uL2 + uM2 = �R2 � i2 � L2
di2
dt

+ M12
di1
dt

u2 = R � i2 + L
di2
dt

gehen dann in die folgenden algebraischen Gleichungen mit komplexen Effektivwerten
und komplexen Operatoren über, die dem Ersatzschaltbild (siehe Bild 6.4) entsprechen:

U1 = UR1 + UL1 � UM1 (6.1)

U2 = �UR2 � UL2 + UM2 (6.2)

U2 = (R + j�L) � I
2
= Z � I

2
(6.3)
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oder

U1 = R1 ( I
1
+ j�L1 ( I

1
� j�M ( I

2
(6.4)

U2 = �R2 ( I
2
� j�L2 ( I

2
+ j�M ( I

1
(6.5)

U2 = (R + j�L) � I
2
= Z � I

2
(6.6)

mit M12 = M21 = M
wegen μ konstant

und

Z = R + j�L = Z ( e j)

mit Z = R2 + (�L)2

und

) = arctan (�L / R) .

Bild 6.4 Ersatzschaltbild des Transformators mit
gleichsinnigem Wickelsinn und Belastung mit einem
beliebigen Wechselstromwiderstand (vgl. Bild 3.206)

Das Zeigerbild des Transformators wird grundsätzlich beim passiven Zweipol der Belas-
tung begonnen, weil sämtliche Ströme und Spannungen von den Größen der Belastung
abhängen. Dann werden die Spannungen des Sekundärkreises und schließlich der Strom
und die Spannungen des Primärkreises berechnet und gezeichnet.

Im gezeichneten Beispiel (Bild 6.5) ist der Belastungswiderstand Z induktiv.
Reihenfolge der Darstellung:

passiver Zweipol:

I2 (ist gegeben oder wird gewählt)

U2 = Z · I2 = Z · ej� · I2

Maschengleichung des Sekundärkreises:

UR2 = R2 � I
2

UL2 = j�L2 � I
2

UM2 = U2 + R2 � I
2
+ j�L2 � I

2

UM2 = j�M � I
1

Primärstrom:

I
1
=

UM2

j�M

Bild 6.5 Zeigerbild des Transformators mit
gleichsinnigem Wickelsinn und induktiver
Belastung

Maschengleichung des Primärkreises:

�UM1 = � j�M ( I
2

UR1 = R1 � I
1

UL1 = j�L1 � I
1

U1 = � j�M ( I
2
+ R1 ( I

1
+ j�L1 ( I

1

Ist der Belastungswiderstand Z kapazitiv, dann eilt der Strom I2 der Spannung U2 voraus,
bei einer ohmschen Belastung sind sie in Phase. Besteht die Belastung aus ohmschen,
induktiven und kapazitiven Anteilen, hängt die Art der Belastung von der Frequenz ab.
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Transformator mit gegensinnigem Wickelsinn und Belastung mit einem beliebigen Wech-

selstromwiderstand, speziell bei induktiver Belastung

Bild 6.6 Transformator mit gegensinnigem Wickelsinn (vgl. Bild 3.207 im Band 1, S.334)

Die Maschengleichungen für den Primärkreis und Sekundärkreis und die Gleichung für
die Belastung des Transformators (siehe Gl. (3.355) und (3.356) im Band 1), hier eben-
falls für induktive Belastung, sind die gleichen wie bei gleichsinnigem Wickelsinn, wenn
die Sekundärspule gegensinnig zur Primärspule gewickelt wird. Die Richtungen sämtli-
cher Spannungen und des Stroms im Sekundärkreis ändern sich im Vergleich zur gleich-
sinnigen Wicklungsanordnung.

Deshalb sind auch die algebraischen Gleichungen mit komplexen Effektivwerten und
komplexen Operatoren gleich:

U1 = UR1 + UL1 � UM1 (6.7)

U2 = �UR2 � UL2 + UM2 (6.8)

U2 = (R + j�L) � I
2
= Z � I

2
(6.9)

oder

U1 = R1 ( I
1
+ j�L1 ( I

1
� j�M ( I

2
(6.10)

U2 = �R2 ( I
2
� j�L2 ( I

2
+ j�M ( I

1
(6.11)

U2 = (R + j�L) � I
2
= Z � I

2
(6.12)

mit M12 = M21 = M
wegen μ konstant

und

Z = R + j�L = Z ( e j)

mit Z = R2 + (�L)2

und

) = arctan(�L / R).
Bild 6.7 Ersatzschaltbild des Transformators mit
gegensinnigem Wickelsinn und Belastung mit einem
beliebigen Wechselstromwiderstand (vgl. Bild 3.208)

Sie entsprechen dem Ersatzschaltbild für den belasteten Transformator mit gegensinnigem
Wickelsinn, der durch die beiden Punkte gekennzeichnet ist (siehe Bild 6.7).
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Um im Zeigerbild des Transformators mit gegensinnigem Wickelsinn den Unterschied
zum Zeigerbild des Transformators mit gleichsinnigem Wickelsinn zu verdeutlichen,
werden im Ersatzschaltbild der Sekundärstrom I2 und die Sekundärspannung U2 mit um-
gekehrten Vorzeichen in die gleiche Richtung gelegt wie im Ersatzschaltbild mit gleich-
sinnigem Wickelsinn. Diese Änderung im Ersatzschaltbild (siehe Bild 6.8) bedeutet in den
Spannungsgleichungen negative Sekundärgrößen:

U1 = UR1 + UL1 � UM1 = R1 ( I
1
+ j�L1 ( I

1
+ j�M ( (� I

2
) (6.13)

(�U2 ) = UR2 + UL2 � UM2 = �R2 ( (� I
2
) � j�L2 ( (� I

2
) � j�M ( I

1
(6.14)

(�U2 ) = (R + j�L) ( (� I
2
) = Z ( (� I

2
) (6.15)

Bild 6.8
Ersatzschaltbild des Transformators
mit gegensinnigem Wickelsinn und
umgedrehten Sekundärgrößen

Das Zeigerbild wird wieder beim passiven Zweipol der Belastung begonnen und hat im
gezeichneten Beispiel (Bild 6.9) einen induktiven Belastungswiderstand Z:

Reihenfolge der Darstellung:

passiver Zweipol:

(–I2) (ist gegeben oder wird gewählt)

(–U2) = Z · (–I2) = Z · ej� · (–I2)

Maschengleichung des Sekundärkreises:

–UR2 = R2 · (– I2)

–UL2 = j�L2 · (– I2)

–UM2 = (–U2) + R2 · (– I2) + j�L2 · (– I2)

–UM2 = – j� M · I1

Primärstrom:

I
1
=
�UM2

� j�M

Maschengleichung des Primärkreises:

–UM1 = j�M · (– I2)

UR1 = R1 · I1

UL1 = j�L1 · I1

U1 = j�M · (– I2) + R1 · I1 + j� L1 · I1

Bild 6.9 Zeigerbild des Transforma-
tors mit gegensinnigem Wickelsinn
und induktiver Belastung

Im Vergleich zum Zeigerbild des Transformators mit gleichsinnigem Wickelsinn ist das
Polygon der Maschengleichung des Sekundärkreises um 180° gedreht.
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Leerlauf eines Transformators

Bei Leerlauf am Ausgang eines Transformators ist der Ausgangsstrom I2 gleich Null.
Damit vereinfachen sich die Spannungsgleichungen des Transformators für gleichsinnigen
und gegensinnigen Wickelsinn (Gl. (6.4) bis (6.6) bzw. (6.10) bis (6.12)):

Mit I2 = 0 ist

U1 = R1 � I
1
+ j�L1 � I

1
= (R1 + j�L1) � I

1
(6.16)

U2 = j�M � I
1

(6.17)

Bild 6.10
Ersatzschaltbild eines Transformators
bei Leerlauf am Ausgang

Entsprechend vereinfacht sich das Zeigerbild, das in Anlehnung an die Bilder 6.5 und 6.9
im Bild 6.11 gezeichnet ist. Aus dem „Spannungsdreieck“ lässt sich dann das „Wider-
standsdreieck“ herleiten, das im Bild 6.11 neben das Zeigerbild gesetzt ist.

Bild 6.11
Zeigerbild und Widerstandsdreieck des
Transformators bei Leerlauf am Ausgang

Damit kann auch der Eingangwiderstand bei Leerlauf als Quotient der Eingangsspannung
zum Eingangsstrom angegeben werden (Index „in“ von input = Eingang):

(Zin ) I
2=0

= Zin l =
U1

I
1

= R1 + j�L1 . (6.18)

Die Ersatzschaltung eines Transformators bei Leerlauf ist also die Reihenschaltung des
ohmschen Widerstands und der Induktivität der Primärspule.

Aus den Spannungsgleichungen lässt sich dann das Übersetzungsverhältnis der Spannun-
gen als komplexer Operator angeben:

U1

U2

=
R1 + j�L1

j�M

U1

U2

=
L1

M
� j (

R1

�M
=

L1

M

�

��
�

��

2

+
R1

�M

�

��
�

��

2

( e j ( arctan(�R1 /�L1) (6.19)
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Der Betrag des Übersetzungsverhältnisses wird mit ü bezeichnet:

ü =
U1

U2

=
L1

M

�

��
�

��

2

+
R1

�M

�

��
�

��

2

=
L1

M
� 1+

R1

�L1

�

��
�

��

2

, (6.20)

wobei

tan � =
R1

�L1

(6.21)

Fehlwinkel genannt wird. Er kann aus dem Widerstandsdreieck im Bild 6.11 abgelesen
werden.

Werden die primären ohmschen Verluste R1 vernachlässigt, dann ist das Übersetzungs-
verhältnis reell:

U1

U2

=
L1

M
. (6.22)

Wird zusätzlich angenommen, dass der Transformator keine Streuung besitzt, also der
Kopplungsfaktor k = 1 beträgt, dann ist mit Gl. (3.370) (siehe Band 1, S.339)

M = L1 � L2

das Übersetzungsverhältnis gleich dem Verhältnis der Windungszahlen der beiden Spu-
len:

U1

U2

=
L1

L1 � L2

=
L1

L2

(6.23)

und mit Gl. (3.309) (siehe Band 1, S.305)

L1 =
w1

2

Rm

und L2 =
w2

2

Rm

ist

U1

U2

=
w1

w2

, d. h. ü =
w1

w2

(6.24)

Ein Transformator, für den die Effektivwerte der Spannungen (U1 Speisespannung,
U2 geforderte Spannung) vorgegeben sind, kann also nur sehr ungenau mit Hilfe der
Gl. (6.24) dimensioniert werden, weil sich die Spannungen nur dann wie die Windungs-
zahlen verhalten, wenn der Transformator bei Leerlauf betrieben wird, wenn die ohm-
schen Verluste der Primärspule vernachlässigt werden und wenn der Transformator
mit k = 1 fest gekoppelt ist.
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Spannungsverhältnis und Eingangswiderstand des Transformators

Das Spannungsverhältnis der Ausgangsspannung zur Eingangsspannung hängt nicht nur
von den Ersatzschaltbildgrößen R1, L1, M, R2 und L2 ab, sondern auch von der Art und
Größe der Belastung, wie durch Zeigerbilder und Berechnungen deutlich wird.
Entsprechendes gilt selbstverständlich für den Primärstrom bei gegebener Primärspan-
nung, also für den Eingangswiderstand des belasteten Transformators.

Beispiel 1:

Für einen Transformator mit zwei gleichsinnig gewickelten Wicklungen, der mit einem ohm-
schen Widerstand R belastet ist, soll die Formel für das Spannungsverhältnis U2/U1 hergelei-
tet werden.

Lösung:

Aus Gl. (6.6) ergibt sich mit Z = R

I2 =
U2

Z
=

U2

R

eingesetzt in Gl. (6.5)

U2 = �(R2 + j�L2 ) (
U2

R
+ j�M ( I

1
,

nach I1 aufgelöst

I1 =
1

j�M
� 1 +

R2 + j�L2

R

�

��
�

�	
� U2

und mit I2 = U2/R in Gl. (6.4) eingesetzt

U1 =
R1 + j�L1

j�M
( 1 +

R2 + j�L2

R

�

��
�


�
( U2 � j�M (

U2

R

ergibt sich für das Spannungsverhältnis

U2

U1

=
1

R1 + j�L1

j�M
( 1 +

R2 + j�L2

R

�

��
�


�
�

j�M

R

U2

U1

=
1

R1 + j�L1

j�M
+

(R1 + j�L1) ( (R2 + j�L2 )

j�M ( R
�

j�M

R

U2

U1

=
1

L1

M
+

R1 ( L2 + R2 ( L1

M ( R

�

��
�


�
� j (

R1

�M
+

R1 ( R2 � �2L1L2

�M ( R
+
�M

R

�

�
�

�



�

U2

U1

=
1

R ( L1 + R1 ( L2 + R2 ( L1

M ( R

�

��
�


�
+ j (

�2L1L2 � R1 ( R � R1 ( R2 � �2M2

�M ( R

�

�
�

�



�

U2

U1

=
1

(R + R2 ) ( L1 + R1 ( L2

M ( R

�

��
�


�
+ j (

�2 (L1L2 � M2 ) � (R + R2 ) ( R1

�M ( R

�

�
�

�



�

(6.25)
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Beispiel 2:

Für einen Transformator mit zwei Wicklungen mit gleichsinnigem Wickelsinn soll rechne-
risch untersucht werden, bei welchem der folgenden Belastungsfälle

1. ohmsche Belastung Z = R = 200�,

2. Kurzschluss am Ausgang Z = R = 0� oder

3. Leerlauf am Ausgang Z = R = 	
der Primärstrom I1 bei gegebener Eingangsspannung U1 = 100V, � = 10000s–1 am größten
ist. Gegeben sind die Ersatzschaltbildgrößen des Transformators:

R1 = 6�, L1 = 20mH, M = 15mH, R2 = 10� und L2 = 45mH.

Lösung:

Zu 1:

Der Primärstrom ist gleich dem Quotient von Eingangsspannung und Eingangswiderstand Zin,
der mit den Gl. (6.4) bis (6.6) berechnet werden kann:

I
1
=

U1

Zin

.

mit Gl. (6.4), dividiert durch I1:

Zin =
U1

I
1

= R1 + j�L1 � j�M (
I

2

I
1

mit Gl. (6.5) und (6.6) und Z = R

U2 = �(R2 + j�L2 ) ( I
2
+ j�M ( I

1
= R ( I

2

ist
I

2

I
1

=
j�M

R + R2 + j�L2

und

Zin = R1 + j�L1 +
�2M2

(R + R2 ) + j�L2

(
(R + R2 ) � j�L2

(R + R2 ) � j�L2

I
1
=

U1

R1 +
�2M2 (R + R2 )

(R + R2 )2 + (�L2 )2

�

�
�
�

�

�
	
	
+ j� ( L1 �

�2M2L2

(R + R2 )2 + (�L2 )2

�

�
�
�

�

�
	
	

(6.26)

und mit Zahlenwerten ist

�2 M2 = 100002s–2 · (15mH)2 = 22,5 · 103 �2

(R + R2)2 + (�L2)2 = (200� + 10�)2 + (10000s–1 · 45mH)2 = 246,6 · 103�2

I
1
=

100 V

6 � +
22,5 (103�2 ( 210 �

246,6 (103�2

�

�
�
�

�

�
	
	
+ j (10 000 s�1 ( 20 mH �

22,5 (103�2 ( 45 mH

246,6 (103�2

�

�
�
�

�

�
	
	

I
1
=

100 V

25,16 � + j �158,9 �

und mit Zin = (25,16 �)2 + (158,9 �)2 = 160,92 � ist

I1 =
U1

Zin

=
100 V

160,92 �
= 0,62 A
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Zu 2.

Mit Z = R = 0 vereinfacht sich obige Gleichung für I1:

I
1k

=
U1

Zin k

=
U1

R1 +
�2M2R2

R2
2 + (�L2 )2

�

�
�
�

�

�
	
	
+ j� ( L1 �

�2M2L2

R2
2 + (�L2 )2

�

�
�
�

�

�
	
	

(6.27)

und mit R2
2 + (�L2 )2 = (10 �)2 + (10 000 s�1 � 45 mH)2 = 202,6 �103�2

I
1k

=
100 V

6 � +
22,5 (103�2 (10 �

202,6 (103�2

�

�
�
�

�

�
	
	
+ j (10 000 s�1 ( 20 mH �

22,5 (103�2 ( 45 mH

202,6 (103�2

�

�
�
�

�

�
	
	

I
1k

=
100 V

7,11� + j �150,02 �

und mit Zin k = (7,11�)2 + (150,02 �)2 = 150,19 � ist

I =
U1

Zin k

=
100 V

150,19 �
= 0,67 A

Zu 3.

Mit Z = R = 	 ergibt sich nach Gl. (6.18)

I
1l

=
U1

Zin l

=
U1

R1 + j�L1

(6.28)

I
1l

=
100 V

6 � + j (10 000 s�1 ( 20 mH
=

100 V

6 � + j ( 200 �

und mit Zin l = (6 �)2 + (200 �)2 = 200,1� ist

1
1

in

U 100 V
I 0,50 A

Z 200,1
= = =

�l
l

Bei sekundärem Kurzschluss ist der Primärstrom am größten.

Spartransformator

Ein Spartransformator besteht aus einer Spule mit einem Abgriff; die zweite Spule wird
also eingespart. Zwei Schaltungen mit jeweils gleichsinnigem Wickelsinn werden unter-
schieden, die auf die gleiche Weise beschrieben werden können wie ein Transformator
mit zwei Wicklungen (siehe Band 1, Abschnitt 3.4.7.2).

Die anliegende Spannung u1 verursacht einen Strom i1 der mit einem magnetischen Fluss
�12 verbunden ist. Dadurch wird in der Spule neben der Selbstinduktionsspannung auch
eine Gegeninduktionsspannung verursacht, die durch den belastenden Wechselstromwi-
derstand einen Strom i2 bewirkt. Mit diesem Strom ist ein entgegengesetzt gerichteter
magnetischer Fluss �21 verbunden, der wiederum neben einer Selbstinduktionsspannung
eine Gegeninduktionsspannung verursacht.



6.2 Transformatorgleichungen und Zeigerbild 229

Die Spannungsgleichungen für beide Schaltungen lassen sich nach der Regel für zwei
Spulen, die mit zwei Punkten und einem Doppelpfeil gekennzeichnet sind, aufstellen
(siehe Band 1: S.328, Bild 3.197 und zugehöriger Text).

Angewendet werden die Spartransformator-Schaltungen bei Anpassung von Resonanz-
kreisen an Transistoren, Röhren und Antennen und zur Symmetrierung von unsymmetri-
schen Leitungen.

Spartransformator mit anliegender Spannung an der Gesamtspule

Bild 6.12 Spartransformator mit anliegender Spannung an der Gesamtspule und Belastung der
Teilspule mit einem beliebigen Wechselstromwiderstand, dazu Ersatzschaltung des belasteten
Spartransformators im Bildbereich

Die Spannungsgleichungen für das Ersatzschaltbild im Bild 6.12 lauten:

U1 = (R1 + j�L1) ( I
1
+ j�M ( ( I1� I

2
) + U2

U2 = (R2 + j�L2 ) ( ( I
1
� I

2
) + j�M ( I

1

und zusammengefasst zu den drei Transformatorgleichungen:

U1 = R1 + R2 + j� (L1 + L2 + 2M)�� 	� ( I1� R2 + j�(L2 + M)�� 	� ( I
2

(6.29)

U2 = R2 + j�(L2 + M)�� 	� ( I
1

� (R2 + j�L2 ) ( I 2 (6.30)

U2 = Z � I 2 (6.31)

Spartransformator mit anliegender Spannung an der Teilspule

Bild 6.13 Spartransformator mit anliegender Spannung an der Teilspule und Belastung der
Gesamtspule mit einem beliebigen Wechselstromwiderstand, dazu Ersatzschaltbild des be-
lasteten Spartransformators im Bildbereich
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Aus dem Ersatzschaltbild im Bild 6.13 lassen sich die Spannungsgleichungen ablesen: 

 
U2 � �(R2 � j�L2 ) � I2 � j�M � ( I1� I2) � U1  

 U1 � (R1 � j�L1) � ( I1� I2) � j�M � I2  

und zusammengefasst in den drei Transformatorgleichungen: 

 
U1 � (R1 � j�L1) � I 1 � R1 � j� (L1 � M)��  ! � I 2  (6.32) 

 
U2 � R1 � j� (L1 � M)��  ! � I1� R1 � R2 � j�(L1 � L2 � 2M)��  ! � I2  (6.33) 

 U2 � Z � I 2  (6.34) 

6.3  Ersatzschaltbilder mit galvanischer Kopplung 

Für eine einfachere rechnerische Handhabung gekoppelter Kreise können Ersatzschaltbil-
der mit galvanischer Kopplung aus den drei Spannungsgleichungen (Gl. 6.4 bis 6.6 bzw. 
6.10 bis 6.12) entwickelt werden. Die Ersatzschaltungen sind im allgemeinen nicht mehr 
physikalisch anschaulich oder technisch realisierbar; sie genügen formal den umgewan-
delten Spannungsgleichungen und sind im allgemeinen nicht dazu geeignet, die Wir-
kungsweise der Kopplung, d. h. des Transformators, zu erklären. 
Ersatzschaltbild mit L1 – M und L2 – M: 
Aus den Spannungsgleichungen des belasteten Transformators mit gleichsinnigem oder 
gegensinnigem Wickelsinn mit konstanter Permeabilität (M12 = M21 = M) 

 U1 � R1 � I1� j�L1 � I1� j�M � I2  (6.35) 

 U2 � �R2 � I2 � j�L2 � I2 � j�M � I1  (6.36) 

 U2 � Z � I 2  (6.37) 

entstehen durch Erweitern mit ± j�M · I1 und ± j�M · I2: 

 
U1 � R1 � I1� j�(L1 � M) � I1� j�M � ( I1� I 2)  (6.38) 

 U2 � �R2 � I2 � j�(L2 � M) � I2 � j�M � ( I1� I 2)  (6.39) 

 U2 � Z � I 2  (6.40) 

Diese Gleichungen entsprechen dem Ersatzschaltbild mit den Induktivitäten  L1 – M 
und  L2 – M  im Bild 6.14 und können als Zeigerbilder dargestellt werden, wobei der 
Zeiger  j�M · (I1 – I2)  für beide Polygone gleich ist. 
 

Bild 6.14 
Ersatzschaltbild mit den Induktivi-
täten M, L1 – M und L2 – M 
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Ersatzschaltbild mit L1 – GM  und GL2  – GM  bzw. mit Streuinduktivitäten 
Die Längsinduktivitäten L1 – M und L2 – M der Ersatzschaltung im Bild 6.14 können 
durch Streuinduktivitäten L1s und L2s ersetzt werden, indem Größen der Sekundärseite 
und die Gegeninduktivität mit dem Übersetzungsverhältnis reduziert werden, das in vie-
len Fällen ü = w1/w2 (siehe Gl. 6.24) gewählt wird: 
Zunächst werden die Spannungsgleichungen (Gl. 6.35 bis 6.37) mit ü verändert: 

2
1 1 11 1

I
U R I j L I j (ü M)

ü
" #

� � � � � � � � � $ %
& '

 (6.41) 

222 22 2 2 1
I I

(ü U ) (ü R ) j (ü L ) j (ü M) I
ü ü

" # " #
� � � � � � � � � � � � �$ % $ %

& ' & '
 (6.42) 

222
I

(ü U ) (ü Z)
ü

" #
� � � � $ %

& '
 (6.43) 

oder übersichtlich geschrieben: 
' '1 1 1 1 1 2U R I j L I j M I� � � � � � � �  (6.44) 

' ' ' '' '2 2 2 12 2U R I j L I j M I� � � � � � � � �  (6.45) 

 
U2

' � Z' � I2
' . (6.46) 

Die reduzierten Größen sind also: 
'2 2U ü U� �  ' 22 2R ü R� �  

' 22
1I I
ü

� �  ' 22 2L ü L� �  

'M ü M= �  ' 2Z ü Z= �  

Die Spannungsgleichungen werden entsprechend mit ± j�M' · I1 und ± j�M' ·
 
I2

'  erwei-
tert: 

 
U1 � R1 � I1� j�(L1 � M' ) � I1� j�M' � ( I1� I2

')  (6.47) 

 
U2

' � �R2
' � I2

' � j�(L2
' � M' ) � I2

' � j�M' � ( I1� I2
')  (6.48) 

 
U2

' � Z' � I2
' . (6.49) 

Das Ersatzschaltbild im Bild 6.15, das den Spannungsgleichungen mit reduzierten Größen 
entspricht, hat das gleiche Aussehen wie das Ersatzschaltbild ohne Reduzierung; es geht 
mit ü = 1 in das Ersatzschaltbild im Bild 6.14 über: 

Bild 6.15 
Ersatzschaltbild mit den 
Induktivitäten M', L1 – M'  
und L2

'  – M' 
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Mit dem Ersatzschaltbild mit reduzierten Größen lassen sich nur dann die Längsinduktivi-
täten durch Streuinduktivitäten ersetzen, die im Band 1, Abschnitt 3.4.7.3, S.337 und
S.340 definiert wurden (vgl. Gl. 3.366 und 3.367 mit M12 = M21 = M und Gl. 3.373 und
3.374), wenn ü = w1/w2 festgelegt wird:

L1 = M �
w1

w2

+ L1s = M' + L1s =
L1s

�1

oder

L1s = L1 � M' = �1 ( L1 (6.50)

und

L2 = M �
w2

w1

+ L2s =
L2s

�2

w1

w2

�

��
�

�	

2

� L2 =
w1

w2

� M +
w1

w2

�

��
�

�	

2

� L2s =
w1

w2

�

��
�

�	

2

�
L2s

�2

L2
' = M' + L2s

' =
L2s

'

�2

oder

L2s
' = L2

' � M' = �2 ( L2
' , (6.51)

wobei �1 und �2 die Streufaktoren sind.
Mit den reduzierten Größen

U2
' = ü � U2 =

w1

w2

� U2 R2
' = ü2 � R2 =

w1

w2

�

��
�

	


2

� R2

I
2
' =

1

ü
� I

2
=

w2

w1

� I
2

L2
' = ü2 � L2 =

w1

w2

�

��
�

	


2

� L2

M' = ü � M =
w1

w2

� M L2s
' = ü2 � L2s =

w1

w2

�

��
�

	


2

� L2s Z' = ü2 � Z =
w1

w2

�

��
�

	


2

� Z

lauten dann die Spannungsgleichungen mit Gl. (6.47) bis (6.49)

U1 = R1 ( I1+ j�L1s ( I1+ j�M' ( ( I1� I
2
') (6.52)

U2
' = �R

2
' ( I

2
' � j�L

2s
' ( I

2
' + j�M' ( ( I1� I

2
') (6.53)

U2
' = Z' � I 2

' . (6.54)

wobei der Strom I μ
' = I1� I

2
' Magnetisierungsstrom genannt wird:

U1 = R1 � I1+ j�L1s � I1+ j�M' � Iμ
' (6.55)

U2
' = �R

2
' ( I

2
' � j�L

2s
' ( I

2
' + j�M' ( Iμ

' (6.56)

U2
' = Z' � I 2

' . (6.57)
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Diese Spannungsgleichungen entsprechen dem Ersatzschaltbild im Bild 6.16:

Bild 6.16
Ersatzschaltbild mit
Streuinduktivitäten

Grafisch bedeuten die Spannungsgleichungen Zeigerbilder, die für einen induktiven und
einen kapazitiven Belastungswiderstand folgendes Aussehen haben:

Reihenfolge der Darstellung

beider Zeigerbilder:

I
2
'

U
2
' = Z' � I 2

'

mit Z' = Z' � e j)

() > 0 bzw.) < 0)

R2
' � I 2

'

j�L2s
' � I 2

'

j�M' � Iμ
' = U2

' + R2
' � I2

' + j�L2s
' � I 2

'

Bild 6.17 Zeigerbild des Transformators
mit Streuinduktivitäten und induktiver
Belastung

Iμ
' =

j�M' � Iμ
'

j�M'

I
1
= Iμ

' + I2
'

j�L1s � I
1

R1 � I
1

U1 = j�M' � Iμ
' + j�L1s � I1+ R1 � I

1

Bild 6.18 Zeigerbild des Transformators
mit Streuinduktivitäten und kapazitiver
Belastung
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Ersatzschaltbilder mit anderen Reduktionen ü

Die Spannungsgleichungen mit M', L1 – M' und L2
' – M' (Gl. 6.44 bis 6.46) sind nur

durch Erweitern mit ü entstanden, ohne dass ü einer besonderen Bedingung unterliegt
(siehe Gl. 6.41 bis 6.43). Die Zahl ü kann also beliebig gewählt werden, so dass sich be-
liebige Ersatzschaltbilder entwickeln lassen.

Beispiel:

Ersatzschaltbild ohne Längsinduktivität L2
' – M':

Mit

L2
' – M' = ü2 L2 – ü · M = 0

ist

ü =
M

L2

. (6.58)

Damit ergibt sich für die beiden restlichen Induktivitäten des Ersatzschaltbildes:

M' = ü � M =
M2

L2

=
k2 � L1 � L2

L2

M' = k2 ( L1 = (1 � �) ( L1 (6.59)

und

L1 � M' = L1 � ü � M = L1 �
M2

L2

= L1 �
k2 � L1 � L2

L2

L1 � M' = L1 ( (1 � k2 ) = � ( L1 (6.60)

wobei

M = k � L1 � L2 (Gl. 3.369, Band 1, S.338)

und

k2 = 1 – � (Gl. 3.377, Band 1, S.340).

Das Ersatzschaltbild hat dann folgendes Aussehen :

Bild 6.19
Ersatzschaltbild des Trans-
formators mit nur einer
Längsinduktivität
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Beispiel:

Von einem Transformator sind folgende Größen bekannt:

w1 = 5000 w2 = 500 R1 = 500� R2 = 15� L1 = 5H L2 = 0,1H k = 0,6.

Mit Hilfe des Ersatzschaltbildes mit bezogenen Größen und einem Zeigerbild sollen die Ein-
gangsspannung und der Eingangsstrom ermittelt werden, wenn der Transformator sekundär-
seitig mit der verlustbehafteten Kapazität (Ersatzschaltung: Reihenschaltung) Cr = 100μF,
Rr = 20� belastet wird und wenn die sekundäre Spannung U2 = 1kV, f = 50Hz betragen soll.

1. Zunächst soll das Ersatzschaltbild des belasteten Transformators gezeichnet und die Er-
satzbildgrößen berechnet werden.

2. Dann ist das Zeigerbild quantitativ zu entwickeln, wobei die einzelnen Schritte und die
Berechnungen anzugeben sind.

3. Aus den abgelesenen Größen Eingangsspannung U1, Eingangsstrom I1 und die Phasenver-
schiebung �1 zwischen U1 und I1 ist der Ersatz-Zweipol in Reihenschaltung zu ermitteln.

Lösung:

Zu 1:

Ersatzschaltbild siehe Bild 6.20 (nach Bild 6.16).

Bild 6.20 Ersatzschaltbild des Transformators mit
Streuinduktivitäten für das Beispiel

Ersatzbildgrößen:

Mit

ü = w1/w2 = 5000/500 = 10

sind

R1 = 500 �

M' = ü � M = 10 � 0,424 H = 4,24 H

mit M = k � L1L2

M = 0,6 � 5 � 0,1 H = 0,424 H

L1s = L1 � M' = 5 H � 4,24 H = 0,76 H

L2s
' = L2

' � M' = ü2 � L2 � M' = 100 � 0,1 H � 4,24 H = 5,76 H

R2
' = ü2 � R2 = 100 �15� = 1500 �

U2
' = ü � U2 = 10 �1kV = 10kV

Rr
' = ü2 � Rr = 100 � 20� = 2000�

Cr
' = Cr / ü2 = 100 μF / 100 = 1μF
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Zu 2: Zeigerbild siehe Bild 6.21.

U2
' = 10 kV

I2
' =

U2
'

Z'
=

10 kV

3760 �
= 2,66 A

mit Z' = Rr
' 2 +

1

�Cr
'

�

�
�




�
�

2

= (2000 �)2 +
1

2� 
 50 s�1 
1μF

�

��



��

2

= 3760 �

und � = �arctan
1

�Rr
' Cr

'
= �arctan

1

2� � 50 s�1 � 2000 � �1μF
= �57,8°

R2
' � I2

' = 1500 � � 2,66 A = 3,99 kV

�L2s
' � I2

' = 2� � 50 s�1 � 5,76 H � 2,66 A = 4,81 kV

abgelesen: �M' � Iμ
' = 10,2 kV

Iμ
' =

�M' � Iμ
'

�M'
=

10,2 kV

2� � 50 s�1 � 4,24 H
= 7,66 A

abgelesen: I1 = 7,2 A

�L1s � I1 = 2� � 50 s�1 � 0,76 H � 7,2 A = 1,72 kV

R1 � I1 = 500 � � 7,2 A = 3,6 kV

abgelesen: U1 = 13 kV und )1 = 57�

Bild 6.21
Zeigerbild für das
Transformator-Beispiel

Zu 3:

Zr = Rr + j�Lr = Zr ( cos )1 + j ( Zr ( sin )1

mit Rr = Zr ( cos �1 =
U1

I1

( cos �1 =
13 kV

7,2 A
( cos 57� = 983�

und �Lr = Zr ( sin )1 =
U1

I1

( sin )1

Lr =
U1

� 
 I1


 sin �1 =
13 kV

2 � 
 50 s�1 
 7,2 A
= 4,82H
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6.4 Messung der Ersatzschaltbildgrößen des Transformators

Für einen Transformator mit gleichsinnigem und gegensinnigem Wickelsinn werden die
Größen R1, R2, L1, L2 und M12 = M21 = M des Ersatzschaltbildes (Bild 6.22) durch
Gleichstrom- und Wechselstrommessungen ermittelt.

Bild 6.22
Größen des Ersatzschaltbildes eines
Transformators

Messung der ohmschen Spulenwiderstände R1 und R2 mittels Gleichspannung:

Der ohmsche Widerstand R1 der Primär-
spule wird bestimmt, indem bei sekundä-
rem Leerlauf eine Gleichspannung U1 an
die Primärspule angelegt und der Gleich-
strom I1 durch die Primärspule gemessen
wird (Bild 6.23). Der ohmsche Wider-
stand kann dann aus

Der ohmsche Widerstand R2 der Se-
kundärspule wird ermittelt, indem die
Primärspule offen bleibt und an die Se-
kundärspule eine Gleichspannung U2 an-
gelegt wird. Mit dem gemessenen
Gleichstrom I2 (Bild 6.24) kann der ohm-
sche Widerstand nach

R1 =
U1

I1
(6.61)

errechnet werden.

R2 =
U2

I2

(6.62)

berechnet werden.

Bild 6.23 Messung des ohmschen
Widerstandes der Primärspule

Bild 6.24 Messung des ohmschen
Widerstandes der Sekundärspule

Für die Ermittlung der Gleichstromwiderstände ist es gleichgültig, ob die beiden Spulen
gleichsinnig oder gegensinnig gewickelt sind.
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Messung des primären Leerlaufwiderstandes Z1l (Leerlauf-Eingangswiderstand Zin l

und des sekundären Leerlaufwiderstandes Z2l (Leerlauf-Ausgangswiderstand Zoutl)

und damit der ohmschen Widerstände R1 und R2

und der Selbstinduktivitäten L1 und L2 mittels Wechselspannung:

Bei sekundärem Leerlauf wird an die
Primärspule eine sinusförmige Wechsel-
spannung

u1 = û1 · sin (�t + �u1) angelegt,

und der sinusförmige Strom

i1 = î1 · sin (�t + �i1) und

die Phasenverschiebung

�1 = �u1 – �i1 werden gemessen.

Bei primärem Leerlauf wird an die Se-
kundärspule eine sinusförmige Wechsel-
spannung

u2 = û2 · sin (�t + �u2) angelegt,

und der sinusförmige Strom

i2 = î2 · sin (�t + �i2) und

die Phasenverschiebung

�2 = �u2 – �i2 werden gemessen.

Bild 6.25 Leerlauf-Eingangswiderstand für die
Ermittlung von R1 und L1

Bild 6.26 Leerlauf-Ausgangswiderstand für
die Ermittlung von R2 und L2

Im Bildbereich (Bild 6.25) kann der
primäre Leerlaufwiderstand oder Leer-
lauf-Eingangswiderstand als Quotient der
beiden komplexen Zeitfunktionen Span-
nung u1 und Strom i1 bzw. als Quotient
der beiden komplexen Effektivwerte U1
und I1 gebildet werden:

Im Bildbereich (Bild 6.26) kann der se-
kundäre Leerlaufwiderstand oder Leer-
lauf-Ausgangswiderstand als Quotient
der beiden komplexen Zeitfunktionen
Spannung u2 und Strom i2 bzw. als Quo-
tient der beiden komplexen Effektivwerte
U2 und I2 gebildet werden:

Z1l = Zinl =
u1

i
1

=
U1

I
1

=
U1

I1
� e j)1

Z1l = Zinl = R1 + j�L1 (6.63)

d. h. R1 =
U1

I1
� cos)1

L1 =
U1

�I1
( sin )1

Z2l = Zout l=
u2

i
2

=
U2

I
2

=
U2

I2

� e j)2

Z2l = Zout l = R2 + j�L2 (6.64)

d. h. R2 =
U2

I2

� cos)2

L2 =
U2

�I2

( sin )2

Die Gleichstrommessung für die ohmschen Widerstände R1 und R2 wird also durch die
Wechselstrommessung bestätigt.

Ob die beiden Spulen gleichsinnig oder gegensinnig gewickelt sind, spielt für die Ermittlung
des Leerlauf-Eingangswiderstandes und Leerlauf-Ausgangswiderstandes keine Rolle.
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Messung der Gegeninduktivität M bei konstanter Permeabilität μ mittels Wechselspan-
nung:

Die Gegeninduktivität M kann auf verschiedene Weise messtechnisch ermittelt werden:

1. Messung der sekundären Leerlauf Spannung und des Primärstroms

Bei sekundärem Leerlauf wird an die

Primärspule eine Wechselspannung

u1 = û1 · sin (�t + �u1) angelegt,

und der sinusförmige Primärstrom

i1 = î1 · sin (�t + �i1)

und die sinusförmige sekundäre Leerlaufspannung

u2l = û2l · sin (�t + �u2) werden gemessen.

Bild 6.27Messung der Gegenin-
duktivität bei sekundärem Leerlauf
des Transformators

Im Bildbereich (Bild 6.27) ergibt sich mit der Spannungsgleichung für den Sekundär-
kreis nach Gl. (6.5) bzw. (6.11) für ausgangsseitigem Leerlauf mit I2 = 0:

U2l = j�M � I
1

. (6.65)

Damit lässt sich die Gegeninduktivität ermitteln:

M = � j 

U2l

� 
 I
1

=
U2l

� 
 I1

 e j(�u2 ��i1�� /2) mit – j = ej(–�/2) (6.66)

2. Ermittlung der Gegeninduktivität M durch Messung des Widerstandes der Reihen-
schaltung und Gegenreihenschaltung der beiden Spulen des Transformators

Bei der Behandlung der Zusammenschaltung gekoppelter Spulen im Abschnitt 3.4.7.2
(siehe Band 1, S.329, Bilder 3.199 und 3.200) wurden die Reihenschaltung und die
Gegen-Reihenschaltung bei gleichsinnigem Wickelsinn beider Spulen unterschieden.
Wird an die Reihenschaltung der beiden Spulen mit gleichsinnigem Wickelsinn eine
sinusförmige Spannung u = û · sin (�t + �u) angelegt, dann stellt sich ein sinusförmi-
ger Strom i = î · sin(�t + �i) ein.

Bild 6.28
Reihenschaltung
der beiden Spulen
des Transformators

Im Bildbereich (Bild 6.28) lässt sich der komplexe Reihenwiderstand aus den komple-
xen Effektivwerten von Spannung U und Strom I angeben und durch einen Ersatz-
zweipol mit R und j�Lr1 darstellen:

Zr1 =
U

I
=

U

I
� e j(�u ��i ) = R + j � Xr1 = R + j�Lr1

Zr1 = R1 + R2 + j� (L1 + L2 + 2M) (6.67)

mit R = R1 + R2 und Lr1 = L1 + L2 + 2 M (vgl. Gl. 3.347, Band 1)
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Wird an die Gegen-Reihenschaltung der beiden Spulen mit gleichsinnigem Wickelsinn
eine sinusförmige Spannung u = û · sin (�t + �u) angelegt, dann stellt sich ein sinus-
förmiger Strom i = î · sin (�t + �i) ein, der sich vom Strom der Reihenschaltung un-
terscheidet.

Bild 6.29
Gegen-Reihenschaltung
der beiden Spulen des
Transformators

Im Bildbereich (Bild 6.29) lässt sich entsprechend ein komplexer Widerstand aus den
komplexen Effektivwerten von Spannung U und Strom I angeben und durch einen Er-
satz-Zweipol mit R und j�Lr2 darstellen:

Zr2 =
U

I
=

U

I
� e j(�u ��i ) = R + j � Xr2 = R + j�Lr2

Zr2 = R1 + R2 + j� (L1 + L2 � 2M) (6.68)

mit R = R1 + R2 und Lr2 = L1 + L2 – 2 M (vgl. Gl. 3.348, Band 1)

Wird von den ermittelten komplexen Widerständen die Differenz Zr1 – Zr2 gebildet,
dann heben sich die ohmschen Anteile R1 + R2 und induktiven Anteile j�(L1 + L2)
auf, und die Gegeninduktivität lässt sich mit der Formel

M = �
j

4�
( (Zr1 � Zr2 ) =

1

4�
( (Xr1 � Xr2 ) (6.69)

berechnen.

Bei einem Tranformator mit gegensinnigem Wickelsinn der Spulen handelt es sich um
die Reihenschaltung, wenn der Strom jeweils in die mit einem Punkt gekennzeichne-
ten Klemmen fließt; beide unteren Klemmen müssen dann wie im Bild 6.29 zusam-
mengeschlossen werden. Die Gegen-Reihenschaltung entsteht, wenn die beiden Spu-
len mit gegensinnigem Wickelsinn wie im Bild 6.28 in Reihe geschaltet sind; der
Strom fließt einmal in die gekennzeichnete Klemme und dann in die nicht gekenn-
zeichnete Klemme. Die Formeln für die komplexen Widerstände Zr1 und Zr2 sind die
gleichen wie für einen Transformator mit gleichsinnigem Wickelsinn.

3. Ermittlung der Gegeninduktivität mit Hilfe einer Wechselstrom-Brückenschaltung

In der Übungsaufgabe 4.31 im Abschnitt 4.6 ist eine Wechselstrombrücke dargestellt
(Bild 4.134), die die messtechnische Ermittlung der Gegeninduktivität ermöglicht.
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Beispiel:

Um für einen Übertrager die Ersatzschaltbildgrößen ermitteln zu können, wurde nacheinander
die sinusförmige Spannung u mit U = 200V und f = 100kHz an den Transformator ange-
legt, und zwar

an die Primärspule bei sekundärem Leerlauf (Ergebnis: I1l = 314mA, �1l = 85,5°),

an die Reihenschaltung beider Spulen (Ergebnis: Ir1 = 14,6mA, �r1 = 87,7°) und

an die Gegen-Reihenschaltung beider Spulen (Ergebnis: Ir2 = 32,3mA, �r2 = 84,9°).

1. Zunächst sind die komplexen Widerstände Z1l, Zr1 und Zr2 in algebraischer Form zu be-
rechnen.

2. Dann sind aus den komplexen Widerständen die Ersatzschaltbildgrößen zu bestimmen.

Lösung:

Zu 1. Z1l =
U

I 1l
=

200 V

314 (10�3A
( e j (85,5� = 50 � + j ( 635�

Zr1 =
U

I r1

=
200 V

14,6 (10�3A
( e j (87,7� = 550 � + j (13688�

Zr2 =
U

I r2
=

200 V

32,3 (10�3A
( e j (84,9� = 550 � + j ( 6167 �

Zu 2.

Aus Z1l = R1 + j � X1l = R1 + j�L1 (nach Gl. 6.63) ergeben sich

R1 = 50 �
und

L1 =
X1l

�
=

635�

2 � 
100 
103 s�1
= 1 mH,

aus

Zr1 = R + j � Xr1 = R1 + R2 + j� (L1 + L2 + 2 M) (nach Gl. 6.67)

ergibt sich

R2 = R – R1 = 550 � – 50 � = 500 �,

und

M =
Xr1 � Xr2

4�
=

13688� � 6167 �

4 
 2� 
100 
103s�1
= 3 mH , (nach Gl. 6.69)

aus

Xr1 = �(L1 + L2 + 2M)

ergibt sich

L2 =
Xr1

�
� L1 � 2M =

13688�

2� 
100 
103s�1
� 1 mH � 2 
 3 mH = 14,8 mH

oder aus

Zr2 = R + j ( Xr2 = R1 + R2 + j�(L1 + L2 � 2M) (nach Gl. 6.68)

ergibt sich

L2 =
Xr2

�
� L1 + 2M =

6167 �

2 � 
100 
103s�1
� 1 mH + 2 
 3 mH = 14,8 mH
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6.5  Frequenzabhängigkeit der Spannungsübersetzung 
eines Transformators 

Ortskurve des Spannungsverhältnisses eines Transformators 
Unter den Voraussetzungen, dass 

der sekundäre Verlustwiderstand R2 vernachlässigt wird und 
der Belastungswiderstand Z ein ohmscher Widerstand ist, 

kann das Spannungsverhältnis des Transformators als „einfache Ortskurve“ im Sinne des 
Abschnitts 5.1 dargestellt werden. Für die Ermittlung der Ortskurve eignet sich das Er-
satzschaltbild des Transformators mit dem Reduktionsfaktor ü = M/L2, also mit nur einer 
Längsinduktivität (siehe Bild 6.19 im Abschnitt 6.3), das mit obigen Voraussetzungen 
R2 = 0 und Z = R im Bild 6.30 gezeichnet ist. 
 

 

Bild 6.30 
Vereinfachtes Ersatzschaltbild  
des Transformators mit einer 
Längsinduktivität 
 

 
Die Herleitung der Ortskurvengleichung für U2

' / U1  und die Konstruktion der Ortskurve 
erfolgt analog wie im Beispiel 8 im Abschnitt 5.3, S. 205–206, denn anstelle von Kapazi-
täten (siehe Bild 5.22) sind im Ersatzschaltbild Induktivitäten zu berücksichtigen: 

 

U2
'

U1
�

1
1
R'

�
1

j�k2L1
1

1
R'

�
1

j�k2L1

� R1 � j��L1

 

'2

1
1 1 ' 2 1

U 1
U 1 11 (R j L )

R j k L

�
" #

� � �� � �$ %�& '

 

'2

1 1 1 1 1
' 2 ' 21 1

U 1
U R L L R1 j

R k L R k L

�
" # " #� �

� � � � � �$ % $ %�& ' & '

 

'2

1 1 1 1 1
0' 2 ' 21 0 1

U 1
U R L L R1 j p

R k L R p k L

�
" #" #� �

� � � � � �$ %$ % �& ' & '

 mit � = p · �0 (6.70) 

Die Ortskurve U2
' /U1 ist ein Kreis durch den Nullpunkt mit dem Mittelpunkt auf der 

reellen Achse. 
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Die Bezugsfrequenz �0 wird errechnet, indem der Imaginärteil der Nennergeraden mit
p = 1 Null gesetzt wird:

�0
�L1

R'
=

R1

�0k2L1

= QT (6.71)

�0 =
R' ( R1

�L1 ( k2L1

=
1

L1

(
R' ( R1

� ( k2

bzw. f0 =
1

2� ( L1

(
R' ( R1

� ( k2
(6.72)

und mit

R' = ü2 � R =
M

L2

�

��
�

	


2

� R

ist

�0 =
M2 ( R ( R1

L1
2 ( L2

2 ( � ( k2

und mit

M2

L1 � L2

= k2 aus M = k � L1L2

ist

�0 =
R ( R1

� ( L1 ( L2

bzw. f0 =
1

2�
(

R ( R1

� ( L1 ( L2

. (6.73)

Bei der Konstruktion des „Kreises durch den Nullpunkt“ wird mit der Darstellung der
Nennergeraden

U1

U2
'

= 1+
R1

R'
+

�L1

k2L1

�

�
�

�



� + j ( QT ( p �

1

p

�
��

�

�

= A + j ( B ( p �
1

p

�
��

�

�

,

begonnen, die eine Parallele zur imaginären Achse ist. Der Ortskurvenpunkt mit p = 1
liegt auf der reellen Achse, die Parameterwerte für p > 1 liegen oberhalb und die für p < 1
unterhalb der reellen Achse.

Um die Bandbreite �f = fg2 – fg1 des Spannungsverhältnisses (siehe Abschnitt 4.5.1,
Gl. 4.120) bei 45°-Verstimmung bestimmen zu können, werden die Zeiger bei + 45°
und bei – 45° an die Gerade gezeichnet. Der positive Imaginärteil und der negative Imagi-
närteil sind dann jeweils gleich dem Realteil der beiden Zeiger:

QT p �
1

p

�
��

�
�	

= 1+
R1

R'
+

�L1

k2L1

bzw. �QT p �
1

p

�
��

�
�	

= 1+
R1

R'
+

�L1

k2L1

Damit lassen sich der p-Wert für die obere Grenzfrequenz fg2, der p-Wert für die untere
Grenzfrequenz fg1 und die Bandbreite �f errechnen.
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Bei praktischen Berechnungen können für tiefe und hohe Frequenzen bestimmte Anteile
in

QT � p �
1

p
= �

�L1

R'
�

R1

�k2L1

= 1+
R1

R'
+

�L1

k2L1

vernachlässigt und damit für die Grenzfrequenzen Formeln angegeben werden:

Bei tiefen Frequenzen werden die Streuglieder ��L1/R' und �L1/k2L1 vernachlässigt, so
dass sich für die untere Grenzfrequenz errechnen lässt:
Aus

R1

�g1 � k2 � L1

= 1+
R1

R'

ergibt sich

�g1
=

1

k2 � L1

�
R1

1+
R1

R'

�g1
=

1

k2 � L1

�
1

1

R1

+
1

R'

bzw.

fg1 =
1

2�k2L1

�
1

1

R1

+
1

R'

(6.74)

und mit

R' = ü2 � R =
M

L2

�

��
�

	


2

� R

�g1 =
1

k2 � L1

�
1

1

R1

+
L2

2

M2 � R

=
1

k2 � L1

R1

+
k2 � L1 � L2

2

M2 � R

=
1

k2 � L1

R1

+
L1 � L2

2

L1 � L2 � R

mit

k2

M2
=

1

L1 � L2

aus M = k � L1L2

�g1 =
1

k2 � L1

R1

+
L2

R

bzw.

fg1 =
1

2�
�

1

k2 � L1

R1

+
L2

R

(6.75)
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Bei hohen Frequenzen kann zunächst R1/(�k2L1) vernachlässigt werden:

Aus

�g2 (
�L1

R'
= 1+

R1

R'
+

�L1

k2L1

ergibt sich

�g2 =
1

�
(

R'

L1

+
R1

L1

+
R' ( �
k2 ( L1

�

�
�

�



� ,

dann kann R' · �/(k2 · L1) entfallen:

�g2 =
R' + R1

� ( L1

bzw.

fg2 =
1

2�
(

R' + R1

� ( L1

(6.76)

und mit

R' = ü2 � R =
M

L2

�

��
�

	


2

� R und
M2

L1 � L2

= k2

�g2 =
1

�
(

M2 ( R

L1 ( L2
2

+
R1

L1

�

�
�

�



�

�g2 =
1

�
(

k2 ( R

L2

+
R1

L1

�

�
�

�



�

bzw.

fg2 =
1

2� ( �
(

k2 ( R

L2

+
R1

L1

�

�
�

�



� . (6.77)

Bei Übertragern mit geringer Streuung, genannt „fest gekoppelte Transformatoren“, kann
die obere Grenzfrequenz einige Hundert mal so groß sein wie die untere Grenzfrequenz.
Um den Durchlassbereich beurteilen zu können, wird das Verhältnis der oberen zur unte-
ren Grenzfrequenz berechnet:

�g2

�g1

=
1

�
(

k2R

L2

+
R1

L1

�

�
�

�



� (

k2L1

R1

+
L2

R

�

�
�

�



�

�g2

�g1

=
1

�
(

(k2L1 ( R + R1 ( L2 )2

L1 ( L2 ( R1 ( R
(6.78)
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Der Mittelpunkt des Kreises durch den Nullpunkt für U2
' /U1 liegt auf der reellen Achse

im Abstand 1/(2A):

1

2 � A
=

1

2 � 1+
R1

R'
+

�L1

k2L1

�

�
�

�

�
	

=
1

2 � 1+
L2 � R1

k2 � L1 � R
+

�L1

k2L1

�

�
�

�

�
	

mit
R1

R'
=

R1

ü2 � R
=

L2
2 � R1

M2 � R
=

L2
2 � R1

k2 � L1 � L2 � R
=

L2 � R1

k2 � L1 � R

Bild 6.31 Ortskurven der frequenzabhängigen
Spannungsverhältnisse von Transformatoren
(Übertragern) zur Ermittlung der Bandbreite

Bild 6.32 Betrag des frequenzabhängigen
Spannungsverhältnisses eines Transformators
(Übertragers)

Aus der Ortskurve können dann die Beträge U2
' / U1 in Abhängigkeit von den Parame-

tern p, also von der Frequenz � bzw. f, abgelesen und in einer Durchlasskurve dargestellt
werden (Bild 6.32).
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Übungsaufgaben zu den Abschnitten 6.1 bis 6.5

6.1 1. Ermitteln Sie mittels quantitativem Zeigerbild die Effektivwerte der Eingangsspannung
U1 und des Eingangsstroms I1 für einen Transformator mit

R1 = 6� L1 = 20mH R2 = 10� M = 15mH k = 0,5

bei gegebener Ausgangsspannung U2 = 40V, � = 10000s–1 und ohmscher Belastung
R = 200�.

2. Bestätigen Sie die Ergebnisse rechnerisch.

3. Auf welchen Wert verändert sich die Ausgangsspannung U2, wenn die Eingangsspannung
U1 = 220V beträgt?

4. Auf welchen Wert vermindert sich die Spannung U1 bei geforderter Ausgangsspannung
U2 = 40V, wenn die Streuung des Transformators vernachlässigt werden kann („feste
Kopplung“)?

6.2 1. Entwickeln Sie aus den Transformatorgleichungen eines verlustlosen Umkehrübertragers
(gegensinnige Wicklungsanordnung) die Formel für den Kurzschluss-Eingangswiderstand
in Abhängigkeit von �, � und L1.

2. Bestätigen Sie das Ergebnis mit Hilfe eines Ersatzschaltbildes mit galvanischer Kopplung.

3. Berechnen Sie die Ersatzinduktivität Lers des Übertragers, wenn L1 = 20mH, L2 = 45mH
und M = 15mH betragen.

6.3 Für Widerstandstransformationen eignet sich der gezeichnete Spartransformator mit kapaziti-
ver Belastung, bei dem die Verluste vernachlässigt sind.

Bild 6.33
Übungsaufgabe 6.3

1. Geben Sie die drei Spannungsgleichungen für den belasteten Spartransformator an.

2. Ermitteln Sie aus den Gleichungen den Eingangswiderstand Zin in Abhängigkeit von L1,
L2, M, �, Rr und Cr.

3. Wie groß ist der Eingangswiderstand Zin , wenn die Ersatzinduktivität L = L1 + L2 + 2M
mit der Kapazität Cr in Resonanz ist?

4. Sind L1 = 200mH L2 = 200mH k = 0,6 Rr = 25� Cr = 62,5nF und L und Cr in
Resonanz, dann ist der Eingangswiderstand induktiv. Berechnen Sie die Resonanzfre-
quenz � und den induktiven Eingangswiderstand.

6.4 Die Ersatzschaltbildgrößen eines Transformators betragen R1 = 60�, R2 = 100�, L1 = 20mH,
L2 = 45mH und k = 0,5. Bei einer Kreisfrequenz � = 10000s–1 soll der Transformator mit
einer Spule belastet werden, deren Ersatzschaltung einer Reihenschaltung von Rr = 50� und
Lr = 8,67mH entspricht, wobei die Spannung an der Spule U2 = 40V betragen soll.

Mit Hilfe des Ersatzschaltbildes mit Streuinduktivitäten sollen das Zeigerbild und damit die
Eingangsgrößen U1 und I1 ermittelt werden.

1. Zeichnen Sie das Ersatzschaltbild mit Streuinduktivitäten für den speziellen Belastungs-
fall und ermitteln Sie die Ersatzschaltbildgrößen mit ü = 1,2.

2. Entwickeln Sie das Zeigerbild mit den gegebenen und berechneten Größen, wobei Sie die
Reihenfolge der Darstellung angeben. Wie groß sind I1 und U1?

3. Wie ändern sich I1, I2 und U2, wenn die Eingangsspannung U1 = 500V beträgt?
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6.5 Für einen Transformator mit Eisenverlusten soll das Zeigerbild entwickelt werden. Die Eisen-
verluste werden durch den ohmschen Widerstand Re erfasst.

Bild 6.34
Übungsaufgabe 6.5

Die Belastung des Transformators ist induktiv:

Rr = 20� und Lr = 95,5mH.

Gegeben sind:

U2 = 600V, f = 50Hz w1 = 2500 R1 = 400� L1s = 0,8H M = 1,2H

w2 = 500 R2 = 40� L2s = 0,12H Re = 5k�
1. Berechnen Sie die Ersatzschaltbildgrößen mit ü = w1/w2.

2. Entwickeln Sie das quantitative Zeigerbild und geben Sie U1, I1 und �1 an.

6.6 1. Bei einer Kreisfrequenz � = 10000s–1 wurden an einem Übertrager folgende Wechsel-
stromwiderstände gemessen:

Z1l = 6� + j · 80� Zr1 = 42� + j · 830� Zr2 = 42� + j · 230�
Ermitteln Sie die Ersatzschaltbildgrößen des Transformators.

2. Geben Sie das Ersatzschaltbild mit nur einer Längsinduktivität (ü = M/L2) an und errech-
nen Sie mit den unter 1. ermittelten Werten die Ersatzschaltbildgrößen. Die Belastung be-
trägt R = 180�.

3. Entwickeln Sie für das Ersatzschaltbild ein quantitatives Zeigerbild, wenn der sekundäre
Strom I2 = 0,1A beträgt. Lesen Sie aus dem Zeigerbild U1 und )1 ab.

4. Berechnen Sie den Eingangswiderstand des Übertragers aus den Ergebnissen des Zeiger-
bildes. Kontrollieren Sie das Ergebnis mit der Ersatzschaltung.

6.7 Für einen Übertrager mit R1 = 50�, L1 = 0,8mH, L2 = 16mH, k = 0,995, R2 = 0 (vernachläs-
sigt) und einer ohmschen Belastung R = 1k� soll das Spannungsverhältnis '

2 1U / U in Ab-
hängigkeit von der Frequenz berechnet werden.

1. Ermitteln Sie für die Ersatzschaltung mit nur einer Längsinduktivität die Ersatzschaltbild-
grössen.

2. Für das Spannungsverhältnis '
2 1U / U ist die Ortskurvengleichung zu berechnen und die

Ortskurve zu zeichnen.

3. Tragen Sie in die Ortskurve für '
1 2U / U den 45°-Zeiger und den –45°-Zeiger ein und le-

sen Sie die beiden p-Werte für die Grenzfrequenzen ab. Weisen Sie die p-Werte rechne-
risch nach. Geben Sie die obere und die untere Grenzfrequenz und die Bandbreite an.

4. Kontrollieren Sie mit Hilfe der Näherungsformeln die Ergebnisse für die Grenzfrequen-
zen.

5. Um wie viel mal höher liegt die obere Grenzfrequenz gegenüber der unteren Grenzfre-
quenz?

6. Berechnen Sie die Funktionswerte der Funktion | '
2 1U / U | = f(p) und stellen Sie die Funk-

tion in Abhängigkeit von der Frequenz f dar.
Kontrollieren Sie die p-Werte mit Hilfe der Ortskurve.
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7  Mehrphasensysteme 

7.1  Die m-Phasensysteme 
Einphasensystem 
Durch Rotieren einer Spule in einem homogenen Magnetfeld wird in der Spule eine 
Wechselspannung induziert, so dass sich beim Anschließen eines Verbrauchers an die 
Spulenklemmen ein Wechselstrom einstellen kann (siehe Band 1, S. 298–299, Abschnitt 
3.4.6.1, Beispiel 2). Einphasensysteme sind Wechselstromsysteme mit je einer Strombahn 
für Hin- und Rückleitung, in und entlang denen die elektrischen und magnetischen Grö-
ßen verlaufen (zitiert aus DIN 40 108). Sie wurden in den Kapiteln 4, 5 und 6 behandelt. 
 
Mehrphasensysteme 
Werden mehrere selbständige gleich gestaltete Spulen (Anzahl m) um den gleichen Win-
kel  � = 2�/m  versetzt angeordnet im homogenen, zeitlich konstanten Magnetfeld mit der 
Winkelgeschwindigkeit � gedreht, dann werden in jeder Wicklung sinusförmige Wech-
selspannungen uq1, uq2, uq3, … , uqm mit gleicher Frequenz und gleicher Amplitude indu-
ziert, die um den Phasenwinkel  � = 2�/m  zueinander phasenverschoben sind (vgl. Bild 
3.154 im Band 1, S. 298).  
Im Bild 7.1 sind drei Spulen gezeichnet, die um den Winkel  � = 2�/3  versetzt angeord-
net sind. Die in den drei Spulen induzierten Spannungen sind dann um  � = 2�/3  phasen-
verschoben, wie im Zeitbereich und im Zeigerbild ersichtlich ist. 
 
 

 

Bild 7.1  Spannungen von drei in einem Magnetfeld drehenden selbständigen Spulen 
 



250 7 Mehrphasensysteme

Praktisch angewendete Wechselstromgeneratoren besitzen keine drehenden Spulen, son-
dern längs der Peripherie des Stators mehrere selbständige Wicklungen mit einem dre-
henden Rotor, der als Dauermagnet oder mit einer Erregerwicklung ausgeführt ist.

Im Bild 7.2 sind drei Spulen an der Peripherie angeordnet, die sich relativ zu dem sich
drehenden Rotor „bewegen“. Diese Relativbewegung führt zu den gleichen induzierten
Quellspannungen wie im Bild 7.1.

Bild 7.2
Dreiphasengenerator

Werden die Generatorspulen durch Wechselstromwiderstände belastet, dann liegen auf-
grund der Wechselstrom-Innenwiderstände an den Spulen nur die sinusförmigen Klem-
menspannungen u1, u2, u3, … , um an.

Die in Mehrphasengeneratoren induzierten, um den Winkel � versetzten sinusförmigen
Quellspannungen und die Klemmenspannungen gleicher Frequenz und gleicher Amplitu-
de können im Zeitbereich und durch Zeiger im Bildbereich dargestellt werden.

Symmetrisches Strom- und Spannungssystem

Die komplexen Effektivwerte der abgebildeten sinusförmigen Spannungen an den Spulen
eines Mehrphasengenerators U1, U2, … , Um bilden einen symmetrischen Stern, weil die
Zeiger benachbarter Spannungen durch Drehung um den Winkel � = 2�/m ineinander
überführt werden können:

u1 = û · sin �t

u2 = û · sin (�t – �)

u3 = û · sin (�t – 2�)

u4 = û · sin (�t – 3�)
.

.

.

um = û · sin [�t – (m – 1) · �]

U1

U2 = U1 · e–j·�

U3 = U1 · e–j·2�

U4 = U1 · e–j·3�

.

.

.

Um = U1 · e–j· (m – 1)�



7.1 Mehrphasensysteme 251

Auch die abgebildeten komplexen Effektivwerte der Ströme I1, I2, . . . ,Im, die sich durch
Anschluss gleicher Wechselstromwiderstände Z = R + j · X = Z · ej� an die Spulen-
klemmen ergeben, bilden einen symmetrischen Stern, weil sie ebenfalls gleiche Effektiv-
werte und den gleichen Phasenwinkel � haben:

I1 =
U1

Z
=

U1

Z ( e j�
= I ( e� j�

I2 =
U2

Z
=

U1 � e� j�

Z � e j�
= I � e� j�(�+�)

I3 =
U3

Z
=

U1 � e� j2�

Z � e j�
= I � e� j�(2�+�)

I4 =
U4

Z
=

U1 � e� j3�

Z � e j�
= I � e� j�(3�+�)

.

.

.

Im =
Um

Z
=

U1 � e� j(m�1)�

Z � e j�
= I � e� j�[(m�1)�+�] .

Bild 7.3 Zeigerbild für das sym-
metrische Strom- und Spannungs-
system eines Sechsphasensystems
(m = 6)

Sind die Wechselstromwiderstände bzw. komplexen Widerstände für alle Phasen gleich,
dann wird das Mehrphasensystem symmetrisch genannt. Für gleiche induktive Wechsel-
stromwiderstände in den einzelnen Stromkreisen ergibt sich dann das im Bild 7.3 darge-
stellte Zeigerbild für das symmetrische Strom- und Spannungssystem, hier für ein Sechs-
phasensystem mit m = 6.

Operator des m-Phasensystems

Mit dem Drehzeiger

a = e– j� = e– j·2�/m, (7.1)

dem Operator des m-Phasensystems, lassen sich benachbarte Spannungszeiger und
Stromzeiger entsprechend der Nummerierung ineinander überführen.
Für ein Dreiphasensystem ist der Operator

a = e–j·2�/3 = e– j · 120°

a = cos 120° – j · sin 120° = – 1/2 – j · 1/2 · 3 .

Mehrphasensysteme oder m-Phasensysteme

Mehrphasensysteme sind also die Mehrphasengeneratoren, die belastenden Widerstände und
die sie verbindenden Leitungen, also die Gesamtheit der Stromkreise.

Hinsichtlich der Anzahl der Phasen (Stränge) werden Mehrphasensysteme in Zweiphasen-
systeme, Dreiphasensysteme und Sechsphasensysteme unterschieden.
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Ein Mehrphasensystem ist also ein Wechselstromsystem mit mehr als zwei Strombah-
nen, in und entlang denen die elektrischen und magnetischen Größen mit gleicher Fre-
quenz, mit gleichen oder angenähert gleichen Amplituden, in vorgegebener Phasen-
folge mit gleichen oder angenähert gleichen Phasenverschiebungswinkeln verlaufen
(zitiert aus DIN 40108).

Balancierte Mehrphasensysteme

Ist die Augenblicksleistung p eines Mehrphasensystems zeitlich konstant, obwohl die
Leistungen der einzelnen Phasen veränderlich sind, dann wird das Mehrphasensystem
abgeglichen oder balanciert genannt.

Ein m-Phasensystem kann für m 	 3 balanciert sein, wenn die Belastung symmetrisch
ist. Die Augenblicksleistung ist dann gleich der Wirkleistung:

p = m · U · I · cos � = P.

Nichtverkettete Mehrphasensysteme

Werden die Enden der einzelnen Phasenwicklungen des Generators getrennt herausge-
führt und mittels selbständiger Leitungen an die einzelnen Verbraucher angeschlossen,
dann ist das Mehrphasensystem nicht verkettet.

Verkettete Mehrphasensysteme

Bei verketteten Mehrphasensystemen sind die Phasenwicklungen des Generators mitein-
ander verbunden und zwar in Sternschaltung oder in Ringschaltung (Polygonschaltung).
Die Wechselstromwiderstände (Verbraucher) können ebenfalls in Sternschaltung und in
Ringschaltung (Polygonschaltung) geschaltet sein.

Nach DIN 40 108 ist der Begriff „Phase“ durch den Begriff „Strang“ ersetzt worden und
bedeutet die Strombahn, in der der Strom einer Phase fließt.

Um eine Sternschaltung eines Mehrphasensystems handelt es sich, wenn sämtliche Strän-
ge (Phasenwicklungen) an einem ihrer Enden in einem Sternpunkt N zusammengeschlos-
sen sind. Die an den Spulenklemmen anliegenden Spannungen u1, u2, … , um heißen
Strangspannungen uSt, die im einzelnen mit u1N, u2N, …, umN bezeichnet werden.

Eine Ring- oder Polygonschaltung eines Mehrphasensystems liegt vor, wenn sämtliche
Stränge (Phasenwicklungen) hintereinander geschaltet einen geschlossenen Ring ergeben.
Die an den Generatorspulen anliegenden Spannungen u1, u2, … , um sind dann gleich
den Außenleiterspannungen uLt, die im einzelnen mit u12, u23, u34, … , um–1,m, um,1
bezeichnet werden. Für ein Dreiphasensystem heißt die Ring- oder Polygonschaltung
Dreieckschaltung.

Die Verbindungsleiter der Außenpunkte des Generators und der Außenpunkte des
Verbrauchers heißen Außenleiter, die mit L1, L2, … , Lm bezeichnet werden.

Zwischen einem Mehrphasengenerator in Sternschaltung und einem Mehrphasenverbrau-
cher in Sternschaltung heißt der Verbindungsleiter zwischen den Sternpunkten Stern-
punktleiter oder Neutralleiter, der mit dem Buchstaben N gekennzeichnet wird.
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Spannungen und Ströme des Mehrphasensystems

Strangspannungen (ehemals Phasenspannungen) uSt bzw. USt sind die Spannungen an
den Klemmen der Phasenwicklungen,

Strangströme (ehemals Phasenströme) iSt bzw. ISt sind die Ströme, die durch die Pha-
senwicklungen fließen.

Außenleiterspannungen (ehemals Leiterspannungen) uLt bzw ULt sind die Spannungen,
die zwischen zwei Außenleiter des verketteten Mehrphasensystems bestehen und

Außenleiterströme (ehemals Leiterströme) iLt bzw. ILt sind die Ströme, die durch die
Außenleiter fließen.

Verkettete Mehrphasensysteme ersparen vor allem Leitermaterial hinsichtlich der Rück-
leiter. Bei symmetrischen Stern-Stern-Schaltungen (Generator und Verbraucher in Stern-
schaltung) kann der Sternpunktleiter (Neutralleiter) sogar ganz entfallen, weil der Strom
durch den Sternpunktleiter Null ist.

Ströme und Spannungen der Stern-Stern-Schaltung

Bei einer Stern-Stern-Schaltung (Generator in Sternschaltung und Verbraucher in Stern-
schaltung) sind die Außenleiterströme gleich den Strangströmen:

ILt= ISt mit ILt = ISt, (7.2)

d. h. durch die Phasenwicklungen und die komplexen Widerstände treten die Ströme
I1, I2, …, Im auf.

Der Strom durch den Sternpunktleiter IN ist gleich der Summe der Ströme:

IN = Ii = I1 + I2… + Im.
i=1

m

� (7.3)

Die Außenleiterspannungen zwischen zwei Außenleiter hingegen sind jeweils gleich der
Differenz der Strangspannungen:

Uij = UiN – UjN, (7.4)

d. h. U12 = U1N – U2N, U23 = U2N – U3N , …

… , Um–1,m = Um–1,N – UmN, Um1 = UmN – U1N.

Sie lassen sich durch Dreieckbeziehungen berechnen:

Aus

sin
�
2

= sin
�
m

=

ULt

2
Ust

ergibt sich

ULt = 2 · USt · sin
�
m

. (7.5)
Bild 7.4 Zusammenhang
zwischen Außenleiter-
und Strangspannung
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Beispiel: 6-Phasensystem in Stern-Stern-Schaltung

Bild 7.5 6-Phasensystem in Stern-Stern-Schaltung

Durch die sechs Phasenwicklungen des Generators und durch die komplexen Widerstände
Z1, Z2, … , Z6 sind die Ströme jeweils gleich: I1, I2 …, I6 .

Die Außenleiterspannungen U12, U23, … , U56, U61 sind gleich der Differenz der Strangspan-
nungen U1N, U2N, … , U6N:

U12 = U1N – U2N, U23 = U2N – U3N, … , U56 = U5N – U6N, U61 = U6N – U1N.

Die Effektivwerte der Außenleiterspannungen des 6-Phasensystems sind genauso groß wie
die Effektivwerte der Strangspannungen:

ULt = 2 · USt · sin
�

6
= 2 · USt · 0,5 = USt z.B. U12 = U1N.

Ströme und Spannungen der Polygon-Polygon-Schaltung

Bei einer Polygon-Polygon-Schaltung (Generator in Polygonschaltung und Verbraucher in
Polygonschaltung) sind die Außenleiterspannungen gleich den Strangspannungen:

ULt = USt mit ULt = USt, (7.6)

d. h. die an den Phasenwicklungen und an den komplexen Widerständen anliegenden
Spannungen sind jeweils gleich:

U12, U23, … , Um–1,m, Um,1.

Die Außenleiterströme verzweigen sich jeweils in Strangströme, sind also gleich der Dif-
ferenz von Strangströmen:

I1 = Iik – Iji, (7.7)

d. h. I1 = I12 – Im1, I2 = I23 – I12, … , Im = Im1 – Im–1,m.



7.1 Mehrphasensysteme 255

Durch Addition des Gleichungssystems ergibt sich, dass die Summe der Außenleiterströ-
me Null ist:

Ii
i=1

m

� = 0. (7.8)

Aus dem Effektivwert der Strangströme lässt sich der Effektivwert der Außenleiterströme
berechnen:

Aus

sin
�
2

= sin
�
m

=

ILt

2
ISt

ergibt sich

ILt = 2 � ISt � sin
�
m

. (7.9)
Bild 7.6 Zusammenhang
zwischen Außenleiter-
strom und Strangstrom

Beispiel: 6-Phasensystem in Polygon-Polygon-Schaltung

Bild 7.7 6-Phasensystem in Polygon-Polygon-Schaltung

An den sechs komplexen Verbraucherwiderständen liegen die gleichen Spannungen an wie

an den Phasenwicklungen des Generators: U12, U23, … ,U56 , U61.

Die Außenleiterströme I1, I2 … , I6 sind gleich der Differenz der Strangströme I12, I23,
… , I56, I61:

I1 = I12 – I61, I2 = I23 – I12, … , I5 = I56 – I45, I6 = I61 – I56.

Die Effektivwerte der Außenleiterströme des 6-Phasensystems sind genauso groß wie die Ef-
fektivwerte der Strangströme:

ILt = 2 · ISt · sin
�

6
= 2 · ISt · 0,5 = ISt z.B. I2 = I23.
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Wirkleistung des symmetrischen m-Phasensystems

Die Wirkleistung des m-Phasensystems ist gleich der Summe der einzelnen Phasen-
Wirkleistungen.

Für ein symmetrisches m-Phasensystem ist die Wirkleistung jeder Phase gleich, so dass
die gesamte Wirkleistung des m-Phasensystems gleich dem m-fachen einer Phasen-
Wirkleistung ist:

P = m · USt · ISt · cos�. (7.10)

Für die Sternschaltung und die Polygonschaltung ist die Wirkleistung gleich:

P =
m

2 ( sin
�
m

( ULt ( ILt ( cos) , (7.11)

denn es gilt für die Sternschaltung: und für die Polygonschaltung:

ISt = ILt USt =
ULt

2 � sin
�
m

USt = ULt ISt =
ILt

2 � sin
�
m

Beispiel: Wirkleistung des symmetrischen 6-Phasensystems

P =
6

2 � sin
�

6

� ULt � ILt � cos ) = 6 � ULt � ILt � cos ) .

7.2 Symmetrische verkettete Dreiphasensysteme

Dreiphasensysteme

In der Energieversorgung werden am häufigsten Dreiphasensysteme verwendet, weil bei
geringstem Leitungsaufwand ein balanciertes Mehrphasensystem verwirklicht werden
kann. Verkettete Dreiphasensysteme in Stern- und Dreieckschaltung heißen auch Dreh-
stromsysteme, weil mit dem Mehrphasensystem ein räumlich rotierendes Magnetfeld –
das Drehfeld – verbunden ist.

Die Außenleiter werden mit L1, L2, L3 und der Sternpunktleiter oder Neutralleiter mit N
(ehemals Mp oder 0) bezeichnet. Nach DIN 40 108 sind die Bezeichnungen 1, 2, 3 und
R, S, T (für Betriebsmittel U, V, W) auch zulässig. Oft werden auch die Farben gelb, grün
und violett für die Kennzeichnung der Phasen verwendet.

Entsprechend werden die Effektivwerte der

Strangspannungen USt der Sternschaltung (Sternspannungen) mit U1N, U2N, U3N
sonst U1, U2, U3 (wenn Verwechslungen ausgeschlossen sind)
(für Erweiterungen URN, USN, UTN bzw. UR, US, UT)

Strangströme ISt der Dreieckschaltung (Dreieckströme) mit I12, I23, I31
(für Erweiterungen auch IRS, IST, ITR)
für Generatoren, Motoren, Transformatoren IUV, IVW, IWU

Außenleiterspannungen ULt (Dreieckspannungen) mit U12, U23, U31
(für Erweiterungen auch URS, UST, UTR)

Außenleiterströme ILt (Sternströme) mit I1, I2, I3
(für Erweiterungen auch IR, IS, IT)
für Generatoren, Motoren, Transformatoren IU, IV, IW

und der Sternpunktleiterstrom IN benannt.
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Sternschaltung

Werden die Enden der drei Generatorspulen mit den Bezeichnungen U2, V2, W2 (ehe-
mals X, Y, Z) auf dem Klemmbrett des Generators zum Sternpunkt N zusammengeschlos-
sen, dann handelt es sich um die Sternschaltung des Generators. Der Verbraucher ist eben-
falls in Sternschaltung zusammengeschaltet und über die Außenleiter L1, L2, L3 an die
Klemmen U1, V1, W1 (ehemals U, V, W) des Generators angeschlossen. Die beiden
Sternpunkte N und N´ sind über dem Sternpunktleiter (Neutralleiter) miteinander verbun-
den:

Bild 7.8 Stern-Stern-Schaltung eines Dreiphasensystems mit Klemmbrett des Dreiphasengenerators

Da der Dreiphasengenerator drei gleiche, um den Winkel � = 2�/3 versetzte Wicklungen
besitzt, sind auch die sinusförmigen Strangspannungen bei gleichem Effektivwert USt um
� = 2�/3 =̂ 120° phasenverschoben:

u1N = 2 · USt · sin �t

u2N = 2 · USt · sin (�t – 2�/3)

u3N = 2 · Ust · sin (�t – 4�/3).

Im komplexen Bereich werden die komplexen Effektivwerte der benachbarten Strang-
spannungen mit dem Drehzeiger für ein Dreiphasensystem a= e–j·2�/3 = e–j·120° ineinan-
der überführt. Dabei wird der komplexe Effektivwert U1N reell angenommen, also im
Zeigerbild auf die positive reelle Achse gelegt:

U1N = USt · ej·0° = USt

U2N = USt · a = USt · e–j·2�/3 = USt · e–j·120° = USt · �1/2 � j �1/2 � 3( )
U3N = USt · a2 = USt · e–j·4�/3 = USt · ej·120° = USt · �1/2 + j �1/2 � 3( )

Bild 7.9
Zeigerbild der Strangspannungen
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Die Außenleiterströme ILt sind gleich den Strangströmen ISt (vgl. Gl. 7.2): 

ILt = ISt         mit         ILt = ISt (7.12) 

das sind  I1, I2 und I3. 

Die Außenleiterspannungen ULt sind um das 3 -fache ( 3 = 1,73) größer als die 
Strangspannungen USt (nach Gl. 7.5): 

ULt = 2 · USt · sin
 

�
3

� 3 � USt  (7.13) 

das sind U12, U23 und U31. 

Eine oft gebräuchliche Schreibweise für die Gleichung zwischen Außenleiterspannung 
und Strangspannung ist mit  ULt = U  und  USt =   (Sternspannung) 

U = 3 · .   (7.14) 

Die Summe der Leiterströme ist gleich dem Strom im Sternpunktleiter, wie sich nach dem 
Kirchhoffschen Satz für komplexe Effektivwerte im Sternpunkt N ergibt: 

IN = I1 + I2 + I3. (7.15) 

Sind die Strangwiderstände Z1, Z2, Z3 des Verbrauchers gleich groß, dann sind die Effek-
tivwerte der Außenleiterströme gleich 

ILt = I1 = I2 = I3 = I (7.16) 

und der Strom im Sternpunktleiter IN ist Null: 

IN = I1 + I2 + I3 = 0. (7.17) 

Genauso wie das System der Leiterströme ist dann das System der Außenleiterspannun-
gen über den Strangwiderständen symmetrisch, wie im Zeitdiagramm und durch ein Zei-
gerbild dargestellt werden kann (Bild 7.10). Die Außenleiterspannungen sind 3 -mal so 
groß wie die Strangspannungen und gegen diese um �/6 �  30° phasenverschoben. 
 
 

 
Bild 7.10  Zeitdiagramm und Zeigerbild der Außenleiterspannungen und Strangspannungen in 
einem symmetrischen Dreiphasensystem 
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Wird für ein Drehstromsystem eine Spannung angegeben, so handelt es sich stets um die
Außenleiterspannung ULt = U. Eine 110kV-Leitung bedeutet zum Beispiel, dass der Ef-
fektivwert der Spannung zwischen zwei Außenleitern 110kV beträgt.

Nur in Ausnahmefällen wird zusätzlich zur Außenleiterspannung auch noch die Strang-
spannung genannt, zum Beispiel 220/380V-Netz.

Bei einem in Stern geschalteten Drehstromgenerator können also zwei Dreiphasensysteme
abgegriffen werden:

das symmetrische System der Außenleiterspannungen und

das symmetrische System der Strangspannungen.

Dreieckschaltung

Werden die Generatorspulen in einen Ring geschaltet und zwar die Spulenanfänge mit den
Spulenenden U1 – W2, V1 – U2, W1 – V2 (ehemals U – Z, V – X, W – Y) verbunden,
dann handelt es sich um die Dreieckschaltung des Generators. Der Verbraucher ist eben-
falls in Dreieckschaltung geschaltet und über die Außenleiter L1, L2, L3 an die Klemmen
U1, V1, W1 (ehemals U, V, W) des Generators angeschlossen:

Bild 7.11 Dreieck-Dreieck-Schaltung eines Dreiphasensystems mit Klemmbrett des Dreiphasenge-
nerators

Da der Dreiphasengenerator drei gleiche, um den Winkel � = 2�/3 versetzte Wicklun-
gen besitzt, sind auch die drei Außenleiterspannungen bei gleichem Effektivwert ULt um
� = 2�/3 � 120° phasenverschoben, wie durch ein Zeigerbild erläutert werden kann
(Bild 7.12). Genauso wie die benachbarten Zeiger der Strangspannungen bei der Stern-
schaltung können benachbarte Zeiger der Außenleiterspannungen mit Hilfe des Drehzei-
gers a = e–j·2�/3 ineinander überführt werden.

Bild 7.12
Zeigerbild der Außenleiterspannungen
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Die Außenleiterspannungen ULt sind gleich den Strangspannungen USt (vgl. Gl. 7.6):

ULt = USt mit ULt = USt (7.18)

das sind U12, U23 und U31.

In der Praxis wird die Außenleiterspannung auch Dreieckspannung U� genannt:

U� = U. (7.19)

Die Außenleiterströme ILt sind um das 3 -fache 3 = 1,73( ) größer als die Strangströ-

me ISt (nach Gl. 7.9):

ILt = 2 · ISt · sin
�
3

= 3 · ISt (7.20)

das sind I1, I2 und I3.

Eine oft gebräuchliche Schreibweise für die Gleichung zwischen Außenleiterstrom und
Strangstrom ist mit ILt = I und ISt = I�

I = 3 · I�. (7.21)

Sind die Strangwiderstände Z12, Z23 und Z31 des Verbrauchers gleich groß, dann bilden
die Außenleiterströme und die Strangströme ebenfalls symmetrische Systeme, und die
Effektivwerte der Außenleiterströme sind gleich:

ILt = I1 = I2 = I3 = I.

Nach dem Kirchhoffschen Gesetz für komplexe Effektivwerte der Ströme ergibt sich für
die Knotenpunkte 1, 2 und 3:

I1 = I12 – I31 I2 = I23 – I12 I3 = I31 – I23. (7.22)

Diese Gleichungen im Zeitbereich und im Zeigerbild dargestellt bestätigen, dass die
Außenleiterströme in einem symmetrischen Drehstromsystem in Dreieckschaltung um den
Faktor 3 größer sind als die Strangströme und dass diese Außenleiterströme um den
Winkel �/6 � 30° gegen die entsprechenden Strangströme phasenverschoben sind (siehe
Bild 7.13).

Bild 7.13 Zeitdiagramm und Zeigerbild der Außenleiterströme und Strangströme
in einem symmetrischen Dreiphasensystem

Bei einer Dreieckschaltung kann nur ein Dreiphasensystem der Spannungen – das der
Außenleiterspannungen – abgegriffen werden.
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Mehrphasengeneratoren werden meist in Sternschaltung verwendet, weil bei den Polygon-
schaltungen – speziell Dreieckschaltung – höherfrequente Schwingungen auftreten, die
nicht erwünscht sind.

Wirkleistung, Blindleistung und Scheinleistung der symmetrischen Dreiphasensysteme

Ist das symmetrische Dreiphasensystem des Generators in Stern- oder Dreieckschaltung
an einen symmetrischen Verbraucher mit gleichen Strangwiderständen in Stern- bzw.
Dreieckschaltung angeschlossen, dann sind die Wirkleistung P, die Blindleistung Q und
die Scheinleistung S jeweils gleich dem Dreifachen der entsprechenden Phasenleistung.
Sie sind für die Sternschaltung und die Dreieckschaltung jeweils gleich:

P = 3 · USt · ISt · cos � = 3 · ULt · ILt · cos � (7.23)

Q = 3 · USt · ISt · sin � = 3 · ULt · ILt · sin � (7.24)

S = 3 · USt · ISt = 3 · ULt · ILt (7.25)

denn es gilt für die Sternschaltung: und für die Dreieckschaltung:

ISt = ILt USt =
ULt

3
USt = ULt ISt =

ILt

3

Beispiel 1:

Die drei Wicklungen eines Drehstromgenerators sind einmal in Sternschaltung und zum ande-
ren in Dreieckschaltung zusammengeschaltet und symmetrisch belastet. An den Klemmen der
Phasenwicklungen liegt jeweils eine Spannung von 220V, und durch die Wicklungen fließt
jeweils ein Strom von 9A mit einer Phasenverschiebung � = 20° gegenüber der Spannung.

1. Anzugeben bzw. zu berechnen sind die Strangspannung und die Außenleiterspannung, der
Strangstrom und der Außenleiterstrom und die am Verbraucher abgegebene Wirkleistung
des Drehstromsystems in Sternschaltung.

2. Anzugeben bzw. zu berechnen sind die Strangspannung und die Außenleiterspannung, der
Strangstrom und der Außenleiterstrom und die am Verbraucher abgegebene Wirkleistung
des Drehstromsystems in Dreieckschaltung.

3. Die Spannungen, Ströme und Wirkleistungen der beiden Schaltungen sollen verglichen
werden.

Lösung:

Zu 1. Sternschaltung (siehe Bild 7.8):

Strangspannungen U1N, U2N, U3N

USt = 220V

Strangströme I1, I2, I3

ISt = 9A

Außenleiterspannungen U12, U23, U31

ULt = 3 · USt (nach Gl. 7.13)

ULt = 3 · 220V = 381V

Außenleiterströme I1, I2, I3

ILt = ISt = 9A (nach Gl. 7.12)

Wirkleistung nach Gl. (7.23):

P = 3 · USt · ISt · cos � = 3 · 220V · 9A · cos 20° = 5582W oder

P = 3 · ULt · ILt · cos � = 3 · 381V · 9A · cos 20° = 5581W
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Zu 2. Dreieckschaltung (siehe Bild 7.11):

Strangspannungen U12, U23, U31

USt = 220V

Strangströme I12, I23, I31

ISt = 9A

Außenleiterspannungen U12, U23, U31

ULt = USt = 220V (nach Gl. 7.18)

Außenleiterströme I1, I2, I3

ILt = 3 · ISt (nach Gl. 7.20)

ILt = 3 · 9 A = 15,6A

Wirkleistung nach Gl. (7.23):

P = 3 · USt · ISt · cos � = 3 · 220V · 9A · cos 20° = 5582W oder

P = 3 · ULt · ILt · cos � = 3 · 220V · 15,6A · cos 20° = 5586W

Zu 3.

Bei der Sternschaltung ist die Spannung zwischen den Außenleitern hoch und der Strom in
den Außenleitern niedrig,

bei der Dreieckschaltung ist die Spannung zwischen den Außenleitern niedrig und der Strom
in den Außenleitern hoch.

Die Wirkleistung der Sternschaltung unterscheidet sich nicht von der Wirkleistung der Drei-
eckschaltung.

Beispiel 2:

Auf dem Leistungsschild eines alten Drehstrommotors ist zu lesen:

12PS
220V�
cos � = 0,89

� = 86,7%
30A
2870U/min

1. Die Angaben auf dem Leistungsschild sind zu erläutern.
Dabei ist anzugeben, an welchem Dreiphasensystem in Sternschaltung und an welchem
Dreiphasensystem in Dreieckschaltung der Motor betrieben werden kann.

2. Zu berechnen sind die Außenleiterströme bei Nennbetrieb für die Sternschaltung und für
die Dreieckschaltung.

3. Mit welchem Dreiphasensystem ist für den Motor eine Stern-Dreieck-Schaltung möglich?
4. Zu berechnen sind das Nennmoment und die Blind- und Scheinleistung, die das Dreipha-

sensystem dem Motor zuführt.

Lösung:

Zu 1.

Auf dem Leistungsschild von Motoren werden Daten bei Nennbetrieb angegeben. Nennbe-
trieb bedeutet Betrieb des Motors bei Volllast.

12PS Die angegebene Leistung ist die an der Welle maximal mögliche Wirkleistung,
die für eine Antriebsmaschine zur Verfugung steht. Die Nennleistung wird in
kW angegeben, PS-Angaben sind nicht mehr zulässig. Für alte Motoren muss al-
so die Umrechnung 1PS = 735,5W bekannt sein. Die abgegebene Wirkleistung
beträgt für den speziellen Fall:

Pmech = 12PS = 12 · 735,5W = 8,826kW.

� = 86,7 % Der Wirkungsgrad � besagt, dass die vom Dreiphasennetz gelieferte Wirkleis-
tung Pel auf Grund der Leistungsverluste im Motor höher ist als die maximal
mögliche Wirkleistung Pmech:

Pel = Pmech/� = 8,826kW/0,867 = 10,18kW
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220V�� Der Motor wird ordnungsgemäß betrieben, wenn an jeder Wicklung (Strang) die 
Wicklungsnennspannung anliegt. Da die drei Motorwicklungen in Sternschal-
tung und in Dreieckschaltung geschaltet werden können, müssen die Span-
nungsangaben auf dem Leistungsschild besonders beachtet werden, weil höhere 
Spannungen zu einer Überlastung der Wicklungen führen. Bei doppelter Span-
nungsangabe ist der kleinere Wert die Wicklungsnennspannung, 

 
z. B. 380/220V Wicklungsnennspannung:  220V. 
 
Bei einfacher Spannungsangabe (wie hier im Beispiel) ist die Nennspannung pro 
Strang angegeben, das ist die Spannung, die jeweils an die Wicklungen des Mo-
tors angelegt werden darf, 
 
z. B. 220V� Wicklungsnennspannung:  220V. 
 
In Sternschaltung des Motors ist also die Strangspannung USt = 220V; der Mo-
tor kann an ein 380/220V-Drehstromnetz angeschlossen werden (siehe Bild 
7.14, links). 
Werden die Wicklungen des Motors in Dreieckschaltung geschaltet, dann darf 
der Motor nur an ein 220/127V-Drehstromsystem angeschlossen werden, weil 
die Strangspannung (Wicklungsnennspannung) gleich der Außenleiterspannung 
ULt = 220V ist (siehe Bild 7.14, rechts). 
 

 

Bild 7.14 Motor in Stern- und Dreieckschaltung 
 
 
cos� = 0,89 Der Leistungsfaktor cos � gibt die Abweichung der Wirkleistung von der 

Scheinleistung an: 

cos � = 
 

Pel
S

 

30 A Die Stromangabe ist der in den Zuleitungen zum Motor fließende Nennstrom, 
also der Außenleiterstrom bei Dreieckschaltung des Motors, der aus der angege-
benen Nennleistung errechnet werden kann. 
Sind zwei Ströme genannt, z. B. 30/17A, dann sind die Angaben die Außenlei-
terströme bei Dreieck- und bei Sternschaltung. 

2870U/min Die Drehzahl in Umdrehungen pro Minute ergibt mit der zur Verfügung stehen-
den Wirkleistung bei Nennbetrieb das Nennmoment des Motors: 

M = 
 

Pmech
�

. 
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Zu 2. Aus Pel = 3 · ULt · ILt · cos � = 10,18kW ergibt sich

ILt =
Pel

3 � ULt � cos)

Sternschaltung: ULt = 380V Dreieckschaltung: ULt = 220V

ILt =
10,18kW

3 � 380V � 0,89
= 17,4A ILt =

10,18kW

3 � 220V � 0,89
= 30A

Zu 3.

Beim Einschalten von Drehstrommotoren treten Anlaufströme auf, die das sechs- bis achtfa-
che des Nennstroms betragen können und zu Spannungsschwankungen im Netz führen. Die
Anlaufzeit kann bei größeren Motoren so hohe Werte erreichen, dass die Wicklungen durch
den nur relativ langsam abklingenden Anlaufstrom gefährdet sind.

Der Anlaufstrom wird jedoch vermindert, wenn jeder Motorwicklung während des Anlauf-
vorgangs eine verminderte Spannung zugeführt wird.

Ein Drehstrommotor sollte deshalb in der Anlaufphase in Sternschaltung betrieben werden,
weil dann an den Wicklungen jeweils eine um 3 verminderte Spannung anliegt, wenn die
Motorwicklungen nach dem Hochlauf in Dreieckschaltung geschaltet sind. Im Dauerbetrieb
liegen die Wicklungen an der höheren Spannung.

Während der Anlaufphase in Sternschaltung vermindern sich der Anlaufstrom und damit das
Anlaufmoment.

In diesem Beispiel darf an den Motorwicklungen höchstens die Wicklungsnennspannung von
220V anliegen. Deshalb ist die Stern-Dreieck-Einschaltung für diesen Motor nur mit einem
220/127V-Drehstromsystem möglich.

Die Stern-Dreieck-Schalter sind Walzenschalter, für die die Kontaktbelegung und die An-
schlüsse an das Drehstromsystem und an den Motor im Bild 7.15 gezeichnet sind. Die Klem-
menbezeichnungen sind vorgeschrieben und stimmen mit den Bezeichnungen in den Bildern
7.8 und 7.11 überein.

Bild 7.15 Kontaktbelegung eines Stern-Dreieck-Schalters
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Zu 4.

Das Nennmoment ergibt sich aus der an der Antriebswelle des Motors abgegebenen Leistung
Pmech und den Umdrehungen pro Minute:

M =
Pmech

�
(7.26)

M =
8,826kW

2� � 2870 � (1/60s)
= 29,4Nm .

Die Blind- und Scheinleistung werden aus der elektrischen Wirkleistung Pel mit dem Leis-
tungsfaktor cos) = 0,89 berechnet:

Q = Pel · tan� = 10,18kVA · tan 27,127° = 5,22kVar

S =
Pel

cos)
=

10,18kVA

0,89
= 11,44kVA

Beispiel 3:

Ein Drehstrommotor mit einer Nennleistung von 8kW, einem Wirkungsgrad � = 85% und
einem Leistungsfaktor cos � = 0,9 wird an einem 380/220V-Drehstromnetz in Sternschaltung
betrieben. Der Leistungsfaktor soll durch Kondensatoren in Sternschaltung erhöht werden,
d. h. es handelt sich um eine Blindleistungskompensation mit Parallelkapazitäten.

1. Zu berechnen sind die vom Netz gelieferte Wirkleistung und der Effektivwert der Außen-
leiterströme.

2. Die notwendigen Kapazitäten in Sternschaltung, die also parallel zu den Motorwicklun-
gen geschaltet werden und damit den Leistungsfaktor auf 1 erhöhen, sollen berechnet
werden.

3. In vielen Fällen ist die Kompensation nur teilweise erwünscht, weil Schaltvorgänge mit
induktiven Wechselstromwiderständen leichter beherrschbar sind als mit kapazitiven
Wechselstromwiderständen. Bei vollständiger Kompensation wirkt der Motor mit den
Kompensationskapazitäten wie ein ohmscher Verbraucher, der mit den im Netz verteilten
Kapazitäten eine kapazitive Belastung bedeutet.
Der Leistungsfaktor des Motors soll durch Parallelkompensation von 0,9 auf 0,97 erhöht
werden. Die Parallelkapazitäten in Sternschaltung sollen ermittelt werden.

Lösung:

Zu 1. Pel =
Pmech

�
=

8kW

0,85
= 9,41kW

ILt =
Pel

3 � ULt � cos)
=

9,41kW

3 � 380V � 0,9
= 15,9A .

Zu 2.

Bei Parallelkompensation müssen die induktiven komplexen Widerstände der drei Motorspu-
len durch äquivalente Parallelschaltungen mit Rp und j�Lp erfasst werden. Da der Motor ein
symmetrischer Verbraucher ist, braucht die Kompensation nur einphasig betrachtet zu wer-
den. Die einphasige Parallelkompensation ist im Abschnitt 4.7.3 behandelt worden. Im Bild
4.158 ist das einphasige Schaltbild gezeichnet und in den Bildern 4.160 und 4.162 sind die
Zeigerbilder für die teilweise und vollständige Kompensation dargestellt.
Für die vollständige Parallelkompensation, also für die Anhebung des Leistungsfaktors auf 1,
können die drei gleichen Kapazitäten nach der Gl. (4.265)berechnet werden:

Cp =
P ( tan)

� ( U2
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Die in die Formel für Cp eingehende Wirkleistung P ist ein Drittel der Wirkleistung Pel, denn
im symmetrischen Dreiphasensystem ist die Gesamtleistung gleich dem Dreifachen der
Phasenleistung:

P =
Pel

3
=

9,41kW

3
= 3,14kW .

Die Parallelschaltungen liegen an der Strangspannung U = USt = 220V, d. h. mit cos � = 0,9 ist

Cp =
3,14kW ( tan25,84º

2� ( 50s�1 ( (220V)2
= 100 μF .

Zu 3.

Um die Kapazitäten der teilweisen Kompensation angeben zu können, ist der kapazitive
Blindstrom IC mittels trigonometrischer Zusammenhänge im Zeigerbild (siehe Bild 4.160) zu
berechnen.

An den Kapazitäten liegt jeweils die Strangspannung U = USt = 220V an:

Aus

U =
1

�Cp

� IC

ergibt sich

Cp =
IC

� � U
.

Gegeben sind cos �k = 0,97 und �k = 14,07°, aus dem Zeigerbild lässt sich ablesen:

tan�k =
IL � IC

IR

,

wodurch sich für IC ergibt:

IC = IL – IR · tan�k ,

eingesetzt in die Formel für Cp ergibt sich

Cp =
IC

� � U
=

1

� � U
� (IL � IR � tan�k ),

mit IR = I · cos � = ILt · cos � und IL = I · sin � = ILt · sin�
ist

Cp =
ILt

� � U
� (sin� � cos� � tan�k ) (7.27)

und mit Zahlenwerten

Cp =
15,9A

2� � 50s�1 � 220V
� (sin25,84º� 0,9 � tan 14,07º ) = 48,4μF.

Mit dieser Formel lässt sich das Ergebnis der vollständigen Kompensation bestätigen:

Cp =
15,9A

2� � 50s�1 � 220V
� (sin25,84º� 0,9 � tan 0º ) = 100μF.
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7.3 Unsymmetrische verkettete Dreiphasensysteme

Übersicht über Dreiphasensysteme

Nach DIN 40 108 werden Dreiphasen-Stromsysteme unterschieden in

Drehstrom-Dreileitersysteme (mit drei Außenleitern),

Drehstrom-Vierleitersysteme (mit drei Außenleitern und einem Sternpunktleiter, der
auch Null-Leiter sein kann) und

Drehstrom-Fünfleitersysteme (mit drei Außenleitern, einem Sternpunktleiter und
einem Schutzleiter).

Schutzleiter ist ein Leiter, der bei Schutzmaßnahmen gegen gefährliche Berührungsspan-
nungen verwendet wird, und ein Null-Leiter ist ein unmittelbar geerdeter Leiter, der die
Funktionen des Schutzleiters übernehmen kann. Das Fünfleitersystem unterscheidet sich
also elektrotechnisch nicht vom Dreileiter- und Vierleitersystem, weil es nur zusätzliche
Schutzaufgaben übernimmt.

Bei der Behandlung unsymmetrischer Dreiphasensysteme sind das Vierleiternetz mit dem
Generator in Sternschaltung und dem Verbraucher in Sternschaltung und das Dreileiter-
netz mit dem Generator in Stern- oder Dreieckschaltung und dem Verbraucher in Stern-
oder Dreieckschaltung zu unterscheiden.

Sind Generator und Verbraucher in Sternschaltung geschaltet, kann der Sternpunktleiter
vorhanden sein oder nicht. Diese Stern-Stern-Dreiphasensysteme können also als Vierlei-
ternetz oder als Dreileiternetz ausgeführt sein. Sind der Generator oder der Verbraucher in
Dreieckschaltung geschaltet, dann ist nur ein Dreileiternetz möglich, weil der Sternpunkt
entweder im Generator oder im Verbraucher nicht vorhanden ist. Für Messzwecke ist es
allerdings notwendig, mit Hilfe zusätzlicher symmetrischer Verbraucher einen künstlichen
Sternpunkt zu schaffen.

Unsymmetrische Dreiphasensysteme enthalten einen Generator mit symmetrischem
Spannungssystem und einen Verbraucher mit verschiedenen Wechselstromwiderständen.
Dadurch sind die Systeme der Außenleiterspannungen und Außenleiterströme unsym-
metrisch.
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Vierleiternetz mit Generator in Sternschaltung und Verbraucher in Sternschaltung

Bild 7.16 Vierleiternetz mit Generator in Stern und Verbraucher in Stern

Nach dem Kirchhoffschen Satz für komplexe Effektivwerte ist die Summe der Außenlei-
terströme gleich dem Sternpunktleiterstrom:

I1 + I2 + I3 = IN. (7.28)

Die Strangspannungen über den Generatorwicklungen unterscheiden sich von den Strang-
spannungen über den Verbraucherwiderständen durch die Spannung UN des Sternpunkt-
leiters zwischen den beiden Sternpunkten N und �N :

U1N = U1N
' + UN

U2N = U2N
' + UN

U3N = U3N
' + UN

oder

U1N
' = U1N � UN (7.29)

U2N
' = U2N � UN (7.30)

U3N
' = U3N � UN (7.31)

Bild 7.17 Zeigerbild der Strangspannungen
im Vierleitersystem

Diese Spannungsgleichungen lassen sich durch das Zeigerbild im Bild 7.17 darstellen.
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Die Außenleiterströme, die bei der Sternschaltung gleich den Strangströmen sind, können
mit Hilfe der Spannung UN berechnet werden:

I1 =
U1N

'

Z1
=

U1N

Z1
�

UN

Z1
(7.32)

I2 =
U2N

'

Z2
=

U2N

Z2
�

UN

Z2
(7.33)

I3 =
U3N

'

Z3
=

U3N

Z3
�

UN

Z3
(7.34)

und

IN =
UN

ZN
(7.35)

eingesetzt in die Knotenpunktgleichung (Gl. 7.28) ergibt die Formel für die Spannung
über dem Widerstand des Sternpunktleiters UN:

U1N

Z1
�

UN

Z1

�

��
�

	�
+

U2N

Z2
�

UN

Z2

�

��
�

	�
+

U3N

Z3
�

UN

Z3

�

��
�

	�
=

UN

ZN

U1N

Z1
+

U2N

Z2
+

U3N

Z3
= UN �

1

ZN
+

1

Z1
+

1

Z2
+

1

Z3

�

��
�

	�

UN =

U1N

Z1
+

U2N

Z2
+

U3N

Z3

1

ZN
+

1

Z1
+

1

Z2
+

1

Z3

(7.36)

Bei der Berechnung des Vierleiternetzes wird folgendermaßen vorgegangen:

Gegeben:

Strangspannungen des Generators U1N, U2N, U3N

komplexe Verbraucherwiderstände Z1, Z2, Z3

komplexer Widerstand des Sternpunktleiters ZN

Gesucht:

Außenleiterströme I1, I2, I3 und Sternpunktleiterstrom IN

Rechenschritte:

1. Berechnung der Spannung UN über dem Sternpunktleiter nach Gl. (7.36).

2. Ermittlung der Strangspannungen U1N
' , U2N

' , U3N
' über den Verbraucherwiderstän-

den Z1, Z2, Z3 nach den Gln. (7.29) bis (7.31).

3. Ermittlung der Außenleiterströme I1, I2, I3 nach den Gln. (7.32) bis (7.34) und des

Sternpunktleiterstroms IN nach der Gl. (7.35) oder (7.28).

4. Kontrolle der Rechenergebnisse mittels Zeigerbild.
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Beispiel 1:

Die Widerstände

Z1 = R1 = 200�,

Z2 = 1/j�C2 mit C2 = 15,9μF und

Z3 = j�L3 mit L3 = 318,5mH

sind in Sternschaltung an ein 380/220V-Drehstromnetz mit einem Sternpunktleiter mit
ZN = RN = 100� angeschlossen. Die Spannungen über den Widerständen und die Ströme
durch die Widerstände Z1, Z2, Z3 und ZN sind zu errechnen. Mit Hilfe eines Zeigerbildes sind
die Ergebnisse zu kontrollieren.

Lösung:

Zunächst wird mit Gl. (7.36) die Spannung über dem Sternpunktleiter berechnet:

Mit

Z1 = R1 = 200�
1

Z1

= Y1 = 5 mS

Z2 =
1

j�C2

=
1

j � 2� � 50s�1 �15,9μF
= – j · 200�

1

Z2

= Y2 = j � 5 mS

Z3 = j�L3 = j · 2� · 50 s–1 · 318,5 mH = j · 100�
1

Z3

= Y3 = � j �10 mS

ZN = RN = 100�
1

ZN

= YN = 10 mS

und nach Abschnitt 7.2 (Sternschaltung)

U1N = 220V · ej · 0° = 220V

U2N = 220V · a = 220V · e – j · 120°= 220V · (– 0,5 – j · 0,866) = (– 110 – j · 190,5)V

U3N = 220V · a2 = 220V · e j · 120°= 220V · (– 0,5 + j · 0,866) = (– 110 + j · 190,5)V

ist

UN =

U1N

Z1

+
U2N

Z2

+
U3N

Z3

1

ZN

+
1

Z1

+
1

Z2

+
1

Z3

=
Y1 � U1N + Y2 � U2N + Y3 � U3N

YN + Y1 + Y2 + Y3

UN =
5mS � 220V + j � 5mS � (�110 � j �190,5)V � j �10mS � ( � 110 + j �190,5)V

10mS + 5mS + j � 5mS � j �10mS

UN =
1100 � j � 550 + 952,5 + j �1100 + 1905

15 � j � 5
V =

3957,5 + j � 550

15 � j � 5
�
15 + j � 5
15 + j � 5

V

UN = (226,45 + j �112,15)V = 252,7 V � e j�26,35º .
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Dann werden die Spannungen über den Widerständen nach Gl. (7.29) bis (7.31) berechnet:

U1N
' = U1N � UN = 220V � (226,45 + j �112,15)V

U1N
' = (�6,45 � j �112,15)V= 112,3V � e� j � 93,3º

U2N
' = U2N � UN = (�110 � j �190,5)V � (226,45 + j �112,15)V

U2N
' = (�336,45 � j � 302,65)V = 452,5V � e j � 222º

U3N
' = U3N � UN = (�110 + j �190,5)V � (226,45 + j �112,15)V

U3N
' = (�336,45 + j � 78,35)V = 345,5V � e j � 167º

Damit lassen sich die Ströme nach den Gln. (7.32) bis (7.35) berechnen:

I1 =
U1N

'

Z1

=
112,3V ( e� j(93,3º

200 �
= 0,56 A ( e� j ( 93,3

oder I1 =
(�6,45 � j (112,15)V

200 �
= (�0,03 � j ( 0,56) A

I2 =
U2N

'

Z2

=
452,5V ( e j(222º

200 � ( e� j ( 90º
= 2,26A ( e j ( 312º = 2,26A ( e� j ( 48º

oder I2 =
(�336,45 � j ( 302,65)V

� j ( 200 �
= (1,51 � j (1,68) A

I3 =
U3N

'

Z3

=
345,5V � e j�167º

100 � � e j � 90º
= 3,45A � e j � 77º

oder I3 =
(�336,45 + j ( 78,35)V

j (100 �
= (0,78 + j ( 3,36) A

und

IN =
UN

ZN

=
252,7 V � e j � 26,35º

100 �
= 2,53 A � e j � 26,35º

oder IN =
(226,45 + j �112,15)V

100 �
= (2,26 + j �1,12) A

Schließlich lassen sich die Ergebnisse mit Hilfe eines Zeigerbildes kontrollieren (siehe Bild
7.18).

Bild 7.18
Zeigerbild eines Vierleiternetzes
(Beispiel 1)
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Beispiel 2:

Der gleiche Verbraucher in Sternschaltung wie im Beispiel 1 wird an ein gleiches 380/220V-
Drehstromnetz angeschlossen, bei dem aber der Widerstand des Sternpunktleiters vernachläs-
sigt wird.

Lösung:

Mit

ZN = 0

ist auch die Spannung zwischen den beiden Sternpunkten N und �N gleich Null:

UN = 0.

Damit sind die Strangspannungen des Generators und die Strangspannungen des Verbrau-
chers gleich:

U1N
' = U1N = 220V

U2N
' = U2N = 220V � e� j �120º = (�110 � j �190,5)V

U3N
' = U3N = 220V � e j �120º = (�110 + j �190,5)V

Die Ströme betragen dann:

I1 =
220V

200 �
= 1,1A

I2 =
220V ( e� j (120º

200 � ( e� j ( 90º
= 1,1A ( e� j ( 30º

oder I2 =
(�110 � j (190,5)V

� j ( 200 �
= (0,95 � j ( 0,55)A

I3 =
220V � e j �120º

100 � � e j � 90º
= 2,2A � e j � 30º

oder I3 =
(�110 + j (190,5)V

j (100 �
= (1,91 + j (1,1) A

und mit Gl. (7.28) ist

IN = I1 + I2 + I3 = (1,1 + 0,95 + 1,91) + j � (�0,55 + 1,1)�� �� A

IN = (3,96 + j � 0,55) A = 4,04 A � e j�7,9º .

Im Bild 7.19 ist das Zeigerbild dargestellt, das die berechneten Ergebnisse bestätigt.

Bild 7.19
Zeigerbild eines Vierleiternetzes (Beispiel 2)
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Dreileiternetz mit Generator in Sternschaltung und Verbraucher in Sternschaltung

Bild 7.20 Dreileiternetz mit Generator in Stern und Verbraucher in Stern

Die Formeln für die Berechnung der Spannungen und Ströme des Dreileiternetzes mit
Generator und Verbraucher in Sternschaltung können aus den entsprechenden Formeln
des Vierleiternetzes hergeleitet werden, weil dieses Dreileiternetz ein Spezialfall des Vier-
leiternetzes mit ZN = � und IN = 0 ist. Deshalb sind die Rechenschritte die gleichen wie
beim Vierleiternetz:

1. Berechnung der Spannung UN zwischen den Sternpunkten N und N' nach der Glei-

chung (7.36) mit 1/ZN = 0

UN =

U1N

Z1
+

U2N

Z2
+

U3N

Z3

1

Z1
+

1

Z2
+

1

Z3

(7.37)

2. Ermittlung der Strangspannungen U1N
' , U2N

' und U3N
' über den Verbraucherwider-

ständen Z1, Z2 und Z3 nach den Gl. (7.29) bis (7.31).

3. Ermittlung der Außenleiterströme I1, I2 und I3 nach den Gl. (7.32) bis (7.34) und Kon-

trolle der Außenleiterströme mit

I1 + I2 + I3 = 0.

4. Kontrolle der Rechenergebnisse mittels Zeigerbild.



274 7 Mehrphasensysteme

Beispiel:

Der gleiche Verbraucher in Sternschaltung wie im Beispiel 1 und 2 des Vierleiternetzes wird
an ein 380/220V-Drehstromnetz angeschlossen, das aber keine Verbindung zwischen den
Sternpunkten N und N' besitzt und damit ein Dreileiternetz ist. Da der Mittelpunktleiter fehlt,
ist auch der Mittelpunktleiterstrom IN = 0.

Die Spannungen über den Widerständen und die Ströme durch die Widerstände Z1, Z2 und Z3
sind zu errechnen und die Ergebnisse mittels eines Zeigerbildes zu kontrollieren.

Lösung:

Mit

ZN = � ist 1/ZN = YN = 0

und

UN =

U1N

Z1

+
U2N

Z2

+
U3N

Z3

1

Z1

+
1

Z2

+
1

Z3

=
Y1 � U1N + Y2 � U2N + Y3 � U3N

Y1 + Y2 + Y3

Der Zähler ist genauso groß wie der Zähler für UN im Beispiel 1, nur der Nenner unterschei-
det sich:

UN =
3957,5 mS � V + j � 550 mS � V

5 mS + j � 5 mS � j �10 mS
=

3957,5 + j � 550

5 � j � 5
�

5 + j � 5

5 + j � 5
V

UN = (340,75 + j · 450,75)V = 565,06V · ej · 52,9°.

Dann werden die Spannungen über den Widerständen nach Gl. (7.29) bis (7.31) berechnet:

U1N
' = U1N � UN = 220V � (340,75 + j � 450,75)V

U1N
' = (�120,75 � j � 450,75)V= 466,6 V � e j � 255º

U2N
' = U2N � UN = (�110 � j �190,5)V � (340,75 + j � 450,75)V

U2N
' = (�450,75 � j � 641,25)V = 783,8V � e j � 235º

U3N
' = U3N � UN = (�110 � j �190,5)V � (340,75 + j � 450,75)V

U3N
' = (� 450,75 � j � 260,25)V = 520,5V � e j � 210º

Damit lassen sich die Ströme nach Gl. (7.32) bis (7.35) berechnen:

I1 =
U1N

'

Z1

=
466,6V � e j�255º

200�

I1 = 2,33A � e j � 255º

oder I1 =
(�120,75 � j ( 450,75)V

200 �
= (�0,60 � j ( 2,25)A

I2 =
U2N

'

Z2

=
783,8V ( e j(235º

200� ( e� j ( 90º

I2 = 3,92A � e j � 325º
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oder I2 =
(�450,75 � j ( 641,25)V

� j ( 200 �
= (3,20 � j ( 2,25)A

I3 =
U3N

'

Z3

=
520,5V � e j�210º

100� � e j � 90º

I3 = 5,2A � e j �120º

oder I3 =
(�450,75 � j ( 260,25)V

j (100 �
= (�2,60 + j ( 4,5)A

Die Summe aller Ströme ist Null:

I1 + I2 + I3 = 0.

Schließlich lassen sich die Ergebnisse mit Hilfe eines Zeigerbildes kontrollieren (siehe Bild
7.21).

Bild 7.21 Zeigerbild eines Stern-Stern-Dreileiternetzes
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Dreileiternetz mit Generator in Dreieckschaltung und Verbraucher in Sternschaltung

Bild 7.22 Dreileiternetz mit Generator in Dreieck und Verbraucher in Stern

Nach dem Kirchhoffschen Satz für die komplexen Effektivwerte der Ströme ist im Stern-
punkt N' die Summe der Außenleiterströme Null:

I1 + I2 + I3 = 0 (7.38)

und in Strangspannungen über den Widerständen ausgedrückt

U1N
'

Z1
+

U2N
'

Z2
+

U3N
'

Z3
= 0. (7.39)

Die Außenleiterspannungen sind gleich der jeweiligen Differenz der Strangspannungen

U12 = U1N
' � U2N

' (7.40)

U23 = U2N
' � U3N

' (7.41)

U31 = U3N
' � U1N

' . (7.42)

Gegeben sind die Außenleiterspannungen, berechnet werden sollen die Strangspannungen
über den bekannten Widerständen. Um die Formeln für die Strangspannungen entwickeln
zu können, werden in der Stromgleichung Gl. 7.39) jeweils zwei Strangspannungen mit
Hilfe der Spannungsgleichungen (Gl. 7.40 bis 7.42) ersetzt.

Die Gleichung für die Strangspannungen U1N
' ergibt sich aus Gl. (7.40) und (7.42):

U2N
' = U1N

' � U12

U3N
' = U1N

' + U31

eingesetzt in die Gleichung (7.39) und nach U1N
' aufgelöst

U1N
'

Z1
+

U1N
' � U12

Z2
+

U1N
' + U31

Z3
= 0
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U1N
' �

1

Z1
+

1

Z2
+

1

Z3

�

��
�

��
�

U12

Z2
�

U31

Z3

�

��
�

��
= 0

U1N
' =

U12

Z2
�

U31

Z3

1

Z1
+

1

Z2
+

1

Z3

. (7.43)

Die Gleichung für die Strangspannung U2N
' entsteht, wenn die Gl. (7.40) und (7.41) in

Gl. (7.39) berücksichtigt werden:

U2N
' =

U23

Z3
�

U12

Z1

1

Z1
+

1

Z2
+

1

Z3

. (7.44)

Entsprechend lässt sich die Gleichung für U3N
' entwickeln, wenn die Gl. (7.41) und (7.42)

in die Gl. (7.39) eingesetzt werden:

U3N
' =

U31

Z1
�

U23

Z2

1

Z1
+

1

Z2
+

1

Z3

. (7.45)

Das Zeigerbild der Spannungen bei unsymmetrischer Belastung zeigt, dass der „Mittel-
punkt“ des gleichseitigen Dreiecks im Vergleich zur symmetrischen Belastung verscho-
ben ist (Bild 7.23).

Bild 7.23 Zeigerbild des Dreileitersystems Dreieck/Stern

Mit den berechneten Strangspannungen können dann die Außenleiterströme ermittelt
werden:

I1 =
U1N

'

Z1
I2 =

U2N
'

Z2
I3 =

U3N
'

Z3
. (7.46)

Da in einem Dreileiternetz mit Generator in Sternschaltung und Verbraucher in Stern-
schaltung die Außenleiterspannungen bekannt sind, können die Formeln (7.43) bis (7.46)
auch für die Berechnung dieses Dreileitersystems verwendet werden.
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Dreileiternetz mit Generator in Stern- oder Dreieckschaltung
und Verbraucher in Dreieckschaltung

Bild 7.24 Dreileiternetz mit Generator in Stern und Verbraucher in Dreieck

Bild 7.25 Dreileiternetz mit Generator in Dreieck und Verbraucher in Dreieck

Von dem Generator in Sternschaltung oder in Dreieckschaltung sind die Außenleiterspan-
nungen bekannt, so dass sich die Strangströme des Verbrauchers in Dreieckschaltung
errechnen lassen:

I12 =
U12

Z12
I23 =

U23

Z23
I31 =

U31

Z31
. (7.47)

Die Außenleiterströme ergeben sich dann nach der Knotenpunktregel in komplexen Effek-
tivwerten:

I1 + I31 = I12 oder I1 = I12 – I31 (7.48)

I2 + I12 = I23 I2 = I23 – I12 (7.49)

I3 + I23 = I31 I3 = I31 – I23 (7.50)

Indem die Gleichungen (7.47) in die Gleichungen (7.48) bis (7.50) eingesetzt werden,
entstehen die Formeln für die Außenleiterströme:

I1 =
U12

Z12
�

U31

Z31
(7.51) I2 =

U23

Z23
�

U12

Z12
(7.52) I3 =

U31

Z31
�

U23

Z23
(7.53)
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7.4 Messung der Leistungen des Dreiphasensystems

Leistungen des symmetrischen Dreiphasensystems

Die gesamte Leistung eines Dreiphasensystems ist gleich der Summe der Leistungen der
drei Einphasen-Wechselstromsysteme, die zu dem Dreiphasensystem zusammengeschaltet
sind. Die Scheinleistung je Strang ist gleich dem Produkt der Strangspannung und des
Strangstroms.

Bei Belastung des Generators mit einem symmetrischen Verbraucher ist deshalb die
Scheinleistung

S = 3 · USt · ISt, (7.54)

die Wirkleistung

P = 3 · USt · ISt · cos) (7.55)

und die Blindleistung

Q = 3 · USt · ISt · sin) . (7.56)

Diese Formeln gelten sowohl für die Sternschaltung als auch für die Dreieckschaltung.
Allerdings lässt sich bei einer Dreieckschaltung wegen Fehlens des Sternpunktes die
Spannung zwischen einem Außenleiter und dem Sternpunkt nicht messen. Deshalb wer-
den die Leistungen für die Außenleiterspannungen und Außenleiterströme angegeben,
weil diese für die Dreieck- und Sternschaltung gemessen werden können:

Mit Gl. (7.12) und (7.13) für die Sternschaltung

ILt = ISt und ULt = 3 � USt

oder Gl. (7.18) und (7.20) für die Dreieckschaltung

ULt = USt und ILt = 3 � ISt

lauten dann die Formeln für die Scheinleistung:

S = 3 �
ULt

3
� ILt = 3 � ULt �

ILt

3

S = 3 � ULt � ILt , (7.57)

für die Wirkleistung:

P = 3 � ULt � ILt � cos) (7.58)

und für die Blindleistung:

Q = 3 � ULt � ILt � sin) . (7.59)

Wie bei der Behandlung des m-Phasensystems und der symmetrischen Dreiphasensyste-
me (siehe Gl. 7.23 bis 7.25) bereits ausgeführt, sind die Leistungen für die Sternschaltung
und die Dreieckschaltung gleich, wenn die Außenleiterströme und die Außenleiterspan-
nungen gleich sind.
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Messung der Leistungen im Dreiphasensystem

Bei symmetrischen Dreiphasensystemen, d. h. bei Dreiphasensystemen mit symmetri-
schen Verbrauchern, braucht nur eine Phasenleistung gemessen und diese mit 3 multipli-
ziert zu werden, weil die Gesamtleistung gleich dem Dreifachen einer Phasenleistung ist
(siehe Bild 7.26).

Bild 7.26Messung der Phasenleistung bei symmetrischer Belastung

Falls der Sternpunkt nicht zugänglich ist oder in der Dreieckschaltung nicht zugeschaltet
werden darf, wird ein künstlicher Sternpunkt mit drei gleichen Widerständen nachgebildet
(siehe Bild 7.27).

Bild 7.27Messung der Leistung mit künstlichem Sternpunkt
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Bei unsymmetrischer Belastung kann die Gesamtleistung mit drei Leistungsmessern ge-
messen werden. Die Phasenleistungen ergeben sich durch die Außenleiterströme und die
Strangspannungen, d. h. aus den Spannungen zwischen den Außenleitern und dem Stern-
punkt bzw. dem künstlichen Sternpunkt.

Anstelle von drei Leistungsmessern werden in der Aronschaltung nur zwei Leistungsmes-
ser benötigt. Der Nachweis, dass mit nur zwei Leistungsmessern die Wirkleistung des
unsymmetrischen Dreiphasensystems gemessen werden kann, wird über die komplexe
Leistung S = U · I* geführt (siehe Abschnitt 4.7.1, Gl. 4.239).

Sternschaltung mit Aronschaltung:

Bild 7.28 Aronschaltung in der unsymmetrischen Sternschaltung

Werden die Wirkleistungsmesser in die Außenleiter L1 und L2 geschaltet, dann werden
sie von den Außenleiterströmen I1 und I2 durchflossen. An die Spannungspfade der bei-
den Leistungsmesser werden dann die Außenleiterspannungen U13 und U23 angelegt. Die
komplexe Leistung des Dreiphasensystems ist dann

S = U1N
' � I1

* + U2N
' � I2

* + U3N
' � I3

*

mit I3
* = �(I1

* + I2
*

)

S = U1N
' � I1

* + U2N
' � I2

* � U3N
' � (I1

* + I2
*

)

S = (U1N
' � U3N

' ) � I1
* + (U2N

' � U3N
' ) � I2

*

mit U1N
' � U3N

' = U13 und U2N
' � U3N

' = U23

S = U13 � I1
* + U23 � I2

* = S1 + S2 . (7.60)

Die beiden Wirkleistungsmesser zeigen dann die Wirkleistungen P1 und P2 an, deren
Summe der Wirkleistung des Dreiphasensystems entspricht.
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Dreieckschaltung mit Aronschaltung:

Bild 7.29 Aronschaltung in der unsymmetrischen Dreieckschaltung

Werden die Wirkleistungsmesser genauso wie in der Sternschaltung in die Außenleiter L1
und L2 geschaltet, so werden sie von den Strömen I1 und I2 durchflossen. An die Span-
nungspfade müssen dann die Außenleiterspannungen U13 und U23 angelegt werden. Für
die komplexe Leistung des Dreiphasensystems ergibt sich dann:

S = U12 � I12
* + U23 � I23

* + U31 � I31
*

mit I23
* = I12

* + I2
*

und I31
* = I12

* � I1
*

S = U12 � I12
* + U23 � (I12

* + I2
*

) + U31 � (I12
* � I1

*
)

S = U23 � I2
* � U31 � I1

* + U12 + U23 + U31( ) � I12
*

mit �U31 = U13 und U12 + U23 + U31 = 0

S = U13 � I1
* + U23 � I2

* = S1 + S2 (7.61)

Die beiden Wirkleistungsmesser zeigen dann die Wirkleistungen P1 und P2 an, deren
Summe gleich der Wirkleistung des Dreiphasensystems ist.
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Übungsaufgaben zu den Abschnitten 7.1 bis 7.4
7.1 Ein ohmscher Verbraucher, der aus drei gleichen ohmschen Widerständen R besteht, kann in

Sternschaltung und in Dreieckschaltung geschaltet werden.

1. Leiten Sie die Formel für die Wirkleistung P für die Stern- und Dreieckschaltung her, wenn
die Außenleiterspannungen gegeben sind.

2. An ein 380/220V-Drehstromnetz (f = 50Hz) kann ein Heizofen mit 3 mal 40� in Sternschal-
tung und in Dreieckschaltung angeschlossen werden, für die Sie die Außenleiterströme und
die Wirkleistungen berechnen sollen.

7.2 Folgende Daten enthält das Leistungsschild eines Drehstrommotors:
1,2kW 220/380V cos � = 0,81 4,8/2,8A 1510U/min

1. Geben Sie an, welches Drehstromnetz für den Betrieb dieses Motors notwendig ist.
2. Berechnen Sie den Wirkungsgrad des Motors.
3. Die Blindleistung und die Scheinleistung, die die Drehstromnetze dem Motor liefern, sind

anschließend zu berechnen.
Die Blindleistung soll durch jeweils drei Kompensationskondensatoren vollständig kompensiert
werden und zwar
4. die Sternschaltung des Motors mit der Sternschaltung von Kondensatoren,
5. die Dreieckschaltung des Motors mit der Sternschaltung von Kondensatoren,
6. die Sternschaltung des Motors mit der Dreieckschaltung von Kondensatoren,
7. die Dreieckschaltung des Motors mit der Dreieckschaltung der Kondensatoren.
Zeichnen Sie die vier Motorschaltungen mit den Kondensatoren, berechnen Sie jeweils sämtli-
che Ströme und die notwendigen Kapazitäten, kontrollieren Sie die Ergebnisse für die Kapazitä-
ten mit entwickelten Formeln und die Ergebnisse für die Ströme mit Zeigerbildern.

8. Kontrollieren Sie die Ergebnisse für die Kapazitäten mit den Umrechnungsformeln für Drei-
eck- und Sternwiderstände.
Vergleichen Sie die Kapazitäten der vier Schaltungen, wobei Sie die Spannungen für die
Kondensatoren berücksichtigen.

7.3 Ein unsymmetrischer Verbraucher mit den Widerständen R1 = 100�, R2 = 71� und R3 = 220�
ist in Sternschaltung an ein 380/220V-Drehstromnetz angeschlossen. Ermitteln Sie die Span-
nungen über den Widerständen, die Außenleiterströme und die Spannung und den Strom im
Sternpunktleiter, wenn
1. der Sternpunktleiter einen Widerstand von RN = 50� hat,
2. die beiden Sternpunkte N und N' kurzgeschlossen sind und
3. wenn der Sternpunktleiter fehlt.

Kontrollieren Sie die Ergebnisse rechnerisch und mit Hilfe von Zeigerbildern.

7.4 An ein 380/220V-Vierleiternetz ist ein symmetrischer Verbraucher mit gleichen ohmschen
Widerständen von 1k� in Sternschaltung angeschlossen. Der Sternpunktleiterwiderstand beträgt
100�.
1. Berechnen Sie die Spannungen an den Widerständen und die Außenleiterströme.
2. Auf welche Werte verändern sich die Spannungen an den Widerständen und die Außenlei-

terströme, wenn der Widerstand Z2 durch einen verlustlosen Kondensator mit der Kapazität
C2 = 3,18μF ersetzt wird und die anderen Widerstände unverändert 1k� betragen.

Bestätigen Sie die Ergebnisse durch Zeigerbilder.

7.5 Der gleiche Verbraucher wie in der Aufgabe 7.4 Teil 2 mit Z1 = Z3 = 1k� und Z2 =1/j	C2
mit C2 = 3,18 μF in Sternschaltung soll an ein 380/220V-Dreileiternetz angeschlossen werden.
1. Berechnen Sie die Strangspannungen an den Verbraucherwiderständen über die Spannung

am Sternpunktleiter.
2. Berechnen Sie dann die Strangspannungen an den Verbraucherwiderständen mittels Außen-

leiterspannungen.
3. Ermitteln Sie schließlich die Außenleiterströme.

7.6 An einem 380/220V-Dreileiternetz ist ein Verbraucher in Dreieckschaltung mit Z12 = R12 = 40�,
Z23 = R23 = 100�, und Z31 = R31 = 80� angeschlossen.
1. Berechnen Sie die Strangströme I12, I23 und I31.
2. Berechnen Sie dann die Außenleiterströme.
3. Bestätigen Sie die Ergebnisse durch ein Zeigerbild.
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Anhang: Lösungen der Übungsaufgaben

4 Wechselstromtechnik

4.1 bis 4.4 Wechselgrößen, Berechnung von sinusförmigen Wechselgrößen mit Hilfe der kom-
plexen Rechnung, Wechselstromwiderstände und Wechselstromleitwerte, praktische Berech-
nung von Wechselstromnetzen

Zu 1. Nach Abschnitt 3.4.6.2 (Band 1) Gl. (3.303) ist

q
d

u w .
dt

�
= �

Mit � = B � A und B = B̂ � sin	t

ist

q

ˆdB d(B sin t) ˆu w A w A w A B cos t
dt dt

� 	
= � � = � � = �	 � � � 	

mit q
ˆû w A B= �	 � �

ûq = 1000 ( 2� ( 50s�1 (100cm2 ( 5 (10�9 Vs / cm2

ûq = 157mV

Zu 2. ûq = 1000 ( 2� ( 5 (103s�1 (100cm2 ( 5 (10�9 Vs / cm2

ûq = 15,7V

4.2

Nach Gl. (4.8) und (4.9) ist

a
2

ˆV v v= =
�

arithmetischer Mittelwert der Zweiweggleichrichtung

*
a

ˆ1 2 v
ˆV v

2
= � =

� �
arithmetischer Mittelwert der Einweggleichrichtung

v̂ = � � Va
* = � � 40V = 126V
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4.3

Zu 1. q1 q1 u1 q1ˆu u sin ( t ) 2 U sin t= ( � + ) = ( ( �

q2 q2 u2 q2ˆu u sin ( t ) 2 U sin ( t 60 )= ( � + ) = ( ( � + �

Nach Gl. (4.17) v̂r = v̂1
2 + v̂2

2 + 2 ( v̂1 ( v̂2 ( cos �v mit �v = �v2 � �v1

ist ûqr = ûq1
2 + ûq2

2 + 2 � ûq1 � ûq2 � cos )

und

2 2
qr q1 q2 q1 q2

qr

ˆ ˆ ˆ ˆ ˆu u u u u
U 2 cos

2 2 2 2 2

� � � �
= = + + � � � )� � � �

� 	 � 	

Uqr = Uq1
2 + Uq2

2 + 2 � Uq1 � Uq2 � cos )

Uqr = (100V)2 + (120V)2 + 2 �100V �120V � cos 60�

qrU 191V=

Nach Gl. (4.18) ist

1 v1 2 v2
vr

1 v1 2 v2

ˆ ˆv sin v sin
arctan

ˆ ˆv cos v cos

� ) + � )
) =

� ) + � )

und

q1 u1 q2 u2
r

q1 u1 q2 u2

ˆ ˆu sin u sin
arctan

ˆ ˆ ˆu cosu u cos

� ) + � )
) =

� + � )

q1 u1 q2 u2
r

q1 u1 q2 u2

U sin U sin
arctan

U cos U cos

� ) + � )
) =

� ) + � )

)r = arctan
100V � sin 0� + 120V � sin 60�

100V � cos 0� + 120V � cos 60�
= 33�

Zu 2. q1 q1 u1 q1ˆ ˆu u sin( t ) u sin t= ( � + ) = ( �

* *
q2 q2 u2 q2ˆ ˆu u sin ( t ) u sin ( t 60 180 )= ( � + ) = ( � + +� �

Uqr
* = Uq1

2 + Uq2
2 + 2 � Uq1 � Uq2 � cos () + 180°)

Uqr
* = (100V)2 + (120V)2 + 2 �100V �120V � cos (60� + 180� )

mit cos (60° + 180° ) = – cos 60°

Uqr
* = (100V)2 + (120V)2 � 2 �100V �120V � cos 60�

Uqr
* = 111V

)r
* = arctan

Uq1 � sin )u1 + Uq2 � sin)u2
*

Uq1 � cos )u1 + Uq2 � cos )u2
*

mit u2 u2 180 60 180�� = � + = +� � �
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und *
u2sin sin (60 180 ) sin 60� = + = �� � �

*
u2cos cos (60 180 ) cos 60� = + = �� � �

�r
* = arctan

100V ( sin 0� � 120V ( sin 60�

100V ( cos 0� � 120V ( cos 60�
= � 69�

Zu 3.

Bild A-61 Übungsaufgabe 4.3

4.4

Zu 1. Aus Gl. (4.33)

L
U

X L 2 f L
I

= = � = � ( (

ergibt sich die Induktivität

U 1 U 1
L

I 2 f 2A 2 f
= � = �

� � � �
Zu 2.

f L

Hz H

20 3,98

30 2,65
40 1,99
50 1,59
60 1,33
70 1,14
80 0,99
90 0,88

Bild A-62 Übungsaufgabe 4.4

100 0,80

4.5

Zu 1. Siehe Abschnitt 3.3.3 Beispiel 2 im Band 1: Kapazität einer Doppelleitung nach Gl. (3.89)

C = � � �0 � h �
1

ln
a � R

R

= � � 8,8542 �10�12 As

Vm
�103m

1

ln
100 � 1

1

= 6,05nF

Zu 2. �XC =
1

�C
=

1

2� � f � C
=

1

2� � 50 s�1 � 6,05 �10�9 As/V
= 526k�

I = �C � U = 2� � f � C � U = 2� � 50 s�1 � 6,05 �10�9 As/V �1000V = 1,9mA
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4.6

Zu 1. U = 100V I = 5A 10ms � 3cm, d. h. f = 50Hz und � = – 30°

Der Wechselstromwiderstand des passiven Zweipols ist also kapazitiv, weil der Strom i der Span-
nung u voreilt.

Zu 2. u = û sin t� 	
abgebildet in

j t j tˆu u e 2 U e	 	= � = � �

und

ˆi i sin ( t 30 )= � 	 + �

abgebildet in

i = î � e j�(	t+30� )= 2 � I � e j�(	t+30� )

Bild A-63 Übungsaufgabe 4.6

Zu 3. Reihenschaltung:

j t
j( 30 )

j t j30

ˆu u e U
Z e

ˆi Ii e e

�
�

�

(
= = = (

( (

�

�

r C r
r

U U 1
Z cos 30 j sin 30 R j X R j

I I C
= ( � ( ( = + ( = � (

�
� �

Z =
100V

5A
(

3

2
� j (

100V

5A
(

1

2
= 17,3� � j (10�

Rr = 17,3� Cr =
1

� �10�
=

1

2� � 50s�1 �10�
= 318μF

Parallelschaltung:

j t j30
j30

j t

ˆi i e e I
Y e

ˆu Uu e

	

	
� �

= = = �
�

�

�

p p p
p

I I 1
Y cos 30 j sin 30 G j B j C

U U R
= � + � � = + � = + 	� �

Y =
5A

100V
�

3

2
+ j �

5A

100V
�

1

2
= 0,0433S + j � 0,025 S

Rp = 23,1� Cp =
0,025 S

�
=

0,025 S

2� � 50 s�1
= 79,6μF

Zu 4. Nach Gl. (4.69) lassen sich die Ergebnisse kontrollieren:

Rp =

Rr
2 +

1

�2Cr
2

Rr

=

(17,3�)2 +
1

(2� � 50 s�1)2 � (318 �10�6 F)2

17,3�
= 23,1�

Cp =

1

�2Cr

Rr
2 +

1

�2Cr
2

=

1

(2� � 50 s�1)2 � 318 �10�6 F

(17,3�)2 +
1

(2 � � 50 s�1)2 � (318 �10�6 F)2

= 79,6 μF
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4.7

Zu 1. C
R C r C r

du
u u u R i u , i C

dt
= + = � + =

C
r r C

du
u R C u

dt
= + (Differentialgleichung)

Lösung nach Verfahren 1 (Abschnitt 4.2.5):

Ansatz: uC = Cû · sin (�t + �uc),

Bild A-64 Übungsaufgabe 4.7

differenziert: C
C uc

du
û cos ( t )

dt
= � ( ( � + )

in Dgl. eingesetzt:

u r r C uc C ucˆ ˆ ˆu sin ( t ) R C u cos ( t ) u sin ( t )( � + ) = � ( ( � + ) + ( � + )

mit cos � = sin(�+ �/2)

û � sin (�t + )u ) = ûC � �RrCr � sin (�t + �/2 + )uc ) + sin (�t + )uc )�� 	�

mit � Rr Cr · sin (�t + �/2 + )uc ) + sin (�t + )uc ) = V̂r � sin (�t + )vr )

nach. Gl. (4.17)

V̂r = (�RrCr )2 + 1 + 2 � �RrCr �1 � cos (�/2 + �uc � �uc )

2
r r rV̂ ( R C ) 1 mit cos / 2 0= � + � =

nach. Gl. (4.18)

r r uc uc
vr

r r uc uc

R C sin ( / 2 ) sin
arctan

R C cos ( / 2 ) cos

� � � + ) + )
) =

� � � + ) + )

r r uc uc
vr

r r uc uc

R C cos sin
arctan

R C sin cos

� � � + �
� =

�� � � + �

�vr = arctan
�RrCr + tan �uc

� �RrCr � tan �uc + 1
= arctan �RrCr + �uc

d. h. 2
u C r r r r ucˆ ˆu sin ( t ) u ( R C ) 1 sin ( t arctan R C )( � + ) = ( � + ( � + � + )

C uc u r r
2

r r

û
û arctan R C

( R C ) 1
= � = � � �

� +

Zu 2. C
r r C

du
u R C u

dt
= + (Differentialgleichung)

abgebildet in

r r C Cu j R C u u= 	 � + (algebraische Gleichung)
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gelöst und umgeformt:

uC =
u

j�RrCr + 1
=

û ( e j(�t+)u )

(�RrCr )2 + 1 ( e j arctan �RrCr

u r rj ( t arctan R C )

C
2

r r

û e
u

( R C ) 1

� +� � ��
=

� +

rücktransformiert:

C u r r
2

r r

û
u sin ( t arctan R C )

( R C ) 1
= � � + � � �

� +

4.8

Zu 1. u = R · i + uL

L
L p

di
u L

dt
=

L L
R L L p L

Lp Lp

u 1 di
i i i i L i

R R dt
= + = + = +

L L
p L p

Lp

R di di
u L R i L

R dt dt
= + � +

u = Lp
R

RLp

+ 1
�

�
�

�

	
� �

diL

dt
+ R � iL

Zu 2. p L L
Lp

R
u j L 1 i R i

R

� �
= 	 + � + �� �� �

� 	

p L
Lp

R
u j L 1 R i

R


 
� �
= 	 + + �� �� 
� 
� �� �
 �

L

p
Lp

u
i

R
R j L 1

R

=
� �

+ 	 +� �� �
� 	

Zu 3. Stromteilerregel mit Bild A-65:

LpL

Lp pLp p

Lp p

RI U
, I

R j LI R j L
R

R j L

= =
� 	+ 	 +
+ 	

Lp
L

Lp p p Lp

R U
I

R R j L R j L R

�
=

� + 	 + 	

L

p
Lp

U
I

R
R j L 1

R

=
� �

+ 	 +� �� �
� 	

Bild A-65 Übungsaufgabe 4.8
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mit j t2 e 	� erweitert:

L

p
Lp

u
i

R
R j L 1

R

=
� �

+ 	 +� �� �
� 	

Zu 4. i
L
=

û ( e j (�t+)u )

R2 + �2Lp
2 R

RLp

+ 1
�

�
�

�



�

2

e
j arctan

�Lp

R

R

RLp

+1
�

�
�
�

�



�
�

iL =
û

R2 + �2Lp
2 R

RLp

+ 1
�

.
-

�

3
1

2
� sin �t + �u � arctan

�Lp

R

R

RLp

+ 1
�

.
-

�

3
1

�

�








�
2
2

Zu 5. L
L p

di
u L

dt
=

uL =
� � Lp � û

R2 + �2Lp
2 R

RLp

+ 1
�

.
-

�

3
1

2
� cos �t + �u � arctan

�Lp

R

R

RLp

+ 1
�

.
-

�

3
1

�

�








�
2
2

4.9

Lösung mit Hilfe der Spannungsteilerregel

I
R
=

UC

RCp

UC

U
=

1

1

RCp

+ j	Cp

1

1

RCp

+ j	Cp

+ RLr + j	Lr

Bild A-66 Übungsaufgabe 4.9
Schaltung im Bildbereich

UC

U
=

1

1 +
RLr

RCp

� �2LrCp

�

�
�

�

	
� + j�

Lr

RCp

+ RLrCp

�

�
�

�

	
�

C
R 2

Cp Lr Cp r Cp p r Lr Cp p

U U
I

R (R R L R C ) j (L R R C )
= =

+ � � + � +

Lösung mit Hilfe der Stromteilerregel:

pR

Cp
p

1

j CI
,

1I R
j C

	
=

+
	 Cp

p
Lr r

Cp
p

U
I

1
R

j C
R j L

1
R

j C

=
�
	

+ 	 +
+
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R

p Cp Lr r Cp
p p

U
I

1 1
j C R (R j L ) R

j C j C

=

 
� �

	 + + 	 + �� �� 
� 
	 	� �� �
 �

R 2
Lr Cp r Cp p r Lr Cp p

U
I

(R R L R C ) j (L R R C )
=

+ � � + � +

Lösung mit Hilfe der Kirchhoffschen Sätze:

R CI I I= + Lr r Cp RU (R j L ) I R I= + 	 � + � C CpC R
p

1
U I R I

j C
= = �

	

U = (RLr + j	Lr ) � I + RCp � I
R

= (RLr + j	Lr ) ( I
R
+ I

C
 ) + RCp � I

R

Lr Cp r Lr rR CU (R R j L ) I (R j L ) I= + + 	 � + + 	

mit p CpC RI j C R I= 	 �

U = RLr + RCp + j	Lr + (RLr + j	Lr ) � j	CpRCp
�
�

�
� � I

R

R 2
Lr Cp r Cp p r Lr Cp p

U
I

(R R L R C ) j (L R R C )
=

+ � � + � +

Rücktransformation:

iR =

û � sin �t + �u � arctan
� (Lr + RLrRCpCp )

RLr + RCp � �2LrRCpCp

�

.
-
-

	

/





(RLr + RCp � �2LrRCpCp )2 + �2 (Lr + RLrRCpCp )2

4.10

Zu 1.
Lp 1L

Lp pLp p
Cr

r Lp p

RI U
, I

R j L1I R j L
R

j C R j L

= =
� 	+ 	 + +

	 + 	

I
L
=

RLp � U1

(RLp + j	Lp ) RCr +
1

j	Cr

�

��
�

	�
+ RLp � j	Lp

1
L

p
Cr p

Lp r

U
I

L 1
1 j R j L

R j C

=
� � � �

+ 	 + + 	� � � �� � 	� 	� 	

I
L
=

U1

RCr +
Lp

RLp ( Cr

�

�
�

�

�
� + j ( �Lp 1 +

RCr

RLp

�

�
�

�

�
� �

1

�Cr

	

	
�
�

�

�
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Zu 2.
p 1R

Lp pLp p
Cr

r Lp p

j LI U
, I

R j L1I R j L
R

j C R j L

	
= =

� 	+ 	 + +
	 + 	

p 1
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j L U
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� �
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1
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U
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R 1
1 R R

j L j C

=
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1
R

Lp Lp Cr
Lp Cr 2

p rp r

U
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R R R 1
R R j
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=
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1R
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2Lp Lp p Lp rp r

I U
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1 R 1 1 R 1
1 jR R L R CL C

= ( = =
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+ � � +� � � �� �� � �� � 
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4.11

Zu 1.
Lp p2

uf
1

Cr
r

Lp p

1
1 1

R j LU
V

1 1U R
1 1 j C

R j L

+
	

= =
+ +

	+
	

uf

Cr
Lp p r

1
V

1 1 1
1 R

R j L j C

=
� � � �

+ + +� � � �� �	 	� 	� 	

uf
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1
V

R 1 1 1 R
1 j

R R C LL C

=
� � � �
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Zu 2. Vuf =
1

1 +
RCr

RLp

�
1

�2LpCr

�

�
�
�

�

	
�
�

2

+
1

�2

1

RLpCr

+
RCr

Lp

�

�
�

�

	
�

2

ufV ist maximal, wenn der Nenner am kleinsten ist. Da der Realteil aus einer Differenz besteht,

kann dieser bei einer Kreisfrequenz � Null werden:

Cr
2

Lp p r

R 1
1 0

R L C
+ � =

�
Cr

2
Lpp r

1 R
1

RL C
= +

	

Cr
p r

Lp

1

R
L C 1

R

	 =
� �

+� �� �
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Zu 3. Ein idealer Kondensator bedeutet bei Reihenschaltung von RCr und Cr, dass RCr = 0, d. h.

uf

2
Lp rp r

1
V

1 1
1 j

R CL C

=
� �

� �� �� � ��� 	

Vuf =
1

1 �
1

�2LpCr

�

�
�
�

�

	
�
�

2

+
1

�2RLp
2Cr

2

uf max 2 2
p r p r p r

1 1 1
V bei 1 0 1

L C L C L C
� = = � =
� �

V
uf

=
1

� j
1

�RLpCr

= j�RLpCr = j
1

LpCr

RLpCr = j ( RLp

Cr
2

LpCr

= j (
RLp

Lp

Cr

4.12

Zu 1. 2 R1 RU U U= �

R1 1

1
1

U R
1U R

j C

=
+

	

R

1

U R 1

U 2 R 2
= =

1 1
1

2 1 1

1 1

1
2 R R

R 1 j C
U U U

1 2 1R 2 R
j C j C

� �� � � �� �� � �� �� �= ( � = ( � �� �� �+ +� �� � � �� �� �� 
 � 
� 


U2

U1

=
1

2
(

R1 �
1

j�C

R1 +
1

j�C

=
1

2
(
1 + j (

1

� R1 C

1 � j (
1

� R1 C

=
1

2
( e j (2( arctan (1/�R1C)

1

1
2 arctan

R C
) = (

�

Zu 2. 2 2

1 1

ˆU u 1

ˆU u 2
= =

Zu 3.
1

1
tan

2 R C

)
=
�

mit 1
1

R
C

=
	

ist tan 1
2

)
=

und 45
2

)
= �

und 90) = �

Bild A-67 Übungsaufgabe 4.12
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4.13

Zu 1. Die transformierte Schaltung im Bildbereich mit komplexen Effektivwerten und komplexen
Operatoren ist im Bild A-68 dargestellt.

Bild A-68 Übungsaufgabe 4.13

Zuerst wird der Zweigstrom
q1CUI berechnet, der von q1U verursacht wird (Bild A-69):

q1

q1

CU 2

U
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I R
1I R

j C

=
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2

U
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j C
R j L

1
R

j C

=
�
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q1

2 q1
CU

2
2 1

R U
I

1 R
R (R j L)

j C j C

�
=
� �

+ + 	 +� �	 	� 	

Bild A-69 Übungsaufgabe 4.13

Dann wird der Zweigstrom
q2CUI berechnet, der von q2U hervorgerufen wird (Bild A-70):

q2

q2

CU 1

U
1

I R j L
1I R j L

j C

+ 	
=

+ 	 +
	

q2

q2
U

1

2

1

U
I

1
(R j L)

j C
R

1
R j L

j C

=
+ 	 �

	+
+ 	 +

	

q2

1 q2
CU

1 2 1

(R j L) U
I

1 1
R j L R (R j L)

j C j C

+ 	 �
=
� �

+ 	 + + + 	� �	 	� 	
Bild A-70 Übungsaufgabe 4.13
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Die Überlagerung beider Teilströme ergibt den gesamten Zweigstrom

q1 q2

2 q1 1 q2
CU CUC

1 2
1 2 2

R U (R j L) U
I I I

L R R
R R j L R

C C

( + + � (
= + =

+� � � �+ + ( � �� � � ��� 
 � 


Für die Rücktransformation ist die komplexe Zeitfunktion nötig, die durch Erweitern mit j t2 e 	�
entsteht:

2 q1 1 q2
C

1 2
1 2 2

R u (R j L) u
i

L R R
R R j L R

C C

( + + � (
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j t
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Zu 2. Maschenstromverfahren:

Nach den im Bild A-71 festgelegten Maschenumläufen (begonnen wird mit dem Zweigstrom
IC = II) werden folgende Maschengleichungen aufgestellt:

Masche I:

q2 2 2I II
1

U I R I R
j C

� �
= ( + � (� ��� 


Masche II:

q1 q2 2 1 2IIIU U I R I (R R j L)� = � ( + ( + + �

Bild A-71 Übungsaufgabe 4.13

II ist gesucht, deshalb wird III eliminiert:

q2 1 2 2 1 2 2 1 2III
1

U (R R j L) I R (R R j L) I R (R R j L)
j C

� �
+ + � = ( + + + � � ( ( + + �� ��� 


(Uq1 � Uq2 ) ( R2 = � I
I
( R2

2 + I II ( R2 ( (R1 + R2 + j�L)

I I =
Uq2 ( (R1 + R2 + j�L) + (Uq1 � Uq2 ) ( R2

R2 +
1

j�C

�
��

�

�

(R1 + R2 + j�L) � R2
2

2 q1 1 q2
I C

1 2
1 2 2

R U (R j L) U
I I

L R R
R R j LR

C C

( + + � (
= =

+� � � �+ + ( � �� � � ��� 
 � 


Zu 3. Haben die sinusförmigen Quellspannungen uq1 und uq2 verschiedene Amplituden und ver-
schiedene Anfangsphasenwinkel �u1 und �u2, dann sollten die Teilströme iC1 und iC2 durch
Rücktransformation von iC1 und iC2 ermittelt und nach den Formeln 4.17 und 4.18 zum Ge-
samtstrom iC überlagert werden.

4.14

Zu l. Da der Strom I3 gesucht ist, wird der Widerstand Z3 zum Außenwiderstand Za ers. Die Auf-
trennung der Schaltung in aktiven und passiven Zweipol ist im Bild A-72 zu sehen.

Bild A-72 Übungsaufgabe 4.14
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Bestimmung von Uq ers = Ul (Bild A-73):

1 2U U U= �l

U1 =

1

j	C

1

j	C
+ j	L

� U 2
j L

U U
1

j L
j C

	
= �

+ 	
	

U l =

1

j�C
� j�L

1

j�C
+ j�L

( U
Bild A-73 Übungsaufgabe 4.14

Ermittlung von Zi ers (Bild A-74):

Zi ers = 2 �

1

j	C
� j	L

1

j	C
+ j	L

Außenwiderstand:

a ers 3 3 3Z Z R j X= = + �

Bild A-74 Übungsaufgabe 4.14
Berechnung des Stroms I3 im Grundstromkreis:
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I
3
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2 ( j�L + (R3 + jX3) (1 � �2LC)
=

(1 + �2LC) ( U
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3 2 2
3 3

3 2 2

U
I

1 LC 2L X LCX
R j

1 LC 1 LC

=
� � � + � �

+ (
+ � + �

Zu 2. Netzberechnung nach den Kirchhoffschen Sätzen (Bild A-75):

k – 1 = 1 (Knotenpunktgleichung)

I 2 = I
3
+ I

1

Masche I:

1

j�C
( I 1 � j�L ( I 2� Z3 ( I 3 = 0

Bild A-75
Übungsaufgabe 4.14
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die Maschengleichung I mit der Knotenpunktgleichung ergibt

3
1 3 3 1 3

1 j L Z
j L I ( j L Z ) I I I

1j C j L
j C

� � � +
� � ( = � + ( = (� ��� 
 � �
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Masche II:

�U +
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1
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j	C
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1

U = j	L � ( I 3+ I1)+
1

j	C
� I 1= j	L � I 3+ j	L +

1

j	C

�
��

�
	�
� I 1

I1 eingesetzt in die Maschengleichung II

3
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1
j L ( j L Z )

j C
U j L I

1
j L

j C

	 �� �
� + � +� 
� ��� �� 
= � + (

� 
� �� 
�	 �

I 3 =
U

j�L
1

j�C
� j�L

�
��

�
	�

+ j�L +
1

j�C

�
��

�
	�

( j�L + Z3)

1

j�C
� j�L

I 3 =
U

j�L (1 + �2LC) + (1 � �2LC) ( j�L + R3 + jX3)

1 + �2LC

I 3 =
U

R3
1 � �2LC

1 + �2LC
+ j (

�2L + X3 � �2LCX3

1 + �2 LC

Zu 3. Wenn der Strom im Diagonalzweig i3 gegenüber der Spannung u um 90° phasenver-
schoben sein soll, dann muss der Operator zwischen den komplexen Effektivwerten I3 und
U imaginär sein, d. h. der Realteil des Operators muss Null sein:

R3
1 � �2LC

1 + �2LC
= 0 d. h. 1 � �2LC = 0 und �L =

1

�C
.

Der induktive Widerstand XL = �L muss gleich dem kapazitiven Widerstand – XC = 1/�C
sein. Sind L und C gegeben, dann wird die Bedingung bei einer Kreisfrequenz
� =1/ LC erreicht.

4.15

Bild A-76 Übungsaufgabe 4.15 Bild A-77 Übungsaufgabe 4.15
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Reihenfolge der Darstellung (qualitatives Zeigerbild A-77).

IL IC2 = j�C2 · UC U = UC + UR

URL
= RLr · IL IR = IL + IC2 IC1 = j�C1 · U

UL = j�L · IL UR = R · IR I = IR + IC1

UC = URL
+ UL

4.16

Zu 1. Schaltbild im Bildbereich:

Bild A-78 Übungsaufgabe 4.16

Reihenfolge der Darstellung:

I μ

U j L Iμ μ= 	 �

a
Fe

U
I

R

μ=

0 aI I Iμ= +

Cu Cu 0U R I= �

0U j L I� �= � (

CuU U U Uμ �= + + Bild A-79 Übungsaufgabe 4.16
(qualitatives Zeigerbild)

Zu 2. Berechnung der Effektivwerte:

Iμ = 0,3A � 3cm

Uμ = 	L � Iμ

Uμ = 2� ( 50s�1 (1,5H ( 0,3A

Uμ = 141V � 3,5cm

Ia =
Uμ

RFe

=
141V

708�

Ia = 0,2A � 2 cm

I0 = Iμ
2 + Ia

2

I0 = (0,3A)2 + (0,2A)2

Bild A-80 Übungsaufgabe 4.16
(quantitatives Zeigerbild)

I0 = 0,36A � 3,6cm
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UCu = RCu � I0

UCu = 120� � 0,36A

UCu = 43,2V � 1,1cm

U� = �L� ( I0 = 56,5V � 1,4cm

abgelesen aus dem Zeigerbild:

U = 216V � 5,4cm

4.17

Die Umwandlung der �-Schaltung in die äquivalente T-Schaltung entspricht einer Dreieck-Stern-
Transformation nach Bild 4.67.

Bild A-81
Übungsaufgabe
4.17

Nach den Gleichungen (4.100) bis (4.102) ist
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+ j�L +
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1

j�L(��2C1C2 ) + j�(C1 + C2 )

Z2
' =

1

j�(C1 + C2 � �2LC1C2 )
=

1

j�C
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1 2 2'
3

1 2 3 1 2
2

2 1 1 2

1
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Z Z j Lj C
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1 1Z Z Z 1 C Cj L j C j L
j C j C j C C
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1
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Die Bauelemente der T-Schaltung betragen:

2
1 2

1 2 1 2

L C
L ,

C C LC C

(
=
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1

2 2
1 2 1 2

L C
L

C C LC C

(
=

+ � �

und

2
1 2 1 2C C C LC C .= + � �

4.18

Zu 1. Dreieck-Stern-Transformation in der Anderson-Brücke:

Bild A-82 Übungsaufgabe 4.18

Z1
' =

Z2 � Z3

Z1 + Z2 + Z3

=
R5 � R4

1

j	C
+ R5 + R4
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5 4
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Z Z j C
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1Z Z Z R R
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3 3
1 2 3

5 4

1
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Z Z j C
Z Z

1Z Z Z R R
j C

�
� 	= =

+ + + +
	

liegt im Diagonalzweig (ist bei Abgleich stromlos)
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Stern-Dreieck-Transformation in der Anderson-Brücke:

Bild A-83 Übungsaufgabe 4.18

' '
2 3 4 5'' ' ' ''

1 2 3 4 5 4 1'
31

Z Z R R 1
Z Z Z R R ergibt Z || Z
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Stern-Dreieck-Transformation:

''
3 2 ''

4 1

1 1
Z Z und j C

Z Z
= = 	 +

''
2'' ''
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1 1

1 Z
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4.19

Zu 1. ' '
1 1Z 0,2 j 0,6 Y 0,5 j 1,5= � � = + �

Z2
' = 0,4 � j � 0,8 Y2

' = 0,5 + j �1,0

'
3Z 0,4=

Bp = G0 (B2
' � B1

' ) =
1,0 � 1,5

600 �
= � 0,83mS

Lp = �
1

�Bp

=
1

2� � 200 �106 s�1 � 0,83 �10�3S
= 955nH

Xr = R0 (X3
' � X2

' ) = 600� (0 + 0,8) = 480�

Lr =
Xr

�
=

480�

2� � 200 �106 s�1
= 382nH
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Zu 2. Kontrollrechnung:

Z1 = 120� � j ( 360� Y1 = 0,833mS + j ( 2,5mS

Y2 = G1 + j (B1 + Bp ) = 0,833mS + j � (2,5 � 0,833)mS = 0,833mS + j �1,67mS

Z2 = 240� � j ( 479,4� Z3 = 240�

4.5 Die Reihenschaltung und Parallelschaltung von ohmschen Widerständen,
Induktivitäten und Kapazitäten

4.20

Zu 1. �0 =
1

LrCr

=
1

0,2H ( 5 (10�6 F
= 1000s�1

nach Gl. (4.115)

Xkr =
Lr

Cr

=
0,2H

5 (10�6 F
= 200�

nach Gl. (4.118)

Qr =
Xkr

Rr

=
200�
20�

= 10

Zu 2. Nach Gl. (4.132)

I

U/Rr

=
1

1 + Qr
2 � �r

2
=

1

1 + (10 � �r )2

�
0

x
	

=
	 r

1
x

x
� = �

r

I

U / R

s–1 1 1 1

250 1/4 – 3,75 0,0267

500 1/2 – 1,50 0,0665

750 3/4 – 0,583 0,169

900 9/10 – 0,211 0,428

1000 1 0 1

1111 10/9 + 0,211 0,428

1333 4/3 + 0,583 0,169

2000 2 + 1,50 0,0665

4000 4 + 3,75 0,0267
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Bild A-84
Übungsaufgabe 4.20

Zu 3.

Bandbreite: Grenzfrequenzen: rechnerisch:

x 0,125
 =

0 x
� = � ( 


11000 s 0,125��� = �

1125 s��� =


f =
�0 � 
x

2�
= 20Hz

1
g1 950 s�� =

fg1 = 151Hz

1
g2 1075 s�� =

fg2 = 171Hz

rx 1/ Q 0,1
 = =

g2,1 g2,1
g2,1

1
v =x = 0,1

x
� ±

2
g2,1g2,1x 0,1 x 1 0� � =�

g2 g1x 1,051 x 0,951= =

1 1
g2 g11051s 951s� �� = � =

4.21

Zu 1. Nach Gl. (4.124)

Qr =
f0


f
ist f0 = Qr � 
f = 100 � 5kHz = 500kHz

Zu 2. Nach Gl. (4.115)

Xkr = �0 ( Lr =
1

�0 ( Cr

= 500�

Lr =
Xkr

�0

=
Xkr

2� f0

=
500�

2� � 500 �103s�1
= 160μH

Cr =
1

�0Xkr

=
1

2� � f0 � 500�
=

1

2� � 500 �103s�1 � 500�
= 637pF

nach Gl. (4.118)

Qr =
Xkr

Rr

ist Rr =
Xkr

Qr

=
500�
100

= 5�
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4.22

Zu 1. Lr CrR R�

RLr
2 = 10 (103�2 <

Lr

Cr

=
0,1H

2 (10�6 F
= 50 (103�2

RCr
2 = 100�2 <

Lr

Cr

= 50 �103�2

nach Gl. (4.152)

f0 =
1

2�
1

LrCr

�
RLr

2 � Lr /Cr

RCr
2 � Lr /Cr

=
�0

2�

f0 =
1

2�
1

0,1H � 2 �10�6 F
�
10 �103�2 � 50 �103�2

100�2 � 50 �103�2
=

2,002 �103s�1

2�
= 319Hz

nach Gl. (4.150) und p
p

1
C

L
	 =

	

Y0 =
1

RCp

+
1

RLp

=
RCr

RCr
2 +

1

	0
2Cr

2

+
RLr

RLr
2 + 	0

2Lr
2

Y0 =
10�

100�2 +
1

(2,002 (103s�1 ( 2 (10�6 F)2

+
100�

10 (103�2 + (2,002 (103s�1 ( 0,1H)2

Y0 = 2,157 (10�3S Z0 = 464�

Zu 2. Nach Gl. (4.155)

�0
* =

1

LrCr

�
RLr

Lr

�

.-
�

/�

2

=
1

0,1 H � 2 �10�6 F
�

100�
0,1H

�
.-

�
/�

2

= 2,000 �103s�1

�0 = 2,002 (103s�1
� 100%

�0
* = 2,000 (103s�1

� 99,9% , das ist eine um 0,1% niedrigere Kreisfrequenz.

4.23

Zu 1.
ILr

I
=

1

j	Cr

RLr + j	Lr +
1

j	Cr

, I =
U

R +
(RLr + j	Lr ) �

1

j	Cr

RLr + j	Lr +
1

j	Cr
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I Lr =

1

j	Cr

� U

R � RLr + j	Lr +
1

j	Cr

�

��
	

	

+ (RLr + j	Lr ) �

1

j	Cr

I Lr =
U

(R + RLr � �2R LrCr ) + j� (Lr + R RLrCr )

C r
r Lr r

Lr

Lr r

I j C
j C (R j L )

1I
R j L

	
= = 	 � + 	

+ 	

r Lr r
r

C

Lr r Lr r
r r

1
U j C (R j L )

j C
I

1 1
R R j L (R j L )

j C j C

� � 	 � + 	
	=

� 	
� + 	 + + + 	 �� 
	 	� 	

C

Lr r r r

U
I

R 1 1
R

R j L j C j C

=
+ � +

+ 	 	 	

I C =
U

R +
1

j�Cr

+
R

� �2LrCr + j�RLrCr

I C =
U

R +
1

j�Cr

�
R

�2LrCr � j�RLrCr

(
�2LrCr + j�RLrCr

�2LrCr + j�RLrCr

I C =
U

R ( 1 �
�2LrCr

�4Lr
2Cr

2 + �2RLr
2Cr

2

�

�
�

�



� � j (

1

�Cr

+
�R RLrCr

�4Lr
2Cr

2 + �2RLr
2Cr

2

�

�
�

�



�

Zu 2.
r

C Lr r

r
Lr rr

Lr r

1
1

j C
U 1R j L

1U 1R j C R 11 R j Lj C
R j L

+ 	
+ 	= =

� 	+ + 	 � +� 
+ 	� 	+ 	
+ 	

UC

U
=

1

R

RLr + j�Lr

+ j�RCr + 1

=
1

R(RLr � j�Lr )

RLr
2 + �2Lr

2
+ j�RCr + 1

UC =
U

1 +
R ( RLr

RLr
2 + �2Lr

2

�

�
�

�



� + j� ( RCr �

LrR

RLr
2 + �2Lr

2

�

�
�

�



�
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Zu 3. uC und u sind in Phase, wenn der 
Operator zwischen UC und U reell ist, d. h. 
wenn der Imaginärteil des Operators Null ist: 

iC und u sind um 90° phasenverschoben, wenn 
der Operator imaginär ist, d. h. wenn der Real-
teil des Operators Null ist: 

 
R Cr �

LrR
RLr

2 � �2Lr
2

� 0  

 
Cr �

Lr

RLr
2 � �2Lr

2
 

 
RLr

2 � �2Lr
2 �

Lr
Cr

 

r2 2
Lr2

rr

1 L R
CL

" #
� � � �$ %

& '
 

2
Lr

r r r

1 R
L C L

" #
� � � $ %

& '
 

1 �
�2LrCr

�4Lr
2Cr

2 � �2RLr
2Cr

2
� 0  

�4Lr
2Cr

2 � �2RLr
2Cr

2 � �2LrCr � 0  

 

�2Lr
2Cr

2 � LrCr � RLr
2Cr

2  

�2 �
1

LrCr
�

RLr
2Cr

2

Lr
2Cr

2
 

2
Lr

r r r

1 R
L C L

" #
� � � $ %

& '
 

 
Bei der gleichen Kreisfrequenz �, das ist die Resonanzkreisfrequenz �0 des Praktischen Parallel-
Resonanzkreises (Gl. 4.155), sind die genannten Bedingungen erfüllt. 
Wenn uC und u in Phase sind, muss auch uR mit u in Phase sein, und da  uR = R · i  ist, muss der 
Strom i mit u in Phase sein. 
Wenn uC und u in Phase sind, dann muss auch iC gegenüber u um 90° phasenverschoben sein. 
 
 
4.24 

Zu 1. Reihenfolge der 
Zeigerdarstellung 

Zeigerbild für � = 1000s–1: (Bild A-85) 

ILr 
UR = RLr · ILr 

UL = j�Lr · ILr 

U = UC = UR + UL 

IC = j�Cr · U 

I = ILr + IC 

ILr = 10mA 
UR = RLr · ILr = 100� · 10 · 10–3A = 1V 

UL = �Lr � ILr � 1000s�1 � 0,1H �10 � 10�3A � 1V  

U = UC � UR
2 � UL

2 � 2 V � 1,414V  

IC = �Cr · U = 1000s–1· 2 · 10–6F · 2 V = 2,83mA 

I = 8,2mA    �1 = 31°  

Yp1 = Gp1 + j Bp1 = I
U

� cos �1 � j � I
U

� sin�1  

Yp1 = 4,97mS – j 2,99mS 

(induktiver komplexer Leitwert) 
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[Zeigerbild für � = 2000 s–1: Zeigerbild für � = 3000 s–1: 

ILr = 10mA 

UR = 1V UL = 2V 

U = UC = 5  V = 2,24V 

IC = 2000 s–1 · 2 · 10–6 F · 5 V 

IC = 8,94mA 

I = 4,3mA �2 = 0°  

Yp2 = Gp2 + j Bp2 = I
U

 = 4,3 mA
2,24 V

 

Yp2 = Gp2 = 1,92mS   mit   Bp2 = 0 

(ohmscher komplexer Leitwert) 

ILr = 10mA 

UR = 1V  UL = 3V 

U = UC = 10  V = 3,16V 

IC = 3000 s–1 · 2 · 10–6 F · 10 V 

IC = 18,97mA 

I = 10mA �3 = – 71°  

Yp3 = Gp3 + j Bp3 

Yp3 = 3 3
I Icos j sin
U U

� � �  

Yp3 = 1,03mS + j 2,99mS 

(kapazitiver komplexer Leitwert) 
 
 

 

Bild A-85 Übungsaufgabe 4.24 
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Zu 2. Nach Gl. (4.156)

Yp =
RLr

RLr
2 + �2Lr

2
+ j ( �Cr �

�Lr

RLr
2 + �2Lr

2

�

�
�

�



�

� = 1000s�1 : RLr
2 + �2Lr

2 = (100�)2 + (1000s�1 � 0,1H)2 = 20 �103�2

Yp1 =
100�

20 (103�2
+ j ( 1000s�1 ( 2 (10�6 F �

1000s�1 ( 0,1H

20 (103�2

�

�
�

�



�

Yp1 = 5mS + j � (2mS � 5mS) = 5mS � j � 3mS

� = 2000s�1 : RLr
2 + �2Lr

2 = (100�)2 + (2000s�1 � 0,1H)2 = 50 �103�2

Yp2 = 2mS + j � (4mS � 4mS) = 2mS

� = 3000s�1 : RLr
2 + �2Lr

2 = (100�)2 + (3000s�1 � 0,1H)2 = 50 �103�2

Yp3 = 1mS + j � (6mS � 3mS) = 1mS + j � 3mS

4.25

Zu 1. �0 =
1

LrCr

�
RLr

Lr

�

.-
�

/�

2

=
1

0,1H � 2 �10�6 F
�

100�
0,1H

�
.-

�
/�

2

= 2000s�1

RLp =
Lr

RLr ( Cr

=
0,1H

100� ( 2 (10�6 F
= 500� Cp = Cr = 2μF

Lp =
RLr

2 + �0
2Lr

2

�0
2Lr

=
(100�)2 + (2000s�1 � 0,1H)2

(2000s�1)2 � 0,1H
= 125mH

Qp =
Lr

RLr
2Cr

� 1 =
0,1H

(100�)2 ( 2 (10�6 F
� 1 = 2 s. Gl. (4.157)

Zu 2. I =
U

Rr
2 + Xkr

2 � x �
1

x

�
��

	
	


2
U =

I

G p
2 + Bkp

2 � x �
1

x

�
��

	
	


2

I =
U

Rr 1 + Qr
2 � x �

1

x

�
��

	
	


2
U =

I

G p 1 + Qp
2 � x �

1

x

�
��

	
	


2

mit kr
r

r

X
Q

R
= mit

kp
p

p

B
Q

G
=

I

U / Rr

=
1

1 + Qr
2 � x �

1

x

�
��

	
	


2

U

I / G p

=
1

1 + Qp
2 � x �

1

x

�
��

	
	


2
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Zu 2.
2p

U 1

I / G 1
1 4 x

x

=
� 	+ � �� 

� 	

mit
0

x
	

=
	

�0 = 2000s�1

� in s– 1 500 1000 1500 2000 2666 4000 8000

x in 1 1/4 1/2 3/4 1 4/3 2 4

p

U

I / G
in 1 0,132 0,316 0,651 1 0,651 0,316 0,132

Bild A-86 Übungsaufgabe 4.25

4.6 Spezielle Schaltungen der Wechselstromtechnik

4.26

Zu 1.
p1

2
2

r1 r1 r1 r1
p p

r2 r2

r1 r1
p

1

j CI U
mit I

1 1I R j L (R j L )
j C j C

R j L
1

R j L
j C

	
= =

+ + 	 + 	
	 	

+ + 	
+ + 	

	

p
1

r1 r1 r1 r1 r2 r2
p p

1
U

j C
I

1 1
(R j L ) R j L (R j L )

j C j C

�
	

=
� 	

+ 	 + + + 	 + 	� 
� 
	 	� 	
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1 2
r1 r1 p r1 p r1 r2 r2

UI
R j L (1 j C R C L ) (R j L )

�
� � � � � � � � �

 

1 2 2 2
r1 r2 p r1 r2 p r2 r1 r1 r2 p r1 r2 p r1 r2

UI
(R + R C L R C L R ) + j (L + L + C R R C L L )

�
� � � � � � � �

 

 

I1 �
U

[Rr1 � Rr2 � �2Cp (Lr1Rr2 � Lr2Rr1)] � j�� [Lr1 � Lr2 � CpRr1Rr2 � �2CpLr1Lr2 ]
 

Zu 2. Die Phasenverschiebung zwischen i1 und u beträgt 90° , wenn der Realteil des Widerstands-
operators gleich Null ist: 

2
r1 r2 p r1 r2 r2 r1R R C (L R L R ) 0,� � � � �  

nach Cp aufgelöst; 

r1 2
p 2

r1 r2 r2 r1

R RC
(L R L R )

�
�

� �
 

Zu 3. Strom i1 und Spannung u sind in Phase bzw. um 180° phasenverschoben, wenn der Wider-
standsoperator reell ist, d. h. wenn der Imaginärteil Null gesetzt wird: 

 
�[Lr1 � Lr2 � CpRr1Rr2 � �2CpLr1Lr2 ] � 0  

1. bei � = 0 (Gleichspannung) 

1 r1 r2
r1 r2

UI ,        Z R R
R R

� � �
�

 

2. mit 
 
Lr1 � Lr2 � CpRr1Rr2 � �2CpLr1Lr2 � 0  

bei r1 r2 p r1 r2 r1 r2

p r1 r2 p r1 r2 r1 r2

L L C R R 1 1 1 R R
C L L C L L L L

� � " #
� � � � �$ %

& '
 

1
r1 r2

r1 r2 p r1 r2 r2 r1
p r1 r2 r1 r2

UI
1 1 1 R RR R C (L R L R )

C L L L L

�
�  " #

� � � � � �: ;$ %
& ': ;� !

 

1
p r1 r2

r1 r2 r1 r2 r2 r1 r1 r2 r2 r1
r1 r2 r1 r2 r1 r2

UI
C R R1 1 1 1R +R + L R + L R + (L R +L R )

L L L L L L

�
�  " # " #

� �: ;$ % $ %
& ' & '� !

 

1
r1 r2 r2 r1

r1 r2 r2 r2 r1 r1 p r1 r2
r2 r1 r2 r1

UI
L L R RR R R R R R C R R
L L L L

�
�  " #

� � � � � � �: ;$ %
& '� !

 

1
r1 r2 r2 r1

r2 r1 p r1 r2
r2 r1 r2 r1

UI
L L R RR R C R R
L L L L

�
�  " #

� � � �: ;$ %
& '� !

 

mit r1 r2 r2 r1
r2 r1 p r1 r2

r2 r1 r2 r1

L L R RZ  R R C R R
L L L L

�  " #
� � � � �: ;$ %

& '� !
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4.27

Zu 1. Cp =
Rr1 + Rr2

�2 (Lr1Rr2 + Lr2Rr1)
=

200� + 100�

(2� � 200s�1)2 � (0,4H �100� + 0,2H � 200�)

Cp = 2,375μF � 2,4μF

Zu 2. Reihenfolge der Zeigerdarstellung:

I1

UR1 = Rr1 · I1

UL1 = j�Lr1 · I1

U1 = UR1 + UL1

Ip = j�Cp · U1

I2 = I1 + Ip

UR2 = Rr2 · I2

UL2 = j�Lr2 · I2

U2 = UR2 + UL2

U = U1 + U2

I1 = 20mA

UR1 = 4V

UL1 = 10,05V

U1 = 10,82V

Ip = 32,3mA

I2 = 15mA

UR2 = 1,5V

UL2 = 3,77V

U2 = 4,2V

U = 8,8V

Bild A-87 Übungsaufgabe 4.27

Zu 3. nach Aufgabe 4.26:

1. bei � = 0 (Gleichspannung): Z = Rr1 + Rr2 = 200� + 100� = 300�

2. bei � =
1

2,4 �10�6 F

1

0,4H
+

1

0,2H

�
.-

�
/�

+
200� �100�
0,4H � 0,2H

= 1,837 �103s�1 mit �2 =3,375 �106 s�2

Z = Rr1 + Rr2 � �2Cp (Lr1Rr2 + Lr2Rr1)

Z = 200�+100� � 3,375 (106 s�2 ( 2,4 (10�6 F ( (0,4H (100�+0,2H ( 200�) = �348�

Effektivwerte für das Zeigerbild:

I1 = 20 mA

UR1 = 4V

UL1 = 14,7V

U1 = 15,2V

Ip = 67mA

I2 = 48mA

UR2 = 4,8V

UL2 = 17,6V

U2 = 18,3V

U = 7V Bild A-88 Übungsaufgabe 4.27
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4.28

Zu 1. 1 3

2 4

Z Z

Z Z
=

1 4
3

2

Z Z
Z

Z

�
=

1 4
r3 r3

r2
r2

R R
R j L

1
R

j C

�
+ 	 =

+
	

r2
1 4 r2

r3 r3

r2 r2
r2 r2

1
R j

R R C
R j L

1 1
R j R j

C C

+
( �+ � = (

� +
� �

Bild A-89 Übungsaufgabe 4.28

Rr3 + j	Lr3 =
R1 � R4 � Rr2 + j �

1

	Cr2

� R1 � R4

Rr2
2 +

1

	2Cr2
2

Rr3 + j	Lr3 =
	2 � Cr2

2 � R1 � R4 � Rr2 + j � 	 � Cr2 � R1 � R4

	2 � Rr2
2 � Cr2

2 + 1

d. h. Rr3 =
	2 � Cr2

2 � R1 � R4 � Rr2

	2 � Rr2
2 � Cr2

2 + 1
und Lr3 =

Cr2 � R1 � R4

	2 � Rr2
2 � Cr2

2 + 1
.

Der Abgleich der Brücke ist frequenzabhängig, weil � in der Abgleich-Bedingung vorkommt.

Zu 2. nach Gl. (4.178)

Rr3 =
R1

Rp2

R4 =
	2 � Cr2

2 � R1 � R4 � Rr2

	2 � Rr2
2 � Cr2

2 + 1

daraus folgt

Rp2 =
	2 � Rr2

2 � Cr2
2 + 1

	2 � Cr2
2 � Rr2

=

Rr2
2 +

1

	2Cr2
2

Rr2

(vgl. Gl. (4.69), äquivalente Schaltungen)

und aus

Lr3 = R1 � R4 � Cp2 =
Cr2 � R1 � R4

	2 � Rr2
2 � Cr2

2 + 1

folgt

Cp2 =
Cr2

	2 � Rr2
2 � Cr2

2 + 1
=

1

	2Cr2

Rr2
2 +

1

	2Cr2
2

(vgl. Gl. (4.69), äquivalente Schaltungen)
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Zu 3. Mit  � � Rr2 � Cr2 � 1 bzw. �2 � Rr2
2 � Cr2

2 � 1  

ergeben sich für 

1 4
r3

r2

R RR
2 R

�
�    und   r2 1 4

r3
C R RL

2
� �

� . 

Der Abgleich der Brücke ist dann frequenzunabhängig. 
 
4.29 

1 3
1 4 2 3

2 4

Z Z bzw.    Z Z Z Z
Z Z

� � � �  

 

Zu 1. siehe Bild A-90 

r1 4 r2 3
r1 r2

1 1R R R R
j C j C

" # " #
� � � � �$ % $ %� �& ' & '

 

4 3
r1 4 r2 3

r1 r2

R RR R R R
j C j C

� � �
� �

 

d. h. 

r1 3
r1 4 r2 3

r2 4

R RR R R R bzw.
R R

� �  

und 4 3 r2 3

r1 r2 r1 4

R R C Rbzw.
C C C R

� �  

Bild A-90 Übungsaufgabe 4.29 (1) 

 
Die Brücke ist frequenzunabhängig. 
Anwendung: Messung von verlustbehafteten Kondensatoren (vgl. Bild 4.123 und Gl. 4.172). 
Zu 2. siehe Bild A-19 

 

4 3
p1 p2

p1 p2

1 1R R1 1j C j C
R R

� � �
� � � �

 

p1 p2
p1 p2

4 3

1 1j C j C
R R

R R

� � � �

�  

 

1
Rp1R4

� j� �
Cp1

R4
�

1
Rp2R3

� j� �
Cp2

R3

Bild A-91 Übungsaufgabe 4.29 (2) 

d. h. p1 3
p1 4 p2 3

p2 4

R RR R R R bzw.
R R

� �  

und 

p1 p2 p2 3

4 3 p1 4

C C C Rbzw.
R R C R

� �  

Die Brücke ist frequenzunabhängig. 
Anwendung: Messung von verlustbehafteten Kondensatoren. 
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Zu 3. siehe Bild A-92

4 r2 3
r2

p1
p1

1 1
R R R

1 j Cj C
R

� 	
� = + �� 
	� 	+ 	

4 r2 p1 3
r2 p1

1 1
R R j C R

j C R

� 	� 	
= + + 	 �� 
� 
 � 
	� 	 � 	

p14 r2
r2 p1

3 p1 r2 p1 r2

CR R 1
j R C

R R j C R C
= + + 	 +

	
Bild A-92 Übungsaufgabe 4.29 (3)

d. h.

R4

R3

=
Rr2

Rp1

+
Cp1

Cr2

und

0 = � j
1

�Cr2Rp1

+ j�Rr2Cp1 bzw.
1

�Cr2Rp1

= �Rr2Cp1

bzw.

p1 p1 r2 r2

1

R C R C
	 =

Die Brücke ist frequenzabhängig.

Anwendung: Frequenzmessung (vgl. Bild 4.131 und Gl. (4.186))

4.30

Zu 1. Bei Abgleich sind

1 3U U=

r1 r1 3 51 3 5(R j L ) I R I R I+ 	 � = � + �

und U2 = U4

2 4 42R I R I� = �

Beide Gleichungen dividiert, ergibt

r1 r1 3 51 3 5

2 4 42

(R j L ) I R I R I

R I R I

+ 	 � � + �
=

� �

und mit 1 2I I= und 4 5I I=

r1 r1 3 53

2 4 5 4

R j L R I R

R R I R

+ 	
= � +

mit der Stromteilerregel

5

3
4 5

1

I j C
1I R R

j C

	=
+ +

	

Bild A-93 Übungsaufgabe 4.29 (2)
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4 5
r1 r1 3 5 3 3 5

4 5
2 2 4 4 4 4 4

1
R R

R L R R R R Rj C
j (R R ) j C

1R R R R R R R
j C

+ +
	+ 	 = � + = + � 	 + +

	

d. h.

2 5
r1 3 5 r1 2 3

4 4

R R
R (R R ) und L CR R 1

R R

� �
= + = +� �

� �
(vgl. Gl. 4.182)

Zu 2. Der Abgleich der Brücke ist nicht frequenzabhängig, weil in der Abgleichsbedingung die
Frequenz nicht vorkommt.

4.31

Zu 1.

Bild A-94 Übungsaufgabe 4.31

1 1 31 13 3(R j L ) I j M I R I mit I I I+ � ( � � ( = ( = +

1 1 31 1 3 3(R j L ) I j M I j M I R I+ � ( � � ( � � ( = (

(R1 + j�L1 � j�M) ( I1 = (R3 + j�M) ( I
3

und

4r2 42
r2

1
R I R I

j C

� 	
+ � = �� 
	� 	

und mit 1 2I I= und 43I I=

1 1 3

4
r2

r2

R j (L M) R j M
1 RR

j C

+ � � + �
=

+
�

R1R4 + j�(L1 � M) R4 = Rr2R3 +
M

Cr2

+ j ( �MRr2 �
R3

�Cr2

�

��
�


�

1 4 r2 3 r2 1 4 r2 3
r2

M
R R R R bzw. M C (R R R R )

C
= + = �
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3
1 4 1 4 4 r2

r2

R(L M) R L R MR MR
C

� � � � � � � � �
�

 

bzw. 

 
M �

�L1R4 �
R3

�Cr2
�Rr2 � �R4

�
�2L1Cr2R4 � R3

�2Cr2 (Rr2 � R4 )
. 

Aus beiden Gleichungen lässt sich M nach dem Abgleich der Brücke berechnen. Der Abgleich der 
Brücke ist frequenzabhängig, weil in der Abgleichbedingung die Frequenz enthalten ist. 
Zu 2. Aus 1 1 3 31(R j L j M) I (R j M) I� � � � � � �  

4r2 42
r2

1R I R I
j C

" #
� � � �$ %�& '

 

ergeben sich 

1 1 1Z R j (L M)� � � �  3 3Z R j M� � �  

2 r2
r2

1Z R
j C

� �
�

 4 4Z R�  (siehe Bild A-94) 

 
 
4.32 

 

Zu 1. 1 2

3 4

Z Z
Z Z

�  

2 1 4
3

1Z Z Z
Z

� � �  

mit 

1 1 2
p2

p2

1Z R Z 1 j C
R

� �
� �

 

3 4
4p3

p3

1 1Z Z1 j Cj C
R

� �
�� �

 

ergibt sich 

1
p3

4 p3p2
p2

1 R 1 j C1 j C Rj C
R

" #
� � � �$ %$ %� & '� �

 

Bild A-95 Übungsaufgabe 4.32 

p3
p34

p2
p2 p31 p3 p3p3

1 j C
R1 j Cj C 1R 1 j CR j C RR

� �
�

� � � �
" # � �� �$ %$ %
& '
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1

Rp2

+ j�Cp2 =

j�C4
1

Rp3

� j�Cp3

�

�
�

	

	



R1
1

Rp3
2

+ �2Cp3
2

�

�
�
�

	

	





=

j�C4
1

R1Rp3

+ �2
C4Cp3

R1

1

Rp3
2

+ �2Cp3
2

d. h.

Rp2 =

1

Rp3
2

+ 	2Cp3
2

	2
C4Cp3

R1

und Cp2 =

C4
1

R1Rp3

1

Rp3
2

+ 	2Cp3
2

Zu 2. Im Zeigerbild für Leitwerte ist der Tangens des Verlustwinkels abzulesen:

p2
p

p2

1

R
tan

C
� =

�

p
p2 p2

1
tan

R C
� =

�

Bild A-96
Übungsaufgabe 4.32

tan �p =
1

� (

1

Rp3
2

+ �2Cp3
2

�2
C4Cp3

R1

(

C4
1

R1Rp3

1

Rp3
2

+ �2Cp3
2

= �Rp3Cp3

Zu 3. Ist die Parallelschaltung der Reihenschaltung äquivalent, dann sind die Phasenverschie-
bungswinkel und die Verlustwinkel gleich:

r p) = ) = ) und r p .� = � = �

Mit Gl. (4.184)

r2 r2tan R C� = �

und mit Gl. (4.77) der Transformation der Parallelschaltung in die äquivalente Reihenschaltung

Rr2 =

1

Rp2

1

Rp2
2

+ 	2Cp2
2

und 	Cr2 =

1

Rp2
2

+ 	2Cp2
2

	Cp2

ist

tan � =

1

Rp2

1

Rp2
2

+ �2Cp2
2

(

1

Rp2
2

+ �2Cp2
2

�Cp2

=
1

�Rp2Cp2

= �Rr2Cr2
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4.7 Die Leistung im Wechselstromkreis

4.33

Zu 1. Nach Gl. (4.202) ist die Wirkleistung

P = U � I � cos � = 2kVA � cos(��/3) = 2kVA � 0,5 = 1kW

und nach Gl. (4.206) die Blindleistung

Q = U � I � sin � = S � sin� = 2kVA � sin(��/3) = � 2kVA � 0,5 � 3 = �1,73kVar

Nach Gl. (4.205) ergibt sich dann für die Augenblicksleistung

p = P(1 � cos 2 �t) � Q ( sin 2 �t = 1kVA ( (1 � cos 2 �t) + 1,73kVA ( sin 2 �t

�t 1 0 �/6 �/3 �/2 2�/3 5�/6 �

P(1 cos 2 t)� � kVA 0 0,5 1,5 2,0 1,5 0,5 0

Q sin 2 t+ � 	 kVA 0 1,5 1,5 0 – 1,5 – 1,5 0

p kVA 0 2,0 3,0 2,0 0 – 1,0 0

Die Verläufe der Leistungen sind im Bild A-97 dargestellt.

Bild A-97 Übungsaufgabe 4.33
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4.34

Zu 1. Die Ersatzschaltungen sind wegen � > 0 die Reihenschaltung von Rr und Lr und die Paral-
lelschaltung von Rp und Lp:

j
r r r rZ R j L Z e )= + � = (

Zr =
U

I
� cos ) + j �

U

I
� sin )

Rr =
U

I
� cos ) =

220V

9,1A
� cos 60�

Rr = 12,1�

Lr =
U

�I
( sin )

Lr =
220V ( sin 60�

2� ( 50 s�1 ( 9,1A

Lr = 66,6mH

j
p p

p p

1 1
Y j Y e

R L
� �= � = �

�

Yp =
I

U
( cos � � j (

I

U
( sin �

Rp =
U

I � cos )
=

220V

9,1A � cos 60�

Rp = 48,4�

p
U

L
I sin

=
� ( )

Lp =
220V

2 � ( 50 s�1 ( 9,1A ( sin 60�

Lp = 88,9mH

Zu 2. P = U � I � cos ) = 220V � 9,1A � cos 60� = 1kW

2
rP I R= �

P = (9,1A)2 �12,1� = 1kW

2

p

U
P

R
=

P =
(220V)2

48,4�
= 1kW

Q = U � I � sin ) = 220V � 9,1A � sin 60� = 1,73kVar

2 2
r rQ I X I L= � = �	

Q = (9,1A)2 ( 2� ( 50s�1 ( 66,6mH

Q = 1,73kVar

2 2
p

p

1
Q U B U

L

� 	
= � ( = � ( �� �� ��� 


Q =
(220V)2

2� ( 50s�1 ( 88,9mH

Q = 1,73kVar

S = U � I = 220V � 9,1A = 2kVA

S = I2 � Rr
2 + 	2Lr

2

mit

�2 � Lr
2 = (2� � 50s�1 � 66,6mH)2

�2 ( Lr
2 = 438�2

S = (9,1A)2 � (12,1�)2 + 438�2

S 2 kVA=

S = U2 �
1

Rp
2

+
1

	2Lp
2

mit

1

�2 � Lp
2

=
1

(2� � 50 s�1 � 88,9 mH)2

1

�2 ( Lp
2

= 1,282 (10�3S2

S = (220V)2 (
1

(48,4�)2
+ 1,282 (10�3S2

S 2 kVA=
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4.35

Zu 1 S = U · I = 110 V · 5,2A = 572VA

P = U · I · cos � = 110 V · 5,2A · 0,25 = 143W

Q = S2 � P2 = (572VA)2 � (143VA)2 = 554Var

Zu 2. Nach Gl (4.66) ist

IR = I � cos ) = 5,2A � 0,25 = 1,3A

und nach Gl. (4.67)

IB = � I ( sin � = �5,2A ( 0,97 = �5,0A

Zu 3. Zr =
U

I
=

110V

5,2A
= 21,2� Rr = Zr ( cos � = 21,2� ( 0,25 = 5,3�

Xr = Zr
2 � Rr

2 = (21,2 �)2 � (5,3�)2 = 20,5�

Lr =
Xr

�
=

20,5�

2� � 50s�1
= 65,3mH

4.36

Zu 1. Nach Gl (4.225) und Gl. (4.214) sind

dC1 = tan �C1 =
P1

Q1

=
1,2VA

182VA
= 6,6 (10�3

mit Q1 = �U2 � �Cp1 = � (220V)2 � 2� � 50s�1 �12μF = �182Var

und

dC2 = tan �C2 =
P2

Q2

=
0,8VA

61VA
= 13,15 (10�3

mit Q2 = �U2 � �Cp2 = � (220V)2 � 2� � 50s�1 � 4μF = �61Var

Zu 2. Nach Gl. (4.238) ist

C
Cp p

1
d

R C
=
	

und

C1
Cp1 p1

1
d

R C
=
	

und C2
Cp2 p2

1
d

R C
=
	

.

Mit

Cp Cp1 Cp2

1 1 1

R R R
= +

ergibt sich

p C p1 C1 p2 C2C d C d C d	 � = 	 � + 	 �
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p1 C1 p2 C2
C

p1 p2

C d C d
d

C C

� + �
=

+
mit p p1 p2C C C= +

dC =
12 �10�6 F � 6,6 �10�3 + 4 �10�6 F �13,15 �10�3

(12 + 4) �10�6 F
= 8,24 �10�3

Zu 3. 1 2 3
C C

1 2

P P P (1,2 0,8)VA
d tan 8,23 10

Q Q Q (182 61)VA
�+ +

= � = = = = (
+ +

4.37

Zu 1. Nach Gl. (4.243) ist S = Y* · U2

2
r r Lr r

r
Lr r Lr r

1 (1 L C ) j R C
Y j C

R j L R j L

� � + �
= � + =

+ � + �

Y* =
(1 � �2LrCr ) � j�RLrCr

RLr � j�Lr

(
RLr + j�Lr

RLr + j�Lr

S =
RLr � �2 (RLrLrCr � RLrLrCr ) + j� (Lr � �2Lr

2Cr � RLr
2Cr )

RLr
2 + �2Lr

2
( U2

S =
RLr

RLr
2 + �2Lr

2
+ j� (

Lr � �2Lr
2Cr � RLr

2Cr

RLr
2 + �2Lr

2

�

�
�
�

	

�
	
	
( U2

S =
RLr

RLr
2 + �2Lr

2
+ j (

�Lr

RLr
2 + �2Lr

2
� �Cr (

�2Lr
2 + RLr

2

�2Lr
2 + RLr

2

�

�
�

�

�



	

	
�
�

�

�
�
�
( U2

S P j Q= + �

mit P =
RLr � U2

RLr
2 + 	2Lr

2
und Q =

�Lr

RLr
2 + �2Lr

2
� �Cr

�

�
�

	



� ( U2

Zu 2. Mit Gl. (4.70) sind

RLr

RLr
2 + 	2Lr

2
=

1

RLp

und
	Lr

RLr
2 + 	2Lr

2
=

1

	Lp

und
2

Lp

U
P

R
= und 2 2

r p
p

1
Q C U B U

L

� 	
= � � � ( = � (� �� ��� 


Zu 3. P =
100� ( (20V)2

(100�)2 + (1000s�1 ( 0,1H)2
= 2W

Q =
1000s�1 ( 0,1H

(100�)2 + (1000s�1 ( 0,1H)2
� 1000s�1 ( 2 (10�6 F

�

�
�

	



� ( (20V)2 = 1,2Var
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4.38

Zu 1. Die Parallelschaltung wird nach GI. (4.77) in die äquivalente Reihenschaltung transformiert:

RCr =

1

RCp

1

RCp
2

+ �2Cp
2

=

1

100�
1

(100�)2
+ (2� � 50s�1 � 60 �10�6 F)2

= 22�

die Reihenschaltung der beiden ohmschen Widerstände ergibt dann

R + RCr = 20� + 22� = 42�

und

1

�Cr

=
�Cp

1

RCp
2

+ �2Cp
2

=
2� � 50s�1 � 60 �10�6 F

1

(100�)2
+ 2� � 50s�1 � 60 �10�6 F( )2

1

�Cr

= 41,4� Cr =
1

� � 41,4�
=

1

2� � 50s�1 � 41,4�
= 77μF .

Nach Gl. (4.243) ist

2

Cr*
r

U 1
S mit Z (R R ) j

CZ
= = + �

�

*
Cr

r

1
Z (R R ) j (42 j 41,4)

C
= + + = + ( �

�

S =
(220V)2

(42 + j ( 41,4)�
(

(42 � j ( 41,4)�
(42 � j ( 41,4)�

S =
(220V)2 ( (42 � j ( 41,4)�

(42�)2 + (41,4�)2
= 584W � j ( 577Var

S = P + j � Q d. h. P = 584W und Q = � 577Var

Zu 2. Nach Gl. (4.243) ist

2

*

U
S

Z
=

mit

p
Cp

p p
Cp Cp

R
1 j RC

R1
Z R

1 1
j C j C

R R

� �
+ + 	� �� �

� 	= + =
+ 	 + 	

Z =
(R + RCp ) + j� ( R ( RCp ( Cp

1 + j� ( RCp ( Cp

bzw. Z* =
(R + RCp ) � j� ( R ( RCp ( Cp

1 � j� ( RCp ( Cp

S = U2 (
1 � j� ( RCp ( Cp

(R + RCp ) � j� ( R ( RCp ( Cp
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Cp
p2

Cp p Cp

Cp CpCp
p p

Cp Cp

R R
1 j C

1 j R C R RU
S

R R R RR R
1 j C 1 j C

R R R R

(
+ � (

� � ( +
= ( (

( (+ � � ( + � (
+ +

S =
U2

R + RCp

(

(1 � j�RCp ( Cp ) 1 + j� (
R ( RCp

R + RCp

Cp

�

�
�

	



�

1 + � (
R ( RCp

R + RCp

Cp

�

�
�

	



�

2

S =
U2

R + RCp

(

1 + �2 ( RCp (
R ( RCp

R + RCp

Cp
2

�

�
�

	



� � j�Cp RCp �

R ( RCp

R + RCp

�

�
�

	



�

1 + � (
R ( RCp

R + RCp

Cp

�

�
�

	



�

2

S P j Q= + �

mit

Cp

Cp

R R 20 100
16,6

R R 20 100

� � � �
= = �

+ � + �

und

1 12 50 314,16 s� �� = � � =

ergibt sich für die Wirkleistung

2 2 2 6 2

1 6 2

(220 V) 1 314,16 s 100 16,6 (60 10 F)
P 584 W

120 1 (314,16 s 16,6 60 10 F)

� �

� �
+ ( � ( � ( (

= ( =
� + ( � ( (

und für die Blindleistung

2 1 6

1 6 2

(220 V) 314,16 s 60 10 F (100 16,6 )
Q 577 Var

120 1 (314,16 s 16,6 60 10 F)

� �

� �
( ( ( � � �

= � ( = �
� + ( � ( (

4.39

Wirkleistung für den komplexen Widerstand Z:

3P U I cos= � � )

mit

I1
2 = I2

2 + I3
2 � 2 ( I2 ( I3 ( cos (180� � �)

und

cos (180 ) cos� � = � ��

und

I3 ( cos � =
I1

2 � I2
2 + I3

2( )
2 ( I2

Bild A-98 Übungsaufgabe 4.39
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und

p 2U R I= �

P = Rp � I2 �
I1

2 � I2
2 + I3

2( )
2 � I2

P = Rp �
I1

2 � I2
2 + I3

2( )
2

Leistungsfaktor:

cos � =
I1

2 � I2
2 + I3

2( )
2 ( I2 ( I3

Blindleistung:

Q = U ( I3 ( sin � = Rp ( I2 ( I3 ( 1 �
I1

2 � I2
2 + I3

2( )
2 ( I2 ( I3

�

�
�
�

	



�
�

2

mit 2
p 2sin 1 cos und U R I� = � � = (

4.40

Zu 1. UR3 = 81V UL3 = 138V

I =
U2

Rv

=
90V

200�
= 0,45A

Zu 2. Rr =
UR3

I
=

81V

0,45A
= 180�

	Lr =
UL3

I
Lr =

UL3

	 � I

Lr =
138V

2� ( 50s�1 ( 0,45A
= 0,98H

Bild A-99 Übungsaufgabe 4.40

Zu 3. cos� =
U1

2 � U2
2 + U3

2( )
2 ( U2 ( U3

=
220V( )2 � 90V( )2 � 160V( )2

2 ( 90V (160V
= 0,51

� = 59,3� Rr =
U3 ( cos�

I
=

160V ( cos 59,3�

0,45A
= 181�

Lr =
U3 � sin �

� � I
=

160V � sin 59,3�

2� � 50s�1 � 0,45A
= 0,97H
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4.41

Zu 1. Q = P · tan � = 5000VA · 0,62 = 3100Var

Nach Gl. (4.263) ist

Cp =
P � tan �

� � U2
=

5000V � 0,62

2� � 50s�1 � (220V)2
= 204μF

Zu 2. vor der Kompensation: cos � = 0,85

aus P = U · I · cos �

I =
P

U � cos )
=

5000VA

220V � 0,85
= 26,7A

nach der Kompensation: cos � = 1

IKp =
P

U
=

5000VA

220V
= 22,7A

Zu 3. Bild A-100.

Zu 4. Nach Gl. (4.270) ist

Bild A-100 Übungsaufgabe 4.41

Cr =
P

� � U2 � sin � � cos �
=

5000VA

2� � 50s�1 � (220V)2 � 0,527 � 0,85
= 734μF .

Nach Gl. (4.272) ist

UC
' = U � tan ) = 220V � 0,620 = 136V.

Kontrolle mit Gl. (4.271):

Cp = Cr � sin2 ) = 734μF � 0,2775 = 204μF.

4.42

Zu 1. S1 =
P1

cos )1

=
150 �103VA

0,6
= 250kVA > 200kVA,

der Transformator ist überlastet.

Zu 2. Die Summe der Blindleistungen beider Motoren müssen kompensiert werden, denn dann ist
die gesamte Wirkleistung P = 190kW < 200kVA. Der Leistungsfaktor cos) der beiden
kompensierten Motoren ist dann gleich 1.

Motor 1:

Q1 = P1 · tan �1 = 150kVA · 1,33 = 200kVar

mit �1 = arc cos 0,6 = 53,13°

Motor 2:

Q2 = P2 · tan �2 = 40kVA · 0,75 = 30kVar

mit �2 = arc cos 0,8 = 36,87° .

Mit der gesamten Blindleistung Q = 230kVar und mit der gesamten Wirkleistung P = 190kW ergibt
sich der Leistungsfaktor beider Motoren:

tan ) =
Q

P
=

230kVA

190kVA
= 1,21 ) = 50,44� und cos ) = 0,64.

Die notwendige Parallelkapazität kann über die zu kompensierende Blindleistung oder nach
Gl. (4.263) berechnet werden:
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Aus

QC = �U2 ( �Cp = � Q

ergibt sich

Cp =
Q

� � U2
=

230kVA

2� � 50s�1 � (220V)2
= 15mF .

Die Reihenkapazität beträgt nach Gl. (4.271)

Cr =
Cp

sin2 )
=

15mF

0,771( )2
= 25,2mF .

4.43

Zu 1. *
a iZ Z= oder *

i aZ Z= i i iZ R j L= + 	

p
Cp

a Lr r

p p
Cp Cp

1
j C

R1
Z R j L

1 1
j C j C

R R

� �

= + � + (
+ � � �

Za = RLr +

1

RCp

1

RCp
2

+ �2Cp
2

� j� (
Cp

1

RCp
2

+ �2Cp
2

� Lr

�

�

�
�
�
�
�

	




�
�
�
�
�

Za
* = RLr +

1

RCp

1

RCp
2

+ �2Cp
2

+ j� (
Cp

1

RCp
2

+ �2Cp
2

� Lr

�

�

�
�
�
�
�

	




�
�
�
�
�

Ri = RLr +

1

RCp

1

RCp
2

+ �2Cp
2

Li =
Cp

1

RCp
2

+ �2Cp
2

� Lr

Zu 2. Nach Gl. (4.77) ist

RCr =

1

RCp

1

RCp
2

+ 	2Cp
2

und Cr =

1

RCp
2

+ 	2Cp
2

	2Cp

a Lr Cr r
r

1
Z R R j L

C

� 	
= + + ( � �� ��� 


Za = RLr +

1

RCp

1

RCp
2

+ �2Cp
2

+ j ( �Lr �
�Cp

1

RCp
2

+ �2Cp
2

�

�

�
�
�
�
�

	




�
�
�
�
�
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4.44

Zu 1. *
a iersZ Z=

Ziers =

(Ri + RLr + j	Lr ) �
1

1

RCp

+ j	Cp

Ri + RLr + j	Lr +
1

1

RCp

+ j	Cp

Ziers =
Ri + RLr + j	Lr

(Ri + RLr + j	Lr ) �
1

RCp

+ j	Cp

�

�
�

	

	

 + 1

i Lr r
iers

i Lr r2
r p i Lr p

Cp Cp

R R j L
Z

R R L
1 L C j (R R )C

R R

+ + �
=
� � 	 �+

+ � � + � ( + +� 
 � �� 
 � �� � 	 �

Za = Ra + j ( Xa = Ziers
* =

Ri + RLr � j�Lr

1 +
Ri + RLr

RCp

� �2LrCp

�

�
�

�

�

 � j� ( (Ri + RLr )Cp +

Lr

RCp

	

	
�
�

�

�
�
�

=
Ri + R Lr � j�Lr

1 +
Ri + R Lr

RCp

� �2LrCp

�

�
�

�

�
� � j� (Ri + R Lr )Cp +

Lr

RCp






�
�




�
�
�

1 +
Ri + R Lr

RCp

� �2LrCp

�

�
�

�

�
� + j� (Ri + R Lr )Cp +

Lr

RCp






�
�




�
�
�

1 +
Ri + R Lr

RCp

� �2LrCp

�

�
�

�

�
� + j� (Ri + R Lr )Cp +

Lr

RCp






�
�




�
�
�

i Lr r2 2
i Lr r p r i Lr p

Cp Cp
a 2 2

i Lr r2 2
r p i Lr p

Cp Cp

R R L
(R R ) 1 L C L (R R )C

R R
R

R R L
1 L C (R R )C

R R

� � 
 
+
+ + � � + � + +� � � �� � � �� � 
 �=
� � 
 
+

+ � � + � + +� � � �� � � �� � 
 �

Ra =

(Ri + RLr ) 1 +
Ri + RLr

RCp

�

�
�

�

�
� +

�2Lr
2

RCp

1 +
Ri + RLr

RCp

� �2LrCp

�

�
�

�

�
�

2

+ �2 (Ri + RLr ) Cp +
Lr

RCp






�
�




�
�
�

2
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Xa =

� ( (Ri + RLr ) Cp +
Lr

RCp

	

	
�
�

�

�
�
�

(Ri + RLr ) � �Lr 1 +
Ri + RLr

RCp

� �2LrCp

�

�
�

�

�



1 +
Ri + RLr

RCp

� �2LrCp

�

�
�

�

�



2

+ �2 (Ri + RLr ) Cp +
Lr

RCp

	

	
�
�

�

�
�
�

2

2 2
i Lr p r r p

a 2 2

i Lr r2 2
r p i Lr p

Cp Cp

(R R ) C L (1 L C )
X

R R L
1 L C (R R ) C

R R

� + � � � �
=
� � 
 
+

+ � � + � + +� � � �� � � �� � 
 �

Zu 2. Pa max =
Uq ers

2

4 � Riers

nach Gl. (4.281)

q
q ers

i Lr r p
Cp

p
Cp

U 1
U U

1 1
R R j L j C

1 Rj C
R

= = �
+ + 	 + + 	

+ 	

l

Uq ers =
Uq

Ri + RLr + j	Lr( ) � 1

RCp

+ j	Cp

�

�
�

	

	

 + 1

Uq ers =
Uq

1 +
Ri + RLr

RCp

� �2LrCp

�

�
�

�

�

 + j� ( Ri + RLr( )Cp +

Lr

RCp

	

	
�
�

�

�
�
�

Uq ers =
Uq

1 +
Ri + RLr

RCp

� �2LrCp

�

�
�

�

�
�

2

+ �2 (Ri + RLr ) Cp +
Lr

RCp






�
�




�
�
�

2

Pa max =
Uq

2

4 � (Ri + RLr ) 1 +
Ri + RLr

RCp

�

�
�

�

�
� +

	2Lr
2

RCp






�
�




�
�
�

mit Ri = Ra   (siehe unter 1.)

Zu 3. i Lr r Cp
p

1
R 4 R 6 L 8 5 R 500

C
= � = � � = � = � = �

�

2

a 2 2

10 (1 10 /500 ) 64 /500
R 2,35

(1 10 /500 8 /5 ) (10 /5 8 /500 )

� ( + � � + � �
= = �

+ � � � � � + � � + � �

2

a 2 2

100 /5 8 (1 8 /5 )
X 5,64

(1 10 /500 8 /5 ) (10 /5 8 /500 )

� � � � ( � � �
= = �

+ � � � � � + � � + � �

2

a max 2

81 V
P 1,96 W

4 [10 (1 10 /500 ) 64 /500 ]
= =

� � + � + � �
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5 Ortskurven
5.1

Zu 1. U = (Rr + j � Xr ) � I

U = (Rr + j	Lr ) � I

U = Rr � I + j	 p� Lr0 � I

mit Lr = p � Lr0 = p �100mH

und p = 1... 3

U = 200� � 0,01A +

j ( 2� ( 200s�1 ( p ( 0,1H ( 0,01A

U = 2V + p � j �1,257V

Zu 2. I =
U

Rr + j � Xr

=
U

Rr + j	Lr

I =
U

Rr + j	pLr0

=
1

Rr

U
+ j p

	Lr0

U

I =
1

200�
10V

+ j ( p (
2� ( 200s�1 ( 0,1H

10V

1

1
I =

(20 p j 12,57)A�+ � �

mit

Lr = p · Lr0 = p · 100mH

und

p = 1 … 3

und

A = 20A–1 B = j · 12,57A–1

1/(2A) = 0,025A = 25mA

Bild A-101 Übungsaufgabe 5.1
Zu 3. Kontrolle:

p = 1: I1 =
1

20 + j �12,57
�

20 � j �12,57

20 � j �12,57
A = (35,8 � j � 22,5) mA

p = 2: I2 =
1

20 + j � 25,1
�

20 � j � 25,1

20 � j � 25,1
A = (19,3 � j � 24,4) mA

p = 3: I3 =
1

20 + j � 37,7
�

20 � j � 37,7

20 � j � 37,7
A = (11,0 � j � 20,7) mA
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5.2

Zu 1. Zu 2.

Bild A-102 Reihenschaltung
Übungsaufgabe 5.2 Bild A-103 Parallelschaltung

Übungsaufgabe 5.2

Zr = Rr � j (
1

p ( �0 ( Cr

Zr = 17,3� � j �
1

p � �0 � 318μF

Yp =
1

Rp

+ j � p � 	0 � Cp

Yp =
1

23,1�
+ j ( p ( �0 ( 79,6μF

Die Bedingungsgleichung für die Äquivalenz der Reihen- und Parallelschaltung bei p = 1 lautet:

r1
p1

1
Z

Y
=

Rr � j (
1

�0 ( Cr

=
1

1/Rp + j ( �0 ( Cp

Rr

Rp

+
Cp

Cr

+ j ( �0RrCp �
1

�0RpCr

�

�
�

	



� = 1

d. h.

Rr

Rp

+
Cp

Cr

= 1

17,3�
23,1�

+
79,6μF

318μF
= 1

0,7489 0,2503 1+ =

und

0 r p
0 p r

1
R C

R C
	 =

	

0
r r p p

1

R C R C
	 =

�0 =
1

17,3� ( 318μF ( 23,1� ( 79,6μF

�0 = 314s�1 und f0 = 50Hz

Bei f0 = 50 Hz sind die beiden Schaltungen äquivalent (vgl. Aufgabe 4.6).

Die Ortskurvengleichungen lauten dann

Zr = 17,3� � j (
1

p ( 314s�1 ( 318μF

Zr = 17,3� �
1

p
( j (10�

Yr =
1

Zr

=
1

17,3� �
1

p
( j (10�

mit A = 17,3� und 1/(2A) = 28,9mS

Yp = 43,3mS + j � p � 314s�1 � 79,6μF

Yp = 43,3mS + p � j � 25mS

Zp =
1

Yp

=
1

43,3mS + p � j � 25mS

mit A = 43,3mS und 1/(2A) = 11,5�
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Bild A-104 Ortskurven der Reihen- und Parallelschaltung der Übungsaufgabe 5.2

Zu 3 2 2
r1Z (17,3 ) (10 ) 20= � + � = � Yp1 = (43,3mS)2 + (25mS)2 = 50mS

d. h.

r1 p1
r1 p1

1 1
Z Z

Y Y
= = =

5.3

Zu 1. Reihenschaltung

Zr = Rr + j · 0 r
0 r

1
p L

p C

� 	
� �� 
�� 	

mit �0 =
r r

1 1

L C 0,04H 1 F
=

� μ

�0 = 5000 s– 1

Zr = Rr + j · Xkr ·
1

p
p

� �
�� �

� 	

mit Xkr =
Lr

Cr

=
0,04 H

1μF
= 200�

Parallelschaltung

Yp = Gp + j · 0 p
0 p

1
p C

p L

� 	
� �� 
� 
�� 	

mit �0 =
p p

1 1

C L 1 F 0,04H
=

μ �

�0 = 5000 s– 1

Yp = Gp + j · Bkp ·
1

p
p

� �
�� �

� 	

mit Bkp =
Cp

Lp

=
1μF

0,04 H
= 5mS
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r
1

Z 200 j 200 p
p

� 	
= � + ( � ( �� �

� 


Yr =
1

Zr

=
1

200� + j ( 200� ( p �
1

p

�
��

	

�

mit A = 200� und 1/(2A) = 2,5mS

p
1

Y 5mS j 5mS p
p

� 	
= + � � �� 


� 	

Zp =
1

Yp

=
1

5mS + j � 5mS� p �
1

p

�
��

	
	


mit A = 5mS und 1/(2A) = 100�

Werden für 2,5mS und 100� gleiche Längen gewählt, sind die Ortskurven für Zr und Yp, Yr und Zp
identisch.

Bild A-105 Ortskurve der Reihen- und Parallelschaltung der Übungsaufgabe 5.3
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Zu 2. Aus der Leitwert-Ortskurve des Reihenschwingkreises lassen sich die Zeigerlängen Yr in
Abhängigkeit von p ablesen:

p 1 1
1,1
0,91

1,2
0,83

1,3
0,77

1,4
0,71

1,5
0,67

1,6
0,63

1,7
0,59

1,8
0,56

1,9
0,53

2,0
0,5

Yr mS 5 4,9 4,7 4,4 4,1 3,9 3,6 3,4 3,2 3,0 2,7

Werden die abgelesenen Yr -Werte mit Rr multipliziert,

Yr · Rr = r
r

I I
R ,

U U / R
� =

dann ergeben sich die bezogenen Stromwerte der Gleichung 4.132, die mit

Qr =
Xkr

Rr

=
200�
200�

= 1

im Bild 4.98 der obersten Kurve entsprechen. Die abgelesenen Yr -Werte können also mit der Glei-
chung (4.132) mit x = p rechnerisch kontrolliert werden:

Yr =
I

U
=

1

Rr ( 1 + Qr
2 ( p �

1

p

�
��

	

�

2
=

1

200� ( 1 + p �
1

p

�
��

	

�

2

5.4

Bild A-106 RL-Schaltungen im Bildbereich der Übungsaufgabe 5.4

UR

U
=

Rr

Rr + j	Lr

=
1

1 + j	 �
Lr

Rr

r
0

r

R

L
	 =

IL

I
=

Rp

Rp + j	Lp

=
1

1 + j	 �
Lp

Rp

p
0

p

R

L
	 =

UR

U
=

IL

I
=

1

1 + j �
	
	0

=
1

1 + j � p
mit 	 = p � 	0
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UL

U
=

j	Lr

Rr + j	Lr

=
1

1 +
Rr

j	Lr

IR

I
=

j	Lp

Rp + j	Lp

=
1

1 +
Rp

j	Lp

UL

U
=

1

1 + j �
1

	
�

Rr

Lr

r
0

r

R

L
	 =

IR

I
=

1

1 � j (
1

�
(

Rp

Lp

p
0

p

R

L
	 =

UL

U
=

IR

I
=

1

1 � j (
�0

�

=
1

1 � j (
1

p

=
1

1 � j ( p*
mit � = p ( �0 p* =

1

p

Bild A-107 RC-Schaltungen im Bildbereich der Übungsaufgabe 5.4

pR

p p
p

p

1

j CI 1
1I 1 j R CR

j C

	
= =

+ 	+
	

0
p p

1

R C
	 =

C r

r r
r

r

1
U 1j C

1U 1 j R CR
j C

	= =
+ 	+

	

0
r r

1

R C
	 =

IR

I
=

UC

U
=

1

1 + j �
	
	0

=
1

1 + j � p
mit 	 = p � 	0

IC

I
=

Rp

Rp +
1

j	Cp

=
1

1 +
1

j	RpCp

IC

I
=

1

1 � j (
1

�
(

1

RpCp

UR

U
=

Rr

Rr +
1

j	Cr

=
1

1 +
1

j	RrCr

UR

U
=

1

1 � j (
1

�
(

1

RrCr
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0
p p

1

R C
	 = 0

r r

1

R C
	 =

IC

I
=

UR

U
=

1

1 � j (
�0

�

=
1

1 � j (
1

p

=
1

1 � j( p*
mit � = p ( �0 und p* =

1

p

Wie aus den Ortskurvengleichungen ersichtlich, sind die Ortskurven von jeweils vier Strom- und
Spannungsverhältnissen identisch; die Größen Rr, Lr, Cr, Rp, Lp und Cp , gehen nur in die jeweili-
gen Bezugsfrequenzen �0 ein.

Bild A-108
Ortskurven der
Übungsaufgabe 5.4

5.5

Zu 1. 2

Lr rLr r1

U R 1

R LU R R j L
1 j

R R

= =
+ + 	 � �+ + 	� �

� 	

Zu 2. Mit � = p · �0 und �0 = R/Lr und RLr = R

U2

U1

=
1

1 +
RLr

R

�

��
	

	

+ j � p � 	0 �

Lr

R

=
1

2 + j � p

Die Ortskurve ist ein Kreis durch den Nullpunkt mit
1 1

.
2A 4

=

Zu 3.

RLr/R 0 1/2 1 2

U2/U1 1/(1 + jp) 1/(1,5 + jp) 1/(2 + jp) 1/(3 + jp)

1/(2A) 1/2 1/3 1/4 1/6
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Bild A-109
Ortskurven und Betragsfunk-
tion der Übungsaufgabe 5.5

Zu 4. Die Beträge von U2/U1 lassen sich sowohl aus der Ortskurvenschar ablesen als auch rechne-
risch ermitteln durch

2

2
1 Lr

U 1

U R
1 1

R

=
� �+ +� �
� �

(Darstellung siehe Bild A-109)

5.6

UR

U
=

Rr

Rr + j ( �Lr �
1

�Cr

�

��
	


�

UR

U
=

1

1 + j (
�Lr

Rr

�
1

�RrCr

�

��
	


�
Bild A-110 Schaltung im Bildbereich
der Übungsaufgabe 5.6

Mit � = p · �0

UR

U
=

1

1 + j ( p�0

Lr

Rr

�
1

p�0RrCr

�

��
	


�

=
1

1 + j( Qr ( p �
1

p

�
��

	

�

=
1

1 + j ( p �
1

p

�
��

	

�

mit

�0 =
1

LrCr

=
1

0,08H � 2 �10�6 F
= 2500s�1
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und

Q = kr 0 r r
6

r r r 0 r r r

X L 1 1 L 1 0,08 H
1

R R R C R C 200 2 10 F�
�

= = = = =
� � �

(vgl. Gl. 4.118)

Die Ortskurve ist ein Kreis durch den Nullpunkt mit 1/(2A) = 1/2.

Bei p = 1, also bei Resonanzfrequenz ist UR = U, denn die induktive und kapazitive Spannung kom-
pensieren sich: UL + UC = 0.

Bei p = 0, d. h. bei Gleichspannung, fließt kein Strom, weil der Kondensator einen unendlichen
Widerstand bedeutet. Die Spannung UR ist also Null.

Bei p = 	, d. h. bei unendlich hoher Frequenz, ist der Wechselstrom ebenfalls Null, weil der induk-
tive Widerstand unendlich groß ist. Die Spannung UR ist also ebenfalls Null.

Bild A-111
Ortskurve der Übungsaufgabe 5.6

5.7

Zu 1.

p
p 2 p2

1 1

p
p 2 p

1
1 1 1

j C
R R j LU

1U R
1 1 1

j C
R R j L

+ + 	 +
	

=
+

+ + 	 +
	

2

1
1 p

p 2 p

U 1

U 1 1 1
R j C 1

R R j L

=
� 	
� + + 	 + +� 
� 
	� 	

Bild A-112 Schaltung im Bildbereich
der Übungsaufgabe 5.7
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U2

U1

=
1

R1

Rp

+
R1

R2

+ 1
�

�
�

	



� + j ( �R1Cp �

R1

�Lp

�

�
�

	



�

mit � = p ( �0

1
0

9 3p p

1 1
10000 s

C L 100 10 F 100 10 H

�
� �

� = = =
( ( (

U2

U1

=
1

1

2
+

1

2
+ 1

�
��

	

�

+ j ( p (10000s�1 ( 500� (100 (10�9 F �
500 �

p (10000 s�1 (100 (10�3 H

�

��
	


�

U2

U1

=
1

2 + j � 0,5 � p �
1

p

�
��

	
	


,

das ist die Gleichung eines Kreises durch den Nullpunkt mit dem Mittelpunkt auf der reellen Achse
mit 1/(2A) = 1/4.

Zu 2.

Bild A-113 Ortskurve der Übungsaufgabe 5.7

Zu 3. Bei p = 1 herrscht Resonanz zwischen Cp und Lp, d. h. der Leitwert der Parallelschaltung
von Cp und Lp ist Null und der Widerstand ist entsprechend unendlich groß. Dadurch blei-
ben von der Schaltung nur zwei in Reihe geschaltete, gleich große ohmsche Widerstände
von je 500� übrig, so dass die Spannung U1 halbiert wird.
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5.8

Zu 1. Y =
Lr r Lr 0 r

1 1 1 1 1
L

R R j L R R p j L E p F
+ = + = +

+ 	 + � 	 + �

�0 = 100s– 1, p = 1, 2, ..., 10

Y =
1

100�
+

1

50� + p ( j (100s�1 ( 0,1H
= 0,01S +

1

50� + p ( j (10�

das ist ein verschobener Kreis durch den Nullpunkt mit 1/(2A) = 1/(2 · 50�) = 0,01S

Bild A-114 Ortskurve der Übungsaufgabe 5.8

Zu 2.

p = 0 und 	 = 0 : Y =
1

100�
+

1

50�
=

3

100�
= 0,03S

p = 	 und � = 	: Y =
1

100�
= 0,01S

p = 5 und � =500s�1: Y =
1

100�
+

1

50 �+ j �50�
=

1

100�
+

1

100�
� j�

1

100�
= (0,02� j �0,01)S

Zu 3.
siehe Bild A-114 mit Asymptote Y = 0,01S.
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5.9 

Zu 1. 
 

U
UL

�
Rr � j�Lr �

1
j�Cr

j�Lr
� � j�

Rr
�Lr

�1�
1

�2LrCr
 

r r 2
2 2 2

0 r 0 r0 r r 0 r rL

U R 1 R 1j 1 1 j p* p*
U p L Lp L C L C

� � � � � � � � � �
�� �� �

 

mit   � = p · �0 =
 

1
p*

�0   und   1 = p*
p

. 

Mit 

�0 =
r r

1
L C

   und   0 r kr
r

r r

L X Q 2
R R

�
� � �    (vgl. Gl. 4.118) 

ist 

2 2 2

rL

U 1 j p*1 j p* p* 1 p* p* 1 p* j .
U Q 2 2

� � � � � � � � � � � �  

Bei Resonanz des Reihenschwingkreises ist � = �0, also p* = 1/p = 1, und das Spannungsverhältnis 
ist imaginär: 

L
r

r L rL

U j j U 1 1 Umit   bzw.   Q 2
U Q 2 U Q 2 U

� � � � � � � �      (vgl. Gl. 4.125). 

Die Ortskurve ist eine Parabel, die spiegelsymmetrisch zu der Ortskurve von U/UC (Bild 5.30) an 
der reellen Achse ist. Das Vorzeichen des Imaginärteils ist umgekehrt, und bei den Parameterwerten 
steht anstelle von p der Kehrwert 1/p. 

 

 
 
 
 
 
Bild A-115 
Ortskurve der 
Übungsaufgabe 5.9 

 
Zu 2. Inversion: 

2 2 2L
r

U 1 1 1
1 j p*U 1 j p* p* 1 p* p* 1 p* j

Q 2 2

� � �
� � � � � � � � �
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p = 0, p* = 	
UL

U
= 0

p =
1

2
, p* = 2

UL

U
=

1

�3� j
= � 0,3+ j �0,1= 0,316 �e j �161,6º

p =
2

3
, p* = 1,5

UL

U
=

1

�1,25� j �0,75
= � 0,59 + j �0,35= 0,686 �e j �149,3º

p = 1, p* = 1:
UL

U
=

1

1�1� j/2
= j �2 = 2 �e j �90º

p = 2, p* =
1

2
:

UL

U
=

1

0,75� j �0,25
=1,2 + j �0,4 =1,26 �e j �18,4º

p = 	, p* = 0:
UL

U
= 1

Zu 3. Mit Hilfe der Gl. (4.127) mit x = p und Qr = 2 lassen sich für p = 0, ..., 2 obige Ergebnisse
bestätigen:

UL

U
=

p

1

4
+ p�

1

p

�
��

�
	�

2
.

Für p = 	 ist

UL

U
= lim

x��

1

1

4 p2
+ 1�

1

p2

�

��
�

	


2
=1 .

Nach Gl. (4.129) ist das Maximum bei xL = pL =
1

1,07
1 1/8

=
�

und beträgt

LmaxU 2
2,066.

U 1 1/16
= =

�

5.10

Zu 1. Y =
1

RCp

+ j	Cp +
1

RLr + j	Lr

=
1

RCp

+ p � j	0Cp +
1

RLr + p � j	0Lr

mit � = p · �0 und �0 = 10 · 103s– 1 und den gegebenen Größen ist

Y =
1

100 (103�
+ p ( j(10 (103s�1 (0,2 (10�9 F+

1

50 (103�+ p ( j(10 (103s�1 (1H

Y = 10μS+ p � j �2μS+
1

50k�+ p � j �10k�
.

Die Ortskurve kann durch Überlagerung einer Geraden und eines Kreises durch den Nullpunkt mit
1/(2A) = 1/(2 ·50k�) = 10μS ermittelt werden (siehe Bild A-116).



344 Anhang: Lösungen der Übungsaufgaben

Bild A-116 Ortskurve der Übungsaufgabe 5.10

Der parametrierte Kreis müsste wegen des Realteils der Geraden nach rechts um 10μS verschoben
werden. Einfacher ist jedoch eine Verschiebung des Koordinatenursprungs um –10μS, also nach
links; der Kreis bleibt dann unverändert. Selbstverständlich müssen dann die μS-Werte der reellen
Achse um 10μS verändert werden. Anschließend lassen sich die Imaginärteile des Kreises mit denen
der Geraden überlagern.

Zu 2. Bei p = 5, also bei � = 50000s–1 ist der komplexe Leitwert reell: Y5 = 20μS.

Nachweis für �:

Nach der Abhandlung über „Parallelschaltung verlustbehafteter Blindwiderstände“ im Abschnitt
4.5.2 ist nach Gl. (4.150)

I =
1

RCp

+
RLr

RLr
2 +�2Lr

2

�

�
�

�

�

 + j( �Cp �

�Lr

RLr
2 +�2Lr

2

�

�
�

�

�



	

	
�
�

�

�
�
�
(U .

Bei Resonanz ist der Imaginärteil des Leitwertoperators Null:

	Cp =
	Lr

RLr
2 +	2Lr

2
bzw. RLr

2 +	2Lr
2 =

Lr

Cp
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Die Formel für die Resonanzfrequenz lautet dann und ergibt

� =
1

LrCp

�
RLr

2

Lr
2

=
1

1H �0,2 �10�9 F
�

(50 �103�)2

1 H( )2
= 50 �103s�1

Nachweis für den reellen Leitwert mit Hilfe der Ortskurvengleichung mit p = 5:

Y5 =10μS+ 5 � j�2μS+
1

50k�+ j�5 �10k�
=10μS+ j�10μS+

1

50k�
�

1

1+ j

Y5 =10μS+ j �10 μS+ 20 μS �
1

2
�(1� j) = 20μS

5.11

Zu 1. Z = RLr + j�Lr +
1

1

RCp

+ j	Cp

1. � = 0 mit Z = RLr + RCp

2. Z = RLr + j�Lr +
1

1

RCp

+ j�Cp

(

1

RCp

� j�Cp

1

RCp

� j�Cp

Z = RLr +

1

RCp

1

RCp
2

+�2Cp
2

�

�

�
�
�
�
�

	

�

	
	
	
	
	

+ j� ( Lr �
Cp

1

RCp
2

+�2Cp
2

�

�

�
�
�
�
�

	

�

	
	
	
	
	

.

Der komplexe Widerstand ist reell, wenn der Imaginärteil Null gesetzt wird:

Lr =
Cp

1

RCp
2

+	0
2Cp

2

bzw.
1

RCp
2

+	0
2Cp

2 =
Cp

Lr

�0 =
1

LrCp

�
1

RCp
2Cp

2
=

1

120 �10�3H �0,12 �10�6 F
�

1

(1,25 �103� �0,12 �10�6 F)2
= 5000 s�1

Zu 2. Z = RLr + p · j �0 Lr +
1

1

RCp

+ p � j	0Cp

mit � = p · �0.

Mit �0 = 5000s–1 (�0 = 0 scheidet als Bezugsfrequenz aus) und den gegebenen Größen ist

Z = 1k� + p · j 5000s– 1 · 120 · 10– 3H +
1

1

1,25 k�
+ p ( j (5000 s�1 (0,12 (10�6 F
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Z = 1k� + p � j � 0,6k� +
1

0,8mS + p � j � 0,6mS
.

Die Ortskurve ist eine Überlagerung einer Geraden und eines Kreises durch den Nullpunkt mit
1/(2A) = 1/(2 · 0,8 mS) = 625� = 0,625k� (siehe Bild A-117).

Bild A-117 Ortskurve der Übungsaufgabe 5.11

Zu 3. p = 0: Z = RLr + RCp = 1k� + 1,25k� = 2,25k�

p = 1: Z= RLr +

1

RCp

1

RCp
2

+	0
2Cp

2

= RLr +
1

1

RCp

+ RCp � 	0Cp( )2

Z = 1 k� +
1

1

1,25 k�
+1,25 k� ((5000 s�1 (0,12 (10�6 F)2

Z = 1,8k�.
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6 Transformator

6.1

Zu 1. Quantitatives Zeigerbild

Bild A-118

Übungsaufgabe 6.1

Reihenfolge der Darstellung und Berechnung der Effektivwerte:

U2 U2 = 40V

I2 = U2/R I2 = U2/R

I2 = 40V/200� = 0,2A

R2 · I2 R2 · I2 = 10� · 0,2A = 2V

j � L2 · I2 �L2 · I2 = 104s– 1 · 45mH · 0,2A

�L2 · I2 = 90V

mit L2 =
M2

k2L1

=
(15mH)2

0,52 �20mH
= 45mH

aus k =
1 2

M

L L
(Gl. 3.369, Band 1)

j�M · I1 j�M · I1 = 100V (abgelesen)

I1 I1 =
�M ( I1

�M
=

100V

104 s�1 (15mH
= 0,67A

– j�M · I2 �M · I2 = 104s– 1 · 15mH · 0,2A = 30V

R1 · I1 R1 · I1 = 6� · 0,67A = 4,02V

j�L1 · I1 �L1 · I1 = 104s– 1 · 20mH · 0,67A = 133,3V

U1 U1 = 107V mit �1 = 80° (abgelesen)

Zu 2. Nach Gl. (6.25)

U2

U1

=
1

R + R2( ) (L1 + R1 (L2

M (R

�

�
��

�

	



+ j(

�2 L1L2 � M2( )� (R + R2 ) (R1

�M (R

�

�
�
�

�

	





U2

U1

=
1

210� (20mH + 6� (45mH

15mH (200�
+ j(

100002 s�2 20mH (45mH � (15mH)2�
�

	
� � 210� (6�

10000s�1 (15mH (200�

U2

U1

=
1

1,49 + j� 2,208
mit U2 = 40V ist U1 = (1,49 + j ·2,208) · 40V = (59,6 + j ·88,32)V

und

U1 = 1,492 + 2,2082 �40V = 2,66 �40V =106,5V
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Zu 3. U2 =
U1

2,66
=

220V

2,66
= 82,7V

Zu 4. Mit L2 =
M2

L1

=
(15mH)2

20mH
=11,25mH (Gl. 3.370, Band 1)

U2

U1

=
1

210� (20mH + 6� (11,25mH

15mH (200�
+ j(

100002 s�2 20mH (11,25mH � (15mH)2�
�

	
� � 210� (6�

10000s�1 (15mH (200�

U2

U1

=
1

1,4225� j� 0,042
mit

U2

U1

=
1

2,025
=

1

1,423
und U1 = 1,423 · 40V = 56,9V

6.2

Zu 1. Die Gleichungen (6.10) bis (6.12) vereinfachen sich mit R1 = 0, R2 = 0, Z = 0 in

U1 = j�L1 · I1 – j�M · I2

U2 = – j�L2 · I2 + j�M · I1 = 0

Damit ist

I2 = 1
2

M
I

L
� und U1 = j�L1 · I1 – j�

2

1
2

M
I

L
�

und

Zink =
U1

I1

= j� ( L1 �
M2

L2

�

�
�

�

	

 (vgl. Gl. 6.27 mit R1 = 0 und R2 = 0)

und mit M2 = k2 · L1 · L2

Zink = j� � L1 �
k2L1L2

L2

�

�
�

	

	

 = j�L1 · (1 – k2) = j� · �L1 (Gl. 3.377, Band 1)

Zu 2. Im Bild 6.19 (Ersatzschaltbild des Transformators mit nur einer Längsinduktivität) werden
R1 = 0, R2 = 0 und U2 = 0 gesetzt, wodurch sich das Ergebnis bestätigt.

Zu 3. Zink = j� ( L1 �
M2

L2

�

�
�

�

	

 = j�Lers

Zink = j� ( 20mH �
15 mH( )2
45 mH

�

�

�
�

�

	





= j� (15mH, d. h. Lers = 15mH

6.3

Zu 1. Mit den Gleichungen (6.32) bis (6.34) und R1 = 0, R2 = 0 und Z = Rr +
r

1

j C	
ist

U1 = j�L1 · I1 – j�(L1 + M) · I2

U2 = j�(L1 + M) · I1 – j�(L1 + L2 + 2M) · I2

U2 = r
r

1
R

j C

� �
+� �	� 	

· I2
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Zu 2. Zin = 1 2
1 1

1 1

U I
j L j (L M)

I I
= � � � + (

mit U2 = j� (L1 + M) · I1 – j� (L1 + L2 + 2M) · I2 = r 2
r

1
R I

j C

� 	
+ �� 
	� 	

und
I2

I1

=
j	 �(L1 + M)

j	 �(L1 + L2 + 2M) + Rr +
1

j	Cr

ist

Zin = j�L1 +
�2 (L1 + M)2

Rr + j( �  (L1 + L2 + 2M)�
1

�Cr

�

�
�

	

�
	

Zu 3. Zin =
2 2

1
1

r

(L M )
j L

R

	 +
+ 	 wegen � (L1 + L2 + 2 M) =

r

1

C	

Zu 4. � =
( )1 2 r

1
,

L L 2M C+ + �

mit M = k 1 2L L = 0,6 · 200mH = 120mH

� =
1

200mH + 200mH + 2 �120mH( ) �62,5nF
= 5000 s�1

Zin =
1 2

1[5000s (200mH 120mH)]
j 5000s 200mH

25

�
�( +

+ ( (
�

Zin = 102 400� + j · 1000�

6.4

Zu 1. Nach Bild 6.16 ist mit ü = 1,2

M' = ü · M = 1,2 · 15mH = 18mH

mit

M = k � L1L2

M = 0,5 · 20 �45mH =15mH

R1 = 60� Bild A-119 Übungsaufgabe 6.4

L1s=L1 –M'=20mH–18mH=2mH

' ' ' 2 '
2s 2 2L L M ü L M= � = � �

' 2
2sL 1,2 45mH 18mH 46,8mH= � � =

' 2 2
2 2R ü R 1,2 100 144= � = � � = �
'

22U ü U 1,2 40V 48V= � = � =
' 2 2
r rR ü R 1,2 50 72= � = � � = �

' 2 2
r rL ü L 1,2 8,67mH 12,5mH= � = � = Bild A-120 Übungsaufgabe 6.4
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Zu 2. Reihenfolge der Zeigerbilddarstellung und Berechnung der Effektivwerte:

'
2U

'
' 2
2 '

U
I

Z
=

'
' 2
2 ' j

U
I

Z e )=
�

'
2U = 48V

I2
' =

U2
'

Z'

mit Z' = Rr
' 2 + (	Lr

' )2

Z' = 2 1 2(72 ) (10000s 12,5mH) 144�� + ( = �

und � = arc tan ' '
r r( L / R )	 = arc tan (125�/72 �) = 60°

'
2

48V
I 0,33A

144
= =

�

''
2 2R I�

''
2s 2j L I	 �

' '' '
1 2j M I j M (I I )μ� ( = � ( �

''
' '

1 2'

j M I
I I I

j M

μ
μ

� (
= = �

�

' '
1 2I I Iμ= +

1s 1j L I	 �

1 1R I�

1U

' '
2 2R I� = 144� · 0,33A = 48V

	L2s
' � I2

' = 10000 s–1 · 46,8mH · 0,33A = 156V

' 'M I 206Vμ	 � =

Iμ
' =

�M' ( Iμ
'

�M'
=

206V

10000s�1 (18mH
=1,14A

1I 1,46A=

1
1s 1L I 10000s 2mH 1,46A 29,2V�� ( = ( ( =

1 1R I 60 1,46A 87,6V� = � � =

U1 = 256V

Zu 3. Maßstabsänderung des Zeigerbildes:
*
1

1

U 500V
1,953

U 256V
= =

Damit ändern sich:

*
1I 1,953 1,46A 2,85A= � =

*
2I 1,953 1,2 0,33A 0,761A= � � =

U2
* =1,953�40V = 78,1V
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6.5

Zu 1. Ersatzschaltbildgrößen mit ü = w1/w2 = 2500/500 = 5

R1 = 400�

L1s = 0,8H

Re = 5k�

R'
2 = ü2 · R2 = 52 · 40� = 1k�

L'
2s = ü2 · L2s = 52 · 0,12H = 3H

M' = ü · M = 5 · 1,2H = 6H

U'
2 = ü · U2 = 5 · 600V = 3kV

R'
r = ü2 · Rr = 52 · 20� = 500�

L'
r = ü2 · Lr = 52 · 95,5mH = 2,39H Bild A-121 Übungsaufgabe 6.5

Zu 2. Reihenfolge der Zeigerdarstellung und Berechnung der Effektivwerte:

'
2U

'
' 2
2 '

U
I

Z
=

'
' 2
2 ' j

U
I

Z e )=
�

''
2s 2j L I	 �

''
2 2R I�

Uμ = U2
' + j	L2s

' � I2
' + R2

' � I2
'

'
'

U
I

j M

μ
μ =

	

v
e

U
I

R

μ=

' '
1 v 2I I I Iμ= + +

weil Iμ
' + Iv = I1 � I2

'

1s 1j L I	 �

1 1R I�

1U = Uμ + R1 · I1 + j�L1s · I1

'
2U = 3kV

'
2'

2 '

U
I

Z
=

mit Z' = Rr
' 2 + (	Lr

' )2

Z' = (500�)2 + (2� �50s�1 �2,39H)2 = 901,4�

und � = arc tan ' '
r r( L / R )	 = arc tan (750�/500�)

� = 56,3°

I2
' =

3kV

901,4 �
= 3,33A

�L2s
' � I2

' = 2� �50s�1 �3H �3,33A = 3,14kV

R2
' � I2

' =1k� �3,33A = 3,33kV

U 7,5kVμ =

Iμ
' =

Uμ

�M'
=

7,5kV

2� �50s�1 �6H
= 3,98A

Iv =
Uμ

Re

=
7,5kV

5k�
=1,5A

I1 = 7,5A

1
1s 1L I 2 50 s 0,8 H 7,5 A 1,88 kV�� � = � � � � =

1 1R I 400 7,5 A 3 kV� = � � =

1 1U 10,8 kV und 52º= ) =



352 Anhang: Lösungen der Übungsaufgaben

6.6

Zu 1. Z1l = R1 + j�L1 = 6� + j 80�

R1 = 6 � L1 =
X1l

�
=
�L1

�
=

80�

10 000s�1
= 8mH

Zr1 = R + j · Xr1 = R1 + R2 + j� (L1 + L2 + 2 M) = 42� + j · 830�

R = R1 + R2 = 42� R2 = R – R1 = 42� – 6� = 36�

L1 + L2 + 2M =
Xr1

�
=

830�

10000s�1
= 83mH

Zr2 = R + j · Xr2 = R1 + R2 + j� (L1 + L2 – 2 M) = 42� + j � 230�

L1 + L2 – 2 M =
Xr2

�
=

230�

10000s�1
= 23mH

Durch Addition und Subtraktion von Xr1/� und Xr2/�

(L1 + L2 + 2M) + (L1 + L2 – 2M) = 83mH + 23mH = 106mH = 2 (L1 + L2)

(L1 + L2 + 2 M) – (L1 + L2 – 2 M) = 83mH – 23mH = 60mH = 4 M

ergeben sich L2 und M:

L2 = 1 22(L + L )

2
– L1

L2 =
106mH

2
� 8mH = 45mH

M =
60mH

4
= 15mH

Zu 2. Mit Bild A-122 Übungsaufgabe 6.6

ü =
M

L2

=
15mH

45mH
=

1

3

ergeben sich die Ersatzschaltbildgrößen nach Bild 6.19:

R1 = 6�

M' = ü · M =
1

3
· 15mH = 5mH oder M' = k2 · L1 = 0,79

2
· 8mH = 5mH

mit

k =
M

L1L2

=
15mH

8 �45 mH
= 0,79 und k2 = 0,625

L1 – M' = 8mH – 5mH = 3mH oder L1 – M' = � · L1 = 0,375 · 8mH = 3mH

mit

� = 1 – k2 = 1 – 0,792 = 0,375

R'
2 = ü2 · R2 =

1

9
· 36� = 4�

R' = ü2 · R =
1

9
· 180� = 20�
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Zu 3. Reihenfolge der Zeigerbilddarstellung und Berechnung der Effektivwerte:

I'
2

U'
2 = R' · I'

2

U'
R2 = R'

2 · I'
2

U'
2 + U'

R2

Iμ
' =

U2
' + UR2

'

j	M'

' '
1 2I I Iμ = �

' '
1 2I I Iμ= +

UR1 = R1 � I 1

UL1s = j� (�L1 ( I1

U1 = U2
' + UR2

' + UR1 + UL1s

I'
2 = 2I

ü
= 0,1A · 3 = 0,3A

U'
2 = R' · I'

2 = 20� · 0,3A = 6V

R'
2 · I'

2 = 4� · 0,3A = 1,2V

U'
2 + U'

R2 = 6V + 1,2V = 7,2V

Iμ
' =

U2
' + UR2

'

	M'

Iμ
' =

7,2V

10 000s�1 �5mH
= 0,144A

I1 = 0,33A

R1 � I1 = 6� �0,33A = 2V

�L1s ( I1 =10000s�1 (3mH (0,33A =10V

U1 =15,4V und �1 = 57°

Zu 4. Zin = 111 j

11

U U
e

I I
)= �

Zin =
15,4V

0,33A
�e j �57º

Zin = 46,7� · e j �57º

Kontrolle mit Hilfe des Schaltbildes:

Zin = R1 + j� (�L1 +
R2

' + R'( ) ( j�k2L1

R2
' + R' + j�k2L1

Bild A-123 Übungsaufgabe 6.6

Zin = 6� + j · 10 000s– 1 · 3 · 10– 3H +
1 3

1 3

24 j 10000s 5 10 H

24 j 10000s 5 10 H

� �

� �
� ( ( ( (
�+ ( ( (

Zin = 6� + j · 30� +
24 j 50 24 j 50

24 j 50 24 j 50

� ( ( � �� ( �
(

�+ ( � �� ( �

Zin = 6� + j · 30� + 19,51� + j · 9,36� = 25,51� + j · 39,36� = 46,9� e j �57°
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6.7

Zu 1. Ersatzschaltbild siehe Bild 6.30

R1 = 50�

� · L1 = (1 – k2) · L1 = (1 – 0,9952) · 0,8mH = 0,01 · 0,8mH = 8μH

mit k2 = 0,9952 = 0,990 und � = 1 – k2 = 1 – 0,9952 = 0,01

(1 – �) · L1 = k2 · L1 = 0,9952 · 0,8mH = 0,990 · 0,8mH = 792μH � 800μH

R' =

2

2

M
R

L

� �
�� �

� 	
=

3,56mH

16mH

�
��

	
	


2

�1k�= 49,5�

mit M = 1 2k L L 0,995 0,8 16 mH� = � � = 3,56mH

Zu 2. Ortskurvengleichung nach Gl. (6.70) mit Gl. (6.71):

U
'
2

U1

=
1

1+
R1

R'
+

�L1

k2L1

�

�
�

�

	

 + j(QT ( p�

1

p

�
��

�
	


=
1

2,02 + j(0,1( p�
1

p

�
��

�
	


mit

1 1
T 0 ' 2

0 1

L R
Q

R k L

�
=� =

�

und

�0 =
R' �R1

�L1 �k
2L1

=
49,5� �50�
8μH �792μH

= 625 �103s�1

und

f0 =
�0

2�
=

625 �103s�1

2�
= 99,47kHz �100kHz

d. h.

QT = 625 (103s�1 (
8μH

49,5�
=

50�

625 (103s�1 (800μH
= 0,1

und

1+
R1

R'
+

�L1

k2L1

=1+
50�

49,5�
+

8μH

800μH
= 2,02= A

und

1/(2 A) = 1/(2 · 2,02) = 0,2475 � 0,25.
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Bild A-124 Ortskurven der
Übungsaufgabe 6.7

Bild A-125 Durchlasskurve der
Übungsaufgabe 6.7

Zu 3. Obere Grenzfrequenz:
aus der Ortskurve abgelesen: p = 20

berechnet:

QT p�
1

p

�
��

	
�

=1+

R1

R '
+

�L1

k2L1

1
0,1 p 2,02

p

� �
� =� �

� 	
0,1

0,1 p 2,02 0
p

� � =

p2 – 20,2 p – 1 = 0

2
1,2p 10,1 10,1 1= ± +

p = p1 = 20,25 p2 = – 0,05 entfällt

fg2 = p · f0 = 20,25 · 99,47 kHz

fg2 = 2014kHz � 2MHz

Untere Grenzfrequenz:

aus der Ortskurve abgelesen: p =
1

20
= 0,05

berechnet:

– QT p�
1

p

�
��

	
�

=1+

R1

R '
+

�L1

k2L1

–
1

0,1 p 2,02
p

� �
� =� �

� 	

– 0,1 p +
0,1

p
� 2,02 = 0

p2 + 20,2 p – 1 = 0

p1,2 = �10,1± 10,12 +1

p = p1 = 0,05 p2 = – 20,25 entfällt

fg1 = p · f0 = 0,05 · 99,47 kHz

fg1 = 4,97kHz � 5kHz

nach (Gl. 4.120) ist die Bandbreite: 
f = fg2 – fg1 = 2MHz – 5kHz
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Zu 4. Nach (Gl. 6.76) errechnet sich die obere Grenzfrequenz

fg2 =
1

2�
�
R' + R1

�L1

=
1

2�
�

49,5�+ 50�
8μH

=1,98MHz � 2MHz

und nach Gl. (6.74) beträgt die untere Grenzfrequenz

fg1 =
1

2�k2L1

�
1

1

R'
+

1

R1

=
1

2� �800μH
�

1

1

50�
+

1

49,5�

= 4,95kHz �5kHz

Zu 5. Nach Gl. (6.78) ist

�g2

�g1

=
1

�
�
(k2L1 �R + R1 �L2 )2

L1L2R1R
=

1

0,01
�
(800μH �1k�+ 50� �16mH)2

0,8mH �16mH �50� �1k�
= 400

Zu 6.
U2

'

U1

=
1

2,022 + 0,12 � p�
1

p

�
��

	
�


2
(siehe Bild A-125)

p 1

2

1

2

5

1

5

8

1

8

10

1

10

12

1

12

15

1

15

18

1

18

20

1

20

22

1

22

25

1

25

'
2

1

U

U
0,495 0,494 0,482 0,461 0,445 0,426 0,398 0,370 0,352 0,335 0,311

Für die Bestimmung der Grenzfrequenzen ist der Maximalwert durch 2 zu dividieren:

0,495
0,35

2
= (vgl. Bild 4.98)
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7  Mehrphasensysteme 
7.1 
Zu 1. Nach Gl. (7.23) ist P = 3 · USt · ISt · cos � 

  P = 3 � ULt · ILt · cos � 

und mit cos � = 1 P = 3 � ULt · ILt  

bei Sternschaltung ist ILt �
USt
R

�
ULt

3
�

1
R

  

und damit P = 3 �ULt �
ULt

3
�

1
R

�
ULt

2

R
 

bei Dreieckschaltung ist ILt = Lt
St

U
3 I 3

R
� � �  

und damit  P = 3 �ULt � 3 �
ULt
R

� 3�
ULt

2

R
 

Zu 2. Sternschaltung: 

ILt = ISt =
USt
R

�
220V
40�

� 5,5A  

P = Lt Lt3 U I cos 3 380V 5,5A 1 3,6kW� � � � � � � � �  

oder P =
 

ULt
2

R
�

(380V)2

40�
� 3,6kW  

Dreieckschaltung: 

ILt = 3 · ISt =
 

3 �
ULt
R

� 3 �
380V
40�

�16,5A  

P = 3 · ULt · ILt · cos � = 3 · 380V · 16,5A · 1 = 10,8kW 

oder   P = 3�
ULt

2

R
=

 
3�

(380V)2

40�
= 10,8kW 

7.2 
Zu 1. Wicklungsnennspannung: 220V 

Sternschaltung des Motors an ein 380/220V-Drehstrom-Netz 
Dreieckschaltung des Motors an ein 220/127V-Drehstrom-Netz 

Zu 2. 
 =
 

Pmech
Pel

�
1,2kW
1,5kW

� 0,8   das sind  80 % 

mit  Pel = 3 · ULt · ILt · cos � 

Sternschaltung des Motors: 

Pel = 3 · 380V · 2,8A · 0,81 = 1,493kW J 1,5kW 
Dreieckschaltung des Motors: 

Pel = 3 · 220V · 4,8A · 0,81 = 1,482kW J 1,5kW 

Zu 3. S =
 

Pel
cos�

�
1,5 kVA

0,81
�1,85 kVA  

Q = Pel · tan � = 1,5kVA · tan 35,9° = 1,08kVar 
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Zu 4. Sternschaltung des Motors mit Sternschaltung der Kondensatoren:

Bild A-126 Schaltbild (Stern/Stern) Bild A-127 Zeigerbild (Stern/Stern)

ULt = 380V und USt = 220V

vor der Kompensation:

I1 = I2 = I3 = 2,8A I1R = I2R = I3R = 2,8A · 0,81 = 2,27A

I1L = I2L = I3L = 2,8A · sin � = 2,8A · sin 35,9° = 2,8 · 0,59 = 1,64A

nach der Kompensation:

I1k = I1R, I2k = I2R, I3k = I3R mit I1C = – I1L, I2C = – I2L I3C = – I3L

Sternwiderstände:

R1 = R2 = R3 =
220V

2,27A
= 97� X1L = X2L = X3L =

220V

1,64A
= 134�

X1C = X2C = X3C = XC = – 134� d. h. C = –
1

� �XC

=
1

2� �50s�1 �134�
= 23,7μF.

Die kapazitiven Ströme IC und die Parallelkapazitäten Cp sollten mit Hilfe von Formeln berechnet
werden können, in die die angegebenen Daten des Leistungsschildes eingesetzt werden:
Nach Gl. (7.24) Q = 3 · USt · ISt · sin � = 3 · USt · IC mit IC = ISt · sin � ist

IC =
Q

3�USt

=
Pel � tan)

3�USt

=
1,5kVA � tan35,9º

3�220V
=

1,08kVA

3�220V
=1,64A .

Mit IC = �Cp · USt ist

Cp =
IC

� �USt

=
1,64A

2� �50s�1 �220V
= 23,7μF

oder IC eingesetzt ist

Cp =
Pel � tan�

3�� �USt
2
=

1,5 kVA � tan35,9º

3�2� �50s�1 �(220V)2
= 23,7μF

(vgl. Gl. 4.265 mit P = Pel/3).
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Zu 5. Dreieckschaltung des Motors mit Sternschaltung der Kondensatoren:

Bild A-128 Schaltbild Dreieck/Stern Bild A-129 Zeigerbild Dreieck/Stern

ULt = 220V und USt = 127V

vor der Kompensation:

I1 = I2 = I3 = 4,8A I12R = I23R = I31R = 2,8A · 0,81 = 2,27A

I12 = I23 = I31 =
4,8A

3
= 2,8A I12L = I23L = I31L = 2,8A · sin 35,9° = 1,64A

nach der Kompensation:

I1C = I31L – I12L I2C = I12L – I23L I3C = I23L – I31L

mit I1C = I2C = I3C = 3 · 1,64A = 2,8A

I1k = Il2R – I31R I2k = I23R – I12R I3k = I31R – I23R

mit I1k = I2k = I3k = 3 · 2,27A = 3,9A = 4,8A · 0,81

Dreieckwiderstände: Sternkapazitäten:

R12 = R23 = R31 =
220V

2,27A
= 97� X1C = X2C = X3C = XC =

127V

2,8A
= 45�

X12L = X23L = X31L =
220V

1,64A
= 134� Cp =

1

� �XC

=
1

2� �50s�1 �45�
= 71μF

Die Formeln für die kapazitiven Ströme IC und die Parallelkapazitäten Cp sind die gleichen wie
unter 4.:

IC =
Q

3�USt

=
Pel � tan)

3�USt

=
1,5kVA � tan35,9º

3�127V
= 2,8A

Cp =
IC

� �USt

=
2,8A

2� �50s�1 �127V
= 71μF

oder

Cp =
Pel � tan�

3�� �USt
2
=

1,5kVA � tan 35,9º

3�2� �50s�1 �(127V)2
= 71μF
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Zu 6. Sternschaltung des Motors mit Dreieckschaltung der Kondensatoren

Bild A-130 Schaltbild Stern/Dreieck Bild A-131 Zeigerbild Stern/Dreieck

ULt = 380V und USt = 220V

vor der Kompensation:

I1 = I2 = I3 = 2,8A I1R = I2R = I3R = 2,8A · 0,81 = 2,27A

I1L = I2L = I3L = 2,8A · sin � = 2,8A · sin 35,9° = 2,8A · 0,59 = 1,64A

nach der Kompensation:

I1k = I1R, I2k = I2R, I3k = I3R

I1L = I31C – I12C, I2L = I12C – I23C, I3L = I23C – I31C

mit I12C = I23C = I31C =
1,64A

3
= 0,95

Sternwiderstände: Dreieckkapazitäten:

R1 = R2 = R3 =
220V

2,27A
= 97�

X1L = X2L = X3L =
220V

1,64A
= 134�

X12C = X23C = X31C = XC =
380V

0,95A
= 401�

Cp =
1

� �XC

=
1

2� �50s�1 �401�
= 7,9μF

Die kapazitiven Ströme der Dreieckkompensation sind um das 1/ 3 -fache kleiner als die kapaziti-
ven Ströme der Sternkompensation unter 4.:

IC =
1

3
�

Q

3�USt

=
Pel � tan)

3� 3 �USt

=
Pel � tan)
3�ULt

=
1,5kVA � tan35,9º

3�380V
= 0,95A

Mit IC = �Cp · ULt ist Cp = C
1

I

2 50s 380V� =
� ( (

7,9 μF oder IC eingesetzt ist

Cp =
Pel � tan�

3�� �ULt
2
=

1,5kVA � tan35,9º

3�2� �50s�1 �(380V)2
= 7,9μF
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Zu 7. Dreieckschaltung des Motors mit Dreieckschaltung der Kondensatoren

Bild A-132 Schaltbild Dreieck/Dreieck Bild A-133 Zeigerbild Dreieck/Dreieck

ULt = 220V und USt = 127V

vor der Kompensation:

I1 = I2 = I3 = 4,8A I12R = I23R = I31R = 2,8A � 0,81 = 2,27A

I12 = I23 = I31 =
4,8A

3
= 2,8A I12L = I23L = I31L = 2,8A � sin 35,9� = 1,64A

nach der Kompensation:

I 12C = � I
12L

, I
23C

= � I
23L

, I 31C = � I
31L

mit I12C = I23C = I31C = 1,64A

I 1k = I
12R

� I
31R

, I 2k = I
23R

� I
12R

, I 3k = I
31R

� I
23R

,

mit I1k = I2k = I3k = 3 � 2,27A = 3,9A = 4,8A � 0,81

Dreieckwiderstände:

R12 = R23 = R31 =
220V

2,27A
= 97� X1L = X2L = X3L =

220V

1,64A
= 134�

X12C = X23C = X31C = XC = 134� d. h. Cp =
1

� � XC

=
1

2� � 50 s�1 �134�
= 23,7μF.

Die kapazitiven Ströme der Dreieckkompensation sind um das 1/ 3 -fache kleiner als die kapaziti-
ven Ströme der Sternkompensation unter 5.:

IC =
1

3
�

Q

3 � USt

=
Pel � tan )

3 � 3 � USt

=
Pel � tan )

3 � ULt

=
1,5kVA � tan 35,9�

3 � 220V
= 1,64A

Mit IC = �Cp � ULt ist Cp =
IC

2� � 50 s�1 � 220V
= 23,7μF oder IC eingesetzt ist

Cp =
Pel � tan �

3 � � � ULt
2

=
1,5kVA � tan 35,9�

3 � 2� � 50s�1 � (220V)2
= 23,7μF
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Zu 8. Mit Hilfe der Umrechnungsformeln für die Umwandlung einer Sternschaltung in eine äqui-
valente Dreieckschaltung lassen sich die Ergebnisse für die Kompensationskondensatoren
kontrollieren:

Y1 =
Y2

' ( Y3
'

Y1
' + Y2

' + Y3
'
=
�� ( Cp

' 2

3 ( j�Cp
'

' '
p p

p p
C C

j C j oder C
3 3

	 = 	 =

d. h. 7,9μF =
23,7μF

3
bzw. 23,7μF =

71μF

3

(analog zu den Gln. (4.100) bis (4.102) oder Gln. (2.157) bis (2.159) im Abschnitt (2.2.10) im Band 1).

Kompensationskondensatoren in

Sternschaltung Dreieckschaltung

Motor Sternschaltung 380/220V 23,7μF/220V 7,9μF/380V

in Dreieckschaltung 220/127V 71μF/127V 23,7μF/220V

Die Kondensatoren müssen für den Maximalwert der anliegenden Spannung 2 · U ausgelegt sein,
d. h. für 2 ·380V = 538V, 2 ·220V = 311V und 2 ·127V = 180V. Bei der Kompensation in
Sternschaltung sind hohe Kapazitäten bei niedrigen Spannungen und bei der Kompensation in Drei-
eckschaltung niedrige Kapazitäten bei hohen Spannungen erforderlich.

7.3

Zu 1. ZN = RN = 50�

R1 = 100� R2 = 71� R3 = 220� RN = 50�

G1=1/R1=10mS G 2 =1/R2 =14,1mS G3=1/R3=4,546mS G N =1/RN =20mS

nach Gl. (7.36) ist

1N 2 N 3N

1 1N 2 2N 3 3N1 2 3
N

N 1 2 3

N 1 2 3

U U U

G U G U G UR R R
U

1 1 1 1 G G G G
R R R R

+ +
� + � + �

= =
+ + ++ + +

UN =
10mS � 220V + 14,1mS � (�110 � j �190,5)V + 4,546mS � (�110 + j �190,5)V

20mS + 10mS + 14,1mS + 4,546mS

UN =
2200 � 1549 � j � 2683 � 500 + j � 866

48,63
V =

151 � j �1817

48,63
V

j 85,24
NU (3,11 j 37,4)V 37,5 V e� �= � � = � �

U1N
' = U1N � UN = 220V � (3,11 � j � 37,4)V

U1N
' = (217 + j � 37)V = 220V � e j � 9,7�

U2 N
' = U2 N � UN = (�110 � j �190,5)V � (3,11 � j � 37,4)V
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U2 N
' = (�113� j �153)V = 190V � e j � 233,5�

'
3N 3N NU U U ( 110 j 190,5)V (3,11 j 37,4)V= � = � + � � � �

U3N
' = (�113 + j � 228)V = 254V � e j �116,4�

I1 =
U1N

'

R1

=
220V � e j � 9,7�

100�

I1 = 2,2A � e j � 9,7� = (2,17 + j � 0,37)A

I
2
=

U2N
'

R2

=
190V � e j � 233,5�

71�

I
2
= 2,7A � e j � 233,5� = (�1,6 � j � 2,15)A

I
3
=

U3N
'

R3

=
254V � e j �116,4�

220�

I
3
= 1,15A � e j �116,4� = (� 0,5 + j �1,04)A

Bild A-134 Zeigerbild
Übungsaufgabe 7.3/1

I N =
UN

RN

=
37,5V ( e� j (85,24�

50�
= 0,75A ( e� j (85,24� = (0,06 � j ( 0,75)A

Kontrolle:

N1 2 3I I I I+ + =

[(2,17 � 1,6 � 0,5) + j � (0,37 � 2,15 + 1,04)] = (0,06 � j � 0,75)A

Zu 2. ZN = RN = 0, d. h. UN = 0

U1N
' = U1N = 220V

U2 N
' = U2 N = 220V � e� j �120�

U3N
' = U3N = 220V � e j �120�

I
1
=

U1N

R1

=
220V

100�
= 2,2A

I
2
=

U2 N

R2

=
220V ( e� j (120�

71�

I 2 = 3,1A � e� j �120� = (�1,55 � j � 2,68)A
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I
3
=

U3N

R3

=
220V ( e j (120�

220�
= 1,0A ( e j (120� = (� 0,5 + j ( 0,87)A

I N = I
1
+ I

2
+ I

3
= [(2,2 � 1,55 � 0,5) + j � (�2,68 + 0,87)]A

I N = (0,15 � j �1,81)A = 1,8A � e� j �85�
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Zu 3. ZN = � nach Gl. (7.37) ist

UN =

U1N

R1

+
U2 N

R2

+
U3N

R3

1

R1

+
1

R2

+
1

R3

=
151 � j �1817

28,63
V

UN = (5,27 � j � 63,5)V = 63,7V � e� j �85,24�

U1N
' = U1N � UN = 220V � (5,27 � j � 63,5)V

U1N
' = (214,7 + j � 63,5)V = 224V � e j �16,5�

U2N
' = U2 N � UN = (�110 � j �190,5)V � (5,27 � j � 63,5)V

U2 N
' = (�115,3 � j �127)V = 171,5V � e j � 227,8�

U3N
' = U3N � UN = (�110 + j �190,5)V � (5,27 � j � 63,5)V

U3N
' = (�115,27 + j � 254)V = 279V � e j �114,4�

Bild A-136 Zeigerbild
Übungsaufgabe 7.3/3

I1 =
U1N

'

R2

=
224V � e j �16,5�

100�
= 2,24A � e j �16,5�

I
2
=

U2 N
'

R2

=
171,5V � e j � 227,8�

71�
= 2,42A � e j � 227,8�

I
3
=

U3N
'

R3

=
279V � e j �114,4�

220�
= 1,27A � e j �114,4�

7.4

Zu 1. Z1 = R1 = 1k�, Z2 = R2 = 1k�, Z3 = R3 = 1k�, da symmetrische Belastung sind IN = 0
und UN = 0

U1N
' = U1N = 220V

U2N
' = U2 N = 220V � e� j �120�

U3N
' = U3N = 220V � e j �120�

I1 =
U1N

'

R1

=
220V

1k�
= 220mA

I
2
=

U2N
'

R2

=
220V ( e� j (120�

1k�
= 220mA ( e� j (120�

I
3
=

U3N
'

R3

=
220V � e j �120�

1k�
= 220mA � e j �120�

Bild A-137 Zeigerbild
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Zu 2. Z1 = R1 = 1k�, G1 = 1/R1 = 1mS

Z2 =
1

j�C2

=
1

j � 2� � 50s�1 � 3,18μF
= � j �1k� Y2 = 1/Z2 = j · 1mS

Z3 = R3 = 1k�, G3 = 1/R3 = 1mS

ZN = RN = 100�, GN = 1/RN = 10mS

nach Gl. (7.36) ist

1N 2 N 3N

1 1N 2 2 N 3 3N1 2 3
N

N 1 2 3

N 1 2 3

U U U

G U j C U G UZ Z Z
U

1 1 1 1 G G j C G
Z Z Z Z

+ +
� + 	 � + �

= =
+ + 	 ++ + +

UN =
1mS � 220V + j �1mS � (�110 � j �190,5)V + 1mS � (�110 + j �190,5)V

10mS + 1mS + j �1mS + 1mS

UN =
220 � j �110 + 190,5 � 110 + j �190,5

12 + j
V =

300,5 + j � 80,5

12 + j
�
12 � j

12 � j
V

UN =
3686,5 + j � 665,5

145
V = (25,4 + j � 4,6)V = 25,8V � e j �10,2�

U1N
' = U1N � UN = 220V � (25,4 + j � 4,6)V

U1N
' = (194,6 � j � 4,6)V = 194,7V � e� j �1,4�

U2 N
' = U2 N � UN = (�110 � j �190,5)V � (25,4 + j � 4,6)V

U2 N
' = (�135,4 � j �195,1)V = 237,5V � e j � 235,2�

U3N
' = U3N � UN = (�110 + j �190,5)V � (25,4 + j � 4,6)V

U3N
' = (�135,4 + j �185,9)V = 230V � e j �126�

I1 =
U1N

'

R1

=
194,7V ( e� j (1,4�

1k�
= 195mA ( e� j (1,4�

I
2
= j�C2 � U2 N

' =
237,5V � e j � 235,2�

1k� � e� j � 90�

I
2
= 238mA � e� j � 34,8�

I
3
=

U3N
'

R3

=
230V � e j �126�

1k�

I 3 = 230mA � e j �126�

I N =
UN

RN

=
25,8V � e j �10,2�

100�
= 258mA � e j �10,2�

Bild A-138 Zeigerbild
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7.5

Zu 1. Nach Gl. (7.37) ist

UN =

U1N

Z1

+
U2 N

Z2

+
U3N

Z3

1

Z1

+
1

Z2

+
1

Z3

=
G1 � U1N + j	C2 � U2 N + G3 � U3N

G1 + j	C2 + G3

mit den Ergebnissen von Aufgabe 7.4 ist

N
300,5 j 80,5 2 j 681,5 j 139,5

U V V
2 j 2 j 5

+ � � � �
= � =

+ �

UN = (136,3 � j � 27,9)V = 139,1V � e� j �11,6�

U1N
' = U1N � UN = 220V � (136,3 � j � 27,9)V

U1N
' = (83,7 + j � 27,9)V = 88,2V � e j �18,4�

U2 N
' = U2 N � UN = (�110 � j �190,5)V � (136,3 � j � 27,9)V

U2 N
' = (�246,3 � j �162,6)V = 295,1V � e j � 213,4�

U3N
' = U3N � UN = (�110 + j �190,5)V � (136,3 � j � 27,9)V

U3N
' = (�246,3 + j � 218,4)V = 329,2V � e j �138,4�

Zu 2. Wird die Strangspannung U1N in die reelle Achse der Gaußschen Zahlenebene gelegt, dann
hat die Außenleiterspannung U12 den Anfangsphasenwinkel von 30° (siehe Bild 7.10). Die
Außenleiterspannungen betragen dann

U12 = 380V � e j � 30� = (329 + j �190)V

U23 = 380V � e� j � 90� = (0 � j � 380)V

U31 = 380V � e j �150� = (�329 + j �190)V .

Nach Gl. (7.43) bis (7.45) ergeben sich dann die Strangspannungen

12 31

2 12 3 312 3'
1N

1 2 3

1 2 3

U U

j C U G UZ Z
U

1 1 1 G j C G
Z Z Z

�
� ( � (

= =
+ � ++ +

U1N
' =

j �1mS � (329 + j �190)V � 1mS � (�329 + j �190)V

1mS + j �1mS + 1mS

'
1N

(329 190) j (329 190) 139 j 139 2 j
U V V (83,4 j 27,8)V

2 j 2 j 2 j

� + � � + � �
= = � = + �

+ + �
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23 12

3 23 1 123 1'
2N

1 2 3

1 2 3

U U

G U G UZ Z
U

1 1 1 G j C G
Z Z Z

�
( � (

= =
+ � ++ +

U2 N
' =

1mS � (� j � 380V) � 1mS � (329 + j �190)V

1mS + j �1mS + 1mS

U2N
' =

�329 + j � (�380 � 190)

2 + j
V =

�329 � j � 570

2 + j
�

2 � j

2 � j
V = (�245,6 � j �162,2)V

U3N
' =

U31

Z1

�
U23

Z2

1

Z1

+
1

Z2

+
1

Z3

=
G1 ( U31 � j�C2 ( U23

G1 + j�C2 + G3

U3N
' =

1mS � (�329 + j �190)V � j �1mS � (� j � 380)V

1mS + j �1mS + 1mS

U3N
' =

(�329 � 380) + j �190

2 + j
V =

�709 + j �190

2 + j
�

2 � j

2 � j
V = (�245,6 + j � 217,8)V

Zu 3. I
1
=

U1N
'

Z1

=
(83,5 + j � 27,9)V

1k�
= (83,5 + j � 27,8)mA = 88mA � e j �18,4�

I
2
=

U2N
'

Z2

=
(�246,0 � j (162,4)V

� j (1k�
= (162,4 � j ( 246,0)mA = 295mA ( e� j (56,6�

I
3
=

U3N
'

Z3

=
(�246,0 � j ( 218,1)V

1k�
= (�246,0 + j ( 218,1)mA = 329mA ( e j (138,4�

7.6

Zu 1. Nach Gl. (7.47) sind

12
12

12

U
I

Z
= 23

23
23

U
I

Z
= 31

31
31

U
I

Z
= .

Mit

U12 = 380V � e j � 30� U23 = 380V � e� j � 90� U31 = 380V � e j �150�

U12 = (329 + j �190)V U23 = (0 � j � 380)V U31 = (�329 + j �190)V

ergibt sich

I
12

=
(329 + j �190)V

40�
= (8,225 + j � 4,75)A

I
23

=
� j ( 380V

100�
= � j ( 3,8A

I
31

=
(�329 + j (190)V

80�
= (� 4,11 + j ( 2,375)A
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Zu 2. Nach Gl. (7.48) bis (7.50) betragen die Außenleiterströme:

I1 = I12 – I31

I1 = (8,225 + j · 4,75)A – (– 4,11 + j · 2,375)A

I1 = (12,335 + j · 2,375)A = 12,6A · ej · 11°

I2 = I23 – I12 = – j · 3,8A – (8,225 + j · 4,75)A

I2 = (– 8,225 – j · 8,55)A = 11,9A · ej · 226°

I3 = I31 – I23 = (– 4,11 + j · 2,375)A + j · 3,8A

I3 = (– 4,11 + j · 6,175)A = 7,4A · ej · 124° Bild A-139 Zeigerbilder
Übungsaufgabe 7.6/3
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