
  
    
      
    
  






MICHAEL UNTERSTEIN 

GÜNTER MAT THIESSEN

Anwendungsentwicklung 

mit Datenbanken

5. AUFL AG E

eXamen.press

eXamen.press ist eine Reihe, die Theorie und Praxis aus allen Bereichen der Informatik für die Hochschulausbildung vermittelt. 



Michael Unterstein · Günter Matthiessen

Anwendungsentwicklung 

mit Datenbanken

5. Auflage

Michael Unterstein

Günter Matthiessen

Bremen, Deutschland

Bremerhaven, Deutschland

ISSN 1614-5216

ISBN 978-3-642-39002-9 

ISBN 978-3-642-39003-6  (eBook)

DOI 10.1007/978-3-642-39003-6

Die Vorauflage erschien 2007 bei Addison Wesley. 

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; 

detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar. 

Springer Vieweg

© Springer-Verlag Berlin Heidelberg 2013

Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung, die nicht 

ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung des Verlags. 

Das gilt insbesondere für Vervielfältigungen, Bearbeitungen, Übersetzungen, Mikroverfilmungen und 

die Einspeicherung und Verarbeitung in elektronischen Systemen. 

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk 

berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne 

der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von 

jedermann benutzt werden dürften. 

Gedruckt auf säurefreiem und chlorfrei gebleichtem Papier

Springer Vieweg ist eine Marke von Springer DE. Springer DE ist Teil der Fachverlagsgruppe  

Springer Science+Business Media 

www.springer-vieweg.de

Vorwort

Mit dem vorliegenden Band setzen wir inhaltlich auf den Grundlagen auf, die wir in 

unserem Werk „Relationale Datenbanken und SQL in Theorie und Praxis“, 5. Auflage 

2012 gelegt haben. Die Aufteilung des früher in einem Band zusammengefassten Stoffs 

auf zwei Bücher verdankt sich der Überlegung, dass der vorwiegende Einsatz des Buchs 

im Bereich von Bachelor- und Masterstudiengängen der angewandten Informatik an 

Hochschulen liegt, sodass die Aufteilung der Unterscheidung in Grundvorlesungen und 

aufbauende Veranstaltungen folgt. 

Der Schwerpunkt des vorliegenden Werks liegt in der Entwicklung von Anwendun-

gen auf Basis von relationalen Datenbanken. Die Anwendungsentwicklung ist jedoch ein 

weites Feld – es reicht von der Programmierung grundlegender Datenoperationen bis 

hin zur Gestaltung der Benutzeroberfläche für verschiedene Arten von Endgeräten wie 

Desktop-Rechner, Tablets oder Smartphones. Auch der Entwurf von Datenstrukturen 

und Programmabläufen gehört thematisch dazu. Die Menge verfügbarer Implementie-

rungstechniken und Programmiersprachen bietet eine schier unübersehbare Vielfalt, last 

not least kommen Entwicklungsumgebungen verschiedenster Art zum Einsatz, welche 

Programme oder Teile davon aufgrund von beispielsweise grafischen Entwurfskonstruk-

ten generieren können. 

Wir versuchen nicht erst, die ganze Thematik der Anwendungsentwicklung abzu-

decken und konzentrieren uns auf Inhalte, die wir bei der Entwicklung von Anwendun-

gen mit Datenbanken für essenziell und wesentlich halten, egal für welche Plattformen 

und welche Anwendungsbereiche entwickelt wird. Ein gewisses Zentrum bildet hierbei, 

wie auch schon im ersten Band die Sicherstellung der Datenintegrität, ohne die auch die 

schönste Benutzeroberfläche nichts wert ist. Letztere kommt in diesem Buch gar nicht vor. 

Wie möchten dem Leser Erklärung und Beispiele zu folgenden Themen anbie-

ten. Kapitel 1 beschäftigt sich mit den Aufgaben der Datenbankmaschine, wie sie in jeder Anwendungsumgebung zu leisten sind. Es dient dem Verständnis dessen, dass 

die Daten ein stabiles und verlässliches Fundament jeder Anwendung sein sollten und 

soll darüber auch ein wenig dafür werben, sich mit der Datenintegrität gründlich aus-

einanderzusetzen, auch wenn der Endanwender von dieser Mühe kaum etwas mitbe-

kommt – er bekommt aber schnell mit, wenn sich die Entwickler dieser Mühe nicht 

unterzogen haben. Im zweiten Kapitel behandeln wir Transaktionen. Probleme der 

V

VI

Vorwort

nebenläufigen Änderung und Auswertung von Daten werden an Beispielen vorgestellt 

und Instrumente zum Umgang damit werden erklärt. Der Anwendungsentwickler 

bekommt Hinweise, mit welchen Problemen er (sie natürlich auch) zu rechnen hat, 

und wie sie zu bewältigen sind. Kapitel 3 ist den Zugriffsrechten und Rollen gewidmet,  

da bei der Entwicklung von größeren Anwendungen im betrieblichen Umfeld Fragen 

des lesenden und schreibenden Datenzugangs für bestimmte Benutzerkreise zu behan-

deln sind. Kapitel 4 setzt sich mit prozeduralen Konzepten in SQL auseinander. Stored Procedures und Trigger werden dort besprochen, unter dem Aspekt, wie bestimmte 

wichtige, zusammenhängende Datenoperationen auf sichere Weise in der Datenbank 

implementiert werden können, sodass sie jeglichen Benutzerprogrammen zur Ver-

fügung stehen und dort nicht jeweils neu implementiert werden müssen. Im Kap. 5 

widmen wir uns dem Datenbankentwurf mit UML. Bewusst haben wir auch hier eine 

Beschränkung auf Klassendiagramme vorgenommen, auch wenn es bedeutende Dia-

grammtypen wie Anwendungsfalldiagramme, Sequenzdiagramme etc. gibt, die beim 

Entwurf von Anwendungen auch genutzt werden sollten. Die Erklärung der ganzen 

Vielfalt der UML überlassen wir aber der Spezialliteratur zu diesem Thema. Wenn es 

um Programmiersprachen geht, spielt Java nach wie vor eine gewichtige Rolle. Das 

grundlegende Instrument zur Realisierung von Datenbankzugriffen aus Java-Program-

men heraus ist JDBC (Java Database Connection). Wir haben Kap. 6 der Erklärung von Datenbankprogrammierung mit Java gewidmet und zeigen anhand eines durch-gehenden Beispiels, wie man es macht. Kapitel 7 behandelt die Verwaltung von Metadaten durch die Datenbank selbst und erläutert den Systemkatalog als stets präsentes 

und verfügbares Instrument, das dem Anwendungsentwickler (und auch den Anwen-

dern) Aufklärung über die Strukturen (Tabellen, Attribute, etc.) seiner Datenbank 

gibt. Kapitel 8 hat objektrelationale Erweiterungen des relationalen Datenmodells zum Inhalt und zeigt anhand von Oracle, wie man mit diesen erweiterten Möglichkeiten 

eine Datenbank gestalten kann. Auch die Dokumentation der damit untrennbar ver-

bundenen Vielfalt an Datentypen in ihrer wechselseitigen Abhängigkeit kommt dabei 

zur Sprache – wir trauen uns sogar, Vorschläge für ein gesondertes objektrelationales 

Datentypenmodell zu machen. 

Soweit unser Programm. Wer dieses Vorwort vor dem Kauf des Buchs liest, weiß 

nunmehr, was er erwarten darf –kann es also auch ggf. enttäuscht wieder zurücklegen, 

weil er etwas Anderes sucht und sich die Ausgabe sparen. Allen Lesern wünschen wir 

Erfolg und Freude mit diesem Werk. Kritik und Anregungen sind gern willkommen. 

Wir danken Frau Glaunsinger und Herrn Engesser für die verlagsseitige Betreuung und 

Unterstützung. 

Bremerhaven und Bremen, August 2013

Inhaltsverzeichnis

1  Datenbankmaschine und Architektur von Datenbank-Anwendungen  . . . . . . 1

1.1  Aufgaben einer Datenbankmaschine  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2  Bearbeitung von Abfrageanweisungen  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1  Syntaktische und semantische Analyse der Abfrage  . . . . . . . . . . . . . 3

1.2.2 Autorisierungskontrolle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.3  Daten-Änderung mit Konsistenzbedingungen   . . . . . . . . . . . . . . . . . 4

1.2.4  Erstellung des Ausführungsplans  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.5 Transaktionsverarbeitung  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.6 Speicherverwaltung   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.7  Das Recovery-Management   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.8  Führung der Logdatei und Durchführung  

von Totalsicherungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3  Betriebsmodi von Datenbanken   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1  Die Datenbankdatei  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.2  Datenbank im Client/Server-Betrieb  . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.3  Eingebettete Datenbank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.4  Datenbank im Hauptspeicher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.5  Datenbanken im Internet   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.6  Datenbanken und SOA  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Transaktionen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1  Eigenschaften von Transaktionen  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1  Gefahren für die Konsistenz  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.2 Transaktionsmanagement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2  Transaktionen in SQL  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1  Start von Transaktionen   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.2  Beendigung von Transaktionen  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.3 Autocommit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22

2.2.4  Start des DBMS nach Systemzusammenbruch . . . . . . . . . . . . . . . . . . 22

2.3  Nebenläufige Ausführung von Transaktionen   . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4  Isolation Level in Transaktionen  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

VII

VIII

Inhaltsverzeichnis

2.5 Sperrmechanismen   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.6  Explizite Sperrung mit LOCK TABLE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.7 Deadlock  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.8  Kompensation statt ACID   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3  Zugriffsrechte und Rollen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1 Benutzer-Identität  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2  Allgemeine Zugangsprivilegien  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.1  Anlegen eines Benutzers   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.2 Datenbankadministrator  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3  Objektbezogene Privilegien  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4  Rücknahme von Privilegien  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5 Rollen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4  Prozedurale Konzepte in SQL  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1 Datenbankprozeduren. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1.1  Unterstützung der Konsistenz   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1.2  Effizientere Ausführung komplexer Operationen  . . . . . . . . . . . . . . . 45

4.1.3  Kurzeinführung anhand eines Beispiels  . . . . . . . . . . . . . . . . . . . . . . . 45

4.1.4  Erweiterung des Beispiels mit Ausgabe-Parametern . . . . . . . . . . . . . 50

4.1.5  Beispiele mit Variablen und Kontrollstrukturen  . . . . . . . . . . . . . . . . 51

4.1.6 Übungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2  Funktionen in Datenbanken   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.1  Formaler Aufbau einer Funktionsdefinition . . . . . . . . . . . . . . . . . . . . 57

4.2.2  Funktionen mit Datumsberechnungen  . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.3  Funktionen, die Tabellen zurückgeben  . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.4 Übungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3  Ausnahmebehandlung in Prozeduren und Funktionen   . . . . . . . . . . . . . . . . 63

4.4  Das Cursor-Konzept  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4.1 Übungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5  Trigger in Datenbanken  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.5.1  Beispiele für Datenbank-Trigger   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5.2 Übungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5 UML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1  Elemente der UML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2  ER-Diagramme und UML-Klassendiagramme . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3  Aggregation und Komposition in UML  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4  Das Vererbungskonzept  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6  Datenbankprogrammierung mit JDBC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.1 Datenbankverbindung. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.1.1  Herstellung einer Verbindung zur Datenbank . . . . . . . . . . . . . . . . . . 88

6.1.2  Klasse JDBC zur Verwaltung der Datenbank-Parameter  . . . . . . . . . 90

Inhaltsverzeichnis

IX

6.2  Datenänderungen über JDBC   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.2.1  Die Klasse Statement   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2.2  Ausführung einer Anweisung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.2.3  Transaktionen in der Datenbank  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.3  Datenabfragen mit SELECT  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.3.1  Die Klasse ResultSet  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.3.2  Navigieren in der Ergebnismenge   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.3.3  Zugriff auf die Spalten der Abfrage   . . . . . . . . . . . . . . . . . . . . . . . . . . .  100

6.3.4  Behandlung von Nullmarken  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  101

6.4  Parametrisierte SQL-Anweisungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  102

6.4.1 PreparedStatement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  103

6.4.2  Nullmarken als Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  105

6.4.3 CallableStatement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  107

6.5  Aufruf von Datenbankprozeduren mit Ergebnismenge. . . . . . . . . . . . . . . . .  108

6.6 Metadaten  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  109

6.7  Object Relational Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  111

7  Der Systemkatalog  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  115

7.1  Der Systemkatalog in der SQL-Norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  116

7.2  Systemtabellen in SQL-Implementationen   . . . . . . . . . . . . . . . . . . . . . . . . . . .  116

7.2.1  Informationen über Tabellen  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  117

7.2.2  Informationen über Spalten   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  119

7.2.3  Informationen über Integritätsbedingungen  . . . . . . . . . . . . . . . . . . .  120

7.2.4 Übungsaufgaben  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  123

8  Objektorientierung und SQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  125

8.1  Das objektorientierte Datenbankmodell   . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  126

8.1.1  Objekte und Literale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  127

8.1.2 Typen  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  127

8.1.3 Tupel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  128

8.1.4 Kollektionstypen  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  128

8.1.5 Vererbung   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  129

8.1.6  Klassen und Extents  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  131

8.1.7  Objektidentität und Gleichheit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  132

8.1.8 Kapselung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  134

8.1.9  Lebenszeit von Objekten  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  134

8.1.10 Beziehungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  135

8.2  Objektorientierung im SQL-Standard   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  135

8.3  Objektrelationales Modell der Versanddatenbank in Oracle   . . . . . . . . . . . .  136

8.3.1  Abstrakte Datentypen als Wertebereich für Attribute   . . . . . . . . . . .  138

8.3.2  Komplexe Objekttypen und Objekttabellen  . . . . . . . . . . . . . . . . . . . .  141

8.3.3 Vererbung   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  145

8.3.4 Referenzen  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  147

X

Inhaltsverzeichnis

8.3.5 Abfragen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  149

8.3.6  Eingebettete Objekttypen   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  152

8.3.7  Schreiboperationen in Objekttabellen  . . . . . . . . . . . . . . . . . . . . . . . . .  156

8.3.8  Object Views  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  158

8.4  Logischer Entwurf objektrelationaler Datenbanken für Oracle  . . . . . . . . . .  160

8.5  Dokumentation einer existierenden objektrelationalen Datenbank   . . . . . .  163

8.6 Fazit  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  166

A Syntaxnotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  167

B Beispieldatenbank  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  169

Literaturverzeichnis  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  175

Sachverzeichnis  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  177

Datenbankmaschine und Architektur 

1

von Datenbank-Anwendungen

Eine Datenbank ist nicht nur eine Sammlung von Daten. Die Daten liegen strukturiert vor 

und unterliegen gewissen Konsistenzbedingungen (z. B. eindeutige Schlüssel, Fremdschlüssel 

auf andere Tabellen, CHECK-Klauseln). Daneben stehen Datenbanken üblicherweise meh-

reren Nutzern mit unterschiedlichen Zugriffsrechten zu, die ggf. gleichzeitig auf die Daten 

lesend und ändernd zugreifen. 

Im Sprachgebrauch der Informatik verstehen wir unter einer „Datenbankmaschine“ 

das Programm, das die unmittelbaren Aufgaben der Datenverwaltung und des Datenzu-

griffs vornimmt. Ein Anwendungsprogramm kommuniziert mit der Datenbankmaschine 

und bedient sich ihrer Leistung. 

In diesem Kapitel beschreiben wir in einem ersten Abschnitt die Aufgaben der Daten-

bankmaschine. In einem weiteren Abschnitt beschreiben wir die unterschiedlichen 

Ansätze, wie das Anwenderprogramm mit der Datenbankmaschine zusammenarbeitet. 

1.1 

 Aufgaben einer Datenbankmaschine

Als erstes Betrachten wir die unterschiedlichen Aufgaben einer Datenbankmaschine. 

•	 Datenintegration:

Alle Daten werden entsprechend dem Datenmodell verwaltet. Im Fall des relationalen1 

Datenmodells werden alle Daten als Tupel in Relationen dargestellt, die durch das 

Datenbankschema beschrieben worden sind. Auch die Metadaten im Systemkatalog2 

werden relational dargestellt. 

1  Es gibt neben dem relationalen Datenmodell noch andere Datenmodelle, z. B. das objektorien-

tierte Datenmodell, die wir aber im Folgenden nicht betrachten, vgl. hierzu Kap. 8. 

2  Dieses behandeln wir im Kap. 7. 

M. Unterstein und G. Matthiessen,  Anwendungsentwicklung mit Datenbanken, eXamen.press, 

1

DOI: 10.1007/978-3-642-39003-6_1, © Springer-Verlag Berlin Heidelberg 2013

2

1  Datenbankmaschine und Architektur von Datenbank-Anwendungen

•	 Abfragesprache:

Die Datenbank stellt eine Datenmanipulations- und Abfragesprache zur Verfügung, 

mit denen der Benutzer die Daten eingeben, abfragen, ändern und löschen kann. 

•	 Schema-Verwaltung:

Das Datenbankschema wird in einem Systemkatalog verwaltet. Dazu gibt es eine 

Sprache zum Anlegen und Ändern des Schemas. Es ist weiterhin möglich, die Sche-

madaten ähnlich wie normale Daten zu lesen.3

•	 Mehrbenutzerbetrieb:

Eine Datenbank kann von mehreren Benutzern gleichzeitig benutzt werden. Transak-

tionen von mehreren gleichzeitig arbeitenden Benutzern werden synchronisiert. 

Nebenläufige Zugriffe auf dieselben Tupel sind so zu organisieren, dass sich keine 

Überschneidungen ergeben und die Änderungen der Datenbank-Zustände so erfol-

gen, als ob sie streng sequentiell erfolgen. 4

•	 Konsistenz-Erhaltung:

Im Datenbankschema sind Konstrukte enthalten, mit denen Bedingungen beschrie-

ben werden können, die die Daten erfüllen müssen. Hierzu gehören z. B. Schlüssel, 

Fremdschlüssel, CHECK-Bedingungen an einzelne Datensätze. Das Datenbanksystem 

garantiert dann zur Laufzeit die Einhaltung dieser Konsistenzbedingungen 

(„ Constraints“).5

•	 Datenschutz:

Für die Datenbank können verschiedene Benutzerklassen angelegt werden. Für jede 

Benutzerklasse ist festzulegen, für welche Originaldaten sie welche Operationen aus-

führen darf. Daneben können Datensichten und Datenbank-Prozeduren definiert 

werden, mit deren Hilfe man die Zugriffsrechte der einzelnen Benutzerklassen noch 

granularer definieren kann. 

•	 Transaktionen:

Folgen von Datenänderungs-Anweisungen können zu atomaren Einheiten zusam-

mengefasst werden. Das Datenbanksystem garantiert, dass eine solche atomare Ein-

heit entweder vollständig oder gar nicht ausgeführt wird. Im zweiten Fall sind die 

betroffenen Tupel in den Zustand vor Beginn der Ausführung der Transaktion 

zurückzusetzen. Das gilt auch für Systemausfälle des Datenbanksystems. Aber auch 

Abfragen können zu Transaktionen zusammen gefasst werden. Es wird ist dann 

durch den Isolation Level6 festgelegt, welche Datenänderungen während der Ausführung der Abfragen toleriert werden können. 

3  Thema in Kap. 7. 

4  Transaktionen behandeln wir in Kap. 2. 

5  Dieses Thema behandeln wir ausführlich im ersten Band [UnMa12]. 

6  Wird in Kap. 2 behandelt. 

1.1  Aufgaben einer Datenbankmaschine

3

•	 Datensicherung:

Die Daten werden auch nach teilweisen Systemausfällen, z. B. durch Ausfall von 

Datenträgern oder ganzen Servern, wieder in einen konsistenten Zustand überführt. 

Dieses Rücksetzen ist durch entsprechende Werkzeuge zu unterstützen. 

1.2 

 Bearbeitung von Abfrageanweisungen

Entsprechend den o.g. Aufgaben beschreiben wir schematisch, was bei der Bearbeitung 

einer Aufgabe (Datenänderung oder Abfrage) in der Datenbankmaschine abläuft. DDL-

Anweisungen, also Anweisungen, mit denen das Datenbankschema zu ändern ist, fallen 

nur teilweise in das folgende Schema. 7

1.2.1   Syntaktische und semantische Analyse der Abfrage

Eine Anfrage, die in Textform vorliegt, muss zunächst analysiert werden. Dieses 

geschieht in mehreren Schritten. 

Als erstes erfolgt eine rein  syntaktische Analyse. Dabei werden vorhandene Fehler ent-

deckt und führen dazu, dass die Anweisung nicht weiter bearbeitet wird. Dieses können 

lexikalische Fehler sein wie z. B. wenn man SELEKT statt SELECT schreibt. Aber auch 

fehlende oder überflüssige Kommata fallen in diese Kategorie wie bei

SELECT name, vorname, FROM kunde

oder

SELECT name vorname strasse FROM kunde8

Anschließend erfolgt eine  semantische Analyse. Dabei werden die in der Anweisung vor-

kommenden Bezeichnungen von Datenbankobjekten (z. B. Bezeichnungen von Tabellen, 

Spalten, Datensichten) daraufhin überprüft, ob sie in der Datenbank vorhanden sind. 

Wenn keine syntaktischen und semantischen Fehler aufgetreten sind, wird die Abfrage in 

einer symbolischen Form (bei SELECT-Anweisungen als Ausdruck der Relationenalgebra9) 

gespeichert. 

7  Eine vertiefte Darstellung findet sich zum Beispiel in [Satt07]. 

8  Es können aber auch syntaktisch richtige Abfragen fehlerhaft sein, d. h. die Bedeutung ist eine 

andere als die vorgesehene. Beispiel: 

SELECT DISTINCT plz ort FROM kunde 

Die Interpretation des Fehlers überlassen wir dem Leser – ggf. die Anweisung in Ihrem Daten-

banksystem ausführen lassen und das Ergebnis analysieren. 

9  Vgl. hierzu z. B. [UnMa12, Kap. 5 und 7]. 

4

1  Datenbankmaschine und Architektur von Datenbank-Anwendungen

1.2.2   Autorisierungskontrolle

Bevor die Anweisung ausgeführt werden kann, überprüft das Datenbanksystem, ob der 

Benutzer, der die Abfrage an die Datenbank gestellt hat, die notwendigen Rechte besitzt, 

um die entsprechenden Operationen auszuführen.10

1.2.3   Daten-Änderung mit Konsistenzbedingungen

Wenn die Anweisung eine Daten-Änderungsanweisung ist (also z. B. INSERT, UPDATE, 

DELETE), muss das Datenbanksystem prüfen, ob es für die zu ändernden Daten Kon-

sistenzbedingungen gibt. Diese Konsistenzbedingungen sind in dem Ausführungsplan zu 

vermerken und vor oder nach der Ausführung zu überprüfen. Bei Verletzung wird die 

Änderung nicht durchgeführt und es führt zu einer Ausnahme-Behandlung. 

1.2.4   Erstellung des Ausführungsplans

Bei Daten-Anfragen sind keine Konsistenzbedingungen zu beachten – schließlich sollen 

keine Daten geändert werden. Dagegen gibt es für eine gegebene Anfrage in der Regel 

mehrere Möglichkeiten, diese auszuführen. 

So kann bei einer einfachen Selektion immer ein vollständiger Durchlauf durch die 

Tabelle ( table scan) durchgeführt werden; hierzu werden alle Tupel in der Reihenfolge, 

in der sie im Speicher abgelegt sind, ausgelesen und für jedes Tupel wird ausgewertet, ob 

es die Selektionsbedingung erfüllt. Wenn dagegen in der Selektionsbedingung eine Spalte 

benutzt wird, auf der ein  Index liegt, kann es unter Umständen günstiger sein, direkt 

diesen Index zur Ausführung der Anfrage heranzuziehen. Hier müssen wir die Art des 

Index unterscheiden: bei einem Hash-Index ist nur die direkte Abfrage auf Gleichheit 

schneller; bei einem sortierten Index (z. B. ein B-Baum oder B*-Baum) dagegen können 

auch Bereichsabfragen schneller behandelt werden, wie in

… WHERE listenpreis BETWEEN 2.00 AND 3.0 oder

… WHERE plz LIKE '275%' 

Es gibt noch andere Indexarten, z. B. für geographische Daten, die in Abfragen, die sich 

auf die Entfernung zu einem Ort beziehen, herangezogen werden können. 

Eine weitere Aufgabe ist die relationale Projektion, d. h. SELECT DISTINCT. Auch 

hier kann in einigen Fällen die Benutzung eines Index die Ausführung der Abfrage 

beschleunigen. Ähnliches gilt für die GROUP BY-Klausel. 

10  Näheres hierzu in Kap. 3. 

1.2  Bearbeitung von Abfrageanweisungen

5

Wie die Abfrage konkret ausgeführt werden soll, legt der Abfrage-Optimierer ( query 

 optimizer) in einem Ausführungsplan fest. Dem Abfrage-Optimierer stehen neben den 

Angaben des Datenbank-Schemas im Systemkatalog – einschließlich der Angaben über 

vorhandene Indexe – weitere statistische Angaben zur Verfügung, z. B. die Größe der 

Relation, also die Anzahl der Tupel; ggf. weitere Angaben zu einzelnen Spalten (z. B. wie 

viele verschiedene Eintragungen hat die Spalte  plz oder die Spalte  ort). 

Neben Abfragen, die sich auf eine einzelne Relation beziehen, spielen die verschie-

denen Arten des Verbundes eine große Rolle: innerer Verbund, äußerer Verbund und 

Kreuzprodukt. Grundsätzlich kann jeder Verbund durch eine geschachtelte Schleife 

( nested loop) abgearbeitet werden: hierzu werden alle Tupel der einen Relation durch-

laufen und für jedes Tupel alle Tupel der anderen Relation durchlaufen und getestet, 

ob diese Kombination die Bedingungen erfüllt. Dieses ist aber relativ zeitaufwändig: 

die Anzahl der Tupel-Zugriffe ist m*n, wenn m und n die Anzahl der Tupel der bei-

den Relationen sind. Wenn auf den Verknüpfungsattributen Indexe vorhanden sind, 

kann man die Indexe gemeinsam (z. B. aufsteigend) durchlaufen und muss dann nur 

die Tupel holen, wo es einen gemeinsamen Index gibt. Dieser Durchlauf hat dann nur 

eine Größenordnung von n′ + m′ Zugriffen im Index, wobei n′ und m′ die Anzahl der 

Indexeinträge für diese Spalte ist; dazu können aber noch jeweils mehrere Tupel-Zugriffe 

kommen, wenn ein Index-Wert auf mehrere Tupel zeigt. 

Weiterhin sind die Mengen-Operatoren UNION, INTERSECT und EXCEPT zu 

behandeln. 

Als letztes bleibt noch das Problem, dass bei einem Verbund von mehr als zwei Rela-

tionen noch die Reihenfolge der Verarbeitung festzulegen ist, und jeweils die Entschei-

dung, ob Selektionen jeweils vor oder nach einem Verbund durchzuführen sind. 

Die Entscheidungen, die der Abfrage-Optimierer zu treffen hat, sind also recht 

komplex. Unterschiedliche Datenbanksysteme haben unterschiedlich starke Abfra-

geoptimierer; dies hat eine sehr starke Auswirkung auf den Gesamt-Durchsatz der 

Datenbankmaschine. Der Benutzer hat in der Regel nur wenige Möglichkeiten, auf die 

Erstellung des Ausführungsplans Einfluss zu nehmen – manchmal hat die Reihenfolge 

der Tabellen in der Formulierung der SELECT-Anweisung Auswirkungen auf die Effi-

zienz der Abfrage. Hiermit kann man sich intensiver auseinandersetzen, wenn man ein 

bestimmtes System im Einsatz hat und einige komplexe Abfragen viel Zeit in Anspruch 

nehmen. 

1.2.5   Transaktionsverarbeitung

Wenn die Ausführungspläne verarbeitet werden, muss das Datenbanksystem bei 

Datenänderungen sicher stellen, dass parallele Datenbankzugriffe sich nicht in unzu-

lässiger Weise beeinflussen. Ebenso sind bei lesenden Transaktionen die Isolation Level 

einzuhalten. 

Dies ist die Aufgabe des Transaktions-Managers. 

6

1  Datenbankmaschine und Architektur von Datenbank-Anwendungen

1.2.6   Speicherverwaltung

Die Datenbank wird persistent auf einem externen Datenspeicher – üblicherweise Festplatte – 

gehalten. Die Daten müssen zur Verarbeitung im Hauptspeicher zur Verfügung stehen. 

Im einfachsten Fall kann man dazu die Pufferverwaltung des Betriebssystems verwen-

den. Da aber für komplexe Suchvorgänge bestimmte Daten mehrfach benötigt werden, 

ist es wichtig, möglichst viele Daten im Hauptspeicher zu halten. 

Der Hauptspeicher hat inzwischen Größenordnungen, die die Größe einzelner Blö-

cke (Größenordnung 4 bis 64 Kb) bei weitem überschreiten. Daher können relativ große 

Datenbereiche im Hauptspeicher gehalten werden. Wenn der Platz im Hauptspeicher 

knapp wird, muss die Speicherverwaltung entscheiden, welche Datenbereiche freigege-

ben werden. Es gibt hier verschiedene Strategien: z. B.  least recently used (welche Daten 

sind am längsten nicht benutzt worden) oder  least frequently used (welche Daten sind am 

wenigsten genutzt worden) und Kombinationen davon. 

1.2.7   Das  Recovery-Management

Es gibt drei Situationen, bei denen Änderungen an der Datenbank rückgängig gemacht 

werden müssen:

•	 eine Transaktion wird mit ROLLBACK beendet, 

•	 eine Transaktion ist zurückzufahren, da ein geordnetes Ende wegen gegenseitiger Blo-

ckaden von mehreren Transaktionen (sog.  dead lock) nicht möglich ist, 

•	 die Datenbankmaschine wird durch einen Systemfehler beendet und muss – nach 

Behebung des Fehlers – wieder neu angefahren werden. 

Der Recovery-Manager hat sicher zu stellen, dass beim Rollback einer Transaktion die 

in der Transaktion geänderten Daten auf den Zustand vor dem Beginn der Transaktion 

wieder hergestellt werden. 

1.2.8   Führung der Logdatei und Durchführung von 

Totalsicherungen

Zum Zweck des Recovery-Managements wird für jede Datenbank eine Logdatei11 benö-

tigt. Dieses ist eine sequentielle Datei, die für jede Änderung an der Datenbank ein 

11  Der Name kommt aus der Seefahrt, wo für alle Ereignisse einer Schifffahrt in einem Logbuch 

zu verzeichnen sind. Das Logbuch wird chronologisch geführt und ist nicht zur Veröffentlichung 

bestimmt, sondern dient in erster Linie zum Nachweis der ordentlichen Schiffsführung, z. B. nach 

einer Havarie. 

1.2  Bearbeitung von Abfrageanweisungen

7

Before-Image (für UPDATE und DELETE) und ein After-Image oder die Angabe der 

Anweisung (für INSERT und UPDATE), außerdem jeweils den Start und das Ende einer 

Transaktion enthält. 

Die Logbuch-Datei ist in jedem Fall außerhalb der Datenbank anzulegen. Sie sollte 

aber auf demselben Host wie die Datenbank liegen, da beim Rückrollen einer Transak-

tion die Daten unmittelbar zur Verfügung stehen müssen. 

Außerdem muss das Datenbanksystem die Möglichkeit bieten, Totalsicherungen der 

Datenbank anzulegen. Dieses erfolgt entweder zeitgesteuert (wöchentlich, täglich, stünd-

lich) oder ereignisgesteuert (z. B. wenn eine bestimmte Anzahl von Datensätzen geändert 

worden ist oder wenn ein bestimmter Datenbank-Zustand erreicht wird). 

Üblicherweise wird noch eine Spiegel-Logdatei auf einem entfernten Host geführt. 

Wenn der Host durch eine Katastrophe vollständig zerstört wird – oder nur die entspre-

chende Platte, kann aus der letzten Totalsicherung und der Logdatei der letzten konsis-

tente Zustand vor dem Systemzusammenbruch wieder hergestellt werden. 

1.3 

 Betriebsmodi von Datenbanken

Eine Datenbankmaschine ist ein eigenständiges Programm. Üblicherweise läuft dieses 

Programm als eigener Prozess auf einem Host. Der Host ist der Rechner, auf dem der 

Datenbankprozess läuft. Wenn es derselbe Rechner ist, auf dem auch die Anwendung 

läuft, wird dieser Host als  localhost bezeichnet. 

1.3.1   Die  Datenbankdatei

Den Speicherbereich, in dem die Daten einer Datenbank abgelegt sind, bezeichnen wir 

als  Datenbankdatei. Dieses kann eine normale Datei des Betriebssystems sein. Sie kann 

dann in aller Regel auch mit Kommandos oder Tools des Betriebssystems gelöscht, 

kopiert oder verschoben werden. 12 Bei vielen Systemen ist es auch möglich, die Daten auf mehrere Dateien des Betriebssystems zu verteilen. 13 Auch in diesem Fall sprechen wir im Folgenden von der Datenbankdatei. Diese Datei kann dann auch (über externen 

Datenträger oder DFÜ) auf einen anderen Rechner kopiert werden und ist dort sofort als 

Datenbank wieder einsetzbar. Das klappt sogar über Betriebssystemgrenzen hinweg 

(z. B. Windows, Unix und Linux, Mac OS). Damit ist es auch relativ einfach, eine voll-

ständige Anwendung mit allen Daten von einem Rechner auf einen anderen zu 

portieren. 

12 Diese Art der Speicherung wird unter anderem von SQL Anywhere, H2, HSQLDB, SQLite, 

Firebird verwendet. 

13  So können zum Beispiel die Daten verschiedener Tabellen auf verschiedene Platten verteilt wer-

den. Dadurch kann in der Regel der Datenbank-Zugriff beschleunigt werden. 

8

1  Datenbankmaschine und Architektur von Datenbank-Anwendungen

Früher war es auch noch üblich, dass die Daten einer Datenbank auf mehrere Dateien 

des Betriebssystems verteilt waren – z. B. pro Tabelle eine oder zwei14 Dateien.15

Bei größeren Datenbanksystemen ist es jedoch üblich, dass die Daten in einem spezi-

ellen Speicherbereich verwaltet werden, wo ein Zugriff durch das Betriebssystem nicht 

ohne weiteres möglich ist. Der einfachere Fall ist, dass die Daten auf einem (oder mehre-

ren) Unterverzeichnissen abgelegt sind, wo nur das Datenbanksystem Zugriffsrechte hat. 

Die stärkste Integration in das Datenbanksystem haben die Daten auf sog.  raw devices. 

Da werden die Daten auf eine Partition einer Platte geschrieben, die nicht vom Betriebs-

system, sondern vom Datenbanksystem vollständig verwaltet wird. 16

Die Datenbankdatei ist in der Regel auf demselben Host wie die Datenbankmaschine. 

Grundsätzlich kann nur ein Prozess gleichzeitig auf die Datenbankdatei zugreifen. 

Dieses kann ein Server-Prozess sein, der dann mehrere Sitzungen gleichzeitig bedienen 

kann, oder ein Prozess, der exklusiv auf eine eingebettete Datenbank zugreift. 

Bei verteilten Datenbanken ist das etwas komplexer, und es gibt dort unterschiedliche 

Strategien der Koordination der einzelnen Hosts. Dies behandeln wir nicht. 

Der klassische Betriebsmodus von Anwenderprogramm und Datenbankmaschine ist 

der Client/Server-Betrieb, wo das Anwendungsprogramm und der Server getrennte Pro-

zesse sind, die miteinander kommunizieren. Es gab aber auch schon immer kleinere 

Datenbanksysteme, 17 bei denen die Anwendungsprogrammierung und der Datenbank-

zugriff in einem Prozess laufen. Bei neueren DBMS haben wir häufig mehrere Möglich-

keiten – je nach Anzahl der parallelen Benutzer, der Komplexität der Anfragen und 

anderer Kriterien. 

Wir werden im Folgenden einige dieser Betriebsmodi näher beschreiben – wobei wir 

uns auf SQL-Datenbanken beschränken. 

1.3.2   Datenbank im Client/Server-Betrieb

Dieses ist die klassische Architektur (Abb.  1.1). Die Datenbankmaschine läuft auf einem Host in einem eigenen Prozess; dieser Prozess wird als  Server- Prozess oder kurz als  Server 18 

bezeichnet. 

Damit ein Benutzer sich als Client mit einem Server verbinden kann, muss dieser als 

Serverprozess gestartet sein. Es gibt mehrere Möglichkeiten, einen Server zu starten:

14  Auf der zweiten Datei befand sich dann ein Index für den Primärschlüssel. 

15  Dieses wurde z. B. von den Systemen dBASE und Paradox, angewandt. Heute aber auch noch 

bei Informix-SE. 

16  Dieses wird z. B. von Oracle, IBM DB2 und SAP MaxDB unterstützt. 

17  Zum Beispiel dBASE in 1980-er Jahren oder MS Access und Paradox in den 1990-er Jahren. 

18  Sprachlich ungenau wird manchmal der Host, auf dem der Server läuft, als Server bezeichnet. 



1.3  Betriebsmodi von Datenbanken

9

Abb. 1.1  Datenbank im Client/Server-Betrieb

•	 manuell:

Ein entsprechend privilegierter Benutzer startet den Prozess auf dem Host. 

•	 automatisch:

Der Prozess wird beim Hochfahren des Rechners gestartet. 

•	 als Service:

Der Prozess wird – automatisch oder manuell – gestartet und ist auf dem Host auch 

erreichbar, wenn auf ihm kein Benutzer angemeldet ist. Dieses ist der übliche Modus 

bei größeren Datenbankanwendungen; andere Anwendungen sollen nicht gleichzeitig 

die Ressourcen blockieren. 

•	 vom Anwenderprogramm:

Dieses ist sinnvoll, wenn die Datenbank nur sporadisch genutzt wird. 

Wenn der Server gestartet wird, ist auch noch festzulegen, von welchen Host auf den 

Server zugegriffen werden darf. Üblicherweise erfolgt die Kommunikation mit dem 

Server über die tcp/ip-Schnittstelle. Es können damit bestimmte Client-Arbeitsrechner 

zugelassen oder ausgeschlossen werden. Auch über die Firewall ist zu regeln, wer Zugang 

zum Server hat. 

Im Client/Server-Betrieb können grundsätzlich mehrere Sitzungen gleichzeitig ablau-

fen. Das Datenbanksystem sorgt für die konsistente Koordination der Datenzugriffe, wie 

wir im Abschn. 1.2.5 beschrieben haben. 

Üblicherweise gibt es hier für die Datenbanken jeweils einen Datenbank-Admi-

nistrator, der sicher stellt, dass die Anwendungen jeweils effizient ablaufen und der 

auch für die Datensicherung zuständig ist. Er hat dafür zu sorgen, dass zu bestimmten 

10

1  Datenbankmaschine und Architektur von Datenbank-Anwendungen

Zeitpunkten Totalsicherungen der Datenbanken erfolgen. Des Weiteren muss er sich 

um die Organisation der Log-Dateien kümmern; gegebenenfalls sind die Log-Dateien 

in bestimmten Zeitabständen zu archivieren und neue aufzusetzen. In aller Regel laufen 

diese Aktionen im laufenden Betrieb. Auch Änderungen der Datenbankstruktur werden 

im laufenden Betrieb eingespielt – außer, wenn es sich um eine völlige Neustrukturie-

rung der Datenbank handelt. 

Somit muss sich beim Client/Server-Betrieb der Endnutzer keine Gedanken um die 

Datensicherung und Datensicherheit machen. Die Datenbank tritt dem Endnutzer also 

quasi als Dienst – oder nach neuerer Sprechweise „Service“ gegenüber. 

1.3.3   Eingebettete  Datenbank

Datenbanken bei kleineren Anwendungen stehen häufig nur einem Anwenderprogramm 

zur Verfügung. In diesem Fall ist ein Mehrbenutzerbetrieb nicht notwendig. Es gibt dann 

auch keinen dedizierten Datenbankadministrator, der die Einrichtung und den Betrieb 

der Datenbank organisiert. 

Dieses ist früher der Bereich der „klassischen“ Datenverarbeitung ohne Benutzung 

einer Datenbank gewesen, wo die Daten in satzorientierten Dateisystemen gespeichert 

wurden. Allerdings haben Datenbanken eine Reihe von Vorteilen, die man auch sinnvol-

lerweise verwenden kann, wenn man keinen Mehrbenutzerbetrieb hat. Es sind dies u. a. 

•	 Anwendungsorientierte Strukturierung der Daten in Tabellen mit Spalten und 

Konsistenzregeln

•	 Ausführung komplexer Anfragen

•	 Transaktionen

•	 Erweiterbarkeit des Datenmodells

Daher bieten einige Datenbanksysteme seit einiger Zeit die Möglichkeit, Datenbanken 

im eingebetteten Modus zu betreiben (Abb.  1.2). 

Hier wird die Datenbankmaschine nicht als eigener Prozess gestartet, sondern als 

Subsystem mit dem Benutzerprogramm zusammen geladen. Das kann eine dynamische 

Bibliothek sein (z. B. dll-Datei unter Windows) oder eine Java-Bibliothek, die zur Lauf-

zeit dazu geladen wird. In SQL Anywhere kann vom Programm ein sog.  personal server 

gestartet werden, der zwar als eigenständiger Prozess abläuft, aber nur eine Verbindung 

vom Programm zulässt, das ihn gestartet hat. Aufrufe an die Datenbank erfolgen jetzt 

direkt an das Subsystem, das kein getrennter Prozess ist, sondern ein Teil des Prozesses, 

der auch das Anwendungsprogramm enthält. 

Der Vorteil für den Benutzer ist, dass er sich nicht um die Administration des Daten-

bankprozesses kümmern muss. Er muss keine aufwändige Datenbankmaschine starten. 

Er muss nur das Anwenderprogramm starten, und die Datenbankmaschine wird dann 

mit geladen. 



1.3  Betriebsmodi von Datenbanken

11

Abb. 1.2  Betrieb als eingebettete Datenbank

Dieses Verfahren hat den weiteren Vorteil, dass ein Anwendungsentwickler eine Kun-

denanwendung als Ganzes beim Kunden installieren kann, ohne dass die Datenbankad-

ministration als eigenständige Aufgabe beim Anwender existiert. 

Ein Nachteil dieser Vorgehensweise ist, dass der Endanwender sich selber um die 

Datensicherungen und Protokolldateien kümmern muss. 

Datenbanksysteme, die einen eingebetteten Betriebsmodus erlauben, speichern die Daten 

üblicherweise in einer Datei des Betriebssystems (vgl. S. 8). Damit ist es auch relativ einfach, eine 

vollständige Anwendung mit allen Daten von einem Rechner auf einen anderen zu portieren. 

1.3.4   Datenbank im Hauptspeicher

Datenbank im Hauptspeicher? Bis vor wenigen Jahren war das noch ein Widerspruch 

in sich. Inzwischen sind jedoch die Techniken der relationalen Datenbanken mit ihrem 

Datenmodell und der Abfragesprache SQL sehr weit verbreitet und effektiv implementiert. 

Des Weiteren ist die Größe des Hauptspeichers sehr stark gestiegen – während Anfang der 

1980-er Jahre ein Hauptspeicher auch bei Großrechnern üblicherweise noch unter 1 Mb 

war und nur dazu diente, die Daten von der Festplate „zwischen zu puffern“, haben heute 

selbst einfache Arbeitsplatzrechner einen Hauptspeicher von mehreren Gigabyte. 

Daher macht es Sinn, eine gesamte Datenbank im Hauptspeicher zu halten. Es kann 

sich hierbei um relativ kleine Datenbanken im Bereich von eingebetteten Systemen 

handeln bis hin zu großen Datenbanken, die auf einem dedizierten Datenbankserver 

mit einem Hauptspeicher mit mehreren Gigabyte residieren. Diese Systeme werden als  

In-Memory-Datenbanken (IMDB) oder speicherresidente Datenbanken bezeichnet. 

Anwendungen für speicherresidente Datenbanken sind zum einen eingebettete Sys-

teme, bei denen es auf sehr schnelle Reaktionszeiten ankommt. Hierfür sind kleine 

Datenbanksysteme gut geeignet. Daneben können speicherresidente Datenbanken für 

12

1  Datenbankmaschine und Architektur von Datenbank-Anwendungen

dedizierte Datenbankserver verwendet werden, wenn es um sehr große Datenbanken 

geht (die bis zu mehreren Gigabyte groß sind und noch gerade in den Hauptspeicher 

passen). Mögliche Anwendungen sind hier BI-Systeme19 oder Fahrplan-Auskunft- und 

Platz-Reservierungssysteme in Verkehrsnetzen.20

Speicherresidente Datenbanken haben u. a. folgende Vorteile:

•	 Die Daten stehen unmittelbar zur Verfügung und komplexe Auswertungen sind 

dadurch sehr viel schneller. 

•	 Transaktionen sind dadurch kürzer, was die gegenseitigen Blockaden wegen Daten-

sperren verringert. 

Dem stehen einige Nachteile gegenüber:

•	 Die Daten müssen beim Start der Datenbank-Maschine vollständig geladen werden. 

•	 Bei Datenänderungen sind zusätzliche Änderungslogs zu veranlassen, um nach Been-

digung oder Abbruch eines Laufs der Datenbankmaschine wieder einen aktuellen 

Datenzustand herzustellen. 

Es gibt inzwischen eine Reihe von SQL-Datenbanksystemen, die die Möglichkeit bieten, 

die Datenbank vollständig im Hauptspeicher zu betreiben. Das sind zum einen kleine 

Systeme (die aber dennoch den vollen Umfang von SQL:1999 bieten) wie HSQLDB, H2 

oder SQLite. Daneben gibt es bei großen Datenbank-Herstellern wie Oracle, IBM und 

SAP eigene Produkte für In-Memory-Datenbanken. 

1.3.5   Datenbanken im Internet

Bei Datenbanken im Internet, d. h. Datenbanken, die von einem beliebigen Benutzer 

über einen Browser erreichbar sind, haben wir oberflächlich gesehen eine ähnliche Situa-

tion wie im Client/Server-Betrieb:

•	 Es gibt einen Server, 

•	 Viele Benutzer greifen auf die Daten dieses Servers zu und veranlassen ggf. Änderun-

gen in der Datenbank21

19 BI = „Business Intelligence“ und bezeichnet Systeme, wo aus großen Datenbeständen eines 

Unternehmens komplexe Berechnungen durchgeführt werden, um Daten für strategische Entschei-

dungen zu erhalten. Das Wort „Intelligence“ hat im militärischen und geheimdienstlichen Umfeld 

die Bedeutung von „Nachrichtenmaterial“, also Datensammlungen. Den Marketingabteilungen der 

Hersteller solcher Systeme ist aber sicher recht, dass die Bezeichnung den Schluss nahelegt, ihre 

Systeme seien selbst intelligent – eine Eigenschaft, die kein Computer und kein Programm hat! 

20  Hier ist zu berücksichtigen, dass das Suchen einer Verbindung in einem Verkehrsnetz sehr auf-

wändig ist und daher das Vorhalten – zumindestens der Verkehrsdaten – die Suchzeiten drama-

tisch verringern können. 

21  Zum Beispiel durch Online-Bestellungen. 



1.3  Betriebsmodi von Datenbanken

13

Abb. 1.3  Datenbank im Internet

Es gibt verschiedene Modelle, von denen wir hier neu eines beschreiben: die Drei-

Schichten-Architektur (Abb.  1.3). 

Die Zugriffe der Benutzer erfolgen nicht durch jeweils eine Benutzersitzung und ein 

(selbst geschriebenes oder zur Verfügung gestelltes) Anwenderprogramm, sondern die 

Daten, die im Browser eingegeben worden sind, werden an einen  Application Server wei-

ter gereicht, also an ein Programm, das die Eingaben annimmt und mit dem Datenbank-

Server kommuniziert. 

Somit haben wir hier aus Datenbank-Sicht nur einen Benutzer, der mit der Daten-

bank kommuniziert: der Application Server.22

1.3.6   Datenbanken und SOA

Unter einer Serviceorientierten Architektur „SOA“ versteht man ein Architekturmuster, 

das den Aufbau einer Anwendungslandschaft aus einzelnen fachlichen Anwendungsbau-

steinen (Services) beschreibt, die jeweils eine klar umrissene fachliche Aufgabe wahrneh-

men. 23 Ein Service kann mehrerer Operationen anbieten, die über standardisierte Schnittstellen – unabhängig von einer speziellen Technologie (DBMS, Betriebssystem, 

Netzwerk etc.) – aufgerufen werden. Eigenschaften dieser Bausteine sind lose Koppe-

lung, sodass möglichst geringe Abhängigkeiten der Services voneinander bestehen. Vom 

22  Es kann hier natürlich weitere Benutzer für die Datenbank geben, z. B. neben dem Programm, 

das die Bestellungen der Kunden entgegen nimmt, könnte es z. B. eine weitere Anwendung geben, 

die die interne Logistik regelt, also die Lagerverwaltung und den Versand, und eine Anwendung 

für die externe Logistik, also die Beschaffung. 

23  Für eine ausführliche Definition siehe [RiHS05]. 



14

1  Datenbankmaschine und Architektur von Datenbank-Anwendungen

Abb. 1.4  Datenintegration im Rahmen einer Serviceorientierten Architektur

Konzept her sind Serviceoperationen eine spezielle Form von gespeicherten Prozeduren 

oder Funktionen, die bei Aufruf mit einer definierten Liste von Parametern bestimmte 

Datenbankoperationen ausführen. 24 Die Art und Weise der Ausführung (Implementie-

rung) bleibt dabei dem Benutzer verborgen. 

Services höherer Art 

Services können selbst wieder Aufrufe anderer Services enthalten. Eine Anwendung 

kann so mithilfe von Services zusammengestellt werden, wobei der zeitlich/logische 

Zusammenhang und die Abhängigkeiten bestimmter Aufrufe von Bedingungen in Form 

von abstrakten Prozessbeschreibungen (Geschäftsprozessen) in dafür speziell geschaffe-

nen Sprachen und Diagrammtypen formuliert werden. 25

Datenbankzugriffe können im Rahmen dieser Architektur als Services angeboten wer-

den, die von anderen Services, welche z. B. komplexe Geschäftstransaktionen realisieren, 

benutzt werden. Dadurch sind die direkten Datenbankzugriffe für die Anwendung trans-

parent. Aufgrund der Kapselung dieser Funktionalität und des Aufrufs über 

24  Siehe dazu unser Abschn. 4.1. 

25  Wir gehen auf diese Thematik nicht weiter ein und verzichten aufgrund der Vielzahl der Quel-

len auf die Angabe von Referenzen. Der interessierte Leser möge beispielsweise nach den Stichwor-

ten: BPEL, BPMN, Business Process, SOA recherchieren. 

1.3  Betriebsmodi von Datenbanken

15

standardisierte Schnittstellen ist dann auch eine recht weitreichende Unabhängigkeit von 

bestimmten Datenquellen mit ihren spezifischen Datenmodellen und Formaten gegeben. 

Datenservices können daher genutzt werden, um heterogene Datenquellen zu integrie-

ren, sodass die Anwendung die Unterschiede nicht bemerkt. Abbildung 1.4 zeigt das Prinzip: Die Anwendungen greifen auf die Datenservices zu, nicht auf die Datenquellen 

selbst. Ein Datenservice, z. B. „Kunden“ stellt alle Operationen auf den Kundendaten 

(Lese- und Schreibzugriffe) zur Verfügung. Woher der Service die Daten bekommt, 

bleibt für die Anwendung transparent – es macht keinen Unterschied, ob die Daten in 

einer relationalen Datenbank, in einer Spreadsheet-Tabelle, im XML Format oder sonst-

wie vorliegen. Daher sind die verschiedenen Datenquellen aus Anwendungssicht im 

Rahmen einer so realisierten SOA integriert.26

26  Die konsequente Umsetzung des Prinzips der losen Koppelung von Services führt anderseits zu 

Problemen mit der Konsistenzsicherung der Daten (Abhängigkeiten, Transaktionen). Einige kriti-

sche Bemerkungen dazu kann man in [Unte10] nachlesen. 

Transaktionen

2

In betrieblichen Anwendungen sind die Daten häufig unternehmensweit – mindestens 

jedoch abteilungsweit – organisiert, und die Nutzer haben Zugriff über ein lokales Netz-

werk oder über das Internet. 

Hierbei ergibt sich das Problem, dass verschiedene Nutzer gleichzeitig auf dieselben 

Daten zugreifen und sie sogar gleichzeitig ändern. Das Datenbanksystem muss diese 

Zugriffe so organisieren, dass durch gleichzeitige Zugriffe nicht irgendwelche Tupel in 

unerwünschter Weise geändert werden. 

2.1 

 Eigenschaften von Transaktionen

Als Transaktionen1 werden Folgen von Datenmanipulationen bezeichnet, die eine logische Einheit bilden (englisch:  logical unit of work). Eine einzelne Operation könnte, für 

sich betrachtet, die Konsistenz der Datenbank zerstören. Werden sie aber alle ausgeführt, 

geht die Datenbank wieder in einen konsistenten Zustand über. 

Folgende Merkmale werden mit dem Begriff der Transaktion verbunden:

•	  Atomarität:

Eine Transaktion wird entweder vollständig oder gar nicht, keinesfalls aber nur teil-

weise ausgeführt. 

•	  Konsistenz:

Eine Transaktion überführt eine Datenbank von einem konsistenten Zustand in einen 

anderen konsistenten Zustand. 

1  Eine umfangreiche Darstellung findet sich zum Beispiel in [MeSi02]. 

M. Unterstein und G. Matthiessen,  Anwendungsentwicklung mit Datenbanken, eXamen.press, 

17

DOI: 10.1007/978-3-642-39003-6_2, © Springer-Verlag Berlin Heidelberg 2013

18

2 Transaktionen

•	  Isoliertheit:

Andere gleichzeitig ablaufende Transaktionen haben keinen Einfluss auf das Ergebnis 

einer aktiven Transaktion. Diese Forderung, die für einen reibungslosen Mehrbenut-

zerbetrieb entscheidend ist, wird durch die  Serialisierbarkeit erreicht. Dies bedeutet, 

dass mehrere gleichzeitig ablaufende Transaktionen dasselbe Resultat bewirken, als 

hätten sie nacheinander stattgefunden. 

•	  Dauerhaftigkeit:

Nach Beendigung einer Transaktion sind die durch sie bewirkten Änderungen in der 

Datenbank dauerhaft gespeichert.2

In Anlehnung an die englischen Begriffe  atomicity,  consistency,  isolation und  durability fasst man diese Eigenschaften unter dem Kürzel „ACID“ zusammen. 

Beispiel: Aktionen der referenziellen Integrität

Aus irgendeinem Grund soll der Wert von kunden_nr in der Tabelle kunde geän-

dert werden. Wenn zu diesem Kunden Bestellungen existieren, muss konsequenter-

weise auch in der Tabelle bestellung die Änderung der kunden_nr nachvollzogen 

werden. Sonst verlieren alle Bestellungen, in denen dieser Wert von kunden_nr als 

Fremdschlüssel erscheint, ihre Zuordnung. Die Datenbank wäre dann inkonsistent. 

Durch  eine einzige SQL-Anweisung wird nun eine Folge von Datenbankoperationen 

ausgelöst:

Dass hieraus mehrere Update-Aktionen folgen, liegt an der Deklaration der kunden_nr 

als Fremdschlüssel in bestellung, wobei die Weitergabe aller Wertänderungen des 

Primärschlüssels an den Fremdschlüssel verlangt wird:

Beispiel: Banküberweisung

Dabei müssen zwei SQL-Anweisungen ausgeführt werden: Vom Konto 11 werden 

beispielsweise 100,- Euro auf das Konto 22 überwiesen. 

2  Sie können natürlich durch eine spätere Transaktion wieder geändert werden. 

2.1  Eigenschaften von Transaktionen

19

Die Transaktionsmerkmale stellen sich an diesem Beispiel wie folgt dar:

•	  Konsistenz:

Zwischen der ersten und der zweiten Anweisung ist die Datenbank in einem inkon-

sistenten Zustand. Die Bank hat in ihrem Gesamtsaldo 100,- Euro zu viel. Nach der 

Ausführung der gesamten Transaktion ist die Datenbank wieder konsistent. 

•	  Atomarität:

Die beiden Buchungen werden komplett oder gar nicht ausgeführt. 

•	  Dauerhaftigkeit:

Nach der zweiten Buchung werden die neuen Kontostände gespeichert. Die Änderun-

gen können nun nicht mehr verloren gehen. 

•	  Isoliertheit/Serialisierbarkeit:

Wenn während dieser Transaktion ein zweiter Buchungsvorgang beginnt, der das 

Konto 22 betrifft, muss dessen Stand am Ende denselben Wert haben, als wenn die 

Buchungen nacheinander stattgefunden hätten (in diesem Fall wäre die Reihenfolge 

beliebig). 

2.1.1   Gefahren für die Konsistenz

Gefährungen für die Datenkonsistenz können einmal auf der physikalischen Ebene liegen:

•	 Programmfehler in Applikationen, die z. B. zu Endlosschleifen mit Überlauf des 

Stacks führen

•	 Betriebssystembedingte Fehler, z. B. unerlaubt hoher Verbrauch an Ressourcen wie 

Hauptspeicher, Plattenspeicher, Puffer

•	 Zusammenbruch des Datenbanksystems

•	 Hardware-Fehler, z. B. Zerstörung eines Datenträgers

•	 Stromausfall

Ist die gesamte Datenbank durch einen Hardware-Fehler oder aufgrund eines nicht rever-

siblen Betriebssystemfehlers physisch zerstört, ist nichts anderes möglich als die Wieder-

herstellung aus einer – hoffentlich nicht weit zurückliegenden – Datensicherung. 

20

2 Transaktionen

Eine andere Ursache für Inkonsistenzen liegt auf der logischen Ebene: die Datenbank ist 

nicht physisch zerstört, aber ihr Inhalt ist inkonsistent geworden, weil eine Reihe zusam-

menhängender Operationen nicht vollständig ausgeführt wurde. Hauptursache ist hier:

•	 der gleichzeitige Zugriff mehrerer Benutzer auf dieselben Daten

Für Fehler der ersten Kategorie ist die regelmäßige Datensicherung auf einem anderen 

Medium die sicherste Vorsorge. Auf Basis einer solchen Sicherung kann das Transakti-

onsmanagement eines DBMS unter Umständen einen relativ aktuellen Stand der Daten-

bank wiederherstellen. Dazu wird ein so genanntes „After-Image“-Protokoll verwaltet, 

das die nochmalige Ausführung abgeschlossener Transaktionen ermöglicht. 

Fehler der zweiten Art können beseitigt werden, indem der Zustand der Daten wie-

derhergestellt wird, den diese vor Beginn der Transaktion hatten. Hierzu werden 

„Before-Image“-Protokolle verwendet.3

2.1.2   Transaktionsmanagement

Die Aufgabe des Transaktionsmanagements eines DBMS ist es, die ordnungsgemäße 

Beendigung von Transaktionen zu kontrollieren. Dabei muss es Situationen erkennen 

und bewältigen, die die Konsistenz der Datenbank gefährden. Falls der erfolgreiche 

Abschluss einer Transaktion nicht möglich ist, muss es die Datenbank auf einen bekann-

termaßen konsistenten Zustand zurückführen, d. h. alle seit Beginn der Transaktion vor-

genommenen Einzeländerungen rückgängig machen. 

2.2 

 Transaktionen in SQL

Transaktionen können nicht „verschachtelt“ sein, es kann also innerhalb einer laufenden 

Transaktion keine weitere Transaktion (etwa wie ein Unterprogramm) gestartet werden. 

2.2.1   Start von Transaktionen

Eine Transaktion beginnt implizit, wenn gerade keine Transaktion aktiv ist und eine 

DML-Anweisung gestartet wird (also z. B. SELECT oder UPDATE). 

Des weiteren kann eine Transaktion durch die START TRANSACTION-Anweisung4 

begonnen werden. Voraussetzung dazu ist, dass gerade keine Transaktion aktiv ist. 5 

3 Ausführungen zu Recovery Management und Logdateien sind in Abschn. 1.2.7 und 1.2.8 zu 

finden. 

4  Die Optionen dieser Anweisung werden in Abschn. 2.4 eingeführt. 

5  Dieses würde zu einer Ausnahmebedingung führen. 

2.2  Transaktionen in SQL

21

Durch die START TRANSACTION-Anweisung können der Transaktion Parameter mit-

gegeben werden. 

2.2.2   Beendigung von Transaktionen

Die Beendigung einer Transaktion ist auf verschiedene Weise möglich. Im Allgemeinen 

wird ein Transaktionsende durch den Benutzer selbst (respektive durch ein Anwen-

dungsprogramm) explizit angefordert. Dazu stehen die beiden SQL-Anweisungen COM-

MIT und ROLLBACK zur Verfügung. Daneben können Transaktionen implizit beendet 

werden, worauf wir weiter unten zurückkommen. 

Ist der Benutzer sicher, dass alle Operationen richtig ausgeführt wurden, muss er dem 

DBMS mitteilen, dass die Änderungen in der Datenbank dauerhaft niedergelegt werden 

sollen. Dies geschieht mit der Anweisung:

Erst ab diesem Moment sind die geänderten Daten für andere Benutzer sichtbar, sofern 

der Isolation Level von ihrer Seite nicht auf READ UNCOMMITTED eingestellt wurde. 6 

Solange eine Transaktion noch nicht abgeschlossen ist, sind alle Änderungen sozusagen 

„privat“, das heißt nur für den Prozess existent, der sie durchgeführt hat. Dies gilt im 

Übrigen auch, wenn solche zusammenhängenden Änderungen mit Datenbankprozedu-

ren ausgeführt werden (vgl. Kap. 4). 

Des Weiteren wird eine Transaktion durch eine DDL-Anweisung implizit beendet. 

Dieses wirkt wie eine zuvor ausgefürte COMMIT-Anweisung. 

Die Anweisung

macht die Änderungen seit Beginn der Transaktion rückgängig. Wurden beispielsweise 

irrtümlich für alle Artikel die Verkaufspreise um 10 % erhöht, so kann die Wirkung einer 

solchen Anweisung, z. B.:

mit ROLLBACK aufgehoben werden. Die Artikeltabelle enthält dann dieselben Werte in 

der Spalte listenpreis wie vor der Änderung. 

Technisch liegt dieser Möglichkeit, Datenänderungen rückgängig zu machen, eine 

zeitweise Duplizierung der Daten zugrunde. Bei ORACLE beispielsweise werden alle 

Tupel vor der Änderung in die bereits erwähnte Before-Image-Datei kopiert. Aus dieser 

werden sie mit ROLLBACK in die Datenbank zurückkopiert. 

6  Isolation level behandeln wir in Abschn. 2.4. 

22

2 Transaktionen

2.2.3   Autocommit

Verschiedene DBMS können über Systemvariablen so konfiguriert werden, dass sie nach 

jeder UPDATE-, INSERT- oder DELETE-Anweisung automatisch ein COMMIT durch-

führen; bei einigen Systemen7 ist dies sogar die Voreinstellung. Dies ist in vielen Fällen sinnvoll, wenn nämlich alle Änderungen mit einer einzigen Anweisung erledigt werden. 

Es hat zudem den Vorteil, dass andere Benutzer möglichst bald mit dem aktualisierten 

Datenbestand arbeiten können. Sollen aber mehrere Änderungen, Einfügungen oder 

Löschungen im Zusammenhang betrachtet werden, muss dieses automatische COMMIT 

unterbunden werden. 

Die zugehörigen Systemvariablen sind nicht standardisiert. 

Bei ORACLE heißt die Systemvariable AUTOCOMMIT und wird durch die Anweisung

SET AUTOCOMMIT ON | OFF

eingestellt. 

Bei SQL Anywhere heißt sie AUTO_COMMIT, die entsprechende Anweisung sieht wie 

folgt aus:

2.2.4   Start des DBMS nach Systemzusammenbruch

Wenn einer der oben aufgezählten Fälle von Systemfehlern eintritt, ist keine ordnungs-

gemäße Beendigung der Transaktion mehr möglich. Wegen der Eigenschaft Atomarität 

muss das DBMS dann beim nächsten Laden automatisch die Datenbank in den letz-

ten konsistenten Zustand zurückversetzen. Die Aufgabe der Anwender ist es dann, die 

unvollständig gebliebenen Änderungen noch einmal vorzunehmen. 

Transaktionsabschnitte  Mit so genannten „Sicherungspunkten“ (englisch „ savepoint“) 

wird in SQL ein Konzept realisiert, das es erlaubt, im Fehlerfall möglichst viele der 

bereits erfolgreich ausgeführten Eingaben und Änderungen zu erhalten. Eine Trans-

aktion kann damit in einzelne Abschnitte aufgeteilt werden – mit dem Effekt, dass bei 

einem Zurücksetzen nicht alle Änderungen seit Beginn der Transaktion rückgängig 

gemacht werden, sondern nur die, die seit dem letzten oder einem anderen ausgewähl-

ten Sicherungspunkt erfolgten. Beispielsweise kann bei einer zeitaufwändigen Änderung 

über mehrere Tabellen nach jeder UPDATE-Anweisung ein solcher Abschnittspunkt 

gesetzt werden, um im Fehlerfall nur den Teil der Datenmanipulationen wiederholen zu 

müssen, bei dem der Fehler aufgetreten ist. Es scheint so, als würde damit die Forderung 

nach Atomarität verletzt; es ist aber nur ein teilweises Zurücksetzen einer Transaktion, 

7  Zum  Beispiel bei MySQL. 

2.2  Transaktionen in SQL

23

kein teilweises COMMIT möglich. Auch verhindert das Zurücksetzen auf einen Siche-

rungspunkt nicht, dass eine Transaktion vollständig ungeschehen gemacht wird, wenn 

sie insgesamt nicht vollständig abgeschlossen werden kann. 

Mit der Anweisung

wird ein Transaktionsabschnitt definiert. Soll nach einem Fehler die unterbrochene 

Transaktion an dieser Stelle fortgesetzt werden, so fordert man dies mit der Anweisung

an. Man kann einen zuvor gesetzten Sicherungspunkt auch ohne Rollback aufheben, und 

zwar mit

Die Entscheidung über Zeitpunkte, an denen die Datenbank konsistent ist, ist nicht tri-

vial. Wenn im interaktiven Modus mit SQL oder einer anderen Zugriffsmethode wie 

Query-By-Example gearbeitet wird, muss sich der Benutzer darüber klar sein, wann eine 

zusammenhängende Folge von Manipulationen die Konsistenz seiner Daten gefährdet, 

und er muss mit SET AUTOCOMMIT OFF, COMMIT und ROLLBACK sowie etwaigen über 

SAVEPOINT gesetzten Transaktionsabschnitten zweckentsprechend umgehen. Bei inter-

aktiven Applikationen obliegt es dem Programmierer, durch die explizite Angabe des 

Beginns und Endes der Transaktionen im Programmcode für die ständige Wiederher-

stellbarkeit von Konsistenz und Integrität der Datenbank Sorge zu tragen. Dazu gehört 

auch die Einrichtung von Fehlerbehandlungsroutinen, die ein differenziertes Fortset-

zen, Abbrechen oder Wiederholen einer ganz oder teilweise gescheiterten Transaktion 

vorsehen. 

2.3 

 Nebenläufige Ausführung von Transaktionen

Wenn durch konkurrierende Zugriffe auf eine Datenbasis gleichzeitig Änderungen von 

Daten durch verschiedene Benutzer stattfinden, ist es Aufgabe des Transaktionsmanage-

ments, mögliche Inkonsistenzen zuverlässig zu verhindern. Dies können unter anderem 

Sperrkonzepte leisten, die die gleichzeitige Verfügbarkeit der Daten für alle Benutzer ein-

schränken. Hierzu gehören auch „Nur-Lese-Transaktionen“ und das in SQL vorgesehene 

Konzept der „Isolation-Level“. 

Die Nebenläufigkeit von Prozessen im Mehrbenutzerbetrieb („Concurrency“) und die 

Erhaltung der Datenkonsistenz („Consistency“) stellen widersprüchliche Anforderun-

gen an ein DBMS. Einerseits ist es eine der Hauptaufgaben, einen gemeinsamen Daten-

bestand für die Verarbeitung an verschiedenen Orten und durch verschiedene Personen 

zugleich verfügbar zu machen. Andererseits können durch die gleichzeitige oder fast 

24

2 Transaktionen

gleichzeitige Änderung von Daten Konflikte entstehen, die die Datenbasis inkonsistent 

und damit unbrauchbar werden lassen. Die Extrempunkte machen den Widerspruch 

deutlich: Der Standpunkt der Konsistenz würde in radikaler Form realisiert, wenn die 

gesamte Datenbank jeweils zu einem bestimmten Zeitpunkt nur einem Benutzer zur 

Verfügung steht. Schrankenlose Konkurrenz würde bedeuten, dass alle Daten zu jedem 

Zeitpunkt allen Benutzern für Lese- und Schreibzugriffe zur Verfügung stehen. Damit 

wäre jegliche Kontrolle über gleichzeitige Änderungen unmöglich. Die Aufgabe der 

„Concurrency Control“ ist es, diesen Widerspruch so zu regeln, dass beiden Anforderun-

gen Genüge getan wird. 

Dabei gibt es prinzipiell zwei Varianten: pessimistische Verfahren, die mit vorsorgli-

chen Sperren arbeiten und optimistische Verfahren, die im Nachhinein feststellen, ob 

durch nebenläufige Änderungen Konsistenzprobleme aufgetreten sind. Die pessimis-

tischen Verfahren entziehen die zu verändernden Daten zeitweise der allgemeinen Ver-

fügbarkeit. Die auf dem Markt angebotenen Datenbanksysteme unterscheiden sich 

teilweise erheblich darin, wie fein und differenziert die zu sperrende Datenmenge und 

die Zeitdauer der Sperre festgelegt werden können und welche konkurrierenden, aber 

nicht die Konsistenz gefährdenden Zugriffe durch andere Benutzer noch möglich sind. 

Beispielsweise kann sich die Sperre auf einen physikalischen Speicherbereich, eine ganze 

Tabelle oder auf eine einzelne Zeile beziehen. Die Zeitdauer einer Sperre kann sich auf 

eine einzelne Schreib- oder Leseoperation, aber auch auf eine längere Transaktion bezie-

hen. Anderen Benutzern kann unter Umständen erlaubt werden, die gesperrten Daten zu 

lesen. „Optimistische Methoden“ gehen hingegen von der Annahme aus, dass gleichzei-

tige Zugriffe auf Daten recht selten vorkommen, so dass nicht im Vorhinein, sondern erst 

nachträglich, im Falle eines tatsächlich eingetretenen Konflikts, reagiert werden muss. 

Mehrere Beispiele sollen die Problematik illustrieren. 

Situation 1: „Lost Update“ Wir nehmen an, eine Tabelle kunde enthalte die Spalte 

umsatz_kumuliert, die nach jeder Rechnungserstellung zu aktualisieren ist. Es ist 

dafür nötig, den alten Wert von umsatz_kumuliert zu lesen, im Hauptspeicher 

den neuen Nettobetrag der Rechnung zu addieren und das Resultat in die Kundenta-

belle zurückzuschreiben. Prozess 1 erhöhe den Ausgangsbetrag von 10.000 auf diese 

Weise um 2.000. Nachdem der Prozess den alten Betrag gelesen hat (aber bevor er den 

geänderten Betrag von 12.000 in die Datenbank schreibt), liest der Prozess 2 für die-

selbe Zeile der Kundentabelle ebenfalls den Wert 10000 aus umsatz_kumuliert, um 

den Betrag um 3.000 zu erhöhen. Prozess 1 führt inzwischen die Änderung mit 12.000 

durch. Prozess 2 berechnet neu: 10.000 + 3.000 = 13.000 und schreibt diesen Wert 

in die Datenbank zurück; damit überschreibt er die Änderung von Prozess 1. Resultat: 

umsatz_kumuliert enthält den Wert 13.000, obwohl zwei Umsätze verbucht wurden 

und damit der richtige Wert 15.000 hieße. Abbildung 2.1 stellt die beiden Transaktionen und einen möglichen Zeitablauf  ohne Transaktionsmanagement dar. 

Das lost update Problem beschreibt eine Dateninkonsistenz, die in der Datenbank selbst 

herbeigeführt würde, wenn das Datenbanksystem keine entsprechenden Maßnahmen zur 

2.3  Nebenläufige Ausführung von Transaktionen

25

Abb. 2.1  Lost Update

Prozess 1 

Prozess 2 

Lies Kunde 101 

(Umsatz = 10000)

Lies Kunde 101 

(Umsatz = 10000)

Addiere 2000 

zu Umsatz 

Addiere 3000 

(Umsatz = 12000)

zu Umsatz 

(Umsatz = 13000)

Schreibe 

Kunde 101 mit 

Schreibe 

Umsatz = 12000

Kunde 101 mit 

Umsatz = 13000 

Konsistenzsicherung durchführen würde. Die betroffenen Daten wären für alle Benutzer, 

die sie künftig verarbeiten, falsch und somit unbrauchbar. Ein Benutzer einer SQL-Daten-

bank kann sich aber darauf verlassen, dass solche inkosistenten Zustände nicht auftreten. 

Die folgenden Beispiele beschreiben Situationen, in denen die Daten selbst korrekt und 

konsistent sein können, und wo ein Benutzer trotzdem falsche Auswertungsergebnisse erhält. 

Situation 2: Inkonsistente Analyse  Wir nehmen an, Benutzer A will die Bestandswerte 

der Lagerbestände auf Basis der Tabelle artikel auswerten, und zwar für jedes Lager 

einzeln. Dazu gibt er folgende Anweisung

Während das Datenbanksystem den Wert für Lager 2 bereits ermittelt hat und nun die 

Berechnungen für das Lager 4 vornimmt, möchte ein zweiter Benutzer einen Artikel aus 

Lager 2 nach Lager 4 verlegen. Hierzu gibt er folgende Anweisung

ein. In der Gesamtsumme ist nun der Bestandswert des Artikels mit der Artikelnummer 

L005 zweimal enthalten, da er einmal als Teil von Lager 2 und danach noch einmal als 

Teil von Lager 4 behandelt wurde. 

Situation 3: „Dirty Read“  Der Ablauf in beschreibt eine Situation, in der Prozess A Daten 

ändert, diese Änderung aber später zurücknimmt, während Prozess B die geänderten 

26

2 Transaktionen

Tab. 2.1  Dirty Read

Zeitpunkt

Prozess A

Prozess B

1

UPDATE kunde

SET umsatz = umsatz + 1000

2

SELECT SUM(umsatz)

FROM kunde

3

ROLLBACK

Tab. 2.2  Nonrepeatable Read

Zeitpunkt Prozess A

Prozess B

1

UPDATE kunde

SET umsatz =

umsatz  +  1000

WHERE kunden_nr=101

2

SELECT AVG(umsatz)

INTO durchschnitt

FROM kunde

3

UPDATE kunde

SET umsatz = umsatz - 500

WHERE kunden_nr = 101

4

COMMIT

5

SELECT

AVG((umsatz-durchschnitt)^2)

INTO varianz

FROM kunde

Daten in seine Berechnung einbezieht, bevor diese in der Datenbank dauerhaft gemacht 

werden. Die Berechnung wird dadurch falsch. Diese Situation wird als „dirty read“ oder 

„read uncommitted“ bezeichnet (Tab. 2.1). 8

Situation 4: „Nonrepeatable Read“ Diese Situation (Tab.  2.2) tritt auf, wenn eine Transaktion A einen Wert mehrfach verändert, und diese Änderung mit COMMIT dauerhaft macht, während eine andere Transaktion den Wert in irgendeinem Zwischenzu-

stand in eine Auswertung einbezieht. Im folgenden Beispiel wird von A erst der Umsatz 

eines Kunden erhöht, und anschließend – warum auch immer – diese Erhöhung um die 

Hälfte korrigiert. B ermittelt die Varianz vom Durchschnittsumsatz in zwei Schritten, 

zwischen denen sich die Berechnungsgrundlage geändert hat. 

8  Genauer wird diese Situation in [SaSH10, S. 382] beschrieben. 

2.3  Nebenläufige Ausführung von Transaktionen

27

Tab. 2.3  Phantom Read

Zeitpunkt

Prozess A

Prozess B

1

UPDATE artikel

SET lagerplatz = 2

WHERE artikel_nr = 'G001' 

2

SELECT MAX(listenpreis)

INTO maxpreis

FROM artikel

WHERE lagerplatz = 7

3

COMMIT

4

SELECT *

FROM artikel

WHERE listenpreis = maxpreis

Situation 5: „Phantom Read“ Diese Situation (Tab.  2.3) tritt auf, wenn in einer Abfrage Sätze betroffen sind, und bei einer weiteren Abfrage mit denselben Kriterien 

neue Sätze dazu kommen oder verschwinden. Dieses kann aufgrund von Einfügungen 

oder Löschungen passieren oder weil Sätze bezüglich eines Auswahlkriteriums in der 

WHERE-Klausel eine andere Zuordnung erfahren. 

In dem angegebenen Beispiel ist der Artikel ‚G001‘ zum Zeitpunkt 2 (da UPDATE 

noch nicht mit COMMIT abgeschlossen) noch auf dem Lagerplatz 7 und sein Preis wird 

als maxpreis zwischengespeichert. Zum Zeitpunkt 4 ist er aber auf Lagerplatz 2 und 

somit wird in diesem Fall kein Artikel gefunden, der diesen Preis hat. 

2.4 

 Isolation Level in Transaktionen

Die SQL Norm definiert zur Steuerung von Transaktionen so genannte „Isolation-

Level“. Dabei wird dem Datenbanksystem mitgeteilt, welche möglichen  Wirkungen 

nebenläufiger Transaktionen zulässig sind bzw. ausgeschlossen werden sollen. Es wird 

dem Benutzer von SQL also keine „technische“ Spezifikation der erforderlichen Sperre 

unter Benutzung der Begriffe S-Lock und X-Lock abverlangt9 – das DBMS muss selbst 

den Typ von Sperre ermitteln, der die Benutzeranforderungen realisiert. 

Folgende Anweisung stellt SQL zur Verfügung, um  vor einer Transaktion deren 

Eigenschaften festzulegen:

9  Diese behandeln wir im nächsten Abschnitt. 

28

2 Transaktionen

Dieselbe Optionsliste kann auch als Parameter der Anweisung

übergeben werden. 

Die Optionsliste umfasst einen Zugangsmodus („access mode“) und den Isolation-

Level. Der Zugangsmodus wird mit READ ONLY oder READ WRITE angegeben und legt 

fest, ob die Transaktion nur Lesevorgänge enthält oder auch Schreibvorgänge. Im ersten 

Fall sind Änderungen auf temporäre Tabellen beschränkt. Für den Isolation-Level kön-

nen folgende Werte eingetragen werden:

Die strengste Anforderung wird mit SERIALIZABLE spezifiziert. Nur sie gewährleistet die 

volle Erfüllung aller Eigenschaften einer Transaktion, die mit dem ACID-Prinzip umschrie-

ben werden. Die anderen Werte definieren, welche Abweichungen davon zulässig sind. 

Wir bezeichnen mit A und B zwei nebenläufige Transaktionen. 

•	 READ UNCOMMITTED

Hier kann A Tupel lesen, die von einer zweiten Transaktion B geändert werden, auch 

wenn B diese Änderungen noch nicht durch COMMIT dauerhaft an die Datenbank 

übergeben hat oder sie sogar mit ROLLBACK zurücknimmt. Dies wird auch mit dem 

Begriff  „dirty read“ umschrieben. 

•	 READ COMMITTED

Bei dieser Variante ist das  dirty read ausgeschlossen. A sieht nur solche Daten, die von 

B per COMMIT an die Datenbank übergeben werden. Es ist dann aber möglich, dass 

zwei identische Lesevorgänge innerhalb von A für dasselbe Tupel zu unterschied-

lichen Ergebnissen führen. Der Lesevorgang innerhalb von A ist also nicht beliebig 

wiederholbar ( „non repeatable read“). 

•	 REPEATABLE READ

Letzteres ist bei diesem Isolation-Level ausgeschlossen. Es kann aber noch der Fall 

eintreten, dass B ein neues Tupel in die von A gelesene Tabelle einfügt, so dass ein 

zweiter Lesevorgang innerhalb A ein Tupel findet, das vorher nicht vorhanden war 

( „phantom read“) – oder umgekehrt. 

•	 SERIALIZABLE

Hier sehen alle Auswertungen innerhalb der Transaktion dieselben Daten. 

2.4  Isolation Level in Transaktionen

29

Tab. 2.4  Definition der Isolation-Level

Isolation-Level

dirty read

nonrepeatable read

Phantom

READ UNCOMMITTED

J

J

J

READ COMMITTED

N

J

J

REPEATABLE READ

N

N

J

SERIALIZABLE

N

N

N

Eine Übersicht über die Isolation-Level und die von ihnen erlaubten Verstöße gegen das 

ACID-Prinzip gibt Tab. 2.4 wieder. 

Zur Vermeidung der inkonsistenten Analyse muss der Isolation-Level SERIALIZ-

ABLE angefordert werden. 

Bei  SQL Anywhere werden die Isolation-Level nahe an der Standardvorgabe mit der 

Anweisung

eingestellt, wobei für zahl die Werte 0 bis 3 für die Einstellungen READ UNCOMMIT-

TED bis SERIALIZABLE anzugeben sind. Bei ORACLE muss der Benutzer selbst dafür 

sorgen, dass die entsprechenden Resultate erreicht werden, indem er mit der Anweisung 

LOCK TABLE explizit Sperren setzt. 

2.5 

 Sperrmechanismen

Die einfachste Lösung bestünde für alle Fälle darin, die zu verändernde Tabelle vollstän-

dig für andere Benutzer zu sperren und erst nach der Beendigung der Arbeit wieder frei-

zugeben. Dieses Verfahren ist sehr radikal – es läuft auf eine zeitweise Aussetzung des 

Mehrbenutzerbetriebs hinaus – und würde zu völlig unakzeptablen Wartezeiten bei der 

gemeinsamen Nutzung einer Datenbank führen. Es ist aber für die Gewährleistung der 

Konsistenz lediglich erforderlich, dass kollidierende Zugriffe auf die gerade zu verän-

dernden Objekte verhindert werden. 

In der lost update Situation wäre es sinnvoll, dass Prozess 1 die zu aktualisierende 

Zeile in der Tabelle kunde mit einer Sperre belegt, so dass sie ihm für die Zeitdauer sei-

ner Transaktion exklusiv zur Verfügung steht. Prozess 2 müsste dann so lange warten, bis 

Prozess 1 sein COMMIT zur Beendigung der Transaktion ausgeführt hat, und könnte dann 

erst die – nun schon aktualisierten – Daten lesen und verändern. Prozess 2 könnte aber 

inzwischen einen anderen Kunden bearbeiten, ohne dabei in Konflikt mit Prozess 1 zu 

geraten. 

Eine Sperre für Situation inkonsistente Analyse müsste wie folgt wirken: Während A 

seine Salden bildet, müsste jegliche Veränderung an den Werten der saldierten Spalte 

für die gesamte Tabelle artikel verhindert werden. Welche Operationen wären ohne 

30

2 Transaktionen

Schaden von anderen Benutzern ausführbar? Unproblematisch ist das gleichzeitige Lesen 

der Tabelle. Auch Veränderungen an Werten (Updates) könnten vorgenommen wer-

den, sofern die Spalten, die für die Auswertung von A gerade relevant sind, nicht ver-

ändert werden. Verhindert werden müssen daher nur Änderungsoperationen, bei denen 

die Spalten lagerplatz, listenpreis und bestand im Wert verändert werden. Die 

Änderung der Artikelbezeichnung wäre hingegen unproblematisch. 

In der Situation nonrepeatable read müsste B entweder jegliche Änderung in den für 

die Summe relevanten Umsatzdaten unterbinden oder solange warten, bis A seine 

Transaktion beendet hat. Oder aber B entscheidet, dass für einen statistischen Überblick 

über die Umsatzdaten auf kleine Abweichungen nicht ankommt und toleriert ein mögli-

cherweise falsches Ergebnis. Eine weitere Möglichkeit wäre, die gelesenen Datensätze bis 

zum Ende der Transaktion lokal zu kopieren und weitere Auswertungen auf der Kopie 

zu machen.10

Granularität von Sperren Die dargestellten Sperrmöglichkeiten ergeben sich aus 

der logischen Sicht der Dinge. Je feiner die „Granularität“ der Sperrung, das heißt, je 

begrenzter die Anzahl der von der Sperrung betroffenen Datenbankobjekte ist, desto 

geringer sind die Einschränkungen konkurrierender Zugriffe. Umso höher ist aber der 

Verwaltungsaufwand, den das DBMS zu leisten hat. Das bedeutet sowohl Ressourcen-

verbrauch (Hauptspeicher und Plattenzugriffe) als auch merkbare Einbußen der Per-

formanz, so dass alle praktisch vorhandenen Lösungen auf Kompromisse hinauslaufen. 

Dabei muss aber zuverlässig gewährleistet werden, dass die Granularität der Sperrung 

mindestens so groß ist, dass sie alle von einer Transaktion benötigten Datenobjekte 

umschließt. 

Sperrbare Objekte Bei einer relationalen Datenbank sind Relationen und Tupel die 

Objekte von Datenmanipulationen, also auch Kandidaten für Sperrungen. Theoretisch 

sinnvoll wäre auch noch die nächst feinere Granularität, nämlich die Sperrung lediglich 

einer Spalte eines Tupels. Da sich die Sperrung von Daten auf der physikalischen Schicht 

eines Datenbanksystems abspielt, ist aber nicht jede Granularität mit vertretbarem Auf-

wand realisierbar. In der Realität finden sich außer Sperrmöglichkeiten für Tabellen oder 

Tupel auch noch Zwischenformen, bei denen größere Speichereinheiten (Seiten) im 

Ganzen dem allgemeinen Zugriff zeitweise entzogen werden. Davon sind dann alle Tupel 

betroffen, die physikalisch auf derselben Seite abgelegt sind. 

Typen von Sperren  Zwei Haupttypen von Sperren (englisch “locks”) sind zu unterschei-

den (wir gebrauchen hier die englischen Begriffe):

•	 „exclusive locks“ (X-Lock)

•	 „shared locks“ (S-Lock)

10  Hier sieht man auch, dass diese Technik nicht gegen phantom read wirken würde. 

2.5 Sperrmechanismen

31

S-Locks erlauben die gleichzeitige Bearbeitung desselben Objekts durch eine Transaktion, 

die ebenfalls ein S-Lock anfordert. X-Locks entziehen das Objekt dem Zugriff jeglicher 

anderen Transaktion. Objekte können Zeilen einer Tabelle oder ganze Tabellen sein. 

Das Setzen von Sperren sollte für den Benutzer transparent sein und ohne sein Zutun 

erfolgen, wenn die Konsistenz der Datenbank dies bei Schreib- oder Lesevorgängen 

erfordert. Das DBMS setzt also implizite Sperren unmittelbar vor jedem Zugriff auf ein 

Datenobjekt. Der Zugriff kann erst dann erfolgen, wenn die Sperre erfolgreich gesetzt 

werden konnte. 

•	 Jede schreibende Transaktion (UPDATE, INSERT, DELETE) beantragt ein X-Lock auf 

die betreffenden Objekte. 

•	 Eine lesende Operation setzt per se keine Sperre. 

Weitere Sperren (Typ S oder X) können explizit vom Benutzer oder vom Anwendungs-

programm gesetzt werden. Insbesondere, wenn Probleme wie die inkonsistente Analyse 

vermieden werden sollen, muss dies auch für lesende Zugriffe erfolgen. 

Es sind folgende Fälle zu unterscheiden, wobei wir von einer Transaktion (A) aus-

gehen, die eine Sperre angefordert hat, während eine zweite Transaktion (B) versucht, 

ebenfalls eine Sperre für dasselbe Objekt anzufordern:

1.  A hat S-Lock gesetzt:

•	 B kann ebenfalls ein S-Lock setzen und den Zugriff ausführen. 

•	 B kann kein X-Lock setzen. Der beabsichtigte Zugriff kann nicht ausgeführt 

werden. 

2.  A hat ein X-Lock gesetzt:

•	 B kann weder ein S-Lock noch ein X-Lock auf dasselbe Objekt setzen. 

Beide Typen von Sperren werden jeweils am Ende der Transaktion, in der sie angefordert 

worden sind, gelöscht – im Allgemeinen also durch COMMIT oder ROLLBACK. Aber auch 

jede andere Art der Beendigung (LOGOUT, EXIT, Systemabsturz etc.) von Transaktionen 

sollte gesetzte Sperren aufheben, wenngleich dies nicht bei allen SQL-Implementierun-

gen der Fall ist. 

Für die Entwicklung von Anwendungsprogrammen sind Sprachkonstrukte erforder-

lich, um auf die Sperrung Einfluss zu nehmen. Dazu gibt es in verschiedenen DMBS den 

Befehl LOCK TABLE, der die von uns vorgestellten Sperrmechanismen abbildet. In der 

SQL Norm hingegen gibt es diesen Befehl nicht, hier ist eine implizite Angabe des Trans-

aktionslevels möglich. Wir kommen weiter unten darauf zurück. 

Zur Vermeidung von „lost update“ müsste jede der beteiligten Transaktionen bereits 

beim Lesen vorsorglich eine exklusive Sperre für die betreffende Zeile anfordern. B würde 

dann schon vor dem Lesevorgang in den Wartezustand gesetzt und könnte erst dann 

fortfahren, wenn A mit COMMIT die Transaktion beendet hat. Diese vorsorgliche Sperre 

muss im Allgemeinen aber explizit durch den Benutzer oder das Anwendungsprogramm 

32

2 Transaktionen

erfolgen, da das DBMS bei einem Lesevorgang innerhalb einer Dialoganwendung ja noch 

nicht „wissen“ kann, ob diesem ein Schreibvorgang folgt. In unserer obigen Formulierung 

könnte allerdings die Notwendigkeit eines X-Locks vom DBMS selbst noch erkannt wer-

den, da mit der SQL-Anweisung UPDATE immer Lese- und Schreibvorgänge verbunden 

sind. 

Die Vermeidung einer inkonsistenten Analyse erfordert die explizite Anforderung 

einer Sperre vom Typ „S“ durch A, die auf die gesamte Tabelle wirkt, auch wenn es sich 

„nur“ um eine lesende Transaktion handelt. 

2.6 

 Explizite Sperrung mit LOCK TABLE

Die explizite Anforderung einer Sperre mit der Anweisung LOCK TABLE ist im Standard 

nicht vorgesehen. Es gibt sie aber beispielsweise bei ORACLE. Die Anweisung erfordert 

einen direkten Bezug des Benutzers auf die Sperrtypen S bzw. X und das zu sperrende 

Objekt (Granularität). Die Syntax lautet in etwas vereinfachter Form:

Folgende Lockmodi werden angeboten:

•	 EXCLUSIVE

erlaubt nur Abfragen an die Tabelle durch andere Benutzer. Jegliche andere Aktivität 

(UDPATE, DELETE, INSERT) wird unterbunden. Es können auch keine anderen Sper-

ren gleichzeitig existieren. 

•	 SHARE

erlaubt Abfragen und andere S-Locks, aber keine Datenänderungen und exklusiven 

Sperren. Die Daten in der Tabelle können nicht verändert werden. 

Die Wirkung einer Sperre kann auf einzelne Tupel eingeschränkt werden, wenn der 

Zusatz ROW angebracht wird. 

•	 ROW SHARE (oder SHARE UPDATE):

erlaubt den konkurrierenden Zugriff und die gleichzeitige Änderung anderer Zei-

len durch andere Benutzer. Es verhindert jegliche exklusive Sperre auf die gesamte 

Tabelle. Mehrere Sperren dieses Typs können zugleich existieren. 

•	 ROW EXCLUSIVE:

arbeitet wie ROW SHARE, verbietet aber auch gleichzeitige Sperren auf die gesamte 

Tabelle im Share-Modus. Mehrere Sperren dieses Typs können gleichzeitig und neben 

ROW SHARE bestehen. 

•	 SHARE ROW EXCLUSIVE:

Hier sind gleichzeitig lediglich Sperren im Modus ROW SHARE erlaubt. 

2.6  Explizite Sperrung mit LOCK TABLE

33

Der Modus ROW SHARE ist im Hinblick auf eine möglichst geringe Behinderung anderer 

Transaktionen der effektivste. Wir hatten für die Bewältigung der Situation 1 ( lost update) 

erwähnt, dass eine vorsorgliche Anmeldung einer Exklusivsperre bereits beim Aufsuchen 

der betreffenden Zeile aus der Datenbank erforderlich wäre. Dies ist durch eine besondere 

Anweisung möglich, die die zu ändernden Datensätze reserviert. Sie sieht wie folgt aus:

Das Phänomen  dirty read wird übrigens bei ORACLE dadurch umgangen, dass alle Lese-

vorgänge auf die Before-Image-Datei umgeleitet werden, soweit sie Daten betreffen, die 

von gerade laufenden Transaktionen verändert werden. 

2.7 

 Deadlock

Wenn mehrere Transaktionen wechselseitig auf die Freigabe von Ressourcen warten, 

spricht man von einer  Verklemmung oder einem  Deadlock. Dies kommt dadurch zustande, 

dass (mindestens zwei) Transaktionen zyklisch jeweils auf die Freigabe einer Ressource 

durch eine andere warten, um selbst mit COMMIT abschließen zu können. Da aber erst mit 

COMMIT oder ROLLBACK die gesetzten Sperren aufgehoben werden, liegt ein Widerspruch 

vor, der nur durch Abbruch einer der beteiligten Transaktionen aufgehoben werden kann. 

Eine typische Situation zeigt folgendes Szenario, bei dem zwei Tabellen betroffen sind:

Prozess A

Prozess B

LOCK TABLE kunde 

LOCK TABLE auftrag 

IN EXCLUSIVE MODE; 

IN EXCLUSIVE MODE; 

. . . 

. . . 

LOCK TABLE auftrag

LOCK TABLE kunde

Prozess A muss auf die Freigabe von auftrag warten, während B auf die Freigabe von 

kunde durch A warten muss. Beide Transaktionen versperren sich gegenseitig den 

Zugriff auf Ressourcen. 

Automatische Deadlock-Behandlung  Es gehört zu den Aufgaben eines DBMS, solche 

Deadlock-Situationen zu erkennen und einige Sperren zu löschen, damit wenigstens eine 

der Transaktionen abgeschlossen werden kann. Das Mindeste ist ein automatisches Roll-

back gegen eine der beteiligten Transaktionen und eine entsprechende Mitteilung an den 

Benutzer bzw. das Anwendungsprogramm. Von diesem Rollback sollte nach Möglich-

keit diejenige Transaktion betroffen sein, die noch am wenigsten fortgeschritten, also am 

leichtesten zu wiederholen ist. 

34

2 Transaktionen

Optimistische Verfahren zur Steuerung der Nebenläufigkeit  Bei optimistischen Kon-

trollmethoden wird davon ausgegangen, dass die Wahrscheinlichkeit auftretender Kon-

flikte relativ gering ist, so dass auf die vorsorgliche Sperre ganzer Tabellen oder einzelner 

Reihen verzichtet wird. Erst im Konfliktfall werden dann Maßnahmen ergriffen, die die 

Konsistenzerhaltung gewährleisten. Dabei geht es dann im Wesentlichen um ein kon-

trolliertes Zurücksetzen von Änderungen, verbunden mit einer automatischen Wieder-

holung der Operationen zu einer anderen Zeit.11

2.8 

 Kompensation statt ACID

Die vielfach praktizierte Realisierung von Anwendungssystemen auf Basis einer Serviceori-

entierten Architektur12 (SOA) steht vielfach im Widerspruch zum ACID Prinzip, zumal dann, wenn einzelne Entitäten jeweils durch einen eigenen Service verwaltet werden und 

dieser autonom und unabhängig von anderen Services sein immer gleiches Verhalten 

implementiert. Deswegen kann eine Transaktion nur innerhalb jeweils einer Serviceopera-

tion stattfinden, und nicht übergreifend über mehrere Operationen. Werden logisch 

zusammenhängenden Operationen aber von mehreren Serviceoperationen ausgeführt, 

dann ist keine Transaktionssteuerung und kein ACID möglich. Hier wird dann anstelle des 

ROLLBACK das Konzept der Kompensation vorgeschlagen, wobei das Ungeschehenma-

chen von Änderungen durch eine entgegengesetzte Operation, die natürlich programmiert 

werden muss, erfolgt. Wir sehen das mit Skepsis und raten nicht dazu, leichtfertig auf das 

ausgefeilte Transaktionsmanagement eines DBMS zu verzichten.13

11  Genauer bei [Rako07, S. 271]. 

12  SOA haben wir am Ende von Kap. 1 kurz eingeführt. 

13  Vgl. den Diskussionsbeitrag in [Unte10]. 

Zugriffsrechte und Rollen

3

SQL regelt den Zugang zu einer Datenbank, zu einzelnen Tabellen und sogar zu ein-

zelnen Spalten sehr restriktiv. Im Prinzip gilt: Niemand darf Daten ansehen oder ver-

ändern, wenn er nicht ausdrücklich dazu befugt ist. Der Zugriff auf die Datenbank 

überhaupt und auf die in ihr enthaltenen Daten gilt als „Privileg“ und wird bei SQL auch 

so bezeichnet. 

3.1 

 Benutzer-Identität

Zunächst muss jeder, der eine SQL-Datenbank nutzen will, dieser namentlich „bekannt“ 

sein. Die Benutzer-Identität ist ein  Bezeichner; sie kann identisch oder nicht identisch 

mit der Benutzer-Identität für das Betriebssystem sein. Eine Person kann durchaus über 

verschiedene Bezeichner verfügen, mit denen sie sich beim System anmeldet. 

In einer Anmeldeprozedur wird jeweils eine Benutzeridentität abgefragt und die 

Authentizität des Benutzers überprüft. Authentizität ist die Gewissheit, dass der Benut-

zer tatsächlich derjenige ist, für den er sich vorgibt. Dieses erfolgt üblicherweise durch 

die Eingabe eines Passwortes. 

Passworte sind so zu wählen, dass sie nicht leicht erraten werden. Sie dürfen nicht 

zu kurz sein (Mindestlänge im Normalfall nicht unter 8 Zeichen), sie sollten Groß- und 

Kleinbuchstaben und mindestens ein Sonderzeichen oder Ziffern enthalten (die Ziffern 

aber nicht als einfach angehängte 1, 2 oder 3). Außerdem sollten sie nicht in einem Wör-

terbuch irgendeiner Sprache oder in einer Liste von geographischen Begriffen enthalten 

sein. Ausnahmen hiervon sind die Benutzer-Identitäten und Passworte bei der Programm-

entwicklung. Da hier nicht mit realen (vertraulichen) Daten, sondern mit speziell fest-

gelegten Testdaten zu arbeiten ist, besteht keine Notwendigkeit einer Geheimhaltung, 

sondern im Gegenteil muss jeder Entwickler die Möglichkeit haben, alle Komponenten 

der entwickelten Datenbank mit unterschiedlichen Methoden zu testen. In diesen Fällen 

M. Unterstein und G. Matthiessen,  Anwendungsentwicklung mit Datenbanken, eXamen.press, 

35

DOI: 10.1007/978-3-642-39003-6_3, © Springer-Verlag Berlin Heidelberg 2013

36

3  Zugriffsrechte und Rollen

kann eine Benutzer-Identität von mehreren Personen verwendet werden. In produktiven 

Systemen raten wir dringendst davon ab – durch das noch vorzustellende Rollenkonzept 

ist es aber kein Problem einem Benutzer (z. B. während einer Vertretungsphase) dieselben 

Rechte wie einem anderen Benutzer zu geben. 

Die Informationen über die Benutzer werden bei vielen Datenbanksystemen in dem 

allgemein den Datenbanken auf einem Host zugeordneten Bereich1 als eigenständige Struktur gespeichert. Sie gelten dann für alle Datenbanken auf diesem Host. Wenn also 

ein Benutzer eine Zugangsberechtigung für mehrere Datenbanken hat, hat er auch 

jeweils dasselbe Passwort. Bei Datenbanken, die in einer eigenen Datei gespeichert sind, 2 

sind die Daten der Benutzer häufig in dieser Datei gespeichert.3 Derselbe Benutzer kann dann in verschiedenen Datenbanken unterschiedliche Passwörter haben. Diese Unterscheidung, wo die Benutzerdaten gespeichert sind, ist z. B. relevant, wenn ein Benutzer 

sein Passwort ändert: gilt das nur für die jeweilige Datenbank oder für alle Datenbanken 

auf dem Host? 

In Abhängigkeit von der angegebenen Identität entscheidet die Datenbankmaschine 

dann, welche Objekte dem Benutzer zur Verfügung stehen und welche Operationen er 

darauf ausführen darf. Wenn wir im Folgenden vom Benutzer sprechen, ist damit eine 

dem System bekannte Benutzeridentität gemeint. 

Privilegien sind auf zwei verschiedenen Ebenen angesiedelt:

•	 Der Zugang zur Datenbank überhaupt und die Möglichkeit der Änderung der Daten-

bankstruktur ist durch allgemeine Zugangsprivilegien geregelt. 

•	 Die Rechte des lesenden oder ändernden Datenzugriffs auf einzelne Tabellen und 

andere Objekte werden für jeden Benutzer mit objektbezogenen Privilegien verwaltet. 

3.2 

 Allgemeine  Zugangsprivilegien

Die allgemeinen Zugangsprivilegien sind herstellerabhängig realisiert und nicht Gegen-

stand des SQL-Standards. Die Norm geht davon aus, dass jeder Benutzer der Datenbank 

mit einem Benutzernamen und Passwort ausgestattet ist und dass das Datenbanksystem 

Benutzern, die keine derartige Autorisierung vorweisen können, jeglichen Zugriff auf alle 

seine Funktionen verweigert. 

1 Vgl. Abschn. 1.3.1. 

2 Vgl. Abschn. 1.3.1. 

3  So bei SQL Anywhere. 

3.2  Allgemeine Zugangsprivilegien

37

3.2.1   Anlegen eines Benutzers

Das Kommando zum Anlegen eines Benutzers lautet üblicherweise

Hierbei ist user_id die Benutzer-Identität, mit der er sich anzumelden hat. Die Benut-

zer-Identität ist ein Datenbank-Objekt – daher ist sie nicht in Hochkommas zu setzen. 

Sie wird entsprechend auch vom Datenbanksystem in die Standardform (nur Großbuch-

staben bzw. nur Kleinbuchstaben) umgewandelt. Falls Groß-Kleinschreibung eine Rolle 

spielt oder der Aufbau der Benutzer-Identität nicht den Regeln eines SQL-Bezeichners 

genügt, ist der Wert in Gänsefüßchen zu setzen. 

password ist das Passwort. Es ist in der Regel ein Wert4 und damit in Hochkommas zu setzen. 

Beispiele

Bei einigen Systemen sind weitere Angaben möglich. So kann in einigen Systemen angege-

ben werden, dass die Benutzer-Identität des Betriebssystems zu übernehmen ist. Relevant 

ist hier wieder, was im Referenz-Handbuch des entsprechenden Datenbanksystems steht. 

Unter Umständen sind die allgemeinen Zugangsrechte feiner differenziert, beispiels-

weise in das Recht, die Datenbank abzufragen, und das Recht, eigene Tabellen, Daten-

sichten und andere Objekte anzulegen. Häufig gibt es eine Unterscheidung zwischen 

normalen Benutzern und Datenbankadministratoren. 

3.2.2   Datenbankadministrator

Der Datenbankadministrator darf beispielsweise5

•	 die von allen anderen Benutzern eingerichteten Datenbankobjekte konsultieren und 

jede beliebige SQL-Anweisung darauf anwenden, 

•	 Benutzerprivilegien erteilen und widerrufen, 

•	 in die physikalische Speicherorganisation eingreifen, beispielsweise Partitionen ein-

richten und ändern, 

4  SQL Anywhere macht hier eine Ausnahme und fasst das Passwort syntaktisch als Datenbankob-

jekt auf; es ist also ggf. in Gänsefüßchen zu setzen. 

5  So bei ORACLE. 

38

3  Zugriffsrechte und Rollen

•	 den Zugang zur Datenbank und zu allen Tabellen jederzeit kontrollieren, 

•	 die gesamte Datenbank zu Sicherungs- oder Übertragungszwecken als Betriebssys-

temdatei exportieren. 

Die genannten Privilegien sind notwendig, um eine Datenbank einzurichten, zu opti-

mieren und den laufenden Betrieb zu betreuen. Die damit gegebene Freiheit ist aber für 

die normale, alltägliche Datenverwaltung nicht erwünscht. Deshalb ist es üblich, das 

DBA-Privileg einer einzelnen Person oder – in größeren Organisationen – wenigen Per-

sonen zu erteilen, die zudem meist zu größter Geheimhaltung verpflichtet sind, da sie 

alle in der Datenbank gespeicherten Informationen einsehen können. Unter Umständen 

kann das Privileg auch geteilt werden, so dass keiner der Datenbankadministratoren die 

gesamte Datenbank überblicken kann. 

3.3 

 Objektbezogene  Privilegien

Jedes Datenbankobjekt – dazu gehören Tabellen und Datensichten und ihre Spalten, Domä-

nen und Integritätsbedingungen, Zeichensätze und Übersetzungstabellen, Typen, Trigger 

und Prozeduren – hat einen Eigentümer. Das ist prinzipiell der Benutzer, der es angelegt 

hat, beziehungsweise der Eigentümer des Schemas, in das das Objekt eingebettet ist. 6

Da SQL grundsätzlich jedermann erst einmal den Zugang zu allen Objekten verbietet, 

kann zunächst nur der Eigentümer selbst mit seinen Objekten arbeiten. Will er anderen 

das Lesen oder Verändern seiner Tabellen erlauben, muss er dies explizit tun. 

Es gibt zwei Formen der GRANT-Anweisung. Für die Zuweisung von objektbezoge-

nen Privilegien gilt folgende Form7:

Es gibt eine Reihe von Datenbank-Objekten, für die Rechte vergeben werden können 

(u. a. DOMAIN, COLLATION, CHARACTER SET, TRANSLATION). Wir werden uns 

im Folgenden auf Tabellen und Datensichten beschränken und in Kap. 5 die Rechte-Ver-

gabe von Datenbank-Prozeduren beschreiben. 

Für Tabellen und Datensichten ist als Objekt der Name der Tabelle oder Datensicht 

anzugeben. Vor dem Namen der Tabelle oder Datensicht kann das Schlüsselwort TABLE 

stehen (auch bei Datensichten!). 

Die möglichen Privilegien für Tabellen und Datensichten sind in Tab. 3.1 angezeigt. 

6  Ein Benutzer kann mehrere Schemata besitzen, aber jedes Schema hat genau einen Eigentümer. 

Erläuterungen zu CREATE SCHEMA finden Sie in Abschn. 4.2. des ersten Bandes [UnMa12]. 

7  Die andere Form führen wir in Abschn. 3.3 ein. 

3.3  Objektbezogene Privilegien

39

Tab. 3.1  Tabellenprivilegien in SQL

Privileg

Bedeutung

SELECT[(spaltenliste)]

Lesen aller Spalten einer Tabelle oder, wenn angegeben, 

bestimmter Spalten. 

INSERT [(spaltenliste)] Einfügen von neuen Zeilen in eine Tabelle, die Spalten können 

dabei durch die Spaltenliste eingeschränkt werden. Nicht 

zugängliche Spalten werden mit dem Default-Wert gefüllt. 

UPDATE [(spaltenliste)] Ändern der Daten in einer Tabelle, gegebenenfalls 

eingeschränkt auf bestimmte Spalten. 

DELETE

Löschen von Zeilen aus einer Tabelle. 

REFERENCES 

Benutzung von Spalten der Tabelle in einer FOREIGN KEY-

[(spaltenliste)]

Klausel in einer anderen CREATE TABLE-Anweisung. 

Das Privileg bezeichnet jeweils den Typ von SQL-Operationen, die der Benutzer aus-

führen darf. Mit ALL werden alle Privilegien für ein Objekt auf einmal erteilt. 

Hat beispielsweise Christa, die Besitzerin der Tabelle kunde in dem Schema christa, 

dem Benutzer hans den Zugriff auf die Tabelle mit folgender Anweisung gestattet:

so darf hans alle vorhandenen Informationen aus Christas Kundentabelle mit SELECT 

abrufen. Gegebenenfalls muss er dem Tabellennamen den Namen des Schemas voran-

stellen, in diesem Fall zum Beispiel:

Er darf außerdem neue Kunden mit INSERT erfassen und vorhandene Daten, z. B. eine 

Adresse, mit UPDATE ändern. Er darf aber nicht Kunden löschen (DELETE) oder die Kun-

dentabelle in ihrer Struktur verändern. 8 Hätte man statt des Benutzers hans alle Benutzer zugelassen (PUBLIC), so dürfte  jeder, der Zugang zur Datenbank hat, die Anweisungen 

SELECT, UPDATE, INSERT auf die Tabelle kunde anwenden. 

Die DROP-Anweisung taucht in der obigen Liste nicht auf. Grundsätzlich ist es nur 

dem Eigentümer der Tabelle selbst bzw. dem DBA erlaubt, eine komplette Tabellen-

struktur zu löschen. 

Die GRANT-Option gestattet es einem privilegierten Benutzer, seine eigenen Rechte 

(und nur diese) an einem Datenbankobjekt weiterzugeben. 

8  Hierfür gibt es in einigen Datenbanksystemen, z. B. in ORACLE, die Möglichkeit das ALTER-

Privileg zum Ändern der Tabellendefinition und das INDEX-Privileg zum Anlegen von Indixen zu 

vergeben. 

40

3  Zugriffsrechte und Rollen

3.4 

 Rücknahme von Privilegien

Die Rücknahme von Privilegien geschieht mit der REVOKE-Anweisung. Die Syntax lau-

tet in diesem Fall:

Beispiel

Wird nur die GRANT-Option zurückgenommen, so kann der Benutzer weiterhin seine 

bisherigen Rechte auf die Tabelle ausüben, lediglich die Weitergabe an andere Benutzer 

wird künftig unterbunden. Der optionale Zusatz RESTRICT bedeutet, dass die REVOKE-

Anweisung nicht durchgeführt wird, wenn der betreffende Nutzer seine Privilegien an 

andere weitergegeben hat. Durch Angabe von CASCADE werden auch alle weitergegebe-

nen Privilegien zurückgenommen. 

3.5 

 Rollen

Die Verwaltung von Benutzerrechten kann in größeren Organisationen recht aufwändig 

sein. Unter Umständen müssen ganzen Gruppen von Benutzern identische Privilegien 

für eine Vielzahl von Tabellen zugeteilt werden. Um dies zu erleichtern, hat man in den 

Standard das Rollenkonzept9 eingeführt.. 

Privilegien können statt an einzelne Benutzer an Rollen vergeben werden.  Rollen sind 

Zusammenfassungen von Privilegien. Die Rolle personalbearbeitung könnte alle 

Privilegien enthalten, die für die Bearbeitung von Personaldaten notwendig sind. Diese 

Rolle kann dann einzelnen Benutzern gewährt werden. 

Eine gewisse Anzahl von Rollen ist in einem ORACLE-System vordefiniert. Dazu 

gehören die „alten“ (und in früheren Versionen einzigen) Rollen CONNECT (Zugang 

zur Datenbank überhaupt), RESOURCE (Recht zur Anlage eigener Datenbankobjekte), 

9  Daneben gibt es das Gruppen-Konzept, das dieselbe Funktionalität hat, aber andere Anweisun-

gen verwendet. Dieses gibt es z. B. noch in SQL Anywhere Version 12, während in der Version 16 

entsprechend der Norm das Rollenkonzept eingeführt worden ist. 

3.4 Rollen

41

DBA (unbeschränkter Zugriff auf alle Datenbankobjekte, Export der gesamten Daten-

bank etc.). 

Eine neue Rolle wird angelegt durch die Anweisung

Privilegien an Rollen werden genau so vergeben wie Privilegien an Benutzer: Hinter 

dem Schlüsselwort TO ist statt einer Benutzer-Identität ist eine Rolle anzugeben. 10

Mit der zweiten Form der GRANT-Anweisung kann einer Liste von Benutzern die 

Erlaubnis erteilt werden, eine Liste von Rollen auszuführen. 

Hinter TO dürfen nicht nur Bezeichner von Benutzer-Identitäten stehen, sondern auch 

Bezeichner von Rollen. Somit können Rollen auch rekursiv an andere Rollen vergeben 

werden. 

Die Admin-Option erlaub es den Benutzern, die Rechte selber weiter zu geben. 

Beispiel

Die Zuweisung von Rollen an Benutzern ist keine Kopie, sondern eine dynamische Refe-

renz. Wenn in obigem Beispiel folgende Anweisung hinzugefügt wird:

haben die Benutzer mit den Benutzer-Identitäten amann und bfrau damit sofort dieses 

neue Privileg. 

10  Aus diesem Grund unterscheidet z. B. PostgreSQL nicht mehr zwischen USER und ROLE. In 

der Dokumentation heißt es dort: „CREATE USER is now an alias for CREATE ROLE“. 

Prozedurale Konzepte in SQL

4

Die Möglichkeiten, über SQL Daten zu manipulieren und benutzerspezifische Daten-

sichten anzulegen haben wir im Buch „Relationale Datenbanken und SQL in Theorie in 

Praxis“ [UnMa12] ausführlich beschrieben. Über Datensichten1 ist es möglich, auf einfache Weise dem Benutzer komplexe Zusammenhänge darzustellen. Des Weiteren kann 

der lesende Datenzugriff über Datensichten und Zugriffsrechte recht detailliert geregelt 

werden. Es ist ziemlich einfach, einem Benutzer das Recht zu geben, abgeleitete Daten zu 

sehen (z. B. das Durchschnittsgehalt pro Abteilung), ohne einen Zugriff auf die zugrunde 

liegenden Daten zuzulassen. 

Dagegen ist die Möglichkeit, Daten über Datensichten zu verändern, recht einge-

schränkt. Hier brauchen wir geeignete Instrumente, um beispielsweise für den Benutzer 

gekoppelte Datenänderungen zuzulassen (z. B. Buchung und Gegenbuchung), ohne ihm 

das Recht zu geben, die entsprechenden Daten direkt zu manipulieren. 

Dazu sind  Datenbankprozeduren geeignet. Im Unterschied zu Anwendungsprogram-

men, wie wir sie im vorliegenden Band in Kap. 6 behandeln, werden Datenbankprozedu-

ren in der Datenbank selbst gespeichert; die Übersetzung und Ausführung unterliegen 

der Kontrolle des DBMS. Anwendungsprogramme können dadurch „schlanker“ werden, 

und man kann dieselben Prozeduren in verschiedenen Anwendungsprogrammen aufru-

fen, also mehrfach verwenden. Außerdem führt die Ausführung der Prozeduren auf dem 

Datenbankserver zu reduziertem Netzwerkverkehr, dürfte also im Regelfall performanter 

sein als eine Umsetzung derselben Programmlogik in Anwendungsprogrammen. 

Neben den Datenbankprozeduren können  Trigger eingeführt werden, um die Konsis-

tenz der Datenbank sicherzustellen. Während Datenbankprozeduren vom Endanwen-

der (sofern er das entsprechende Zugriffsrecht hat) aufgerufen werden können, werden 

Trigger automatisch aktiviert, wenn jeweils ein entsprechendes Ereignis eintritt, d. h. 

das Einfügen, Ändern oder Löschen eines Tupels. Ein Benutzer kann die Aktion eines 

1  Datensichten werden dort in Kap. 9 behandelt. 

M. Unterstein und G. Matthiessen,  Anwendungsentwicklung mit Datenbanken, eXamen.press, 

43

DOI: 10.1007/978-3-642-39003-6_4, © Springer-Verlag Berlin Heidelberg 2013

44

4  Prozedurale Konzepte in SQL

Triggers nicht ausschalten. Ganz im Gegenteil kann ein Trigger dazu benutzt werden, 

um Benutzer daran zu hindern, gewisse Datenmanipulationen vorzunehmen. 

4.1 

 Datenbankprozeduren

Als Erstes führen wir die  Datenbankprozeduren oder  Stored Procedures ein. Hierbei 

handelt es sich um Prozeduren, die im Stil der imperativen Programmierung gewisse 

Abläufe in der Datenbank beschreiben. 

Datenbankprozeduren sind 1996 als  Database languages –  SQL –  Part 4: Persistent 

 Stored Modules kurz  SQL/PSM normiert worden und inzwischen integraler Bestandteil 

der SQL-Norm. So gut wie alle Datenbanksysteme für Server enthalten diese Konzepte. 

Die im Folgenden verwendeten Beispiele sind unter  SQL Anywhere, MySQL   und 

 HSQLDB getestet worden – allerdings gibt es bei all diesen Systemen Abweichungen von 

der Norm – die Beispiele sind zum Teil für die konkreten Implementierungen entspre-

chend anzupassen.2

In diesem Abschnitt geben wir eine grundsätzliche Einführung in die Bedeutung der 

Datenbankprozeduren – wir geben keine Einführung in die SQL-Norm. Wer sich hier 

weiter informieren will, den verweisen wir auf [Melt98]. Insbesondere ist es auch mög-

lich – und bei einigen Systemen wie PostgreSQL, Oracle, DB2 derzeit auch notwendig –, 

dass die Rümpfe der Prozeduren in einer allgemeinen Programmiersprache (wie Java, 

Tcl, Perl, Python) oder einer Datenbankspezifischen Programmiersprache (wie PL/SQL 

bei Oracle, PL/pgSQL bei PostgreSQL) geschrieben werden. 

Um Datenbankprozeduren anzulegen, braucht ein Nutzer ein entsprechendes Privi-

leg. Der Ersteller kann das Privileg zur Ausführung (EXECUTE) einer Prozedur an andere 

Nutzer weitergeben, der die Datenbankprozedur dann aufrufen kann. Wenn die Ausfüh-

rung der Datenbankprozedur mit den Rechten des Erstellers ausgestattet ist, können die 

Datenbankobjekte in der Prozedur manipuliert werden, sofern der Ersteller die entspre-

chenden Privilegien besitzt – der Aufrufer braucht diese Privilegien nicht zu haben. 

Es gibt mehrere Gründe, warum man Datenbankprozeduren anlegen sollte. Zwei füh-

ren wir im Folgenden auf. 

4.1.1   Unterstützung der Konsistenz

Hier ist zum Beispiel daran zu denken, dass bestimmte Änderungsoperationen an Tabel-

len für alle Anwender verboten sind und nur der Datenbankadministrator formal das 

Recht hat, diese Änderungen zuzulassen. Er kann aber komplexe, d. h. aus mehreren 

Elementaroperationen zusammengesetzte Operationen zur Verfügung stellen, über die 

2  Die entsprechenden SQL-Skripte sind auf dem Verlagsserver abgelegt. 

4.1 Datenbankprozeduren

45

der Anwender die Datenbanktabellen manipulieren kann, ohne dass die Konsistenz 

dadurch gefährdet ist. 

So ist es beispielsweise denkbar, in einem Unternehmen, in dem verschiedene  Geld-

 konten existieren, die absolute Änderung eines Kontostands zu verbieten. Stattdessen 

werden Datenbankprozeduren zur Verfügung gestellt, die Umbuchungen, Einnahmen 

oder Ausgaben ermöglichen. Zur zusätzlichen Sicherheit können die Prozeduren erzwin-

gen, dass für jeden Aufruf Datum, Uhrzeit und Benutzer-Identifizierung in einer weite-

ren Tabelle gespeichert werden, für die niemand (außer dem Datenbankadministrator) 

irgendwelche Änderungsrechte besitzt. 

Zur Unterstützung der Konsistenz ist auch wichtig, dass die Ausführung von Daten-

bank-Prozeduren explizit als Privileg dem Benutzer gewährt werden muss – ähnlich 

wie es in Abschn. 3.3 für lesende und ändernde Zugriffe auf Tabellen und Datensichten beschrieben ist. 

Die Anweisung dafür lautet

Beispiel

4.1.2   Effizientere Ausführung komplexer Operationen

Operationen, die zur Ausführung größere Datenmengen durchsuchen müssen, aber nur 

kleine Datenmengen als Ergebnis zurückliefern, laufen im Server effizienter ab. Hier ist 

beispielsweise ein Auskunftssystem über Zugverbindungen zu nennen. Um eine Zug-

verbindung vom Ausgangs- zum Zielbahnhof zu finden, die vor einem bestimmten 

Zeitpunkt am Zielbahnhof sein soll und möglichst spät abfährt, sind sehr viele Daten zu 

durchsuchen – das Ergebnis der Abfrage sind nur wenige Zeilen. 

4.1.3   Kurzeinführung anhand eines Beispiels

Die folgende Datenbankprozedur benennt systematisch Paare von [plz, ort] um.3

3 Zum Ändern der Prozedur, z. B. wenn beim Test unerwünschte Ergebnisse herauskommen, 

muss man sie erst einmal mit DROP PROCEDURE löschen, da nicht ein existierendes Datenbank-

objekt nochmals unter demselben Namen angelegt werden kann. Bei einigen Systemen gibt es die 

syntaktische Form CREATE OR REPLACE PROCEDURE, um dieses zu vereinfachen. 

46

4  Prozedurale Konzepte in SQL

Die Prozedur ist geeignet für alle Umbenennungen von Orten und Postleitzahlen oder 

auch für Eingemeindungen, da wir die alten und neuen Werte beim Aufruf als Eingabe-

parameter übergeben. 

Ein Aufruf könnte wie folgt aussehen:

Die formale Syntax der Definition einer Prozedur ergibt sich wie folgt (unvollständig):

Parameter der Prozedur  Wie Prozeduren in den verschiedenen Programmiersprachen 

haben die Datenbankprozeduren Parameter, mit denen sie aufgerufen werden. Die Para-

meter haben jeweils eine Bezeichnung, mit der sie innerhalb der Prozedur angesprochen 

werden, und jeweils einen festgelegten Datentyp. Es können hier alle in SQL bzw. in dem 

jeweiligen Datenbanksystem definierten Datentypen verwendet werden. 

4.1 Datenbankprozeduren

47

Schließlich gibt es drei Modi der Parameter-Übergabe. In allen drei Fällen wird in der 

Prozedur für diesen Parameter eine Variable mit dem angegebenen Datentyp angelegt. 

Die Unterschiede bestehen im Verhalten beim Aufruf der Prozedur und beim Verlassen 

der Prozedur. 

IN Eingabeargument: 

Beim Aufruf ist ein beliebiger Ausdruck anzugeben. Dieses kann eine Variable, ein Lite-

ral4 oder ein zusammengesetzter Ausdruck wie 2*anzahl. Dieser Ausdruck wird beim Aufruf der Prozedur berechnet und der lokalen Variablen zugewiesen.. 

OUT Ausgabeargument: 

Beim Aufruf ist eine Variable anzugeben. Beim Verlassen der Prozedur wird der Wert 

der lokalen Variablen diesem Parameter zugewiesen. 

INOUT transientes Argument: 

Auch hier ist beim Aufruf eine Variable anzugeben. Beim Aufruf der Prozedur wird der 

Wert dieser Variablen an die lokale Variable übergeben, beim Verlassen wird der dann 

aktuelle Wert der lokalen Variablen diesem Parameter zugewiesen. 

Parameter werden in der Regel als IN-Parameter übergeben. Da es in der SQL-Norm 

keine Variablen gibt (außer innerhalb von Prozeduren und Funktionen), ist ein Aufruf 

mit OUT- oder INOUT-Parameter direkt von der Benutzeroberfläche nicht so ohne wei-

teres möglich. Prozeduren können aber auch z. B. von einer Programmiersprache5 aus ausgerufen werden – dann sind hier Variablen der Programmiersprache anzugeben. 

In unserem Beispiel werden also p_plz_alt mit '23863', p_ort_alt mit 'Kay-

hude', p_plz_neu mit '23863' und p_ort_neu mit 'Neu Kayhude' belegt. 

In der Anweisung

sind die Bezeichner plz und ort Spalten der Tabelle kunde, während die Bezeichner, 

die hier mit p_ beginnen (p_plz_neu, …) Parameter der Prozedur sind. Man kann die-

sen Unterschied nicht syntaktisch erkennen, sondern nur, indem man nachschaut, wo 

diese Bezeichner deklariert sind (plz und ort als Spalten in der Tabelle kunde, während 

die mit p_ beginnenden Bezeichner als Parameter in der Parameterliste deklariert sind. 

4  Literale sind Werte, die entsprechend der jeweiligen Syntax beschrieben werden, also z. B. 'Kay-

hude' als Zeichenkette oder ein numerischer Wert wie 12 oder 3.141 oder ein Datumswert wie 

DATE '2013-05-18'. 

5 Vgl. Kap. 6, wo wir die Einbettung von SQL in Java über JDBC beschreiben. 

48

4  Prozedurale Konzepte in SQL

Wenn wir in der Prozedur Bezeichner für Parameter verwendet hätten, die auch als Spal-

tenbezeichner in der Tabelle vorkommen, hätten wir eine Namens-Kollision, die wie folgt 

aufgelöst wird: die Deklaration gilt, die in der Hierarchie am dichtesten an der Verwendung 

liegt. Für eine SQL-Anweisung (INSERT, DELETE, UPDATE, SELECT) innerhalb eines 

Prozedur-Rumpfes gilt für einen Bezeichner folgende Priorität der Namens-Auflösung:

1.  Bezeichner einer Spalte einer in der Anweisung vorkommenden Tabelle, 

2.  Bezeichner einer Variable im Prozedur-Rumpf, 

3.  Bezeichner eines Parameters in der Parameter-Liste. 

Damit man zu keiner falschen Zuordnung der Bezeichner kommt, raten wir hier zur syste-

matischen Benennung der Bezeichner. In den Beispielen verwenden wir jeweils Parameter, 

die mit p_ beginnen. Entsprechend beginnen Variable im Prozedur-Rumpf mit v_. 

Charakteristiken der Prozedur In der SQL-Norm sind eine Reihe von möglichen 

Charakteristiken von Prozeduren angegeben. Die von uns getesteten Systeme erwarten 

davon jeweils einen Teil (und lassen auch nicht alle zu). Wir beschreiben hier zwei Cha-

rakteristiken; ansonsten verweisen wir auf das jeweilige Handbuch. 

SQL-Datenzugriff  Hier wird angegeben, auf welche Weise innerhalb der Prozedur SQL-

Elemente verwendet werden. Wenn die Prozedur in SQL geschrieben ist, 6 kann die Datenbankmaschine dieses natürlich selber herausfinden. Aber zum Teil wird diese Angabe 

generell erwartet; andererseits ist diese Angabe auch wichtig für die Dokumentation. 

NO SQL:

Die Prozedur enthält keine SQL-Anweisungen, sondern nur Wertzuweisungen und 

Kontrollstrukturen – ohne Verwendung von SQL-Funktionen. 

CONTAINS SQL:

Die Prozedur enthält SQL-Elemente (z. B. SQL-Funktionen), aber keinen Zugriff auf die 

SQL-Datenbank. 

READS SQL DATA:

Es werden SQL-Daten gelesen (üblicherweise mit einer SELECT-Anweisung), aber keine 

Daten in der Datenbank geändert. 

MODIFIES SQL DATA:

Es können SQL-Anweisungen verwendet werden, die Änderungen in der Datenbank 

bewirken. 

Von diesen Optionen ist für Prozeduren in der Regel nur MODIFIES SQL DATA inter-

essant; aber wir könnten auf Grund von SQL-Auswertungen, ohne Daten zu ändern, 

6  Wir beschreiben in unserem Buch nur solche Prozeduren. 

4.1 Datenbankprozeduren

49

Werte über OUT-Parameter zurückgeben. Ansonsten werden diese Angaben auch noch 

für die später eingeführten Datenbank-Funktionen benötigt, wo ggf. kein ändernder 

Datenzugriff oder überhaupt kein Datenzugriff erfolgt. 

Zugriffsrechte auf Datenbank-Objekte Hier wird angeben, mit welchen Zugriffsrechten 

die Prozedur ausgeführt wird – mit den Rechten des Aufrufers oder mit den Rechten des 

Erzeugers der Prozedur. Wenn die Prozedur mit den Rechten des Erzeugers definiert wurde, 

gelten für die lesenden und ändernden Zugriffe jeweils die Privilegien7 des Erzeugers. 

Dieser Parameter hat eine weitere Auswirkung: Der Wert der Systemvariable 

CURRENT_USER ist der Bezeichner des Benutzers, mit dessen Rechten die Prozedur 

aufgerufen wird. Daneben gibt es die Systemvariable SYSTEM_USER, die den Benutzer 

angibt, der die Prozedur aufgerufen hat. 

Der Prozedur-Rumpf  Der Prozedur-Rumpf besteht aus einer Folge von Anweisungen, 

die zwischen BEGIN und END stehen und jeweils durch ein Semikolon getrennt sind. 

Neben dem unmittelbaren Aufruf von SQL-Anweisungen (wie in unserem Beispiel 

die UPDATE-Anweisung) stehen die Konzepte von imperativen strukturierten Pro-

grammiersprachen (also ähnlich wie in Java oder C) zur Verfügung, d. h. Variablen und 

Wertzuweisungen an Variablen sowie die Kontrollstrukturen

•	 sequenzielle Folge von Anweisungen

•	 Fallunterscheidung

•	 Wiederholungsschleife

•	 Prozeduraufruf

Durch  BEGIN ATOMIC  ...  END wird festgelegt, dass die Prozedur innerhalb einer 

Transaktion8 verwendet werden kann, und selber im Inneren keine Transaktion beendet oder abbricht. Der Programmaufruf kann in eine Transaktion eingebettet sein – ein 

Ende der Prozedur stellt nicht automatisch ein Ende der Transaktion dar. Wenn wir 

dagegen den Block der Prozedur in BEGIN ... END einbetten (ohne ATOMIC), kann die 

Prozedur auch (direkt oder indirekt) eine Transaktion beenden oder abbrechen. 

Aufruf einer Datenbank-Prozedur  Eine Datenbankprozedur kann über die übliche SQL-

Schnittstelle mit der CALL-Anweisung aufgerufen werden. Diese SQL-Schnittstelle kann 

überall verwendet werden, wo SQL-Anweisungen formuliert werden können, also z. B. 

•	 in einer interaktiven SQL-Umgebung (ISQL)

•	 über Embedded SQL (ESQL) in einer Wirtssprache

•	 über ein Call-Level-Interface (CLI) aus einer Programmiersprache

•	 über ODBC oder JDBC

7 Vgl. Kap. 3. 

8  Das Transaktionskonzept von SQL haben wir in Kap. 2 eingeführt. 

50

4  Prozedurale Konzepte in SQL

4.1.4   Erweiterung des Beispiels mit Ausgabe-Parametern

Die folgende Prozedur ist eine Erweiterung der oben eingeführten: Hier kann der 

Anwender anschließend auswerten, wie viele Umbenennungen erfolgt sind. Wir verwen-

den dazu einen Ausgabeparameter, den wir in der Signatur durch OUT anzahl dekla-

rieren. Beim Aufruf der Prozedur muss hierfür ein Platzhalter, d. h. eine Variable des 

aufrufenden Programms übergeben werden. 

An diesem Beispiel erkennen wir eine besondere Variante der SELECT-Anweisung. Hin-

ter der Spaltenangabe steht die INTO-Klausel, gefolgt von einer Liste lokaler Variablen, 

in die die Spaltenwerte der Antworttabellen übertragen werden. Diese Art der Abfrage ist 

aber nur möglich, wenn die Abfrage nur eine einzige Zeile als Ergebnis hat.9 Die Variab-

lenliste muss genauso viele Variablen enthalten wie die Spaltenliste. Die Zuordnung von 

einer Spalte zu einer Variablen erfolgt über die Reihenfolge. Der Datentyp der Variablen 

muss jeweils mit dem Datentyp der Spalte kompatibel sein. Die Spaltenliste kann neben 

Tabellenspalten natürlich auch Ausdrücke enthalten. 

Ein Aufruf kann über eine Wirtssprache wie Java erfolgen, wo dann der Rück-

gabewert in das Programm übernommen werden kann. Außerdem können wir diese 

Prozedur in einer anderen Prozedur aufrufen und den Wert an eine Variable der Pro-

zedur übergeben. Zu einfacheren Demonstration verwenden wir hier die (nicht in der 

Norm enthaltene) Möglichkeit von SQL Anywhere, in einer Sitzung lokale Variable 

anzulegen. 

9  Um die Ergebnisse einer möglicherweise mehrzeiligen Antworttabelle zur Weiterverarbeitung in 

lokale Variablen zu übernehmen, muss ein sog.  Cursor definiert werden. Wir beschreiben dieses 

Konzept in Abschn. 4.4. 

4.1 Datenbankprozeduren

51

Durch die erste Anweisung wird eine Hilfsvariable namens anzahl eingeführt. In der 

zweiten Anweisung werden alle Tupel mit

umbenannt in

Die Anzeige der Variablen anzahl ist Aufgabe eines steuernden Anwendungspro-

gramms, das die Prozedur aufgerufen hat. In diesem Beispiel zeigen wir sie über einen 

formalen Spaltenausdruck in einer SELECT-Anweisung an. dummy10 ist in SQL Anywhere eine Tabelle, die in jeder Datenbank enthalten ist. Diese Tabelle hat genau einen 

Satz und der einzige Zweck dieser Tabelle ist es, auf einfache Möglichkeit interaktiv 

Werte von Variablen oder Ausdrücken (z. B. Funktionsaufrufe oder spezielle Werte wie 

CURRENT_DATE oder CURRENT_USER) auszugeben, ohne dass wir dazu eine spezielle 

Schreib-Anweisung benötigen. 

Eine entsprechende Tabelle gibt es auch in Oracle und MySQL unter der Bezeichnung 

dual. Wenn in einem Datenbanksystem diese einfache Möglichkeit, Werte anzuzeigen 

nicht existiert, empfiehlt es sich, eine Tabelle in folgender Form anzulegen:

Ein Aufruf von SELECT ausdruck FROM dual liefert dann genau den Wert des Aus-

drucks zurück. 

4.1.5   Beispiele mit Variablen und Kontrollstrukturen

Im folgenden Beispiel wird durch die Einführung von zwei Datenbankprozeduren und 

einer Protokolltabelle die Konsistenz des Attributs bestand in der Relation arti-

kel sichergestellt. Wir gehen davon aus, dass eine direkte Änderung dieses Attri-

buts ausgeschlossen sein soll. Beim Einfügen eines neuen Tupels wird automatisch der 

Default-Wert 0 eingetragen. Der Wert kann nur durch eine Lieferung (PROCEDURE 

Lieferung), durch Lagerzugang (PROCEDURE Lagerzugang – hier nicht beschrieben) 

und durch eine protokollierte Bestandskorrektur, die wir anschließend implementieren 

(PROCEDURE Bestandskorrektur) geändert werden. Ein direktes Ändern mit der 

UPDATE-Anweisung wird ausgeschlossen, indem kein UPDATE-Privileg an den Benut-

zer weitergegeben wird. Der Autor der oben genannten Prozeduren hat aber dieses Recht 

und somit hat es indirekt auch der Aufrufer der Prozeduren. 

10  Die Angabe FROM DUMMY könnten wir auch weglassen. 

52

4  Prozedurale Konzepte in SQL

4.1 Datenbankprozeduren

53

Ein Aufruf kann wie folgt aussehen:

Wir führen hier drei lokale Variable ein. Durch die Deklaration haben diese Variablen 

eine Nullmarke als Wert. Wenn in der ersten SELECT-Anweisung keine Zeile zurückge-

geben wird (da die Kombination aus p_artikel_nr und p_bestell_nr nicht in der Daten-

bank vorhanden sind), wird der Wert der Variablen in der INTO-Klausel nicht geändert. 

Wir können daher die Abfrage auf eine Nullmarke benutzen, ob überhaupt ein Satz 

betroffen ist (da Bestellmenge nach Tabellen-Definition nicht NULL sein kann.)

Dieser Aufruf führt also zuerst die notwendigen Kontrollen durch (gibt es überhaupt 

einen entsprechenden Satz in der Positionstabelle?). Anschließend erledigt der Aufruf 

(auf dem Server!) alle notwendigen Datenänderungen, die eine Auslieferung nach sich 

ziehen, nämlich die Eintragung der gelieferten Menge in der Positionsdatei und gegebe-

nenfalls die Neuberechnung des Gesamtpreises proportional zur bestellten Menge sowie 

die Abbuchung in der Artikel-Tabelle. 

Das Verfahren ist jetzt dagegen abgesichert, dass durch versehentlich oder absichtlich 

herbeigeführte Änderungsoperationen mittels einer interaktiv eingegebenen UPDATE 

Anweisung falsche Lagerbeständig eingetragen werden. Mithin kann jederzeit aus der 

Datenbank der aktuelle Lagerbestand ermittelt werden. Da aber im Unternehmen Men-

schen arbeiten und nicht nur Computer und Roboter, stellt sich spätestens bei der Inven-

tur heraus, dass es doch Abweichungen gibt. 

Diese müssen dann als Bestandskorrektur in die Datenbank eingegeben wer-

den. Damit aber diese Funktion nicht als einfache Möglichkeit benutzt werden kann, 

Schwund zu erzeugen und anschließend problemlos abzubuchen, sollte zum einen die 

Berechtigung für die Benutzung dieser Prozedur auf einen kleinen Personenkreis ein-

geschränkt werden. Zum anderen wird grundsätzlich eine Protokolldatei geführt, die 

den Aufruf dieser Prozedur mit Angabe des Benutzers und des Zeitpunkts des Aufrufs 

protokolliert. 

54

4  Prozedurale Konzepte in SQL

Als Erstes beschreiben wir den Aufbau der Protokolldatei:

Ein Aufruf könnte wie folgt aussehen:

4.1.6   Übungen

Aufgabe 4.1  Schreiben Sie eine Prozedur, die für alle Artikel, deren Lagerbestand den Min-

destbestand unterschreitet, das Attribut bestellvorschlag auf das Tagesdatum setzt. 

Aufgabe 4.2 Schreiben Sie eine Prozedur, die bei Eingabe einer Artikelnummer und 

eines Werts für die Nachbestellmenge das Attribut nachbestellung auf das Tages-

datum, das Attribut nachbestellmenge auf den eingegebenen Wert und das Attribut 

bestellvorschlag wieder auf NULL setzt. Wenn kein Artikel mit der angegebenen 

artikel_nr gefunden wird, soll eine exception erzeugt werden. 

Durch den Default-Wert für den Zeitpunkt wird automatisch der Zeitpunkt der Ände-

Aufgabe 4.3 Schreiben Sie eine oder mehrere Prozeduren, die zusammen folgende 

rung eingetragen, die Benutzer-Id wird in der Prozedur eingetragen. 11 Bei Angabe einer 

Aufgabe erledigen. Die Positionen einer durch Eingabeparameter i_bestell_nr aus-

falschen Artikelnummer erfolgt keine Aktion – auch keine Protokollierung. 

gewählte Bestellung werden in folgender Weise bearbeitet: Wenn die bestellmenge 

Nun zur entsprechenden Prozedur. 

nicht größer als der Lagerbestand des Artikels ist, soll liefermenge = bestellmenge 

gesetzt werden. Sonst soll liefermenge = bestand des Artikels gesetzt werden. Wenn 

der Artikel gar nicht lieferbar ist, wird liefermenge = 0. Außerdem soll der Prozent-

satz des für den Artikel gültigen Mehrwertsteuerschlüssels in das Attribut mwst geschrie-

ben werden. Gesamtpreis soll mit liefermenge * listenpreis aktualisiert werden. 

Aufgabe 4.4 Schreiben Sie eine Prozedur, die für eine durch Eingabeparameter 

p_bestell_nr qualifizierte Bestellung das Attribut lieferdatum auf das Tagesdatum 

setzt, das attribut rechnungsbetrag berechnet (Achtung, das ist die Summe der Brut-

tobeträge aller Positionen dieser Bestellung; hier ist der angewandte Mehrwertsteuersatz 

aus der Tabelle bestellposition auf den gesamtpreis der jeweiligen Position anzu-

wenden) Für den Kunden soll außerdem das Attribut letzte_bestellung auf das 

Tagesdatum gesetzt werden. 

4.2 

 Funktionen in Datenbanken

Funktionen haben einen ähnlichen Aufbau wie Prozeduren. Es können nur Eingabe-

parameter übergeben werden und es ist ein Ergebniswert zurückzugeben. Funktionen 

können an jeder Stelle aufgerufen werden, wo Ausdrücke auftreten können, also insbe-

sondere auch in der SELECT-Klausel, in der WHERE-Klausel und in der SET-Klausel 

der UPDATE-Anweisung. 

11  Eigentlich können wir auch den Benutzer als Default-Wert eintragen lassen. Da das aber nicht 

Die Zugriffsrechte werden wie bei Datenbankprozeduren durch GRANT EXECUTE 

bei MySQL zulässig ist und um die Beispiele möglichst portabel zu gestalten, haben wir das in die 

vergeben. 

Prozedur verlegt. 

4.1 Datenbankprozeduren

55

Ein Aufruf könnte wie folgt aussehen:

4.1.6   Übungen

Aufgabe 4.1  Schreiben Sie eine Prozedur, die für alle Artikel, deren Lagerbestand den Min-

destbestand unterschreitet, das Attribut bestellvorschlag auf das Tagesdatum setzt. 

Aufgabe 4.2 Schreiben Sie eine Prozedur, die bei Eingabe einer Artikelnummer und 

eines Werts für die Nachbestellmenge das Attribut nachbestellung auf das Tages-

datum, das Attribut nachbestellmenge auf den eingegebenen Wert und das Attribut 

bestellvorschlag wieder auf NULL setzt. Wenn kein Artikel mit der angegebenen 

artikel_nr gefunden wird, soll eine exception erzeugt werden. 

Aufgabe 4.3 Schreiben Sie eine oder mehrere Prozeduren, die zusammen folgende 

Aufgabe erledigen. Die Positionen einer durch Eingabeparameter i_bestell_nr aus-

gewählte Bestellung werden in folgender Weise bearbeitet: Wenn die bestellmenge 

nicht größer als der Lagerbestand des Artikels ist, soll liefermenge = bestellmenge 

gesetzt werden. Sonst soll liefermenge = bestand des Artikels gesetzt werden. Wenn 

der Artikel gar nicht lieferbar ist, wird liefermenge = 0. Außerdem soll der Prozent-

satz des für den Artikel gültigen Mehrwertsteuerschlüssels in das Attribut mwst geschrie-

ben werden. Gesamtpreis soll mit liefermenge * listenpreis aktualisiert werden. 

Aufgabe 4.4 Schreiben Sie eine Prozedur, die für eine durch Eingabeparameter 

p_bestell_nr qualifizierte Bestellung das Attribut lieferdatum auf das Tagesdatum 

setzt, das attribut rechnungsbetrag berechnet (Achtung, das ist die Summe der Brut-

tobeträge aller Positionen dieser Bestellung; hier ist der angewandte Mehrwertsteuersatz 

aus der Tabelle bestellposition auf den gesamtpreis der jeweiligen Position anzu-

wenden) Für den Kunden soll außerdem das Attribut letzte_bestellung auf das 

Tagesdatum gesetzt werden. 

4.2 

 Funktionen in Datenbanken

Funktionen haben einen ähnlichen Aufbau wie Prozeduren. Es können nur Eingabe-

parameter übergeben werden und es ist ein Ergebniswert zurückzugeben. Funktionen 

können an jeder Stelle aufgerufen werden, wo Ausdrücke auftreten können, also insbe-

sondere auch in der SELECT-Klausel, in der WHERE-Klausel und in der SET-Klausel 

der UPDATE-Anweisung. 

Die Zugriffsrechte werden wie bei Datenbankprozeduren durch GRANT EXECUTE 

vergeben. 

56

4  Prozedurale Konzepte in SQL

Die folgende Funktion addiert einen Prozentbetrag zu einem Geldbetrag. 

Dies kann zum Beispiel in einer SELECT-Anweisung auf folgende Weise aufgerufen 

werden:

Als weitere Möglichkeiten definieren wir im Folgenden eine Funktion, die es in Ad-hoc-

Auswertungen auf einfache Weise ermöglicht, die Zahlungsart von Kunden darzustellen. 

Es wird die gespeicherte Information (ein Buchstabe) durch eine Zeichenkette in Klar-

text dargestellt. 

Ein Aufruf kann z. B. in folgender Form erfolgen:

4.2  Funktionen in Datenbanken

57

Auf ähnliche Weise können wir die deutsche Bezeichnung von Wochentagen oder 

Monaten erzeugen, falls das Datenbanksystem diese Ausgabe nicht unterstützt. 

4.2.1   Formaler Aufbau einer Funktionsdefinition

Durch  DETERMINISTIC wird angegeben, dass die Funktion bei jedem Aufruf mit 

denselben Argumenten auch dasselbe Ergebnis zurückliefert und dass sie keine 

Nebeneffekte hat. Wenn die Funktion auf SQL-Daten oder zum Beispiel auf Datum 

oder Uhrzeit zugreift, ist sie nicht deterministisch. Ein Nebeneffekt wäre z. B. die 

Änderung von SQL-Daten. Eine Funktion im mathematischen Sinn ist also immer 

DETERMINISTIC. 

Die Rückgabe von Tabellen behandeln wir später. 

4.2.2   Funktionen mit Datumsberechnungen

Als abschließendes Beispiel erweitern wir die Datumsfunktionen durch eine Funk-

tion, die für ein gegebenes Jahr im Bereich 1900 – 2099 das Osterdatum bestimmt. 

Da in diesem Beispiel keine SQL-Anweisungen vorkommen (sondern nur SQL-

Funktionen), verzichten wir bei der Festlegung der Variablen auf den Präfix v_. Die 

verwendeten Funktionen wie MOD,  DATEADD,  EXTRACT entsprechen der SQL-Norm. 

Allerdings sind bei den meisten Systemen nicht alle angegebenen Funktionen vorhan-

den, die relevanten Funktionen sind ggf. im Handbuch des benutzten SQL-Systems 

nachzuschlagen. 

58

4  Prozedurale Konzepte in SQL

Dies kann zu einer Funktion erweitert werden, die feststellt, ob ein gegebener Tag ein 

Feiertag ist – eine Funktion, die für viele Geschäftsvorgänge von Bedeutung ist (aller-

dings ist wegen der Internationalisierung des Handels z. B. zwischen Bremen und Bayern 

diese Funktion um ein weiteres Argument zu ergänzen, das den jeweiligen Gültigkeitsbe-

reich angibt). 

4.2  Funktionen in Datenbanken

59

Hieraus lässt sich jetzt die Funktion ableiten, die für einen Tag bestimmt, welcher Tag in 

 n Werktagen (ohne Samstag) sein wird. 

60

4  Prozedurale Konzepte in SQL

Ein Aufruf kann z. B. wie folgt aussehen:

4.2.3   Funktionen, die Tabellen zurückgeben

Funktionen können nicht nur skalare Werte, sondern auch (virtuelle) Tabellen zurück-

geben. Dieses Konzept gibt es schon sehr lange bei SQL Anywhere als Prozedur, die ein 

Resultset zurückgeben. Es ist in der Norm aufgenommen worden als Funktion – was ja 

auch eher der Logik entspricht: Es geht um die Rückgabe von Werten in Abhängigkeit 

von Parametern.12

Wir stellen hier eine Funktion vor, die nach Eingabe der ersten Zeichen eines Kun-

dennamens und des Wohnorts die letzte Bestellung dieses Kunden – falls es eine gibt 

– anzeigt. Dabei werden Daten aus den Tabellen kunde, bestellung und bestellpo-

sition verarbeitet. 

Teile der Lösung hätte man auch mit einer Datensicht erreichen können. Das Inte-

ressante ist hier, dass wir einen Teil des Kundennamens und den Ort als Parameter 

beim Aufruf übergeben können, was bei einer Datensicht nicht möglich ist. Ein weiterer 

Aspekt ist die Generierung von Fehlermeldungen, wenn Ausnahmesituationen auftreten 

wie die, dass kein Kunde oder mehr als einer gefunden wird. Damit wird das Standard-

verhalten des DBMS für die eigenen Zwecke überschrieben. Wir kommen auf diese Pro-

zedur im Kap. 6 über JDBC zurück, wo wir den Aufruf in ein Java-Programm einbetten 

werden. 

12 In SQL Anywhere ist auch in der aktuellen Version eine PROCEDURE mit RESULT zu 

definieren. 

4.2  Funktionen in Datenbanken

61

62

4  Prozedurale Konzepte in SQL

Zum Testen empfehlen wir, noch eine zusätzliche Bestellung und zwei Positionen mit 

folgenden Daten einzugeben

Nun haben wir zwei Bestellungen von Kunden aus Kayhude, deren Name auch noch 

mit ‚St‘ beginnt (Staack und Stein). Wir können also beim Aufruf der Prozedur die Fälle 

durchspielen: Kunde existiert, Kunde existiert nicht, es existieren mindestens zwei Kun-

den, auf die das Suchkriterium zutrifft. 

Die Aufrufe sehen dann so aus:

4.2  Funktionen in Datenbanken

63

Beim ersten Aufruf sollte eine Tabelle als Resultat erscheinen, Aufrufe 2 und 3 müs-

sen statt einer Tabellenausgabe eine Fehlermeldung erzeugen. 

Wie wir in der Prozedur sehen, wird eine virtuelle Tabelle durch RETURN TABLE 

(select-anweisung) zurückgegeben. 

4.2.4   Übungen

Aufgabe 4.5  Schreiben Sie eine Funktion, die bei Eingabe des Kürzels für den Status eines 

Kunden (ein Wert aus der Menge {'S', 'W', 'G'}) den Klartext des Status ausgibt. Das 

wären die Texte „Stammkunde“, „Werbemaßnahme“, „Gelegenheitskunde“. Wenn keiner 

der o. g. Werte übergeben wird, soll eine exception erzeugt werden. Der Benutzerkom-

fort könnte dadurch gesteigert werden, dass zusätzlich zu den oben angeführten Kürzeln 

dieselben in Kleinbuchstaben akzeptiert werden (obwohl das wegen einer CHECK-Klausel 

bei der Datendefinition ausgeschlossen wird, also eigentlich nicht vorkommen kann). 

Aufgabe 4.6  Schreiben Sie eine Funktion, die zu einem durch Eingabeparameter artikel_nr 

qualifizierten Artikel den Bruttopreis incl. Mehrwertsteuer ausgibt. 

Aufgabe 4.7  Schreiben Sie eine Funktion, die zu einer durch bestell_nr qualifizier-

ten Bestellung den rechnungsbetrag (brutto, unter Anwendung des in bestellposition 

hinterlegten mwst Prozentsatzes für jede einzelne Position) ermittelt, jedoch ohne diesen 

in der Datenbanktabelle zu speichern. 

Aufgabe 4.8  Überarbeiten Sie die Aufgabe 4.3 so, dass Sie soweit wie möglich die eben 

erstellten Funktionen benutzen. 

4.3 

 Ausnahmebehandlung in Prozeduren und Funktionen

Die Durchführung einer SQL-Anweisung kann zu Ausnahmen führen (z. B. Verletzun-

gen von Konsistenzregeln wie Primärschlüssel, CHECK-Bedingungen). Dieses führt zu 

zwei Fragestellungen:

1.  Wie können wir in Datenbank-Prozeduren und Funktionen Ausnahme-Bedingungen 

auslösen? 

2.  Wie können wir Ausnahme-Bedingungen, die durch SQL-Anweisungen oder Proze-

duren und Funktionen ausgelöst worden sind, behandeln? 

Wir beginnen mit einer Prozedur, die Ausnahme-Bedingungen erzeugt. Diese können dann 

z. B. in einer Prozedur, die diese Aufruft, behandelt werden. Dazu erweitern wir die schon defi-

nierte Prozedur umbenenne um einige Kontrollen, die zu Ausnahmen-Bedingungen führen. 

64

4  Prozedurale Konzepte in SQL

Wir verwenden hier SQLSTATEs. Nach der Ausführung jeder SQL-Anweisung wird ein 

SQLSTATE zurückgegeben. Dieses ist eine 5-stellige Zeichenkette, die in vielen Fällen 

numerisch ist. Eine große Menge von SQLSTATEs ist in der Norm festgelegt. Weitere 

können von den Datenbank-Herstellern vergeben werden. 

Der wichtigste SQLSTATE ist '00000' und steht für „Alles in Ordnung“. Häufig tritt 

noch der SQLSTATE '02000' auf und steht für „Kein Satz betroffen“. Das ist zum Bei-

spiel der Fall, wenn eine SELECT-Anweisung keine Zeile zurückgibt oder wenn bei einer 

UPDATE- oder DELETE-Anweisung keine Zeile betroffen ist. Dieses zeigt, dass nicht 

jeder SQLSTATE auf eine Ausnahme weist. 

Schließlich können vom Benutzer SQLSTATEs vergeben werden, die mit 99 begin-

nen. Dieses geschieht durch die SIGNAL-Anweisung. 

Im folgenden Programm definieren wir Ausnahme-Behandler („Handler“), die die 

Ausnahme-Bedingungen, die von umbenenne geworfen werden, behandeln. 

Damit die Fehler später nachvollzogen werden können – und da die Ausgabe von 

Texten auf der Konsole nicht in der Norm enthalten ist, werden die Fehlermeldungen in 

eine spezielle Tabelle geschrieben, die hier definiert wird. 

4.3  Ausnahmebehandlung in Prozeduren und Funktionen

65

Es gibt drei Arten von Ausnahme-Handlern:

CONTINUE HANDLER: 

Die Prozedur wird nach der Ausnahme-Behandlung weiter durchgeführt. 

EXIT HANDLER: 

Die Prozedur wird nach der Ausnahme-Behandlung beendet. 

UNDO HANDLER: 

Die Prozedur wird nach der Ausnahme-Behandlung beendet. Alle Datenänderungen, die 

in der Prozedur schon durchgeführt worden sind, werden zurückgesetzt. Es wirkt also 

wie ein ROLLBACK. 

Nach der Angabe des zu behandelnden SQLSTATEs oder der Angabe SQLEXCEP-

TION (für alle noch nicht behandelten Fehler) folgt eine Anweisung (oder eine Folge 

von Anweisungen, die in BEGIN ... END eingeschlossen sind). Diese Anweisungen 

werden beim Auftreten des SQLSTATEs oder der SQLEXCEPTION ausgeführt. 

66

4  Prozedurale Konzepte in SQL

4.4 

 Das  Cursor-Konzept

Wir wollen einer Datenbank-Prozedur die Ergebnisse einer Abfrage einzeln verarbei-

ten. Dazu müssen wir eine Möglichkeit haben, eine Abfrage auszuführen und für jedes 

zurückgegebene Tupel eine Folge von Anweisungen auszuführen. Dieses ist nicht unmit-

telbar möglich, da das Ergebnis einer Abfrage eine Menge von Tupeln ist, wir aber die 

Daten iterativ schrittweise verarbeiten. 

In verkürzter Form stellen wir den relationalen Ansatz der Datengewinnung dem der 

imperativen Programmierung gegenüber. 

relational: eine Relation auf einmal

Imperativ: einen Satz nach dem anderen

Dieser Bruch zwischen den beiden Paradigmen relational und imperativ wird in der Lite-

ratur als  impedance mismatch bezeichnet. Das Problem existiert zwischen SQL und dem 

Rumpf von Datenbank-Prozeduren und –Funktionen genauso wie zwischen SQL und 

Programmiersprachen wie Java und C. Wir greifen es daher nochmals im Kap. 6 über JDBC auf. 

Die Lösung ist der so genannte Cursor. Ein Cursor ist hier aber nicht, wie vom Moni-

tor her bekannt, ein blinkender Bildpunkt. Ein Cursor beschreibt eine beliebig komplexe 

SELECT-Anweisung, deren Tupel satzweise verarbeitet werden können. Somit stellt ein 

Cursor ein Analogon zu einer Datei in einer imperativen Programmiersprache dar; vgl. 

hierzu Tab.  4.1 Diese Analogie kann sogar weitergeführt werden: Der Cursor entspricht nicht einer physikalischen Datei, die ja außerhalb des Programms existiert, sondern einer 

logischen Verbindung zur Datei. In Programmiersprachen wird einer Datei üblicher-

weise programmintern ein Name zugeordnet, über den diese Datei angesprochen wird. 

Dieser Name muss nicht identisch mit dem Dateinamen auf dem Datenträger sein – in 

vielen Fällen kann er gar nicht identisch dazu sein, da die Syntax für Bezeichner in Pro-

grammiersprachen von der Syntax für Dateibezeichner in Betriebssystemen abweicht. 

Dementsprechend hat ein Cursor einen Namen, über den die SELECT-Anweisung ange-

sprochen wird. 

4.4  Das Cursor-Konzept

67

Tab. 4.1  Das Cursor-Konzept in SQL

SQL-Anweisung

Bedeutung

DECLARE cname 

Logische Beschreibung eines Cursors. Diese Beschreibung 

CURSOR FOR …

bewirkt noch keine Aktion der Datenbankmaschine. 

OPEN cname

Die Verbindung zur Abfrage wird hergestellt. Die Vorberei-

tungen in der Datenbankmaschine werden getroffen. 

FETCH cname

Der nächste (oder auf andere Weise positionierte) Satz 

wird in die entsprechenden Variablen des Wirtsprogramms 

geladen. 

CLOSE cname

Schließen des Cursors – die entsprechende Verbindung zur 

Datenbank wird aufgehoben. 

In dem folgenden Beispiel wird für alle Artikel, die seit einem angegebenen Datum 

nicht mehr verkauft worden sind, das Attribut kann_wegfallen auf TRUE gesetzt. Ein 

Aufruf kann in der Weise erfolgen:

Um den alten Datenbestand wieder herzustellen, empfiehlt es sich, anschließend fol-

gende Anweisung auszuführen:

Die Prozedur sieht wie folgt aus:

68

4  Prozedurale Konzepte in SQL

Etwas umständlich ist in dem Beispiel die Schleifenkonstruktion. Da ein Cursor in der 

Regel dafür definiert wird, um jeweils genau einmal durchlaufen zu werden, gibt es 

hierfür eine Kurzform: die FOR-Anweisung. In der FOR-Anweisung wird ein Cur-

sor definiert und genau einmal für alle Elemente durchlaufen. Außerdem hat man 

in dem Abschnitt zwischen DO und END FOR lesenden Zugriff auf alle Attribute, die in 

der SELECT-Anweisung auftreten, ohne dass dafür explizit Variable deklariert werden 

müssen. 

Die Kurzform sieht wie folgt aus:

4.4  Das Cursor-Konzept

69

Die Bezeichner nach FOR ist erforderlich, auch wenn er an keiner Stelle verwendet wird. 

In dem folgenden Beispiel wird jedem Artikel ein neues Attribut num zugewiesen, das 

den Rang nach der Preishöhe enthält, d. h. der teuerste Artikel bekommt die Nummer 1, 

der nächste die Nummer 2 etc. Bei Artikeln mit gleichem Preis ist nach der Artikelnum-

mer zu sortieren. Dazu ist zuvor eine weitere Spalte einzuführen. 

4.4.1   Übungen

Aufgabe 4.9  Erstellen Sie eine Prozedur, die durch satzweise Bearbeitung der Kundenta-

belle die Anzahl aller Kunden ermittelt. 

Aufgabe 4.10 Erstellen Sie eine Prozedur, die für eine per Eingabeparameter spezi-

fizierte  bestell_nr alle Positionen durchgeht und, sofern liefermenge einen Wert 

hat, für jede bestellposition den bestand des betreffenden Artikels um die lie-

fermenge reduziert. 

70

4  Prozedurale Konzepte in SQL

4.5 

 Trigger in Datenbanken

Während Datenbankprozeduren bewusst vom Anwender (oder Anwendungsprogram-

mierer) aufgerufen werden, werden Trigger durch  Ereignisse zwangsweise vom Daten-

banksystem aufgerufen. 

Trigger sind zur gleichen Zeit wie Datenbankprozeduren, also etwa 1992, in SQL-

Datenbanksystemen eingeführt worden. Eine Normierung ist im Standard SQL:1999 

erfolgt. 

Das Auslösen eines Triggers wird durch die Parameter trigger-zeitpunkt, trig-

ger-ereignis, trigger-level beschrieben, die im folgenden eingeführt werden. 

Ein Trigger kann vor oder nach einem Ereignis aktiviert werden. Er kann auch anstelle 

eines vorgesehenen Ereignisses durchgeführt werden. Dadurch ist es zum Beispiel mög-

lich, dass für Zeilen, die in einer DELETE-Anweisung gelöscht werden sollen, stattdessen 

ein Attribut mit der Bedeutung „Löschmarkierung“ auf TRUE gesetzt wird. 

Das auslösende Ereignis kann das Löschen eines Tupels, das Einfügen eines Tupels oder 

das Ändern eines Tupels sein. 

Hiermit werden unterschiedliche Aktionen beschrieben, wenn eine Anweisung mehrere 

Tupel betrifft, z. B. beim Löschen oder Ändern mehrerer Zeilen. Ein Trigger auf Zeilene-

bene wird für jede Zeile einzeln aufgerufen und führt eine Aktion durch, die auf einzelne 

Zeilen bezogen ist. Dagegen wird ein Trigger auf Anweisungsebene nur einmal aufgeru-

fen – ihm stehen dafür jeweils eine Tabelle der gelöschten bzw. überschriebenen Tupel 

und eine Tabelle der eingefügten Tupel (bzw. der Tupel nach der Änderung) zur Verfü-

gung, die er auswerten kann. 

Mit diesen Angaben sieht ein Trigger im Wesentlichen13 wie folgt aus:

13  Wir lassen hier die zusätzliche Möglichkeit weg, dass in einem Trigger gegebenenfalls verschie-

dene Aktionen für das Ändern unterschiedlicher Spalten angegeben werden können. 

4.5  Trigger in Datenbanken

71

Der Name des Triggers hat weiter keine Bedeutung. Er wird nur benötigt, um den 

Trigger gegebenenfalls später wieder mit einer DROP TRIGGER-Anweisung zu 

löschen. 14

Durch alt_name kann bei DELETE- und UPDATE-Triggern der Wert der Spalten 

vor der Änderung abgefragt werden, durch neu_name entsprechend bei INSERT- und 

UPDATE-Triggern der Wert der Spalten nach der Änderung. 

Trigger dienen zum einen dazu, die Konsistenz der Datenbank sicherzustellen. Wir kön-

nen sehr komplexe Konsistenzbedingungen durch Trigger überprüfen lassen. Im Gegen-

satz zur CHECK-Klausel der CREATE TABLE-Anweisung haben wir in Triggern dieselben 

Möglichkeiten der imperativen Programmierung wie in Datenbankprozeduren.15

Zum anderen ist es durch die Verwendung von Triggern möglich, komplexe Betriebs-

abläufe in die Datenbank abzubilden. Beim Vorliegen bestimmter Datenbankzustände 

oder bestimmter Datenbankübergänge können automatisch Ereignisse ausgelöst werden. 

Diese Ereignisse sind Datenbankmanipulationen (z. B. Einfügen eines Tupels mit einem 

bestimmten Informationsgehalt). Durch Einbindung von Programmen, die in datenbank-

unabhängigen Programmiersprachen wie C oder Java geschrieben wurden, ist es aller-

dings auch möglich, dass Trigger unmittelbar eine Datenfernübertragung oder einen 

Notruf veranlassen. 

14 Es empfiehlt sich, bei der Erstellung von Triggern Namenskonventionen zu beachten, damit 

man die Übersicht nicht verliert. Z. B. könnte das erste Zeichen für den Zeitpunkt (Before, After, 

Instead) stehen, das zweite für das Triggerlevel (Row, Statement), das dritte für die Operation 

(Insert, Update, Delete), der Rest für die Tabelle, auf die sich das Ereignis bezieht oder für die 

Operation, die der Trigger ausführt. Demnach wäre z. B. ein Trigger mit dem Namen ARI_artikel 

einer, der nach dem Einfügen eines Artikels für jede eingefügte Zeile eine Aktion ausführt. ARU_

Artikel_Bestellvorschlag stünde für einen Trigger, der nach Ausführung einer Updateoperation auf 

einem Artikeldatensatz für jeden betroffenen Datensatz einen Bestellvorschlag aktualisiert. 

15  Es gibt einige Einschränkungen: so muss der Rumpf eines Triggers immer ATOMIC sein. Er 

darf insbesondere kein COMMIT, ROLLBACK und keine DDL-Anweisungen enthalten. 

72

4  Prozedurale Konzepte in SQL

4.5.1   Beispiele für Datenbank-Trigger

Über einen Trigger können wir erreichen, dass bei einer Verringerung des Bestands 

unter den Mindestbestand (unter der Voraussetzung, dass noch kein Bestellvorschlag 

erfolgt ist) das Attribut bestellvorschlag auf den Zeitpunkt der Unterschrei-

tung gesetzt wird. Zu einem späteren Zeitpunkt kann dann ein Programm alle Tupel 

heraussuchen, für die das Attribut bestellvorschlag einen definierten Wert und 

nachbestellung keinen definierten Wert hat. Daraus können Nachbestellungen 

erzeugt werden. Beim Eintreffen der entsprechenden Lieferung sind dann die Attribute 

bestellvorschlag und nachbestellung wieder auf NULL zu setzen. 

In diesem Trigger BRU_Artikel_Bestellvorschlag werden also bei einer Änderung 

des Attributs bestand in der Tabelle artikel (wegen BEFORE UPDATE OF bestand 

ON Artikel), wenn der Bestand unter den Mindestbestand sinkt und noch keine Ein-

tragung im Attribut bestellvorschlag erfolgt ist (wegen WHEN (neu.bestand < 

neu.mindestbestand AND alt.Bestellvorschlag IS NULL)) die Tupel mit den 

Werten vor der Änderung mit dem Alias alt und mit den Werten, die entsprechend der 

UPDATE-Anweisung nach der Änderung gelten sollen, mit dem Alias neu übergeben. 

In der Sprechweise der Parameterübergabe bei Prozeduren hat das Tupel alt den 

Modus IN, während das Tupel neu den Modus INOUT hat. 16 In dem Trigger wird dann 

der Wert des Attributs bestellvorschlag entsprechend der Anweisung geändert. 

Mit BEFORE-Triggern kann also das zu ändernde Tupel einer weiteren Änderung 

unterzogen werden. Wenn das neu-Tupel direkt mit SET geändert wird, ist das kein 

Problem. Wenn dagegen das über eine (weitere) UPDATE-Anweisung erfolgt, kann die-

ses weitere Trigger auslösen – der Datenbankentwickler ist dafür verantwortlich, dass 

dadurch keine unendlichen Zyklen von ausgelösten Triggern entstehen. 

In dem folgenden Beispiel wird die Konsistenzbedingung, dass für einen Kunden mit 

Bankeinzug ein Girokonto vorhanden sein muss, durch Trigger erreicht. Wir benötigen 

hierfür drei Trigger, deren Namen sich jeweils durch zwei Buchstaben unterscheiden:

16 Da es sich um eine BEFORE-Trigger handelt, kann die Zukunft noch verändert werden. Bei 

einem AFTER-Trigger ist das NEW-Tupel schon in der Datenbank geändert. 

4.5  Trigger in Datenbanken

73

•	 vor dem Einfügen eines Kunden (BRI_Kunde...)

•	 vor der Änderung der Zahlungsart eines Kunden (BRU_Kunde...)

•	 vor dem Löschen eines Girokontos (BRD_Girokonto...)

Die Änderung der Kundennummer eines Girokontos können wir dadurch verhindern, 

dass wir für die Spalte kunden_nr kein UPDATE-Recht vergeben. 

74

4  Prozedurale Konzepte in SQL

Die Signal-Anweisung kann in Triggern benutzt werden, um unter bestimmten Bedingungen 

einen Abbruch zu erzwingen. Die Aktion, die den Trigger ausgelöst hat – hier also der Ver-

such, einen Kunden mit zahlungsart = 'B' einzufügen, ohne dass ein Girokonto existiert, 

wird dann vom Trigger abgebrochen, d. h. das entsprechende Tupel wird nicht eingefügt. 

Bei der Ausführung von SQL-Anweisungen, die Daten ändern (also INSERT, UPDATE, 

DELETE und MERGE) wird im Zusammenhang mit Triggern wie folgt verfahren:

•	 Ausführung aller betreffenden BEFORE-Trigger

•	 Ausführung der Aktion inklusive der entsprechenden Kontrollen und abhängigen 

Aktionen der referenziellen Integrität17

•	 Ausführung aller betreffenden AFTER-Trigger

Hierfür gelten folgende Nebenbedingungen:

In BEFORE-Triggern dürfen keine Aktionen ausgelöst werden, die sich auf andere 

Tupel der Datenbank beziehen. 

In AFTER-Triggern kann das betroffene Tupel nicht mehr geändert werden. 

4.5.2   Übungen

Aufgabe 4.11  Erstellen Sie einen Trigger, der vor Änderung des Werts von bestand für 

jeden Artikel den Wert von bestellvorschlag auf NULL setzt, allerdings nur dann, 

wenn der neue bestand größer als der alte und auch größer als der mindestbestand ist. 

17  Zum Beispiel Löschen von abhängigen Sätzen. In diese Prüfung gehen die Werte ein, die ggf. 

durch BEFORE-Trigger geändert worden sind. 

UML

5

Wir haben in Band 11 das Entity Relationship Modell (ERM) als Methode zum konzeptuellen Datenbankentwurf vorgestellt. Hierbei werden die Datenobjekte einer bestehenden oder zu 

entwickelnden Datenbank in einer von der Implementierung abstrahierenden Weise als Enti-

tätstypen und Entitätsmengen und deren Beziehungen dargestellt. Die dynamischen Aspekte, 

das Verhalten von Datenobjekten bleiben im Wesentlichen außen vor. Bei der Entwicklung 

von Anwendungsprogrammen sind diese aber in den Entwurf einzubeziehen. Wenn wir vom 

objektoreintierten Paradigma ausgehen, werden  Objekte betrachtet, die nicht nur eine Exis-

tenz haben (wie Entitäten), sondern auch ein  Verhalten. Das Verhalten wird durch  Operatio-

 nen beschrieben, die ein Objekt ausführen kann, wenn es eine entsprechende  Nachricht 

(Auftrag) bekommt. Damit werden die Daten und die Algorithmen in einem einheitlichen 

Schema betrachtet. 

Mit der  Unified Modeling Language (UML), die von der  Object Management Group 

 (OMG) als Standard verabschiedet wurde, ist der Versuch unternommen worden, ein 

einheitliches Rahmenwerk für verschiedene Aspekte der Analyse- und des Entwurfs von 

Anwendungssystemen zur Verfügung zu stellen, und mit dem „Wildwuchs“ konkur-

rierender Methoden aufzuräumen. In der UML gibt es mehrere Diagrammtypen, unter 

anderem: Anwendungsfalldiagramme, Klassendiagramme, Verhaltensdiagramme und 

Implementierungsdiagramme. Uns interessieren im Folgenden die Klassendiagramme, 

dies aber nur soweit sie zum Datenbankentwurf genutzt werden. Die Operationen blei-

ben außerhalb unserer Betrachtung. 

Aus folgenden Gründen ist die UML auch für die Zwecke des Entwurfs relationaler 

Datenbanken interessant:

•	 Die UML hat sich in sehr kurzer Zeit als anerkannter Standard etabliert. 

•	 ER-Diagramme können auf relativ einfache Weise in Klassendiagramme überführt 

werden. 

1  [UnMa12, Kap. 10]. 

M. Unterstein und G. Matthiessen,  Anwendungsentwicklung mit Datenbanken, eXamen.press, 

75

DOI: 10.1007/978-3-642-39003-6_5, © Springer-Verlag Berlin Heidelberg 2013

76

5 UML

Tab. 5.1  Vergleich von ERM-  Begriff der ERM

Begriff der UML

und UML-Notation

Entität

Objekt

Exemplar (instance)

Entitätentyp

Klasse

Entitätenmenge

(extent)

Beziehung

Assoziation

Beziehungstyp

Assoziation

Attribut

Attribut

•	 Es gibt Konzepte, die nicht im ERM enthalten sind, die aber dennoch eine große Rolle 

bei der Entwicklung relationaler Datenbanken spielen, nämlich die Konzepte  Verer-

 bung,  Aggregation und  Komposition. 

5.1 

 Elemente der UML

Zu Beginn stellen wir in Tab.  5.1 die Notation der ERM und der UML gegenüber. Es ist allerdings zu beachten, dass die UML eine mächtigere Semantik hat und daher die entsprechenden Begriffe nicht äquivalent sind, sondern sich in diesem Zusammenhang nur ent-

sprechen. So unterscheidet sich ein Objekt von einer Entität dadurch, dass es neben seiner 

Existenz auch ein eigenes Verhalten hat. Andererseits kann ein ERM in ein UML-Modell 

überführt werden – in diesem Fall wird aus einer Entität durch das Hinzufügen von Ver-

halten ein Objekt. 

5.2 

 ER-Diagramme und UML-Klassendiagramme

Entitätentypen werden in der UML zu Klassen. Sie werden wie im ERM in einem Käst-

chen dargestellt. Dieses Kästchen kann – wie in den in [MaUn12]eingeführten ER-Dia-

grammen auch die Attribute der Klasse enthalten. Danach können die Operationen der 

Klasse eingetragen werden – jeweils durch einen waagerechten Strich getrennt. Es sind 

weitere Angaben möglich – hier verweisen wir auf die entsprechende Literatur. 

Es stellt sich hier die Frage, wie es mit der Identifizierbarkeit von Objekten aussieht. 

Für Entitätenmengen haben wir verlangt, dass es eine Kombination von Attributen gibt, 

die jede Entität eindeutig identifizieren. In der Objektorientierung ist der Blickpunkt 

etwas geändert worden. Auch hier benötigen wir ein eindeutiges Identifizierungsmerk-

mal – allerdings ist dieses Merkmal fest mit dem Objekt verbunden und kann nie geän-

dert werden und auch nach dem Löschen eines Objekts darf dessen Schlüssel nicht ein 

weiteres Mal verwendet werden. Diese Objektidentifizierer sollen darüber hinaus nicht 



5.2  ER-Diagramme und UML-Klassendiagramme

77

Abb. 5.1 Klassendiagramm 

mit gerichteter Assoziation

nur innerhalb einer Klasse, sondern innerhalb eines Datenmodells einheitlich sein.2 Sie 

werden üblicherweise automatisch vergeben und sind nach außen nicht sichtbar. Im 

Unterschied zu Schlüsselattributen (in ERM Diagrammen) werden sie beim Klassenent-

wurf auch nicht eigens dargestellt. 

Daneben ist es natürlich nicht verboten, für bestimmte Attributkombinationen fest-

zuhalten, dass sie Schlüsseleigenschaft haben. Die Eigenschaft eines Attributes oder einer 

Attributkombination, innerhalb einer Entitätenmenge immer eindeutig zu sein, stel-

len wir als sog.  Zusicherung in geschweiften Klammern mit dem Schlüsselwort „unique“ 

dar. Bei zusammengesetzten Schlüsseln muss diese Zusicherung immer die Form 



{unique(attr1,attr2,…)} haben. Bei Schlüsseln, die aus einem Attribut bestehen (der 

häufigere Fall), schreiben wir die Zusicherung {unique} hinter das entsprechende Attribut. 

Bei der Umsetzung in ein Relationenschema müssen wir dann entweder eine eindeu-

tige Attributkombination als Primärschlüssel auszeichnen oder einen künstlichen Schlüs-

sel einfügen, der beispielsweise ein automatisch hochzuzählender numerischer Wert ist. 

Beziehungstypen im ERM werden in der UML zu  Assoziationen. Wenn eine Assozi-

ation zwei Rollen hat, wird sie durch eine Linie zwischen den beiden beteiligten Klassen 

bezeichnet. Die Kardinalität der Assoziation drückt ähnlich wie im ERM die Anzahl der 

 Exemplare einer Klasse aus, die an der Beziehung beteiligt sind. Es treten unter anderem 

folgende Bezeichnungen auf: 1 für „genau 1“, * für „keiner, einer oder mehrere“, 0..1 

für keiner oder einer, 1..* für „mindestens einer“. Es sind weitere Kombinationen mög-

lich wie 2 für „genau zwei“, 4,6,10 für „vier, sechs oder zehn“, 12..20 für „zwischen 

12 und 20“, 5..* für „mindestens 5“ oder 0..5 für „höchstens fünf“. 

Assoziationen in UML Diagrammen können gerichtet sein, wie Abb.  5.1 zeigt. Der 

Pfeil am Ende der Linie steht für „Navigierbarkeit“, d. h. man kann von einem Objekt der 

Klasse Class1 (in unserem Beispiel) auf sämtliche damit assoziierten Objekte von Class2 

zugreifen. Wenn das Zielsystem eine relationale Datenbank ist, spielen diese Richtungen 

keine Rolle, da dort die Assoziationen (außer n:m-Beziehungen) durch die Fremdschlüs-

selbeziehung Class1.fs = Class2.fs realisiert werden. Für ein Tupel a von Class1 bekommt 

man alle dazu assoziierten Tupel b von Class_2 durch eine SQL-Anfrage:

SELECT b.*

FROM Class2 b

WHERE a.fs = b.fs

2  Dies ist auch schon deshalb sinnvoll, da durch das weiter unten eingeführte Vererbungsprinzip 

ein Objekt gleichzeitig Element mehrerer Klassen sein kann. 

78

5 UML

Bei n:m-Beziehungen, die durch eine neue Relation Rel12 und Fremdschlüssel 

Class1.fs1=Rel12.fs1 und Class2.fs2=Rel12.fs2 realisiert werden, lautet die Abfrage

SELECT b.*

FROM Class2 b

JOIN Rel12 r USING(fs2)

WHERE a.fs1=r.fs1

Wenn das Zielsystem dagegen eine objektorienterte oder objektrelationale Datenbank 

ist, kann die Richtung eine Rolle spielen, da Assoziationen auch durch Referenzen imple-

mentiert werden können – und Referenzen sind gerichtet. 

Ein Klassendiagramm, das unsere Versanddatenbank (ohne Operationen) visualisiert, 

ist in Abb. 5.2 zu sehen. 

5.3 

 Aggregation und Komposition in UML

In dem Diagramm in Abb.  5.2 haben wir die abhängigen Entitäten Position und Girokonto jeweils als  Komponenten (ausgefüllte Raute) dargestellt. Abbildung 5.3 zeigt jeweils 

ein Beispiel für eine Aggregation und eine Komposition. 

Durch die  Aggregation wird ausgedrückt, dass Objekte einer Klasse in Objekten einer 

anderen Klasse in gewisser Weise enthalten oder ihnen logisch zugeordnet sind. So ist 

ein Motor ein Aggregat eines Kraftfahrzeugs; andere Aggregate des Kraftfahrzeugs sind 

zum Beispiel die Räder, das Getriebe und die Bremsanlage. Ein Aggregat kann auch 

gleichzeitig „mehrere Eltern“ haben (vgl. [Balz00]). 

Die   Komposition ist ein Spezialfall der Aggregation mit der zusätzlichen Eigen-

schaft, dass die  Komponenten nur im Zusammenhang mit mindestens und höchs-

tens einem („genau einem“) Vaterobjekt existieren können. Konkrete Beispiele für 

die Komposition sind Gebäude mit ihren Teilen wie Zimmern, Dach, Eingängen, 

Fensterlöchern, Kabelschächten. Ein abstraktes Beispiel sind Bestellungen mit ihren 

Bestellpositionen. 

Ob es sich im konkreten Fall um eine Komposition oder Aggregation handelt, hängt 

als erstes von der Frage ab, ob es sich hier um eine Teil-Ganzes-Beziehung handelt. Als 

zweites ist für die Entscheidung zwischen diesen Varianten die Frage zu stellen, ob ein 

Teilobjekt unabhängig von dem Vaterobjekt existieren kann. Betrachten wir zum Bei-

spiel einen modular aufgebauten Lehrgang, der aus Kurseinheiten besteht. Wenn Kurs-

einheiten auch unabhängig von dem Lehrgang bestehen können, handelt es sich um eine 

Aggregation; wenn Kurseinheiten immer genau einem Lehrgang zugeordnet sind, han-

delt es sich um eine Komposition. Nicht jede Beziehung mit einer Existenzabhängigkeit 

ist eine Komposition: in Abb.  5.2 ist beispielsweise der Artikel vom Mehrwertsteuersatz existenzabhängig – die minimale Kardinalität ist 1! 



5.3  Aggregation und Komposition in UML

79

Abb. 5.2  Klassendiagramm für Versandhandel

In Abb.  5.2 stellen wir eine Bestellung als Komposition der Positionen dar. Ebenso kann ein Girokonto als Komponente des Kunden aufgefasst werden (ist dem Kunden 

untergeordnet; wird nur im Zusammenhang mit einem Kunden angelegt; wird gelöscht, 

wenn der Kunde gelöscht wird). In Abb.  5.6 stellen wir ein Fahrzeug dar, das verschie-

dene Aggregate enthält. 

Ein Objekt in einer Komposition gehört immer genau einem Vaterobjekt an – ein Objekt 

einer Aggregation kann zu keinem, einem oder mehreren Vaterobjekten gehören. So kann 

ein Motor in einem Fahrzeug eingebaut sein oder auf Lager liegen (Kardinalität 0..1); 

80

5 UML

Abb. 5.3  Aggregation und 

Komposition

Kfz

Gebäude

Motor

Raum

eine Kurseinheit kann zu einem Lehrgang gehören oder zu mehreren Lehrgängen (Kardina-

lität 1..*); ein Mitarbeiter kann an keinem, einem oder mehreren Projekten beteiligt sein 

(Kardinalität *). 

Direkte Entsprechungen von Aggregation und Komposition sind im ER-Modell nicht 

vorhanden. Bestenfalls kann eine Komponente als abhängige Entität dargestellt werden. 

Umgekehrt gilt nicht, dass jede schwache Entität im ERM als Komponente im UML Klas-

sendiagramm dargestellt werden kann. Der semantische Unterschied zwischen beiden 

Modellen macht sich hier geltend: das Konzept der Identifizierung über die Vaterentität 

und ggf. zusätzliche eigene Attribute, das wir beim ERM mit den schwachen Entitätstypen 

verbinden, spielt beim objektorientierten Klassendiagramm keine direkte Rolle, da wir 

Objekte nicht notwendig über Schlüsselattribute identifizieren.3 Zum anderen ist es kaum 

vorstellbar, dass eine Komponente integraler Teil von mehreren disjunkten Ganzen ist, ein 

schwacher Entitätstyp kann aber von mehreren anderen abhängig sein.4

5.4 

 Das  Vererbungskonzept

Ein wichtiges Konzept aus der Objektorientierung ist das Konzept der Vererbung. Der 

Begriff ist aus der Biologie entnommen, speziell aus der Klassifizierung von Lebewesen. 

So ist jedes Säugetier ein Wirbeltier und „ erbt“ alle Eigenschaften, die allen Wirbeltieren 

3  Bei der Implementierung eines schwachen Entitätstyps in einer relationalen Datenbank wird der 

Schlüssel der Vaterentität zum Schlüssel oder – bei mehreren „Kindern“ – zum Schlüsselteil für die 

abhängige Entität. 

4  Im ERM unserer Versanddatenbank (siehe [UnMa12], Kap. 10) ist bestellposition als schwacher 

Entitätstyp abhängig von bestellung und artikel und wird in der relationalen Umsetzung durch die 

Kombination der übernommenen Schlüsselattribute bestell_nr und artikel_nr identifiziert. 

5.4  Das Vererbungskonzept

81

gemein sind, z. B. wird die Stabilität des Körpers in erster Linie durch ein im Körper 

gelegenes System von Knochen oder Knorpeln gewährleistet; es hat einen geschlossenen 

Blutkreislauf, durch den die Körperzellen mit Nährstoffen und Sauerstoff versorgt wer-

den, es hat einen Kopf mit einem Mund, durch den die Nahrung zugeführt wird, und 

zwei Linsenaugen. Des Weiteren ist jedes Raubtier ein Säugetier und erbt alle Eigen-

schaften der Säugetiere wie die Existenz von vier Extremitäten, 5 der Nachwuchs wird 

lebend geboren und in den ersten Tagen des Lebens durch Milchdrüsen des Muttertieres 

versorgt. Jeder Löwe ist ein Raubtier und  erbt damit alle Eigenschaften von Raubtieren. 

Für die Objektorientierung bedeutet das Vererbungsprinzip zum einen, dass es 

 Unterklassen gibt, die weitere Attribute haben. Zum anderen wird das Verhalten der 

Oberklassen auf die Unterklassen vererbt – es kann aber auch überschrieben werden. 

Damit ist jedes Objekt einer Unterklasse auch gleichzeitig ein Objekt der entsprechen-

den Oberklasse ( jedes Säugetier ist ein Wirbeltier), es hat aber in der Regel weitere 

Attribute, die es in der Oberklasse nicht gibt. So gibt es für Säugetiere Attribute wie 

 Länge der Vorderextremitäten oder  Volumen der Lunge, die nicht für alle Wirbeltiere 

sinnvoll sind, z. B. nicht für Fische. 

Üblicherweise können Klassen Objekte enthalten, die nicht in irgendeiner Unter-

klasse liegen. Daneben gibt es  abstrakte Klassen. Das sind Klassen, die selbst keine eigen-

ständigen Objekte enthalten können, sondern alle ihre Objekte sind Objekte irgendeiner 

Unterklasse. Dieser Begriff spielt in der Informatik eine größere Rolle als in der Model-

lierung der realen Welt. Die Struktur einer Klasse legt fest, wie die Objekte dieser Klasse 

repräsentiert werden. Wenn wir zum Beispiel eine Klasse „geometrische Figuren“ haben, 

die Kreise, Rechtecke und Dreiecke enthält, gibt es für jede der Unterklassen Kreis, ach-

senparalleles Rechteck und Dreieck eine eigenständige Repräsentation6 – aber keine all-

gemeine Repräsentation für die Klasse der geometrischen Figuren. Bei abstrakten 

Klassen schreiben wir den Namen der Klasse kursiv oder das Wort „abstrakt“ in 

geschweifte Klammern hinter den Namen der Klasse. 

Wenn die Unterklassen disjunkt sind, können wir in der Oberklasse ein Attribut 

angeben, das festlegt, zu welcher Oberklasse das Objekt jeweils gehört. Dieses Attribut 

wird  Diskriminator genannt. 

Beispiel Versandhandel, mit Vererbung In unserem Datenmodell  Versandhandel 

können wir jetzt die  Kunden mit Bankeinzug als Unterklasse der Klasse der Kunden 

5 Wale sind auch Säugetiere, haben aber keine vier Extremitäten – dies zeigt die Grenzen die-

ses Modells in der Anwendung auf die Biologie. Auch sind Quadrate eine Spezialisierung von 

Rechtecken, haben aber weniger Attribute, nämlich nur eine Seitenlänge. Im objektorientierten 

Paradigma ist es dagegen nicht zulässig, dass Strukturen einer Oberklasse in einer Unterklasse  

verschwinden. Das Verhalten kann dagegen in einer Unterklasse neu definiert werden. 

6  Zum Beispiel Mittelpunkt und Radius für einen Kreis, linker unterer Punkt und Ausdehnung in 

x-Richtung und Ausdehnung in y-Richtung für ein achsenparalleles Rechteck, drei Punkte für ein 

Dreieck. 

82

5 UML

Kunde

+ kunden_nr

Kunden_key

+ status

Kunden_status

+ name

Personenname

+ straße

Straßenname

+ plz

Postleitzahl

+ ort

Ortsname

+ letzte_bestellung

Datum

+ letzte_werbeaktion

Datum

+ zahlung

Zahlungsart

zahlung

Kunde mit Kreditkarte

Kunde mit Girokonto

+ herausgeber Personenname

+ konto_inhaber

Personenname

+ karten_nr

Bankleitzahl

+ blz

Bankleitzahl

+ gültig_bis

Kontonummer

+ konto_nr

Kontonummer

Abb. 5.4  Klassendiagramm für Versandhandel, Version 2

darstellen. Diese haben alle Attribute von Kunden und zusätzlich die Attribute, die ihr 

Girokonto beschreiben. Um zu zeigen, dass eine Oberklasse üblicherweise mehr als eine 

Unterklasse hat, haben wir die Kunden, die mit Kreditkarte zahlen, als weitere Unter-

klasse dargestellt. Die Klasse der Kunden ist nicht abstrakt, da es Kunden gibt, die weder 

mit Kreditkarte zahlen, noch am Bankeinzugsverfahren teilnehmen. In Abb.  5.4 stellen wir den Teil des Diagramms, der die Kundendaten enthält, als Klassendiagramm mit 

Vererbung dar. 

Für die Umsetzung einer Vererbungshierarchie in ein Relationenschema gibt es vom 

Grundsatz her drei Möglichkeiten, eine davon in zwei Varianten:

•	 Jede Klasse wird zu einer eigenständigen Relation

Für jede Klasse wird eine Relation gebildet, die die im Diagramm angegebenen Attri-

bute enthält, d. h. für die Oberklasse die gemeinsamen Attribute und für die Unter-

klassen die jeweils zusätzlichen Attribute. 

Wenn es in der Oberklasse eine eindeutige Attributkombination gibt, wird diese 

zum Schlüssel der Oberrelation. Dieser Schlüssel wird gleichzeitig zum Schlüssel der 

Unterrelationen und Fremdschlüssel, um die zusätzlichen Daten der Unterklassen mit 

den jeweiligen Daten der Oberklasse zu verbinden. 

Falls die Oberklasse abstrakt ist und nur für die Unterklassen eindeutige Schlüssel 

definiert sind, werden in einem ersten Schritt die Schlüssel auf einen gemeinsamen 

Datentyp gebracht, zum Beispiel Zeichenketten mit der größten Schlüssellänge der 

einzelnen Unterrelationen. Der Primärschlüssel der Oberrelation wird dann aus einer 

5.4  Das Vererbungskonzept

83

Kombination aus dem Diskriminator und diesem Schlüssel gebildet. 7 In diesem Falle kann es sinnvoll (wenn auch redundant) sein, den Diskriminator auch in den Primär-

schlüssel der Unterrelationen mit einzubeziehen.8

Diese Konstruktion ist sowohl bei abstrakten Oberklassen als auch bei normalen 

Oberklassen möglich. Einziger Nachteil: Die Daten, die zu einem Objekt gehören, 

sind jeweils auf zwei Relationen verteilt und müssen immer zur Laufzeit miteinander 

verknüpft werden. 

•	 Jede nicht abstrakte Klasse wird zu einer Relation, disjunkte Variante

Hier werden die Attribute der Oberklasse in die Unterklassen hineingezogen. Somit 

wird für jede Klasse, die eigene Objekte hat, eine Relation eingeführt, die die gesamten 

Daten der Objekte enthält. Die Oberklasse enthält dann nur die Objekte, die in keiner 

der Unterklassen enthalten sind. 

Schlüssel müssen hier nur für die jeweiligen Relationen eindeutig sein – sie müssen 

nicht eindeutig im Bereich der Oberklasse sein. 

Der Vorteil dieser Lösung besteht darin, dass die Daten, die zu einem Objekt gehö-

ren, zusammenhängend in einer Relation gespeichert sind. 

Ein Nachteil ist allerdings gegeben, wenn es Assoziationen zur Oberklasse gibt. Diese 

müssen nämlich gegebenenfalls für jede der Unterklassen getrennt verwaltet werden. 

•	 Jede nicht abstrakte Klasse wird zu einer Relation, redundante Variante

Hier werden die Attribute der Oberklasse in die Unterklassen hineingezogen. Somit 

wird für jede Klasse, die eigene Objekte hat, eine Relation eingeführt, die die gesamten 

Daten der Objekte enthält. Die Oberklasse enthält alle Objekte dieser Klasse, also redun-

danterweise auch die Objekte, die zusätzlich in einer der Unterklassen enthalten sind. 

Schlüssel müssen hier eindeutig im Bereich der Oberklasse sein. 

Die Vorteile dieser Lösung sind folgende: Die Daten, die zu einem Objekt gehören, 

sind zusammenhängend in einer Relation gespeichert. Es gibt keine Probleme mit 

Beziehungen zur Oberklasse, da alle Objekte, auf die sie sich beziehen, in der Ober-

klasse enthalten sind. 

Es ist allerdings eine Redundanz gegeben, die in der Datenbank sicher verwaltet 

werden muss (z. B. durch Trigger, vgl. Kap. 4). 

•	 Alle Daten werden in der Oberklasse gespeichert

Hier werden alle Attribute aller Unterklassen in die Oberklasse gezogen – alle Objekte 

werden in der Oberklasse gespeichert, wobei jeweils die Attribute, die nicht zu der 

entsprechenden Unterklasse gehören, mit einer Nullmarke zu versehen sind. Diese 

Lösung ist nur akzeptabel, wenn die Anzahl der eigenständigen Attribute der Unter-

klassen nicht zu groß ist. 

7 Der Schlüssel allein reicht üblicherweise nicht aus, da nicht sichergestellt werden kann, dass 

nicht in verschiedenen Unterklassen zufälligerweise identische Schlüssel auftreten. 

8  Der Grund liegt darin, dass in SQL und in anderen Systemen ein Fremdschlüssel von der Struk-

tur her mit dem Primärschlüssel der Vaterrelation identisch sein muss. 

84

5 UML

Kunde

kunden_nr

Kunden_key

<pk> 

status

Kunden_status

name

Personenname

straße

Straßenname

plz

Postleitzahl

ort

Ortsname

letzte_bestellung

Datum

letzte_werbeaktion

Datum

zahlung

Zahlungsart

kunden_nr = kunden_nr

kunden_nr = kunden_nr

Kunde mit Kreditkarte

Kunde mit Girokonto

kunden_nr

Kunden_key

<pk,fk> 

kunden_nr

Kunden_key

<pk,fk> 

herausgeber Personenname

konto_inhaber Personenname

karten_nr

Bankleitzahl

blz

Bankleitzahl

gültig_bis

Kontonummer

konto_nr

Kontonummer

Abb. 5.5  Relationenmodell für Klassen mit Vererbung



Die Umsetzung von Abb.  5.4 in ein Relationenschema nach dem Grundsatz, 

dass jede Klasse zu einer eigenständigen Relation wird, ergibt das Schema in Abb. 5.5. 

Beispiel Fahrzeugwartung  Im Folgenden wird ein weiteres kleines Fallbeispiel einge-

führt. Es geht um die Wartung und Inspektion von Fahrzeugen und Fahrzeugaggregaten 

in einem Verkehrsbetrieb. Das Modell ist durch folgende Aussagen beschrieben:

•	 Es gibt Fahrzeuge, Motoren, Bremsanlagen, Getriebe (und weitere Aggregate, die hier 

nicht betrachtet werden). 

•	 Jedes Fahrzeug kann ein Aggregat von einer Klasse enthalten. Ein Aggregat kann auch 

fehlen, dann ist das Fahrzeug in der Werkstatt und nicht betriebsbereit. 

•	 Jedes Fahrzeug und jedes Aggregat kann zu einer Variante gehören (z. B. Dieselmo-

tor, Automatikgetriebe). 

•	 Es gibt eine Liste von vorgeschriebenen Wartungen und Inspektionen, die zeitlich 

und/oder nach Laufleistung seit der letzten Wartung/Inspektion festgelegt sind. Diese 

Wartungen bzw. Inspektionen sind von der Klasse und der Variante abhängig. 

•	 Die durchgeführten Wartungen und Inspektionen sind zu speichern. 

5.4  Das Vererbungskonzept

85

Gerät

Wartung_Inspektion

*

{abstract}

datum {unique}

variante

laufleistung

geräteart

bemerkung

geräte_nr

{unique

geräteart, 

Gerät.geräte_art = W&I_Vorgabe.geräte_art

geräte_nr}

Gerät.variante    = W&I_Vorgabe.variante

*

W&I_Vorgabe

wiv_id {unique}

bezeichnung

für_gerät

geräteart

für variante

max_zeit

max_km

Fahrzeug

eingebaut

Aggregat

{geräteart = 'F'}

{geräteart  F'}

0..1

0..1

erstzulassung

anfangsdatum

anz_räder

laufleistung_bei_einbau

km_stand

km_stand_bei_einbau

{incomplete}

geräteart

Motor

Getriebe

Bremse

{geräteart = 'M'}

{geräteart = 'G'}

{geräteart = 'B'}

leistung

anz_gänge

bremskraftverstärker

hubraum

anz_zylinder

anz_ventile

anz_kerzen

Abb. 5.6 Fahrzeugwartung

Die Attribute sind Abb. 5.6 zu entnehmen, Operationen haben wir ausgeblendet. 

Bei dieser Umsetzung wird die fahrzeug_nr, motor_nr, getriebe_nr und 

bremsen_nr allgemein als geräte_nr bezeichnet und gemeinsam mit dem Dis-

kriminator  geräteart zum Primärschlüssel für alle Geräteklassen. Für die Klassen  

Wartung_Inspektion und W&I_Vorgabe wird jeweils ein Schlüssel vom System gene-

riert. Somit ergibt sich folgendes Schema:

86

5 UML

Datenbankprogrammierung mit JDBC

6

Wir haben bisher den Zugang zu Daten nur über SQL und Datenbank-Werkzeuge kennen 

gelernt. Wir haben gesehen, dass dieses mit entsprechenden Werkzeugen sehr einfach ist. 

Wir können Dateien einfügen, ändern und löschen durch einfache Operationen. Wir können 

aber auch komplexe Abfragen in SQL formulieren und uns das Ergebnis sofort anschauen. 

Allerdings sind SQL und die Werkzeuge für relationale Datenbanken nicht für den 

Endanwender geeignet – wenn wir von kleineren Anwendungen für sog. „Power-User“ 

absehen, in denen Menschen mit SQL- und Datenbank-Kenntnissen ihre privaten oder 

betrieblichen Sammlungen mit einem kleinen SQL-System verwalten. 

Wir brauchen Anwendungen für den Endanwender. Diese werden in einer Program-

miersprache als eigenständige Anwendung oder Web-Anwendung geschrieben. Um 

auf unsere Datenbank zugreifen zu können, brauchen wir Möglichkeiten, Datenbank-

Manipulationen im Rahmen eines Anwenderprogramms durchzuführen. Dieses sollen 

nicht nur die Möglichkeiten sein, einzelne Sätze einzufügen, zu ändern, zu löschen oder 

zu lesen. Wir wollen auf die vollen Möglichkeiten von SQL zurückgreifen können, um 

z. B. komplexe Verknüpfungen mehrerer Tabellen – vielleicht auch noch mit Unterab-

fragen oder Datengruppierung – in SQL zu formulieren und die Ergebnisse mit Hilfe der  

Programmiersprache weiter zu verarbeiten. 

Inzwischen gibt es hier eine große Zahl unterschiedlicher Programmiersprachen, mit 

denen wir SQL-Datenbanken einbinden können und auch eine Reihe von unterschiedli-

chen Konzepten. 

Wir beginnen mit JDBC (Java Database Connectivity), die eine sehr direkte Umset-

zung der Konzepte von SQL in Java darstellt.1 Zum Abschluss dieses Kapitels werden wir 

1  Der vollständige Quellcode der Beispiele kann über die Buchseite vom Verlagsserver herunter 

geladen werden. 

M. Unterstein und G. Matthiessen,  Anwendungsentwicklung mit Datenbanken, eXamen.press,  87

DOI: 10.1007/978-3-642-39003-6_6, © Springer-Verlag Berlin Heidelberg 2013

88

6  Datenbankprogrammierung mit JDBC

dann noch auf andere Konzepte eingehen, die eine engere Bindung der SQL-Tabellen an 

Java-Klassen ermöglichen. 

Dieses Buch enthält keine Einführung in die Programmierung in Java. Dazu verwei-

sen wir auf Fachbücher zu Java, z. B. [KrHa11] oder [Ulle12], die jeweils auch eine Ein-

führung in JDBC enthalten. Ebenso enthält dieses Buch keine vollständige Beschreibung 

aller Eigenschaften von JDBC. Dieses ist zum einen zu umfangreich und kann sich zum 

anderen auch weiter entwickeln. Genauere Beschreibungen der einzelnen Klassen finden 

sich in der Beschreibung der JDBC API.2

6.1 

 Datenbankverbindung

Wir gehen davon aus, dass unsere Beispiel-Datenbank3 auf dem Rechner installiert und mit Daten gefüllt ist und ggf. gestartet4 ist. 

Wenn wir von Java aus mit einer Datenbank arbeiten wollen, müssen wir eine  Ver-

 bindung herstellen. Dieses geschieht über ein Objekt der Klasse Connection. Es können 

auch mehrere Verbindungen zu verschiedenen Datenbanken hergestellt werden, um z. B. 

Daten aus einer Datenbank in eine andere zu kopieren. 

6.1.1   Herstellung einer Verbindung zur Datenbank

Um eine Verbindung zur Datenbank herzustellen, benötigen wir einen JDBC-Treiber. 

JDBC-Treiber werden entweder mit dem Datenbanksystem ausgeliefert oder sind 

getrennt davon zu erwerben.5 Hier wird der vom Hersteller mitgelieferte Datenbank-

treiber des Datenbanksystems SQL Anywhere verwendet. 

Wir zeigen jetzt zwei Konstruktoren, die eine Datenbankverbindung herstellen. Sie 

sind jeweils in einer Unterklasse der Klasse JDBC definiert. 

2  Referenz unter http://docs.oracle.com/javase/7/docs/api/siehe java.sql. 

3  In den Beispielen verwenden wir die Datenbank SQL Anywhere, Version 12. Wo bei anderen 

Systemen Änderungen erforderlich sind, gehen wir darauf ein. Auf dem Verlagsserver sind die  

Beispiele auch für einige andere Systeme. 

4  Bei SQL Anywhere muss die Datenbank (also z. B. Versand12) explizit als Serverprozess gestar-

tet sein. Näheres dazu bei den Beispielen auf dem Verlagsserver oder im Herstellerhandbuch. Bei 

anderen Systemen muss entweder der Datenbankprozess gestartet sein (ohne Festlegung auf eine 

spezifische Datenbank) oder kann auch vom Programm aus gestartet werden. Vgl.  Abschn. 1.3. 

5  Es gibt auch Treiber für Dateien, die Daten in einem tabellarischen Format speichern, z. B. für 

Excel-Dateien oder csv-Dateien. Hiermit können auf einfache Weise Daten in eine Datenbank 

übertragen werden, die in diesem Format vorliegen (z. B. Kontoauszüge, die über das Home-Ban-

king als csv- oder xls-Dateien importiert werden können). 

6.1 Datenbankverbindung

89

Die Verbindungsdaten werden in der Klassenvariable con gespeichert, die in der Ober-

klasse JDBC deklariert ist und damit für alle Methoden der Klasse JDBC zur Verfügung 

steht – unabhängig davon, welcher konkreter Datenbanktreiber verwendet worden ist. 

Für die Herstellung einer Verbindung ist hier lediglich die Methode getConnection 

der Klasse DriverManager aufzurufen, der eine URL,6 die Benutzernummer und das Passwort zu übergeben sind. Es ist immer die URL anzugeben – die Parameter für User-Id und Passwort können entfallen, wenn – bei kleineren Datenbanken – keine User-Id 

festgelegt worden ist. 

Natürlich ist bei Endanwender-Programmen das Passwort immer vor der Verbin-

dung vom Benutzer abzufragen. Bei der Datenbank-Entwicklung, wo ja ohnehin Test-

daten zu verwenden sind, sollte man das Passwort wie im Beispiel direkt angeben. 

Der URL enthält bei vielen Systemen auch die IP-Adresse des Hosts, d. h. des Rech-

ners, auf dem die Datenbankmaschine läuft. Falls das derselbe Rechner ist, auf dem auch 

das Anwenderprogramm gestartet wird, kann hier localhost angegeben werden. 

Anhand der Angabe sqlanywhere findet der DriverManager den hier benötigten 

JDBC-Treiber. Der DriverManager sucht dazu in den durch die Umgebungsvariable 

CLASSPATH angegebenen Verzeichnissen. Dort muss der JDBC-Treiber in einer jar-

Datei enthalten sein. Bei Entwicklungsumgebungen wie Eclipse oder NetBeans ist das 

Java-Archiv im Projekt anzugeben. Beim Start des übersetzten Java-Programms von der 

Terminal-Konsole, ist der Pfad vorher anzugeben, z. B.:

export LD_LIBRARY_PATH=/opt/sqlanywhere12/lib64

java -cp.:/opt/sqlanywhere12/java/sajdbc4.jar Versand

Die Angabe von LD_LIBRARY_PATH ist speziell für die JDBC-Treiber für SQL Anywhere 

notwendig und verweist auf weitere notwendige Bibliotheksdateien (die nicht als Java-

Klasse vorliegen). Bei anderen Systemen entfällt diese Angabe. 

6 Abkürzung für „Universal Resource Locator“. Eine URL beschreibt allgemein eine Ressource, 

hier eine über JDBC anzusprechende Datenquelle, die die Schnittstelle sqlanywhere verwendet 

und sich auf einen Datenbank-Server mit Namen Versand12 bezieht. 

90

6  Datenbankprogrammierung mit JDBC

Durch die Angabe

-cp .:/opt/sqlanywhere12/java/sajdbc4.jar

wird festgelegt, wo die Klassen zu suchen sind (jar-Dateien und Verzeichnisse mit class-

Dateien). Hier also im aktuellen Verzeichnis („.“, für die class-Dateien) und in der Datei 

/opt/sqlanywhere12/java/sajdbc4.jar, die den JDBC-Treiber enthält. Das 

Trennzeichen für die Klassen-Pfade und jar-Dateien ist das Semikolon bei Windows-

Systemen und der Doppelpunkt bei Unix-Systemen. 

Bei älteren JDBC-Treibern bekommen wir mit obigem Verfahren eine SQLException 

nach folgendem Muster:

No suitable driver found for

jdbc:sqlite:/home/guenter/DB/SQLite/Versand12

In diesen Fällen muss die Treiberklasse explizit dynamisch geladen werden. Der 

Name der Treiberklasse ist jeweils in der Dokumentation des JDBC-Treibers nach-

zuschlagen. In diesen Fällen müssen wir eine Verbindung in folgender Weise 

herstellen:

Durch Class.forName (treiberKlasse); wird im CLASSPATH eine Klasse mit dem 

angegebenen Namen gesucht und geladen. Der Name der Treiberklasse ist in der jeweili-

gen Dokumentation nachzuschlagen. 

6.1.2   Klasse JDBC zur Verwaltung der Datenbank-Parameter

In dem Beispiel, das im Folgenden jeweils weiter ausgebaut wird, verwenden wir eine 

Klasse JDBC, die die Verbindung und einige kleinere Testprogramme enthält. Die Klas-

sendefinition – ohne die Methoden – ist im Folgenden dargestellt:

6.1 Datenbankverbindung

91

Die Schnittstellen für JDBC sind in der Klassenbibliothek java.sql.* definiert. Diese 

Klassenbibliothek gehört seit Java 1.1 zum Standardumfang von Java. 

Die Connection con wird dann in den Beispielen verwendet. Sie wird mit null ini-

tialisiert, aber später mit einem Konstruktor instanziiert, der die Verbindung zur Daten-

bank aufbaut. 

Die Angaben zu user und passwd sind entsprechend den Angaben unserer Beispiel-

datenbank gesetzt. 

In die Zeichenkette url wird die Information geschrieben, die notwendig ist, den 

Datenbanktreiber und die Datenbank auszuwählen. In die Zeichenkette treiber-

Klasse ist für einige ältere Treiber der Name der JDBC-Treiberklasse einzutragen, 

damit die Klasse dynamisch geladen werden kann (vgl. nächsten Abschnitt). 

Das Hauptprogramm, mit dem die Tests gefahren werden, sieht im Wesentlichen wie 

folgt aus:

Erläuterungen: 

JDBC db = new SqlAnywhere(); 

Es wird ein Testobjekt db erzeugt, das die Verbindung zur Datenbank herstellt. Alle 

Testabfragen beziehen sich auf dieses Objekt. Da aber die Datenbanksysteme sich an 

92

6  Datenbankprogrammierung mit JDBC

einigen Stellen möglicherweise unterschiedlich verhalten, gibt es für jedes getestete 

Datenbanksystem eine Unterklasse, in denen der Konstruktor mit den jeweiligen Para-

metern und ggf. die abweichenden Methoden überschrieben werden. Diese Abweichun-

gen sind sehr viel geringer als z. B. bei Datenbankprozeduren. 

db.outputMessage(); 

Auf der Konsole wird in einem kurzen Text das benutzte Datenbanksystem und ggf. die 

Version ausgegeben. 

Für Fehler im Ablauf (z. B. keine Verbindung zur Datenbank herstellbar, syntaktisch fal-

sche SQL-Anweisung, Verletzung einer Konsistenz-Regel) wird eine Exception gewor-

fen, die hier abgefangen wird. 

Für die Behandlung von SQLException, die eine Unterklasse von Exception ist, 

gibt es natürlich alle Methoden der Klasse Exception. Daneben gibt es noch einige 

SQL-spezifische Methoden. Insbesondere sind hier zu nennen:

•	 String getSQLState()

Nach jeder Ausführung einer SQL-Anweisung gibt es einen SQLState7

•	 int getErrorCode()

Der Errorcode oder SQLCode ist ein numerischer Wert, der von verschiedenen Her-

stellern unterschiedlich vergeben wird. Seit der Norm SQL-92 gilt er als veraltet. 

Mit getSQLState() kann man gezielt Fehler behandeln. 

6.2 

 Datenänderungen über JDBC

Wir starten mit einem kleinen Programm, das einen neuen Kunden in die Datenbank 

einbringt. Es geht hier um die Datenbank-Entwicklung und nicht um die Erstellung 

von ergonomischen Benutzer-Oberflächen. Wir werden daher Daten über Sys-

tem.out auf die Konsole ausgeben. Auf Dateneingabe über eine Benutzerober-

fläche verzichten wir vollständig – die Werte von Variablen setzen wir direkt über 

Wertzuweisungen. 

7 Vgl. Abschn. 4.3. 

6.2  Datenänderungen über JDBC

93

Wir erläutern im Folgenden das Programm und gehen dabei auf die grundsätzliche 

Logik der JDBC-Schnittstelle ein. 

6.2.1   Die Klasse Statement

Statement st = con.createStatement(); 

Die Kommunikation mit dem SQL-Server läuft über eine  Anweisung (Instanz der Klasse 

Statement). 

Eine Anweisung wird von einer Verbindung erzeugt und kommuniziert nur mit dieser 

Verbindung. Eine Anweisung ist erstmal nur ein Behälter, mit dem später die SQL-

Anweisung an den Datenbank-Server übertragen wird. 

Es gibt noch zwei Unterklassen von Statement: PreparedStatement für parametrisierte 

Anweisungen und CallableStatement für die Ausführung von Datenbank-Prozeduren. 8 

Bei diesen beiden Unterklassen wird beim Erzeugen einer Anweisung ein Argument 

8  Datenbank-Prozeduren sind in Kap. 4 eingeführt worden. 

94

6  Datenbankprogrammierung mit JDBC

übergeben, das die SQL-Anweisung als String – mit Fragezeichen für die zu parametrisie-

renden Werte – enthält. 

Eine Anweisung ist nach der letzten Verwendung zu schließen mit

st.close(); 

6.2.2   Ausführung einer Anweisung

Eine DML-Anweisung, die keine Ergebnisse zurück liefert (also z. B. INSERT, UPDATE, 

DELETE) wird durch die Methode executeUpdate ( anweisung) aufgerufen, wobei 

 anweisung die SQL-Anweisung als String ist. Die Methode liefert die Anzahl der einge-

fügten, geänderten oder gelöschten Sätze zurück. 9

Ebenso ist eine DDL-Anweisung (z. B. CREATE USER) mit executeUpdate aufzu-

rufen. Sie liefert immer den Wert 0 zurück. 

6.2.3   Transaktionen in der Datenbank

Bei Anwendungsprogrammen ist in der Regel die Transaktionslogik zu beachten.10 

Transaktionen beziehen sich immer auf eine Datenbankverbindung. Die erste Transak-

tion beginnt mit der Verbindung zur Datenbank. Eine Transaktion wird beendet durch 

die Methode commit oder rollback. Es ist zu beachten, dass vor dem Schließen einer 

Verbindung in der Regel die letzte Transaktion nicht automatisch abgeschlossen wird, 

sondern explizit abgeschlossen werden muss. 

Standardmäßig ist eine JDBC-Verbindung auf AUTOCOMMIT = true gesetzt. Das heißt, 

dass nach jeder einzelnen SQL-Anweisung automatisch eine COMMIT-Anweisung ausge-

führt wird. Die Verbindung kann jederzeit durch Aufruf der Methode setAutoCommit 

auf  false oder true gesetzt werden. Der Wert von AUTOCOMMIT mit getAutoCom-

mit() abgefragt werden, wie im folgenden Beispiel auch zu sehen ist. 

Wir fügen hier zwei weitere Sätze in die Datenbank ein und löschen diese Sätze mehr-

fach, um das Verhalten von Transaktionen zu illustrieren. Den genauen Ablauf zum 

Einfügen und Löschen von Sätzen erläutern wir in Abschn. 6.4; wir verwenden hier aber 

schon einmal diese Anweisungen. 

9  Wenn wir auf die Angabe der Anzahl der geänderten Sätze verzichten, können wir – wie allgemein 

in Java üblich – die Anweisung ohne eine Wertzuweisung ausführen: st.executeUpdate(del). 

10  Vgl. hierzu Abschn. 2.2. 

6.2  Datenänderungen über JDBC

95

96

6  Datenbankprogrammierung mit JDBC

Erläuterungen: 

String del = "DELETE FROM kunde WHERE kunden_nr >= 300"; 

PreparedStatement stDel = con.prepareStatement(del); 

Übergabe einer DELETE-Anweisung an das Datenbanksystem, die später ausgeführt 

werden kann. 

anz = stDel.executeUpdate(); 

Hier wird die oben erzeugte Anweisung ausgeführt. Als Ergebnis bekommen wir die 

Anzahl der gelöschten Sätze. Das Programm hat folgende Ausgabe:

Bei 4: werden die beiden vorher eingefügten Sätze (vorläufig) gelöscht, daher sind bei 

5. Keine Sätze mehr zu löschen. Durch con.rollback() wird dann die Transaktion 

zurückgefahren, also die Löschungen werden rückgängig gemacht. Somit werden bei 6: 

die Sätze ein weiteres Mal gelöscht, was anschließend durch con.commit() endgültig in 

der Datenbank festgeschrieben wird. 

Für lesende Zugriffe können die Transaction Isolation LevelIsolation Level11 wichtig sein. Hierzu gibt es vier Konstanten in der Klasse Connection, die jeweils durch die 

Methode setTransactionIsolation gesetzt werden können:

•	 TRANSACTION_READ_UNCOMMITTED

•	 TRANSACTION_READ_COMMITTED

•	 TRANSACTION_REPEATABLE_READ

•	 TRANSACTION_SERIALIZABLE

Beispiel

11 Vgl.  Abschn. 2.4. 

6.3  Datenabfragen mit SELECT

97

6.3 

 Datenabfragen mit SELECT

Wir haben jetzt gezeigt, wie man Datenänderungen über ein Java-Programm vorneh-

men kann. Die einzigen Rückmeldungen, die wir hier brauchen, ist der SQLState und 

die Anzahl der betroffenen Zeilen. Im folgenden Abschnitt werden wir zeigen, wie die 

Ergebnismenge von (beliebig komplexen) SELECT-Anweisungen in einem Java-Pro-

gramm übernommen werden kann. 

Wir werden gleich eine etwas komplexere Abfrage benutzen, da alle SELECT-Anwei-

sungen in JDBC gleich behandelt werden – die Auswertung der Anweisung unterliegt 

der Datenbankmaschine, die die Ergebnisse an das Programm zurück liefert. 

In dem Beispiel werden für alle Kunden aus dem PLZ-Bereich 23 jeweils die Summe 

der Rechnungen der gelieferten Bestellungen und das Datum der letzten Bestellung aus-

gegeben. Hierbei sind auch die Kunden zu berücksichtigen, die nichts bestellt haben. 

Zum Abschluss ist dann die Summe der Rechnungsbeträge auszugeben und das Datum 

der letzten Bestellung. Das Ergebnis soll wie folgt aussehen:

Die Berechnung der Datenzeilen pro Kunde wird vollständig in SQL formuliert – die 

Zusammenfassung wird in dem Java-Programm berechnet. Die auszuführende SELECT-

Anweisung hat also folgende Form:

Um die jeweils letzte Bestellung zu bestimmen, benötigen wir eine Funktion, die für zwei 

Datumswerte den späteren zurückgibt, wobei eine Null-Referenz früher als alle anderen 

Daten gilt. Hierbei ist anzumerken, dass die im Zusammenhang mit JDBC verwendete 

Klasse java.sql.Date eine Unterklasse von java.util.Date ist, die einige merkwür-

dige Eigenschaften hat (z. B. werden Monate von 0 bis 11 gezählt; die Zählung der Jahre 

beginnt bei 1900, so dass das Jahr 2013 durch den Wert 113 dargestellt wird.). Für viele 

98

6  Datenbankprogrammierung mit JDBC

einfache Zwecke reicht diese Klasse – bei anspruchsvolleren Datums-Manipulationen muss 

man dann die Daten auf die Klasse Calendar konvertieren – was nicht ganz trivial ist. 

Das Programm hat dann folgende Form:

6.3  Datenabfragen mit SELECT

99

Im Folgenden erläutern wir einzelne Teile des Programms. 

Für die Ausgabe verwenden wir die Methode printf, mit der es auf einfache Weise mög-

lich ist, Tabellen mit Werten in einer festgelegten Anzahl von Zeichen auszugeben. Der 

erste Parameter gibt jeweils das Druckformat an, in dem die Ausgabeformate der Daten 

mit den Längenangaben eingebettet sind, anschließend folgen die auszugebenden Daten. 

6.3.1   Die Klasse ResultSet

Während eine relationale Datenbank bei Abfragen immer eine Menge von Datensätzen 

zurückgibt und die Datensätze nicht einzeln manipuliert, brauchen wir in einer imperati-

ven Programmiersprache eine Möglichkeit, jeden einzelnen Datensatz der Ergebnismenge 

gezielt zu verarbeiten. Dieses erledigt die Klasse ResultSet, die die Sätze einer Ergebnis-

menge und ihre Attribute für die Verarbeitung über Methoden einzeln zur Verfügung stellt. 

Statement st = con.createStatement(); 

ResultSet rs = st.executeQuery(sql); 

Wie bei Datenänderungs-Anweisungen wird auch hier die Anweisung durch 

create Statement erzeugt. Die Ausführung dieser Anweisung wird durch 

executeQuery()erreicht. Das Ergebnis der Anweisung ist dann ein Objekt der Klasse 

ResultSet. 

Über die  Ergebnismenge, also das von executeQuery() zurück gegebene Objekt, 

kann man auf die einzelnen Zeilen des Ergebnisses zugreifen. Die Ergebniszeilen bilden 

eine Folge. Zu jedem Zeitpunkt gibt es eine aktuelle Position in dieser Folge. Diese Posi-

tion kann vor dem ersten Element, auf einem Element oder hinter dem ersten Element 

sein. Zu Beginn ist die Position vor dem ersten Element. 

6.3.2   Navigieren in der Ergebnismenge

Zum einfachen Navigieren in einer Richtung gibt es die Methode next mit dem Ergeb-

nistyp boolean. Durch next wird die aktuelle Position um eins weiter gestellt – wenn 

sie schon hinter der letzten Zeile war, führt das zu einer Exception. Der zurückgegebene 

boolesche Wert ist true, wenn die aktuelle Position auf eine Zeile zeigt; er ist false, 

wenn er hinter der letzten Zeile steht. 

100

6  Datenbankprogrammierung mit JDBC

Somit können wir mit folgender Konstruktion zeilenweise die gesamte Ergebnis-

menge abarbeiten. 

Wenn die Ergebnismenge leer ist, führt schon die erste Abfrage rs.next() zu false 

und die Schleife wird nicht durchlaufen. 

Andererseits können wir auch weitere Kriterien in eine Schleife einführen, zum Bei-

spiel, dass wir maximal nur die ersten fünf Sätze der Ergebnismenge ausgeben wollen. 

Dieses lässt sich zum Beispiel durch eine for-Schleife realisieren:

6.3.3   Zugriff auf die Spalten der Abfrage

Jetzt müssen wir nur noch den Zugriff auf die einzelnen Spalten einer Zeile abbilden. 

Hierzu gibt es Datenzugriffs-Methoden wie getString. 

Die Bezeichner der Methoden fangen jeweils mit get an, der Rest des Bezeichners weist 

auf den Ergebnis-Typ der Methode hin. Einige Beispiele12:

Das Argument ist jeweils der Name der Spalte oder die relative Nummer (die Zählung 

beginnt bei 1), die sich auf die Liste der Elemente in der SELECT-Klausel bezieht. 

12  Eine vollständige Liste ist in der Beschreibung der JDBC-API enthalten. 

6.3  Datenabfragen mit SELECT

101

So könnten die Anweisung, die den Namen holt, auch wie folgt lauten:

String v_name = rs.getString("name"); 

Für die folgenden drei Anweisungen ist diese Alternative nicht möglich, da dort der Aus-

druck keinen Spaltenalias besitzt. 

In Hinblick auf die Effizienz ist keine der beiden Formen der anderen vorzuziehen. 

Wenn die SELECT-Anweisung mit SELECT * FROM … beginnt, ist es nicht sinnvoll 

(aber möglich), die Spalten mit der relativen Nummer anzusprechen. 13

Umgekehrt muss die Spalte mit der relativen Nummer angesprochen werden, wenn sie aus 

einem Spaltenausdruck besteht und es keinen Spalten-Alias dazu gibt wie in unserem Beispiel 

die Spalte MAX(b.bestelldatum), die durch rs.getDate(2) angespochen wird. 

Der Datentyp der Anweisung (z. B. String bei getString) bezieht sich auf 

den Datentyp, in den der Spaltenwert in dem Java-Programm gewandelt werden 

soll. Es muss nicht der Datentyp sein, der in der Datenbank verwendet wird. So kann 

getString für die meisten Datentypen verwendet werden, da es in SQL für die meisten 

Datentypen eine Konvertierung in String gibt. Umgekehrt kann aber auch eine Zeichen-

kette mit getInt abgefragt werden. Wenn die Zeichenkette die Form einer Zahl hat, 

wird sie in die Zahl konvertiert – andernfalls wird eine SQLException ausgelöst. 

So könnten wir in unserem Beispiel auch die Postleitzahlen als int einlesen.14

int plz = rs.getInt("plz"); 

Wenn dann allerdings z. B. eine Postleitzahl 2386A erscheint, erfolgt eine SQL-Excep-

tion („Datenumwandlungsfehler“). 

6.3.4   Behandlung von Nullmarken

In SQL wie auch in Java haben wir das Konzept „Null“. Das SQL-Konzept15 der  Nullmarke unterscheidet sich allerdings geringfügig von dem Konzept der  Nullreferenz von Java:

•	 Der Vergleich mit einer Nullmarke in SQL liefert immer den Wert UNKNOWN der 

dreiwertigen Logik, auch wenn zwei Nullmarken in den Vergleich eingehen. 

•	 In Java gilt die (zweiwertige) Boolesche Algebra; ein Vergleich zweier Nullreferenzen 

ergibt true, ein Vergleich einer Nullreferenz mit einer Referenz auf ein Objekt ergibt 

dagegen false. 

•	 In Java gibt es Nullreferenzen nur für Klassen, nicht aber für die Basistypen wie int, 

float, boolean. 

13  Die Reihenfolge der Spalten kann sich bei einer Überarbeitung der Datenbankstruktur schließ-

lich ändern. 

14  Ob das in diesem Beispiel sinnvoll ist, lassen wir mal dahingestellt. 

15  Ausführlich behandelt in Abschn. 5.2 unseres ersten Bandes. 

102

6  Datenbankprogrammierung mit JDBC

In dem letzten Beispiel haben wir an einer Stelle Nullmarken behandelt: Der Ausdruck 

MAX(b.bestelldatum) ist eine Nullmarke, wenn der Kunde noch keine Bestellung 

aufgegeben hat. Im Java-Programm fragen wir in der Funktion maxDate auf null ab. 

Eine Nullmarke als Ergebnis einer Abfrage wird auf null gesetzt, wenn der Java-

Datentyp eine Klasse ist (also z. B. String oder Date). Bei numerischen Datentypen 

bekommen wir die Zahl 0, bei dem Datentyp boolean den Wert false. In den letz-

teren Fällen können wir nicht unmittelbar zwischen der Zahl 0 bzw. dem logische Wert 

false und einer Nullmarke unterscheiden. 

Um diese Unterscheidung durchzuführen, ist in der Klasse ResultSet noch die 

Methode wasNull() eingeführt, die einen Booleschen Wert zurück gibt. 

Diese Methode ist nach einer getter-Methode (z. B. getInt) aufzurufen und gibt den Wert 

true zurück, falls der letzte Aufruf einer getter-Methode eine Nullmarke als Ergebnis hatte. 

Wenn wir in einer INSERT- oder UPDATE-Anweisung eine Nullmarke einer Spalte 

zuweisen wollen, können wir natürlich in der SQL-Anweisung das Schlüsselwort NULL 

verwenden. Bei parametrisierten SQL-Anweisungen16 brauchen wir aber eine Möglich-

keit, mitzuteilen, dass für eine numerische oder Datums-Spalte eine Nullmarke einzutra-

gen ist. Dieses führen wir in 6.4.2 ein. 

6.4 

 Parametrisierte  SQL-Anweisungen

In den bisherigen Beispielen haben wir jeweils die SQL-Anweisungen schon im Pro-

gramm vollständig als String festgelegt. 

In der Praxis tritt aber häufiger das Problem auf, dass im Rahmen einer Anwendung 

die SQL-Anweisung dynamisch aufzubauen ist. Dieses ist zum Beispiel die INSERT-

Anweisung, wenn wir für einen neuen Kunden die Kundendaten aufnehmen und in die 

Datenbank einfügen wollen. Oder wenn wir für einen Kunden, dessen Kundennummer 

wir wissen, die Liste seiner Bestellungen im letzen Jahr haben wollen. 

Wir können natürlich hier den String für die SQL-Anweisung mit Hilfe der einge-

lesenen Daten zusammenbauen und dann durch executeUpdate in die Datenbank 

bringen, wie wir es in Abschn. 6.2 durchgeführt haben. Der Aufruf der JDBC-Methode 

erfolgt durch folgende Anweisungen:

16  Wird im folgenden Abschnitt eingeführt. 

6.4  Parametrisierte SQL-Anweisungen

103

Die generierte SQL-Anweisung lautet hier:

Dieses Vorgehen hat drei gravierende Probleme:

•	 Es ist nicht übersichtlich. 

Man beachte hier die Folgen + ",'" 

•	 Es ist nicht effizient. 

Wenn in einem Programm mehrfach dieselbe Anweisung mit unterschiedlichen Para-

metern ausgeführt wird, muss jedes Mal von Neuem die Anweisung von der Datenbank-

maschine syntaktisch und semantisch untersucht werden, bevor sie ausgeführt wird. 

•	 Es ist eine Schwachstelle, die ggf. von Angreifern ausgenutzt werden kann, um unzu-

lässige Angriffe auf die Datenbank zu führen. 

Um die Schwachstelle zu demonstrieren, ändern wir den Wert für ort. Diese Eingabe 

könnte zum Beispiel durch eine Eingabe in einem Browser-Fenster erfolgen. 

String ort =  

"Rom','S','R'); DELETE FROM kunde WHERE kunden_nr=300 --"; 

Es sind jetzt zwei Anweisungen geworden und ein Kommentar17:

Ergebnis:

Der neue Kunde hat die Privilegien eines Stammkunden und der Kunde mit der Kun-

dennummer 300 ist gelöscht. 

Dieser Angriff wird SQL-Injection genannt. Er ist – obwohl Gegenmaßnahmen sehr 

einfach sind (wir gehen gleich darauf ein) – immer noch einer der häufigsten Angriffe 

gegen Programme im Internet. Es können beliebig andere Anweisungen eingebettet 

werden. 

6.4.1   PreparedStatement

Die Klasse PreparedStatement ist eine Unterklasse von Statement. Ein Objekt 

dieser Klasse ist eine parametrisierte Anweisung und wird durch Aufruf der Methode 

17  Durch den Kommentar wird die Folge der Zeichen ','G','N'), die nach der Anweisung ein-

gebaut wird, dem SQL-Parser entzogen. 

104

6  Datenbankprogrammierung mit JDBC

prepareStatement erzeugt; dabei ist ein String mit der SQL-Anweisung zu übergeben, 

bei dem die zu parametrisierenden Felder durch ein Fragezeichen festgelegt werden. 

Diese Fragezeichen werden dann anschließend durch setter-Methoden mit Werten 

belegt. Das erste Argument ist jeweils die Nummer des Fragezeichens. Die Zählung 

beginnt bei 1. Hier das Programm. 

Wenn wir hier für ort wieder den o. a. Injektionsstring angeben, wird eine SQL-

Exception ausgelöst, da der String für Ort zu lang ist. Wenn wir ort aber etwa mit 

VARCHAR(120) deklariert hätten, wäre dieser lange String eben die Bezeichnung des 

6.4  Parametrisierte SQL-Anweisungen

105

Ortes (mit den Apostrophs etc.). Das ist aber unproblematisch, da der SQL-Parser nicht 

die Dateninhalte parst, sondern nur die SQL-Anweisungen. 

Der Datentyp der setter-Methode ist wiederum der Datentyp, in dem der Wert des 

Arguments an die Datenbank-Maschine gesendet wird. Es muss nicht der Datentyp der 

Spalte in der Datenbank sein, sondern nur konvertierbar in diese. 

Eine parametrisierte Anweisung kann für mehrere Übertragungen an die Datenbank 

benutzt werden. Es sollen Daten aus einer Datei eingelesen werden und in eine Datenbank 

übertragen werden. Dazu ersetzen wir in obigem Beispiel den Teil nach //Einfügen 

eines Satzes durch folgende Anweisungen:

Wie wir hier sehen, wird die parametrisierte Anweisung, die einmal initialisiert ist, hier 

mit immer neuen Werten wieder aufgerufen. 

6.4.2   Nullmarken als Parameter

Wenn für einen zu besetzenden Parameter eine Nullmarke übergeben werden soll, gibt 

es wie bei den ResultSets zwei Möglichkeiten:

•	 Falls ein Objekt einer Klasse übergeben wird (z. B. String), ist eine null-Referenz zu 

übergeben. 

•	 Falls ein numerischer oder logischer Wert übergeben werden soll, ist die Methode 

setNull zu verwenden, die als zweites Argument einen int-Wert hat, der den SQL-

Datentyp beschreibt (z. B. Types.INTEGER). 

106

6  Datenbankprogrammierung mit JDBC

In dem folgenden Beispiel werden drei neue Artikel in die Datenbank aufgenommen. Bei 

dem zweiten Artikel ist die Verpackung ein leerer String und der Lagerplatz eine Null-

marke, bei dem dritten Artikel ist für das Attribut Verpackung eine Nullmarke einzutragen. 

In dem Beispiel kann man sehen, dass bei der Eingabe der Verpackung (Typ String) 

jeweils der Aufruf mit stIns.setString(6,a_verpackung[i]) erfolgt. Es ist also 

6.4  Parametrisierte SQL-Anweisungen

107

keine Unterscheidung im Aufruf zu treffen – der JDBC-Treiber trifft die Entscheidung, 

ob es eine null-Referenz ist oder nicht. Bei der Eingabe des Lagerplatzes (wo wir im Pro-

gramm „nicht vorhanden“ durch -1 codiert haben), müssen wir explizit eine Fallunter-

scheidung treffen und entweder die Methode setInt oder setNull zu verwenden. 

6.4.3   CallableStatement

Grundsätzlich könnte man mit parametrisierten Anweisungen auch Datenbank-Prozedu-

ren behandeln. Allerdings können wir mit parametrisierten Anweisungen keine OUT- oder 

INOUT-Parameter einer Datenbank-Prozedur behandeln. Daher brauchen wir eine wei-

tere Unterklasse von PreparedStatement zur Behandlung von Datenbank-Prozeduren. 

In dem folgenden Beispiel verwenden wir die in Abschn. 4.1.5 eingeführte Daten-

bank-Prozedur mit folgender Signatur:

Der dreimalige Aufruf dieser Prozedur mit unterschiedlichen Parametern erfolgt in fol-

gender Methode:

Das meiste kennen wir schon. Es folgen einige Erläuterungen der neu einzuführenden 

Methoden. 

108

6  Datenbankprogrammierung mit JDBC

CallableStatement st = 

con.prepareCall("{call lieferung(?,?,?,?)}"); 

Ein CallableStatement wird durch die Methode prepareCall erzeugt – ähnlich wie 

ein PreparedStatement mit prepareStatement. Auffällig sind hier die geschweif-

ten Klammern um die Anweisung. 

Bei den meisten Datenbanksystemen können wir diese geschweiften Klammern weglassen. 

Geschweifte Klammern in Argumenten bedeuten in JDBC, dass der Inhalt dieser Klammern 

möglicherweise an die SQL-Syntax der entsprechenden Datenbank anzupassen ist. Dies ist 

zum Beispiel bei PostgreSQL der Fall, wo der JDBC-Treiber18 dem SQL-Parser die Anweisung SELECT Lieferung(?,?,?,?)

übergibt. 

Hier wird das vierte Argument als OUT- oder INOUT-Parameter vorbereitet. Wir kön-

nen dann den Rückgabewert mit der Methode getInt holen. Das Datenbanksystem ist 

jetzt darauf vorbereitet, dass der Rückgabewert vom Typ INTEGER ist (falls notwendig, 

wir er auf diesen Typ konvertiert). 

6.5 

 Aufruf von Datenbankprozeduren mit Ergebnismenge

In Abschn. 4.2.3 haben wir Datenbank-Prozeduren eingeführt, die eine Ergebnismenge zurück geben. Die Behandlung dieses Falles zeigen wir in folgendem Beispiel. Es soll die 

in Abschn. 4.2.3 eingeführte Prozedur benutzt werden, wobei wir hier einige Spalten der 

Ergebnismenge weglassen:

18 Wir erinnern uns: der JDBC-Treiber ist immer speziell für das entsprechende Datenbanksystem 

angepasst. Daher kann dieser Treiber spezielle Anweisungen an die Syntax der Zieldatenbank anpassen. 

6.5  Aufruf von Datenbankprozeduren mit Ergebnismenge

109

Die Java-Methode sieht wie folgt aus:

Das einzig Neue ist hier der Aufruf der Methode getResultSet, der uns die Ergebnis-

menge der Prozedur liefert. 19

ResultSet rs = st.getResultSet(); 

6.6 

 Metadaten

Bisher sind wir davon ausgegangen, dass wir für eine spezielle Datenbank eine Anwen-

dung entwickeln. Dazu können wir davon ausgehen, dass wir die Struktur der Daten-

bank so weit kennen, wie es für den Anwendungsfall notwendig ist.20

Es gibt aber auch Fälle, in denen der Programmierer die Datenbankstruktur nicht voll-

ständig kennt. Er hat dann die Möglichkeit sich diese Informationen aus dem Systemkata-

log der Datenbank zu holen (vgl.  Kap. 7). Daneben bietet JDBC selber die Möglichkeit, 19 Grundsätzlich kann eine Datenbankprozedur auch mehrere Ergebnismengen zurückliefern. 

Dieses behandeln wir hier nicht und verweisen statt dessen auf die JDBC-API von Java. 

20  Es reicht natürlich, dass wir entsprechend dem ANSI-Sparc-Dreischichten-Modell das externe 

Schema für unseren Anwendungsbereich kennen (vgl. z. B. [UnMa12, S. 10]. 

110

6  Datenbankprogrammierung mit JDBC

Informationen über Abfragen und über die Datenbank zu erhalten. Dieses ist unter ande-

rem notwendig, wenn man ein Datenbank-Administrationsprogramm21 entwickeln will. 

Wir bringen hier nur einen kleinen Ausschnitt aus den Möglichkeiten – bei weiterem 

Interesse verweisen wir auf die JDBC API. Im Folgenden wollen wir die Ergebnisse einer 

einfachen Abfrage, nämlich SELECT * FROM kunde, präsentieren, ohne dass wir dazu 

vorher die Beschreibung der Spalten der Tabelle kunde beschaffen müssen. Es werden 

jeweils maximal drei Sätze einer Tabelle ausgegeben. 

Dieses wird in dem folgenden Beispielprogramm erledigt:

Wir erzeugen hier ein Objekt der Klasse ResultSetMetaData, das den Zugriff auf die 

Metadaten der Ergebnismenge erlaubt. 

ResultSetMetaData meta = rs.getMetaData(); 

int anzSpalten = meta.getColumnCount(); 

Durch meta.getColumnCount() bekommen wir die Anzahl der Spalten der abgefragten 

Tabelle. Wir können uns dann die Bezeichner und Datentypen der Ergebnisspalten holen. 

21  Beispiele hierfür sind Sybase Central für SQL Anywhere, MySQL Workbench, PgAdmin III für 

PostgreSQL, aber auch kommerzielle Programme wie EMS SQL-Manager für u. a. MySQL, Oracle, 

PostgreSQL oder freie Produkte wie SQuirreL oder das SQL-Explorer Plugin von Eclipse. 

6.6 Metadaten

111

Wir holen uns hier für jede Spalte der jeweils aktuellen Ergebniszeile den Namen der 

Spalte, ihren Datentyp und ihren Wert. Wir gehen in diesem Beispiel davon aus, dass alle 

Daten als String dargestellt werden können.22 Die Daten werden dann jeweils linksbündig mit fester Spaltenlänge ausgegeben. 

Das Ergebnis sieht für den ersten Satz wie folgt aus (bei SQL Anywhere):

Es gibt weiter gehende Möglichkeiten. So gibt es neben den ResultSetMetaData auch 

noch DatabaseMetaData, mit denen wir z. B. eine Liste aller Tabellen, für jede Tabelle 

eine Liste aller Spalten mit ihren Datentypen, Primärschlüsseln und Fremdschlüsseln 

bekommen können. Hier sei auf die JDBC API verwiesen. 

6.7 

 Object Relational Mapping

Wenn man die Datenmodellierung und SQL und Java vergleicht, stellt man eine Reihe von 

Gemeinsamkeiten fest. So können wir eine SQL-Tabelle mit einer Java-Klasse verknüpfen, 

indem wir für jede SQL-Spalte ein entsprechendes Klassen-Attribut anlegen. Unsere SQL-

Tabelle kunde könnte in folgender Weise auf eine Java-Klasse Kunde abgebildet werden:

Um einen Kunden mit vorgegebener Kundennummer aus der Datenbank zu holen, 

müssen wir aber einigen Aufwand treiben und alle Spalten einer Ergebnismenge  

22 Dieses ist bei Binary Large Objects nicht immer der Fall. Wir könnten aber auch diese Fälle 

explizit abfangen. In unserem Beispiel verzichten wir darauf. 

112

6  Datenbankprogrammierung mit JDBC

einzeln auf die Attribute der Java-Klasse übertragen. Dieses nennt man den  Object Rela-

 tional Gap. 

Eine Lösung dieses Problems wären Aufrufe, die im Folgenden beschrieben werden. 

Hier gibt es jeweils ein Argument con, das sich auf eine Connection auf die Datenbank 

bezieht, die die Tabelle Kunde enthält. 

Zum Holen der Daten eines Kunden aus der Datenbank brauchten wir folgenden Aufruf:

Kunde ku = new Kunde(con, "kunden_nr = 102"); 

oder

Kunde ku = new Kunde(con, "name LIKE 'Stein'"); 

Letzteres würde zu einer Ausnahmebedingung führen, wenn es keinen Kunden gibt, der 

mit „Stein“ beginnt, oder mehrere Kunden mit dieser Bedingung. 

Ebenso ist es wünschenswert, wenn man ein Kunden-Objekt direkt mit einer Anwei-

sung in die Datenbank einbringen könnte, etwa durch

ku.insert(con); 

Durch

ku.update(con); 

könnte man die Daten eines Kunden ändern, indem für den Kunden mit der entspre-

chenden  kunden_nr in der Datenbank alle Spalten entsprechend den Attributen der 

Java-Klasse ändert. 

Schließlich wäre durch die Anweisung

ku.delete(con); 

der Kunde mit der entsprechenden kunden_nr in der Datenbank zu löschen. 

Eine Implementierung einer solchen Klasse Kunde ist auf dem Verlagsserver enthal-

ten und mit elementaren Mitteln möglich. So wäre z. B. die Update-Methode mit folgen-

dem PreparedStatement möglich (wir beschränken uns hier auf zwei Attribute – in einer 

echten Implementierung müssen natürlich alle Attribute besetzt werden):

6.7  Object Relational Mapping

113

Des Weiteren brauchen wir eine Umsetzung der Fremdschlüssel in die Java-Klassen über 

Referenzen. Hierbei würde man auf der einen Seite in der Klasse Bestellung eine Refe-

renz auf Kunde setzen (auftraggeber). Andererseits ist es sinnvoll, den Fremdschlüs-

sel von Bestellposition auf Bestellung durch ein Array von Bestellpositionen in der Klasse 

Bestellung abzubilden:

Sinnvollerweise brauchen wir hierfür Werkzeuge. Es gibt eine Reihe solcher ORM-Sys-

teme. Das wohl am weitesten verbreitete ist Hybernate. Es gibt aber auch im Spring-

Framework mit Spring Data eine ähnliche Technik. Ein weiterer Ansatz ist EclipseLink. 

Wir können in diesem Buch nicht auf diese verschiedenen Techniken eingehen, da sie 

inzwischen sehr umfangreich sind und man dafür eine eigene Einführung benötigt. 

Die Einführung in JDBC ist dagegen etwas einfacher und mit diesem Kapitel 

abgeschlossen. 

Der Systemkatalog

7

Eine Datenbank enthält nicht nur die Daten, sondern auch die Beschreibung der Daten. 

Diese Beschreibung wird auch als  Systemkatalog bezeichnet. Der Systemkatalog besteht 

aus Tabellen und Datensichten, die Informationen über die diversen Datenbankobjekte 

wie Tabellen, Datensichten, Benutzer sowie Zugriffsrechte und Indexe enthalten. 

So benutzt die Datenbankmaschine den Katalog, um zu registrieren, welche Tabellen 

es gibt und welche Spalten sie enthalten. Ändert sich die Struktur einer Tabelle, wird eine 

neue Tabelle erstellt oder eine alte gelöscht, so spiegelt sich dies im Datenkatalog wider. 

Die Datenbankmaschine prüft mittels des Katalogs, ob ein Benutzer Zugang zur Daten-

bank erhält und weiter dazu berechtigt ist, eine bestimmte Tabelle zu bearbeiten (siehe 

Kap. 3). 

Der Abfrageoptimierer1 ermittelt bei Abfragen u. a. die zu der betroffenen Tabelle gehörigen Indexe und die jeweiligen Indexspalten aus dem Katalog. Zur Unterstützung 

des Abfrageoptimierers können weitere Daten im Systemkatalog angegeben werden, z. B. 

die Anzahl der Zeilen einer Tabelle, die Anzahl der verschiedenen Werte für eine Spalte, 

Zeitpunkt der letzten Datenänderung in einer Tabelle. 

Schreibender Zugriff auf den Systemkatalog darauf ist nur über spezielle Anweisun-

gen möglich. In SQL sind dies die DDL-Anweisungen. Hierzu gehören auf der einen 

Seite die verschiedenen CREATE-Anweisungen wie CREATE  TABLE, CREATE VIEW, 

CREATE  PROCEDURE,  CREATE  USER, die entsprechenden ALTER- und DROP-

Anweisungen. Des Weiteren gehören dazu die GRANT- und REVOKE-Anweisungen 

zur Zuweisung und Entzug von Benutzerrechten. 

1 Vgl. Abschn. 1.2.4. 

M. Unterstein und G. Matthiessen,  Anwendungsentwicklung mit Datenbanken, eXamen.press,  115

DOI: 10.1007/978-3-642-39003-6_7, © Springer-Verlag Berlin Heidelberg 2013

116

7  Der Systemkatalog

7.1 

 Der Systemkatalog in der SQL-Norm

In der SQL-Norm sind ein DEFINITION_SCHEMA und ein INFORMATION_SCHEMA 

beschrieben. Die Basistabellen in denen die Metadaten abgelegt sind, werden im DEFI-

NITION_SCHEMA beschrieben.2 Allerdings schreibt die Norm nicht vor, dass die Imple-

mentierung sich an diese Beschreibung hält. Die Beschreibung dient nur zur Festlegung, 

welche Daten vorhanden sein müssen, damit sie im INFORMATION_SCHEMA benutzt 

werden können. 

Das  INFORMATION_SCHEMA besteht aus einer Sammlung von Datensichten. Das 

INFORMATION_SCHEMA kann und darf durch Datenbankhersteller jederzeit erweitert 

werden, wenn dies für die Funktion des DBMS erforderlich ist. Es ist für jeden Benut-

zer ein lesender Zugriff vorgesehen. Dazu ist einheitlich für alle Datensichten der Benut-

zergruppe PUBLIC das SELECT-Privileg zugewiesen. Die unerlässliche Dokumentation 

jeder Datenbank wird damit automatisch geleistet, ist jederzeit abrufbar und stets auf 

dem neuesten Stand. 

Die Datensichten des INFORMATION_SCHEMA stellen den Benutzern Informationen 

in unterschiedlicher Detaillierung zur Verfügung. Um benutzerspezifische Details wie-

derzugeben und nichtöffentliche Informationen zu verbergen, enthalten einige Daten-

sichten eine dynamische Selektionsklausel, so dass jeder Benutzer nur Daten über seine 

eigenen und die ihm zugänglichen fremden Datenbankobjekte erhält. Das Selektions-

attribut (z. B. OWNER), das den Eigentümer oder den berechtigten Benutzer (z. B. GRAN-

TEE) eines Datenbankobjekts enthält, wird dazu mit der Pseudospalte CURRENT_USER 

verglichen, in der der Name des angemeldeten Benutzers zur Verfügung steht. 

Einige der wichtigsten Datensichten des INFORMATION_SCHEMA stellen wir in 

Tab. 7.1 vor.3 Nach dem oben Gesagten sieht der Benutzer nicht alle Daten des Systemkatalogs, sondern nur die, auf die er irgendeinen Zugriff hat. 

7.2 

 Systemtabellen in SQL-Implementationen

Wir zeigen in diesem Abschnitt den Gebrauch einiger Datensichten des INFORMATION_ 

SCHEMA. 

Bei   SQL Anywhere beginnen die Namen aller Katalogtabellen mit „SYS“.  ORACLE 

stellt sinnigerweise jeweils das Präfix „USER_“, „DBA_“ beziehungsweise „ALL_“ voran 

(vgl. Tab.  7.2). Damit ist durchgängig eine Auswahl der aufzulistenden Objekte impli-ziert, und die im Standard anzutreffende Vermischung von eigenen und zugänglichen 

Objekten wird vermieden. 

2  Vgl. [MeSi02h, Kap. 22]. 

3  Eine vollständige Übersicht findet man in [MeSi02h, Kap. 22]. 

7.2  Systemtabellen in SQL-Implementationen

117

Tab. 7.1  Einige Datensichten des INFORMATION_SCHEMA in SQL

Name der Datensicht

Erläuterung

SCHEMATA

Schemata der Datenbank

DOMAINS

Domänen

TABLES

Tabellen

VIEWS

Datensichten

COLUMNS

Spalten

TABLE_CONSTRAINTS

Konsistenzbedingungen für Tabellen. 

REFERENTIAL_CONSTRAINTS

referenzielle Integritätsbedingungen

SEQUENCES

Sequenz-Generatoren

ROUTINES

Datenbank-Prozeduren

AUTHORIZATIONS

Zugriffsrechte von Benutzern auf Datenbankobjekte

Tab. 7.2  Namenskonventionen für Systemtabellen bei ORACLE

USER_objektkategorie

zeigt nur die eigenen Objekte des angemeldeten  z. B. USER_TABLES

Benutzers. 

ALL_objektkategorie

zeigt die dem Nutzer zugänglichen Objekte. 

z. B. ALL_TABLES

DBA_objektkategorie

zeigt die einem Systemverwalter zugänglichen 

z. B. DBA_TABLES

Objekte. 

Tab. 7.3  Einige Spalten von INFORMATION_SCHEMA.TABLES

Spalte der Datensicht

Erläuterung

TABLE_CATALOG

Katalog, in dem die Tabelle eingetragen ist

TABLE_SCHEMA

Schema, in dem die Tabelle enthalten ist

TABLE_NAME

Name der Tabelle

TABLE_TYPE

u. a. ' BASE TABLE' , ' VIEW' , 

'GLOBAL TEMPORARY' 

COMMIT_ACTION

Für temporäre Tabellen die Aktion beim COMMIT der  

Transaktion (sonst: NULL)

'DELETE' oder 'PRESERVE' 

7.2.1   Informationen über Tabellen

Einige der Spalten der Datensicht TABLES sind in Tab. 7.3 angegeben. 

Jede Zeile in der Tabelle TABLES beschreibt eine Basistabelle oder eine Datensicht. 

Für das folgende Beispiel haben wir eine Datensicht definiert mit folgender Anweisung:

Falls man nur die eigenen Tabellen sehen möchte, ist es erforderlich, eine Selektionsbe-

dingung einzugeben. Vergleichen Sie dazu folgendes Beispiel:

118

7  Der Systemkatalog

Es fällt auf, dass hier alle SQL-Bezeichner in Großbuchstaben erscheinen – obwohl in der 

CREATE-TABLE-Anweisung diese Namen in Kleinbuchstaben eingegeben wurden. Das 

folgt aus einer Eigenschaft des SQL-Interpreters: es wird nicht zwischen Groß- und Klein-

buchstaben unterschieden, außer wenn Worte in einfache Hochkommata (als Daten-

Werte) oder in doppelte Hochkommata (als SQL-Bezeichner) eingeschlossen sind.4

Bei ORACLE erfolgt die Selektion auf die eigenen Tabellen implizit, wenn man die 

Systemtabellen mit dem Präfix USER aufruft. Der Benutzer chef erhält aus der Tabelle 

USER_TABLES folgende Antwort ohne eine WHERE-Klausel:

Informationen über die eigenen Datensichten, in der Norm TABLES enthalten, erhält 

man bei ORACLE über die Systemtabelle USER_VIEWS, die außer dem Namen der 

Datensicht auch den SQL-Text seiner Definition wiedergibt. 5

In der SQL-Norm sind die Datensichten – mit ihrer Definition enthalten in INFOR-

MATION_SCHEMA.VIEWS, vgl. hierzu folgendes Beispiel:

4  Bei einigen Datenbanksystemen werden die Bezeichner dagegen in Kleinbuchstaben umgesetzt 

(z. B. in PostgreSQL). 

5 In vielen Datenbanksystemen sind die Benutzerdaten standardmäßig im Schema pub-

lic oder PUBLIC enthalten. Bei SQL Anywhere wird standardmäßig ein Schema benutzt, des-

sen Name mit dem Namen des Erzeugers der Daten übereinstimmt, also z. B. Chef bei unserer 

Versand-Datenbank. 

7.2  Systemtabellen in SQL-Implementationen

119

In diesem Beispiel ist die VIEW_DEFINITION etwas länger, da für jede Spalte der Name 

voll qualifiziert mit dem Schema-Namen und dem Tabellen-Namen erscheint. Der senk-

rechte Pfeil am Ende einer Zeile zeigt hier an, dass der Befehl noch nicht zu Ende ist und 

auf der folgenden Zeile weiter geht. 

7.2.2   Informationen über Spalten

Um sich über Namen, Datentypen und weitere Daten der Attribute kundig zu machen, 

gibt es die Datensicht COLUMNS. Da hierbei auch der Tabellenname angezeigt wird, ist die 

folgende Abfrage ein Weg, um die Struktur der eigenen Datenbank zu dokumentieren. 

120

7  Der Systemkatalog

Tab. 7.4  Einige Datensichten zur Darstellung der Constraints

Name der Datensicht

Erläuterung

CHECK_CONSTRAINTS

Liste der CHECK-Constraints inklusive der NOT 

NULL-Constraints

TABLE_CONSTRAINTS

Aufzählung aller Constraints mit Angabe der betroffenen 

Tabellen, Art der Constraints

REFERENTIAL_CONSTRAINTS Alle referenziellen Integritätsbedingungen mit Angabe der 

UPDATE- und DELETE-Aktionen sowie einem Bezug auf 

die UNIQUE-Regel der Vater-Tabelle. Angaben über die 

entsprechenden Tabellen fehlen hier, die muss man sich aus 

TABLE_CONSTRAINTS holen. 

KEY_COLUMN_USAGE

Angabe der jeweils betroffenen Spalten für PRIMARY KEY, 

UNIQUE und FOREIGN KEY (hier nur die Spalten der 

abhängigen Tabelle)

CONSTRAINT_

Angabe der jeweils betroffenen Spalten für alle Constraints

COLUMN_USAGE

CONSTRAINT_

Angabe der jeweils betroffenen Tabellen für alle Constraints

TABLE_USAGE

7.2.3   Informationen über Integritätsbedingungen

Neben den Datenbank-Objekten wie Tabelle, Spalte, Datensicht, Routine muss das 

Datenbanksystem auch Integritätsbedingungen (Constraints) verwalten. Sie beziehen 

sich jeweils auf eine Tabelle (bei Primärschlüssel, CHECK-Bedingungen, UNIQUE-

Bedingungen) oder zwei Tabellen bei referenziellen Integritätsbedingungen. 

Jede Integritätsbedingung hat einen im Schema eindeutigen Namen. Die bei einer 

Tabellendefinition mit CREATE TABLE formulierten Bedingungen können jeweils mit 

einem aussagefähigen Namen versehen werden. Ansonsten erhalten sie vom DBMS 

einen Namen zugewiesen. Dieser Name erscheint in allen im Folgenden betrachteten 

Datensichten. Er erscheint auch manchmal in Fehlermeldungen. Daher kann ein Blick 

auf die Liste der Constraints manchmal bei der Fehlersuche helfen. In der SQL-Norm 

sind die Tab.  7.4 beschriebenen Datensichten für die Darstellung der Integritätsbedingungen definiert. 

Die folgende Anweisung zeigt uns alle CHECK-Bedingungen, außer denen, wo eine 

Spalte die Bedingung NOT NULL zu erfüllen hat:

7.2  Systemtabellen in SQL-Implementationen

121

Um die jeweiligen Angaben für die FOREIGN KEY-Klauseln zu bekommen, müssen wir 

die Datensicht REFERENTIAL_CONSTRAINTS zweimal mit CONSTRAINT_COLUMN_USAGE 

verknüpfen, um die Spalten für die abhängige Tabelle und die Mastertabelle zu bekom-

men, wie in folgendem Beispiel dargestellt wird:

Da das Ergebnis spaltenmäßig sich nicht nebeneinander darstellen lässt, stellen wir hier 

den ersten Satz des Ergebnisses spaltenmäßig untereinander dar:

Daraus können wir ohne weitere Umstände die Anweisung zum Erzeugen der Fremd-

schlüssel-Bedingung konstruieren:

122

7  Der Systemkatalog

Etwas komplizierter wird es, wenn der Fremdschlüssel aus mehreren Spalten besteht. 

Wir entwickeln hier das etwas einfachere6 Problem der Dokumentation der Primär-

schlüssel. Die notwendigen Daten bekommen wir durch eine einfache Verbindung der 

Datensichten TABLE_CONSTRAINTS mit KEY_COLUMN_USAGE:

Es müssen nur noch die Attribute, die zum selben Schlüssel gehören, zusammengefasst 

werden (hier BESTELL_NR und ARTIKEL_NR für BESTELLPOSITION_PKEY). Dieses 

geht bei vielen SQL-Datenbanken mit der neuen Aggregatfunktion STRING_AGG, wie in 

folgender Abfrage7

6 Beim Fremdschlüssel tritt noch das Problem auf, dass die Reihenfolge der Spalten der 

Fremdschlüsselattribute in Übereinstimmung mit der Reihenfolge der entsprechenden Spalten der 

Master-Tabelle sein muss. 

7  Getestet unter PostgreSQL – daher die Bezeichner jeweils in Kleinbuchstaben. 

7.2  Systemtabellen in SQL-Implementationen

123

7.2.4   Übungsaufgaben

Aufgabe 7.1 Ermitteln Sie die Systemtabellen des von Ihnen genutzten DBMS, die 

Informationen über

•	 Tabellen

•	 Spalten

•	 Benutzer

•	 Integritätsbedingungen

enthalten. Mit welchen Abfragen erhalten Sie die Daten

•	 Ihrer eigenen Datenobjekte? 

•	 der Ihnen zugänglichen Datenobjekte? 

Aufgabe 7.2  Welche Spalten kommen in mehreren Tabellen oder Datensichten vor? 

Aufgabe 7.3  Welche Spalten kommen in mehreren Basistabellen (ohne Datensichten) 

vor? 

Aufgabe 7.4 Ermitteln Sie alle zu Ihren Datenobjekten definierten Primär- und 

Fremdschlüssel. 

Objektorientierung und SQL

8

Nach der breiten Durchsetzung von relationalen Datenbanksystemen zu Beginn der 

80er-Jahre wurde bald klar, dass für eine Reihe von Anwendungsgebieten das relationale 

Datenmodell keine adäquate Grundlage darstellt. Zu diesen „Nicht-Standard“-Anwen-

dungen gehören u. a. 

•	 Kartographie und Katasterwesen

•	 Entwurf integrierter Schaltungen

•	 CAD-Datenbanken

•	 Datenbanken für Büro-Umgebungen, z. B. Dokumentenverwaltung

•	 Multimedia-Anwendungen

Ein Ansatz, das relationale Datenmodell zu erweitern, war das NF2 Modell („non first 

normal form“). Hierbei werden Relationen als Attributwerte zugelassen, 1 weshalb man auch von geschachtelten Relationen (englisch nested relation) spricht. Dies widerspricht 

der Ersten Normalform relationaler Datenbanken – daher der Name. In unserer Versand-

Datenbank könnte man in der Weise Bestellpositionen als Bestandteil von Bestellungen 

verwalten. Wir sehen in Abschn. 8.3.7, wie dieses Konzept bei einer objektrelationalen 

Oracle Datenbank umgesetzt wird, also als Bestandteil eines teilweise objektorientierten 

Modells weiterlebt. 

Ab etwa 1985 erschienen Arbeiten über objektorientierte Datenbanksysteme, die ein 

neues Datenbankmodell forderten als Ergänzung der bereits existierenden objektorien-

tierten Programmiersprachen wie C++ und Smalltalk um die Möglichkeit, persistente 

Objekte zu schaffen und zu bearbeiten und in ihrer komplexen Objektstruktur in einer 

Datenbank zu speichern. 

1  Einige Ausführungen dazu finden sich in [SaSH10, S. 285]. 

M. Unterstein und G. Matthiessen,  Anwendungsentwicklung mit Datenbanken, eXamen.press,  125

DOI: 10.1007/978-3-642-39003-6_8, © Springer-Verlag Berlin Heidelberg 2013

126

8  Objektorientierung und SQL

Ein wichtiger Hinweis: Eine Datenbank ist nicht objektorientiert, wenn das Entwick-

lungssystem, mit dem die Anwendungen erstellt werden, objektorientiert ist (wie zum 

Beispiel über JDBC mit Java), sondern die Eigenschaften der Objektorientierung bezie-

hen sich auf das Datenmodell und die Datenspeicherung. 

Bei der Entwicklung objektorientierter Datenbanksysteme waren von Anfang an zwei 

Linien erkennbar. Die Vertreter der einen Linie waren der Ansicht, dass man objekto-

rientierte Datenbanken völlig neu entwickeln müsse, um eine adäquate Technik zu 

schaffen, die das objektorientierte Paradigma möglichst effektiv realisiert. Die bishe-

rige Datenbanktechnologie hielten sie für unbrauchbar, weil auf einer völlig anderen 

theoretischen Grundlage entstanden. Die andere Linie propagierte den Ansatz, auf der 

bewährten relationalen Technologie aufbauend, objektorientierte Konzepte auf Basis der 

relationalen Datenbanktechnologie zu verwirklichen. Dieser Ansatz wird als „objektrela-

tional“ bezeichnet. 

In diesem Kapitel beschäftigen wir uns ausschließlich mit dem Konzept „objektrela-

tionaler“ Datenbanken. Dabei wird das relationale Datenmodell beibehalten, aber um 

zusätzliche Elemente erweitert, zu denen benutzerdefinierte Datentypen beliebiger Kom-

plexität, Methoden und Typhierarchien gehören. Das objektrelationale Datenmodell hat 

in die SQL-Norm Einzug gehalten, wird aber von keinem DBMS Hersteller der Norm 

entsprechend umgesetzt. 

Wir stellen in Abschn. 8.1 zunächst in Kurzform das objektorientierte Datenbankmodell 

vor.2 In Abschn. 8.2 behandeln wir die objektorientierten Konzepte, die in den SQL-Stan-

dard aufgenommen wurden. Abschnitt 8.3 stellt eine objektrelationale Fassung unserer Versand-Datenbank vor, wie man sie mit Oracle realisieren kann. In Abschn. 8.4 führen 

wir eine Notation für ein logisches objektrelationales Datenmodell ein. In Abschn. 8.5 zeigen wir, wie mithilfe der Systemtabellen die Typhierarchien einer objektrelationalen 

Oracle-Datenbank sichtbar gemacht werden können. Wir kommen nicht umhin, auch auf 

die eine oder andere theoretische Ungereimtheit hinzuweisen. Der Begriff „Objektorientie-

rung“ existiert zwar schon seit einer gehörigen Anzahl von Jahren, enthält aber durchaus 

widersprüchliche Momente, die immer wieder Anlass für allerlei Diskussionen unter den 

Experten und Stoff für diverse Publikationen liefern.3

8.1 

 Das objektorientierte Datenbankmodell

Wir beschreiben nun einige wichtige Eigenschaften des objektorientierten Daten-

modells. Die zunächst recht abstrakten Begriffe, die wir gleich vorstellen, wer-

den in den folgenden Abschnitten an Beispielen erläutert. In den dann folgenden 

2  Einige Bemerkungen zum objektorientierten Datenmodell finden sich auch in Kap. 5, in dem wir 

die objektorientierte „Entwurfssprache“ UML behandeln. 

3  Beispiele dafür: [DaDa00], [Fran03], [JäHe02]. 

8.1  Das objektorientierte Datenbankmodell

127

Konkretisierungen – objektrelationale Erweiterungen ab SQL: 1999 – sind jeweils nur 

einige der hier angesprochenen Möglichkeiten konkret ausgebildet und dann in einer 

jeweils unterschiedlichen Syntax. Wir benutzen zur Beschreibung die Begriffe des 

ODMG 2.0 Modells, das in [Catt97] beschrieben worden ist. 

8.1.1   Objekte und Literale

Basiselemente des objektorientierten Datenbankmodells sind  Objekte und  Literale. 

Jedes Objekt hat eine eindeutige  Identität. Ein Objekt kann grundsätzlich im Laufe 

seiner Existenz seinen Zustand ändern. Ein Literal hat keine Identität; es hat auch kei-

nen änderbaren Zustand, sondern beschreibt einen Wert. So ist ein Mitarbeiter oder 

ein Artikel ein Objekt – eine Zahl, eine Zeichenkette oder eine feste Uhrzeit ist ein 

Literal. 

Objekte und Literale werden durch  Typen kategorisiert. Alle Elemente eines gegebe-

nen Typs haben dieselbe Menge an abstrakten  Eigenschaften  (Attribute) und dasselbe 

 Verhalten. Ein Objekt wird als  Instanz seines Typs bezeichnet. 

Der  Zustand eines Objekts wird durch die Werte beschrieben, die seine Eigenschaften 

aufweisen und durch die  Beziehungen, die es zu anderen Objekten hat. 

Das Verhalten eines Objekts wird durch die Menge an  Operationen ( Methoden) 

beschrieben, die das Objekt ausführen kann. Operationen können eine Liste von Ein- 

und Ausgabeparametern haben, die einem bestimmten Typ angehören. Eine Operation 

kann ein typisiertes Ergebnis zurückgeben. 

Eine  objektorientierte Datenbank speichert Objekte. Sie basiert auf einem  Schema und 

enthält Instanzen, die auf den im Schema definierten Typen basieren. 

8.1.2   Typen

Typen dienen der abstrakten Beschreibung von Objekten und Literalen hinsichtlich 

ihrer Zustände und ihres Verhaltens. Sie werden durch eine externe Spezifikation 

und eine oder mehrere Implementierungen beschrieben. Die externe Spezifikation 

beschreibt die Eigenschaften und Operationen, die für Benutzer sichtbar sind. Eine 

Implementierung besteht aus Datenstrukturen und Methoden, die die Attribute und 

Operationen realisieren und die in einer konkreten Programmiersprache erstellt wor-

den sind. 

Beispielsweise kann die externe Spezifikation eines Typs Person durch seine Attribute 

Name, Adresse, Familienstand und durch eine Operation heiraten beschrieben 

werden. Diese sind für den Nutzer sichtbar. Verborgen hingegen sind die interne Reprä-

sentation der Attribute (so könnte z. B. das Attribut Familienstand = verheiratet durch die 

Zahl 3 dargestellt werden) und der Algorithmus, mit dem der Familienstand beim Aufruf 

der Operation heiraten geändert wird. 

128

8  Objektorientierung und SQL

Typen können von Benutzern definiert werden. Ausgehend von primitiven Datentypen 

(wie numerische Datentypen, Zeichenketten, logische Werte, Datum, Uhrzeit, Aufzäh-

lungstypen) können durch Konstruktoren4 orthogonal5 neue Datentypen zusammenge-

setzt werden. 

8.1.3   Tupel

Einen Datentyp, der aus mehreren Komponenten (unterschiedlicher) Datentypen 

zusammengesetzt ist, erhalten wir durch den Tupel-Konstruktor. In C, und C++ ent-

spricht das dem struct, in C++ und Java einer Klasse, die nur public Attribute, aber 

keine Operationen besitzt. Ein Beispiel dafür ist die Zusammensetzung einer Adresse aus 

den Attributen Straße, Hausnummer, PLZ und Ort. Es kann ein Typ typ_adresse defi-

niert werden, der intern die genannten Attribute hat und bei der Definition einer Klasse 

als Ganzes für den Wertebereich eines strukturierten Attributs verwendet wird. Dieses 

sieht in SQL etwa wie folgt aus:

8.1.4   Kollektionstypen

Daneben gibt es die so genannten Kollektionstypen (auch „Sammlungen“ genannt), 

die wir im Folgenden erläutern. Diese Konstruktoren sollen auf beliebige – auch struk-

turierte – Typen angewandt werden können. ODMG beschreibt folgende Kollektions-

typen: SET, LIST, ARRAY, DICTONARY. Wir beschränken uns auf die Typen, die im 

Zusammenhang mit SQL eine Rolle spielen. 

4 Der Begriff  Konstruktor wird in unterschiedlichen Zusammenhängen mit unterschiedlicher 

Bedeutung verwendet: Wir meinen hier ein (sprachliches) Mittel, um komplexe (= zusammenge-

setzte) Datentypen zu konstruieren. Wenn wir dann auf diese Weise zu einer Klasse gekommen 

sind, gibt es in der Klasse jeweils mindestens einen Konstruktor (jetzt andere Bedeutung!); damit 

wird beschrieben, was beim Anlegen eines neuen Objektes in der Klasse durchzuführen ist. 

5  Der Begriff „orthogonal“ wird auf der nächsten Seite eingeführt. 

8.1  Das objektorientierte Datenbankmodell

129

Bag  Ein  Bag (auch als  Multiset oder  Multimenge bezeichnet) enthält Elemente desselben Datentyps; im Gegensatz zu Mengen sind hier Dubletten erlaubt. Eine Multimenge ist 

ungeordnet und hat beliebig viele Elemente. 

Array  Ein  Array ist eine Kollektion, die eine nicht vorher festgelegte Anzahl von Ele-

menten enthält. Die Elemente eines Arrays sind indiziert (nummeriert), der Zugriff auf 

ein einzelnes Element erfolgt über seinen Index. Elemente können an den festgelegten 

Positionen eingefügt, abgefragt oder geändert werden. Array-Elemente können auch 

Nullmarken enthalten. Ein Array kann am Ende um jeweils ein Element verlängert wer-

den und es kann an einer bestimmten Stelle abgeschnitten werden. 

In einem objektorientierten System können diese Konstruktoren  orthogonal ange-

wandt werden, was bedeutet, dass es für diese Konstruktionen keine spezifischen Ein-

schränkungen gibt, so dass beispielsweise Kollektionen aus beliebigen Datentypen 

erzeugt werden können. Insbesondere können Datentypen auch durch mehrfache 

Anwendung der Konstruktoren erzeugt werden, also z. B. 

ARRAY OF ROW

und dergleichen. 

8.1.5   Vererbung

Die Bildung von Hierarchien ist ein genuiner Bestandteil des objektorientierten Modells. 

Hier können Strukturen wie die Spezialisierung und Generalisierung unmittelbar umge-

setzt werden, die in einem relationalen Datenmodell nicht ohne semantische Verluste 

abgebildet werden können. Zum Beispiel sind für einen Typ Person verschiedene Spe-

zialisierungen in Hochschulangehörige und freie Dozenten denkbar, die ihrerseits weiter 

differenziert sein können, siehe Abb.  8.1. Dabei gilt für Studierende wie für Professoren bei allen spezifischen Unterschieden allgemein, dass sie Personen sind und damit alle 

Merkmale von Personen aufweisen. 

Im Bereich der Geografie – speziell der Kartografie – haben wir es mit Linienzügen zu tun, 

die Verschiedenes darstellen können, etwa Küstenlinien, Wasserwege, darunter Kanäle etc., 

siehe Abb.  8.2. Abgesehen von speziellen Eigenschaften wie Farben haben sie viele gemein-

same Eigenschaften, wie z. B. das Verhalten bei Veränderungen des Abbildungsmaßstabes. 

Die Hierarchiebildung wird dabei durch das Vererbungskonzept unterstützt, welches 

zwei Ausprägungen hat: Strukturvererbung  und Verhaltensvererbung. 

Die  Strukturvererbung bedeutet, dass jeder Untertyp alle Attribute des Obertyps ent-

hält. Er kann aber weitere Attribute enthalten oder auch Attribute des Obertyps in modi-

fizierter Form übernehmen.6 Beispielsweise hat jede Person eine Adresse, bestehend aus 

Straße, Hausnummer, Name, PLZ und Ort. Bei Hochschulangehörigen könnte zusätzlich 

6  Dabei muss der Typ des modifizierten Attributs eine Spezialisierung des geerbten Attributs sein. 

130

8  Objektorientierung und SQL

Person

Hochschul-

Dozent

Angehöriger

sonstiger

Studierender

Professor

Lehrbeauftragter

Bediensteter

Abb. 8.1  Typenhierarchie von Personen im Bereich Hochschule

Linienzug

Küstenlinie

Wasserweg

Verkehrsweg

Grenze

Kanal

Fluss

Straße

Schiene

Abb. 8.2  Typenhierarchie von Linienzügen im Bereich Geografie

ein Datum des Ersteintritts verwaltet werden. Professoren und sonstige Bedienstete 

haben eine Gehaltsstufe, Studenten aber nicht; bei Studenten wird wegen häufigen 

Umzugs eine zusätzliche Heimatadresse verwaltet. 

Die  Verhaltensvererbung betrifft die Methoden  Das ODMB Objekt Modell unterstützt 

die  Mehrfachvererbung. In dem Beispiel aus Abb.  8.1 ist der Subtyp Professor zugleich eine Spezialisierung von Dozent und von HS-Angehöriger und erbt daher von beiden 

die Attribute und Methoden. 

Verhaltensvererbung und Polymorphismus  Die Verhaltensvererbung bedeutet, dass jeder 

Subtyp automatisch die Methoden des Obertyps übernimmt. Er kann jedoch zusätzliche 

8.1  Das objektorientierte Datenbankmodell

131

Methoden anbieten oder ererbte Methoden redefinieren.7 Dies wird mit dem Begriff Polymorphismus gekennzeichnet. Beispielsweise können alle Hochschulangehörigen heiraten, 

aber nur bei Professoren und Bediensteten ändert sich dann automatisch die Gehaltshöhe. 

Welche spezielle Ausprägung einer Methode für ein konkretes Objekt anzuwenden 

ist, muss das System anhand der Zuordnung zu einer Subklasse entscheiden. 

Beispiel

Für geometrische Figuren sei grundsätzlich die Methode Fläche definiert. Eine Figur 

ist ein Ellipsenelement, Kreissegment, Kreis, Polygonzug, Viereck, Dreieck oder ach-

senparalleles Rechteck. Für jede dieser Figuren ist eine Formel für Fläche definiert. 

Für eine beliebige Figur f kann erst zur Laufzeit bestimmt werden, welche Formel zu 

wählen ist. Die Benutzung des einheitlichen Operators Fläche, der für die verschiedenen 

Unterklassen abweichend von der Oberklasse implementiert ist, wird als  Überschreiben 

bezeichnet, das Laden des entsprechenden Programmcodes  Überladung.  Den Vorgang, 

dass ein Programm zur Laufzeit aufgrund der Subklassenzugehörigkeit eines Objekts 

den passenden Algorithmus für für Fläche (f) auswählt, nennen wir  spätes Binden. 

8.1.6   Klassen und Extents

Eine   Klasse kann unmittelbar Objekte aufnehmen. Objekte einer Klasse werden (in 

Übersetzung des englischen Begriffs  instance) auch als  Instanzen bezeichnet. Eine Klasse 

beschreibt durch ihre öffentlichen Operationen auch eine  Schnittstelle, über die mit den 

Objekten der Klasse kommuniziert werden kann. 

Zum andern kann einer Klasse ein Behälter zugeordnet sein. Dieser für die Samm-

lung der Objekte zuständige Behälter wird als  Extent bezeichnet. Ein Extent bezeichnet 

also die Menge (oder Multimenge) aller Instanzen eines Typs, die zu einem Zeitpunkt 

in der Datenbank enthalten sind und auf die man zugreifen kann. Des weiteren können 

Elemente in einen Extent eingefügt, in einem Extent geändert oder aus einem Extent 

gelöscht werden Im Zusammenhang mit der Typen- und Klassenhierarchie gilt dabei:

wenn A der Extent des Typs a_typ ist, 

und b_typ ein Subtyp von a_typ, 

dann ist der Extent B von b_typ eine Teilmenge von A. 

Ein Objekt, das einer Unterklasse angehört, kann auch als Argument einer Operation der 

Oberklasse zugewiesen werden. Das Umgekehrte gilt nicht. 

Damit scheint das Vererbungskonzept in sich stimmig zu sein. Jedoch gibt es zwi-

schen den Betrachtungsweisen auf Klassen als Typ mit Attributen und Operationen 

(intensionaler Klassenbegriff) einerseits und Klassen als Sammlung von Objekten 

7 Dabei muss die modifizierte Methode „aufrufkompatibel“ zur ererbten sein. Das betrifft im 

Wesentlichen die Anzahl und die Typen der Ein- und Ausgabeparameter. 

132

8  Objektorientierung und SQL

(Extent, extensionaler Klassenbegriff) Widersprüche.8 So ist das Konzept der Mehrfach-

vererbung beim intensionalen Klassenbegriff kritisch und kann zu Widersprüchen füh-

ren, wenn die mehreren Oberklassen, von denen eine Unterklasse erbt, gleichnamige 

Attribute oder Operationen aufweisen. Welche Variante soll dann übernommen wer-

den? Beim extensionalen Klassenbegriff erscheint es hingegen ganz natürlich, dass eine 

Teilmenge von Objekten in mehreren überschneidenden Obermengen enthalten sein 

kann. Aber auch bei einfachen Vererbungsbeziehungen gibt es Phänomene, die mit dem 

außerinformatischen Begriff von Spezialisierung nicht übereinstimmen. So ist, mathema-

tisch betrachtet, ein Quadrat ein Rechteck mit der Spezialität, dass alle Seiten gleich lang 

sind. Ein Quadrat hat alle Eigenschaften eines Rechtecks: alle Winkel sind rechte, gegen-

überliegende Seiten sind gleich lang. In der Welt der objektorientierten Programmierung 

sind aber Rechtecke Quadrate, da sie alle Attribute von Quadraten (Seitenlänge a) ent-

halten, sich darüberhinaus aber durch weitere Attribute (Seitenlänge b) unterscheiden. 

In der objektorientierten Programmierung (im Gegensatz zu objektorientierten 

Datenbanken) gibt es in der Regel kein einer Klasse zugeordneten Extent. Objekte 

werden in Programmen erzeugt und man kann nur über einen Bezeichner oder eine 

Referenz auf sie zugreifen.9 Man kann allerdings für eine Klasse einen Extent implementieren. 10 In Datenbanken wollen wir dagegen auch in Programmläufen auf Objekte 

zugreifen, die in anderen Programmläufen erzeugt wurden. Daher benötigen wir hier für 

viele Anwendungen Extents von Klassen, um alle Objekte einer Klasse verarbeiten kön-

nen (Abb.  8.3). 

8.1.7   Objektidentität und Gleichheit

Ein Objekt muss  systemweit identifizierbar sein. Die Identität (OID) wird vom Sys-

tem selbst gepflegt. Sie ist nicht von der Schemadefinition abhängig – es muss kein 

Attribut dafür definiert werden. Somit gibt es keine Wertzuweisungen, wie das bei 

8  Eine Darstellung der Problematik findet sich in [Fran03]. Auch Date und Darwen nehmen zu 

dem Problem ausführlich Stellung in [DaDa00]. 

9 Auch in UML-Klassendiagrammen wird nicht zwischen Klassen als Typ und Extent unter-

schieden. Das führt zu dem Problem, dass man Typen, die „nur“ dazu dienen, als Domäne eines 

Attributs verwendet zu werden (vgl. Adresse in Abschn. 9.3) mit demselben Symbol darstellt wie 

Typen, deren Instanzen persistent gespeichert werden sollen, die also über einen Extent verfügen 

müssen. Mehr schlecht als recht behilft man sich mit Stereotypen, die lediglich als Texthinweis, 

beispielsweise  ≪persistent≫, auf die weitere Bedeutung der Klasse hinweisen. In Kap. 4 dieses 

Kapitels stellen wir unseren Ansatz vor, dieses Problem durch ein eigenes Typenmodell zu lösen. 

10 In Java muss man dazu in der Klasse cl ein statisches Attribut anlegen, z. B.: static 

TreeSet<cl> extent = TreeSet(); Des weiteren müssen alle Konstruktoren für cl den 

Aufruf extent.add(this); enthalten. Es kann dann an jeder Stelle im Programm der Extent 

durch cl.extent angesprochen werden. 



8.1  Das objektorientierte Datenbankmodell

133

Abb. 8.3  Begriffe im Zusammenhang mit objektorientierten Datenbanken

Schlüsselwerten im relationalen Datenmodell der Fall ist. Die Objektidentität ist von 

allen Attributwerten unabhängig und kann durch keine Operation geändert werden. 

Nach Löschen eines Objektes darf seine OID auch nicht an ein anderes Objekt überge-

hen. Die Objektidentität ist nicht für Benutzer als Wert erkennbar, sie ist ein rein syste-

minternes Merkmal. 

Hier ist ein gravierender Unterschied zum relationalen Modell vorhanden, welches 

Bezüge auf der Basis von  Werte- Gleichheit herstellt und nicht auf der Basis von Objekt-

Identität. Daher muss für Objekte der Begriff der  Gleichheit von dem Begriff der  Identität 

unterschieden werden. Gleichheit beruht auf dem Vergleich der Attributwerte von zwei 

Objekten, so dass zwei nicht identische Objekte in diesem Sinne „gleich“ sein können.11 

Die Rolle des Primärschlüssels, der bei relationalen Systemen Tupel identifiziert und die 

Verschiedenheit aller Tupel gewährleistet, wird damit entwertet. Gleichwohl kann es ein-

eindeutige Attribute wie Kundennummern etc. geben, mit denen der  Benutzer ein 

Objekt identifiziert. 

11 Die Alltagssprache unterscheidet auch zwischen „dasselbe“ (Identität) und „das Gleiche“ 

(Gleichheit). 

134

8  Objektorientierung und SQL

Abb. 8.4 Kapselung

Dozent

SELECT * 

FROM  dozent 

WHERE kurs_nr = 1234

einstelle_dozent() 

versetze_dozent() 

get_dozent() 

... 

 Methoden-Aufruf

 Ergebnis

get_dozent( )

Petersen, Paul 

Matzen, Matthias 

Mäkinen, Tuula 

8.1.8   Kapselung

Objekte können nach außen hin „gekapselt“ werden. Das bedeutet, dass ein direkter 

Zugriff von Benutzern respektive Anwendungsprogrammen auf die Attributwerte eines 

Objekts verwehrt ist. Kommuniziert wird mit Objekten ausschließlich über ihre Ope-

rationen (Methoden). Um den Namen der Dozenten von Seminaren zu erfahren, muss 

das Objekt Dozent eine Methode anbieten, die beispielsweise unter der Bezeichnung 

get_dozent aufgerufen werden kann und den geforderten Attributwert zurückliefert 

(Abb. 8.4). Somit können Objekte zur Implementierung von abstrakten Datentypen verwendet werden. 

Es ist aber möglich, spezielle Komponenten bei der Deklaration der Objektklasse 

als  PUBLIC festzulegen. Der Zugriff auf solche Attribute kann dann in einer SQL-

ähnlichen Sprache formuliert werden, so dass die Kapselung vom Benutzer gar nicht 

bemerkt wird. 

8.1.9   Lebenszeit von Objekten

Zwei Lebenszeiten sind im Objektmodell vorgesehen, die bei der Anlage von Objek-

ten angegeben werden müssen.  Transiente Objekte sind an die Laufzeit des Programms 

gebunden, in dem sie erstellt werden. Sie verschwinden mit der Beendigung des Pro-

gramms.  Persistente Objekte werden durch das Objektdatenbank-Managementsystem 

verwaltet und existieren unabhängig von dem Programm, das sie ins Leben gerufen hat. 

Dieses sind die eigentlichen Datenbankobjekte. 

8.1  Das objektorientierte Datenbankmodell

135

8.1.10   Beziehungen

Beziehungstypen12 werden zwischen Klassen definiert. Kardinalitäten13 werden ebenso 

festgehalten wie im Entity Relationship Modell oder in UML (vgl. Kap. 5). Eine Bezie-

hung ist selbst kein Objekt und hat keine Identität, sie dient lediglich dazu, einen Naviga-

tionspfad zwischen Objekten herzustellen und ermöglicht es Anwendungsprogrammen, 

die logischen Verbindungen zwischen Objekten verschiedener Klassen zu verfolgen. Die 

Definition von Beziehungen in Objektdatenbanken ist auf verschiedene Weise möglich. 

Während im relationalen Datenmodell Beziehungen nur über Fremdschlüssel realisiert 

werden, können wir im objektorientierten Umfeld beispielsweise Arrays von Referenzen 

als Datentyp für Attribute verwenden, und so eine x:M-Beziehung direkt darstellen. Wir 

zeigen in den Abschn. 8.3 und 8.4 Beispiele dafür. 

8.2 

 Objektorientierung im SQL-Standard

In der SQL-Norm wird Objektorientierung nicht verstanden als ein neues Paradigma, 

das den alten, relationalen Ansatz ablöst, sondern als eine Erweiterung des Konzepts, 

das damit sozusagen „aufwärtskompatibel“ zum relationalen Modell herkömmlicher 

Prägung ist. Dieser Ansatz wird als „objektrelational“ bezeichnet. So erlaubt SQL die 

Konstruktion von Datentypen beliebig komplexer Struktur einschließlich der Definition 

von Methoden, also „abstrakte Datentypen“. Diese Datentypen können Attributen zuge-

wiesen werden oder es können Objekttypen mit einer modifizierten Form der CREATE 

TABLE-Anweisung auf Basis eines Datentyps definiert werden. Die Implementierung 

eines Objekttyps ist immer eine Tabelle, wenngleich diese sich durch Attribute mit kom-

plexer Struktur erheblich von einer „flachen“ Tabelle, die die erste Normalform erfüllt, 

unterscheiden kann. Die „klassischen Tabellen“, wie wir sie in den übrigen Kapiteln des 

Buchs behandelt haben,sind nunmehr ein Spezialfall des erweiterten Konzepts. 

Wir gehen nicht im Detail auf die Vorschläge der Norm ein, da es nur wenige Imple-

mentierungen objektrelationaler Datenbanken gibt, von denen wir im Rest des Kapitels 

Oracle aufgreifen. Tabelle 8.1 zeigt, welche Konzepte der Norm von Oracle und PostgreSQL aufgegriffen und ggf. in modifizierter Form umgesetzt werden. 

12  Wir unterscheiden Beziehungen, die sich jeweils auf konkrete Objekte (Kunde Peter Stein und 

Bestellung Nr. 151) beziehen und Beziehungstypen, die auf einer höheren Abstraktionsebene Aus-

sagen darüber treffen, ob und wieviele Objekte einer Klasse prinzipiell eine Beziehung zu Objekten 

einer anderen Klasse haben können. Wenn klar ist, was gemeint ist, kann man den Begriff „Bezie-

hung“ auch verwenden, wenn eigentlich von einem Beziehungstyp die Rede ist. 

13 Kardinalitäten sind quantitative Aussagen über Beziehungen zwischen Objekten (Instanzen) 

der beteiligten Klassen. Hier werden die Klassen als Extent, Behälter für Objekte, angesehen. 

136

8  Objektorientierung und SQL

Tab. 8.1  OO-Konzepte im Vergleich

Eigenschaft

SQL-Norm

Oracle

PostgreSQL

neue Typen

√

√

√

Vererbung

√

√

√

Array

√

Varray

√

Tupel

ROW

ROW

ROW

Reference

√

√

–

Multiset

√

nested Table

–

Methoden

√

√

–

8.3 

 Objektrelationales Modell der Versanddatenbank  

in Oracle

Es folgen nun Beispiele für die im vorigen Abschnitt vorgestellten Modellelemente. Wir 

realisieren das im UML-Diagramm Abb.  8.5 wiedergegebene objektorientierte Modell 

der Versand-Datenbank. 14 Die Umsetzung der Beispiele haben wir mit einem Oracle-

DBMS erstellt und getestet. 

Zur Erläuterung: Die Pfeile an den Beziehungslinien geben an, das man von einem Objekt 

zum anderen navigieren kann. Beispielsweise können wir von Artikel zu mwst navigierend 

zugreifen, und zwar mit der „Punktnotation“, etwa in der Art: artikel.mwst.prozent. 

Beispiele dafür folgen in Abschn. 8.3.5. Den Adresse benutzen wir lediglich als benutzerdefinierten Datentyp für das Attribut Adresse unserer Klasse Kunde. Adressen werden selbst 

nicht gespeichert. Wir haben dies durch den Stereotyp ≪type≫ kenntlich gemacht, die ein-

zige Art, die UML zur Verfügung stellt, um solche Unterschiede deutlich zu machen. Sehr 

erhellend ist das aber nicht, da alle anderen Klassen natürlich auch Typen darstellen.15 

Außerdem haben wir die Beziehung zwischen Bestellung und Position als Komposition dar-

gestellt: Position ist ein Teil von Bestellung und eine Position kann ohne Bestellung nicht 

existieren. Auch die Beziehung zwischen Kunde und Adresse kann als Komposition aufge-

fasst werden, da eine Adresse Teil eines Kunden ist und nicht ohne diesen existieren kann.16 

Das Attribut telefonliste der Klasse Kunde ist für die Aufnahme mehrerer Werte 

14  UML wird in Kap. 5 beschrieben. 

15  Wir stellen in Abschn. 8.4 eine Notation für ein eigenes Datentypendiagramm vor. 

16  Aber wehe, es gäbe noch eine weitere Klasse, die auch ein Attribut vom Typ Adresse enthält. Dann 

wäre die Adresse Teil von zwei Ganzen, ohne die sie nicht existieren könnte. Damit hätte die Komposi-

tion als Beziehungstyp keine Berechtigung mehr. Hinsichtlich des Gebrauchs von Kompositionen sieht 

man vielerlei unterschiedliche und durchaus gegensätzliche Varianten in Klassendiagrammen. Es gibt 

keine vereinheitlichte, verbindliche und vor allem exakte Definition, an der eindeutig zu entscheiden 

wäre, wo diese Art von Beziehung hin gehört und wo nicht, da der Begriff „Teil-Ganzes“ ja auch unscharf 

ist. Wir raten dazu, Aggregationen und Kompositionen eher sparsam einzusetzen und in jedem Einzelfall 

zu prüfen, ob eine Teil-Ganzes-Beziehung vorliegt, die als solche kenntlich gemacht werden soll. 



8.3  Objektrelationales Modell der Versanddatenbank in Oracle

137

Abb. 8.5  UML-Diagramm der Versand-Datenbank – objektorientiert

vorgesehen. Kenntlich ist dies an den eckigen Klammern, die implementierungstechnisch für 

ein ARRAY stehen. Dazu gleich mehr. Kunde wird spezialisiert zu Kunde_mit_Bankeinzug. 

Nur Objekte der Unterklasse haben eine Bankverbindung. Es handelt sich um eine Teil-Gan-

zes-Beziehung mit Existenzabhängigkeit, also eine Komposition. Bankverbindungen werden 

hier als Teil der Kunden verwaltet, da der Versandhandel keinen Wert darauf legt, einfach 

irgendwelche Daten über Konten zu sammeln. 

Es gibt eine Reihe von Abweichungen zwischen Oracle und der SQL Norm17; die wir in Tab.  8.1 zusammengefasst haben:

•	 Die Kollektionstypen, die zur Zeit unterstützt werden, sind TABLE (entspricht 

MULTISET(ROW))  und  VARRAY. Ein VARRAY ist im wesentlichen ein Array mit 

einer jeweils vorgegebenen Maximalzahl von Komponenten; es kann aber auch 

weniger Komponenten enthalten. 

17  Siehe auch [CHRS98, S. 420ff.]. 

138

8  Objektorientierung und SQL

•	 Oracle bietet zur Formulierung von Methoden eine eigene Programmiersprache an, 

deren Syntax von SQL/PSM-Sprache abweicht. Sie ist als prozedurale Erweiterung 

von SQL entwickelt worden und heißt PL/SQL. Daneben können Methoden auch mit 

Java entwickelt werden. 

Daneben fällt auf, dass die unterstützten Möglichkeiten objektorientierter Datenmanipu-

lation mittels SQL nicht orthogonal realisiert sind. Das bedeutet: nicht überall, wo es the-

oretisch sinnvoll ist, auf einen Typ und seine Methoden zuzugreifen, ist es auch möglich. 

Namenskonventionen  Die erweiterten Möglichkeiten, die wir durch die Definition von 

Datentypen erhalten, bedingen gleichzeitig eine gesteigerte Vielfalt an Namen. Und weil es 

häufig notwendig ist, den Typkonstruktor beim Zugriff auf Attribute anzuwenden, kommt 

einer sauberen Unterscheidung von Typnamen, Attributbezeichnern und Objektnamen 

Bedeutung zu. Wir wenden in diesem Kapitel folgende Notationsrichtlinien an:

8.3.1   Abstrakte Datentypen als Wertebereich für Attribute

In diesem Abschnitt geht es zunächst um Datentypen, die als Basis bei der Deklaration von 

Attributen und Variablen verwandt werden. Die SQL-Norm stellt dafür beispielsweise 

INTEGER, REAL und VARCHAR zur Verfügung. In Kap. 4 des ersten Bandes18 haben wir behandelt, wie man mit dem Befehl CREATE  DOMAIN eigene Datentypen als Domänen definieren kann. Die so erzeugten Domänen stellen aber im Grunde nichts anderes als einen 

Standard-Datentyp mit einer zusätzlichen Einschränkung des Wertebereichs dar. Dabei 

fehlt bisher eine Möglichkeit, die Funktionalität eines solchen Typs zu definieren. Zu einem 

abstrakten Datentyp gehört aber auch die Festlegung seines Verhaltens, seiner Vergleich-

barkeit und der sonstigen Operationen, die mit ihm ausgeführt werden können. 19

18 [UnMa12]. 

19  Die hier vorgestellten Befehle sind als SQL-Skripte auf der CD im Verzeichnis \…\OracleOO zu 

finden. Hier geht es gerade um das Skript crykunde08. 

8.3  Objektrelationales Modell der Versanddatenbank in Oracle

139

Wir erzeugen zunächst einen Basistyp mit Struktur. In jeder Adresse kommen immer 

wieder die Angaben strasse, plz, ort vor. Warum nicht einfach einen Typ Adresse 

definieren, der diese Attribute als Komponenten enthält? Im vorigen Unterkapitel haben 

wir dies im Klassendiagramm bereits so dargestellt. 

Damit wäre bereits ein benutzerdefinierter Typ angelegt, allerdings ohne eigene Funktio-

nalität. Wollen wir neben Attributen auch Methoden definieren, so geschieht dies in zwei 

Schritten: Im ersten Schritt wird der Typ mit seinen Attributen und Methodensignaturen 

definiert, im zweiten Schritt werden die Methoden dann implementiert. 

Wir sehen für jedes Attribut eine get-Methode vor, die einfach den Attributwert 

zurückgibt. Diese Methoden müssen und können nur für ein bestimmtes Objekt ausge-

führt werden. Deswegen werden sie mit dem Zusatz MEMBER definiert. Außerdem defi-

nieren wir einen Konstruktor für ein Objekt. Hierbei handelt es sich um eine 

„Klassenmethode“, eine Methode, die nicht an ein bestimmtes Objekt gebunden ist – wie 

140

8  Objektorientierung und SQL

auch, das Objekt soll ja gerade erst mit der Methode erzeugt werden. Eine Klassenme-

thode wird als STATIC definiert.20

Mit dem obigen Befehl ist die Schnittstelle definiert. Ein Benutzer, der mit diesem Typ 

arbeiten will, muss lediglich diese Schnittstelle kennen, aber nicht die Implementierung. 

Diese wird nun vorgenommen:

20  Ein paar Hinweise zur Syntax: die Methoden werden hier mit der proprietären Sprache PL/SQL 

formuliert, die dem Standard ähnelt, aber auch einige Abweichungen aufweist. Jeder Befehl wird 

mit Semikolon abgeschlossen. Der Schrägstrich ganz am Ende signalisiert dem Befehlseditor, dass 

der darüber stehende Programmcode auszuführen ist. Eine Kurzeinführung in PL/SQL, die sich 

auch gut als Referenz eignet, findet sich in [FePD05]. 

8.3  Objektrelationales Modell der Versanddatenbank in Oracle

141

Der nächste Typ wird als VARRAY (VARYING ARRAY) deklariert, eine Struktur, die 

eine von vornherein beschränkte Anzahl gleichartiger Werte aufnehmen kann. Ange-

sichts der um sich greifenden Kommunikationstechnik könnten 5 Telefonnummern pro 

Person nützlich sein. 

Beide Typen sind im übrigen ein Affront gegen die erste Normalform für Relationen!21

8.3.2   Komplexe Objekttypen und Objekttabellen

Wir zeigen nun, wie die oben definierten abstrakten Datentypen (ADT) bei der Einrichtung 

eines komplexen Objekttyps verwendet werden können. Unsere bekannte Kundenrelation 

haben wird in Kap. 4 des ersten Bandes22 mit dem Befehl CREATE TABLE angelegt. Hier 

wird nun zunächst ein Objekttyp erzeugt, der dann als Basis für eine Objekttabelle dient. 

Wir benutzen hier die im vorigen Abschnitt definierten ADTs als Typangabe für die Attri-

bute kunden_nr, telefonliste, adresse. An dieser Stelle können keine Integritätsbe-

dingungen  angegeben werden. UNIQUE-Klauseln und ähnliches sind auf Typebene nicht 

gestattet. Wir müssen trotzdem nicht ganz auf sie verzichten, da wir beim Einrichten einer 

Objekttabelle darauf zurückkommen können. Hierauf gehen wir später ein. Die Klausel NOT 

FINAL am Ende ist notwendig, damit wir später Subtypen definieren können. 

21  Die Normalisierung von Relationen haben wir in [UnMa12] ausführlich in Kap. 11  behandelt. 

Die erste Normalform lässt sich übrigens „retten“, wenn man formuliert, dass alle Attribute ato-

mare Werte in Bezug auf den jeweiligen Datentyp haben. Wenn der Datentyp ein ARRAY ist, 

dann ist ein atomarer Wert  ein Exemplar eines solchen Arrays, auch wenn dieses seinerseits meh-

rere Werte eines elementaren Datentyps organisiert. 

22 [UnMa12]. 

142

8  Objektorientierung und SQL

Die Struktur des Objekttyps otyp_kunde ist nun definiert. Hätten wir Methoden 

mit angegeben, so müssten diese anschließend implementiert werden. Um den Typen zu 

instanziieren, benötigen wir einen Behälter (Extent), der die Objekte aufnehmen kann. 

Hier liegt der wesentliche Unterschied zwischen objektorientierten und objektrelationa-

len Datenbanken: der Behälter für Objekttypen ist eine Tabelle. Die CREATE TABLE-

Anweisung kommt in neuer Form daher, um solche typisierten Tabellen zu erstellen: 

Die Klausel SUBSTITUTABLE AT ALL LEVELS wird hier in weiser Voraussicht einge-

setzt, um diesen Extent auch für Objekte des später zu erstellenden Typs Kunde mit 

Bankeinzug nutzen zu können. Anschließend werden, wie man sieht, die altbekannten 

Integritätsbedingungen (vgl. [UnMa12,  Kap. 4]) formuliert. 23 Nicht auf der Ebene der Typ-

Definition werden diese festgelegt, sondern auf der Ebene der Definition von Extents.24 Das führt zu einem Konflikt. Legen wir bei der Kundennummer Wert darauf, dass sie die Fähigkeit 

hat, selbst fortlaufende Nummern zu erzeugen und nicht mit Artikelnummern vergleichbar zu 

sein? Dann hätten wir für Kundennummern einen eigenen Abstrakten Datentyp definieren 

müssen. Oder legen wir Wert darauf, dass die Primärschlüsseleigenschaft festgehalten wird? 

Letztere brauchen wir zwar in Objektorientierten Datenbanken nicht wegen der Entitätsinteg-

rität – die OID ist ein besserer Ersatz für den Primärschlüssel. Als Anwender wollen wir aber 

vielleicht doch nicht die identifizierende Funktion der Kundennummer missen. Beides 

zugleich geht jedenfalls nicht so ohne weiteres. Die PRIMARY KEY-Klausel ist zwar für 

Objekttabellen erlaubt, aber nicht für Attribute, deren Basis ein ADT ist! Dies ist ein Beispiel 

für die derzeit mangelnde Orthogonalität dieser objektrelationalen SQL-Implementierung. 

23  Es werden aber keine Einschränkungen außer NOT NULL für Spalten, deren Typ ein Objekt, 

eine eingebettete Tabelle, VARRAY, REF oder LOB ist, akzeptiert. 

24  Wir halten es für einen Mangel des objektorientierten Datenmodells, dass Integritätsbedingun-

gen nicht deklarativ auf Typebene formulierbar sind. Es müssen dafür jeweils Methoden definiert 

werden, die beim Einfügen oder Ändern einer Objektinstanz die Einhaltung von Bedingungen 

überprüfen. Eine recht umständliche Angelegenheit! Darüber hinaus ist das Redefinieren eines 

Typ-Konstruktors vielfach im objektrelationalen Modell nicht möglich. 

8.3  Objektrelationales Modell der Versanddatenbank in Oracle

143

Wenn wir auf die Deklaration eines Schlüssels nicht verzichten wollen, müssen wir wohl oder 

übel als Wertebereich für Kunden_nr den Standarddatentyp NUMBER(4,0) einsetzen, und 

können dann die Anweisung CREATE TABLE otab_kunde um die Klausel

ergänzen.25

Die Verwendung von ADTs als Wertebereich für Attribute erfordert, wie wir bereits oben 

(Seite 21) gezeigt haben, Sorgfalt im Hinblick auf die Verarbeitung ihrer Werte. Wir können 

beim Einfügen eines Kundentupels in die neue Tabelle nicht einfach drei Strings als Adresse 

übergeben, sondern müssen als Attributwert jeweils ein Objekt vom Typ otyp_adresse 

konstruieren und dieses komplett verarbeiten. Gleiches gilt für die Telefonliste.26

Wir haben im relationalen Modell unserer Versand-Datenbank (siehe Anhang) die Einrich-

tung einer eigenen Tabelle für die Mehrwertsteuersätze als zweckmäßig erachtet. Diese Sätze 

ändern sich nicht sehr häufig und kommen immer wieder bei jedem Verkauf eines Artikels 

zur Anwendung. Aus demselben Grund ist auch die Einrichtung einer eigenen Objektta-

belle für die Mehrwertsteuer im objektrelationalen Modell sinnvoll. Wir zeigen an dieser 

Variante einer Typdefinition die Möglichkeit, eine eigene Methode für die Sortierung ein-

zurichten (wobei dieses Beispiel nicht sehr kompliziert ist, anders z. B. bei Multimedia- oder 

Geografie-Daten). Weiter enthält dieses Beispiel einen Konstruktor, um ein neues Objekt zu 

erzeugen und dabei auf die Einhaltung des Wertebereichs für den Schlüssel zu achten. Leider 

kann der Standardkonstruktor, der den Namen des Typs hat, nicht überschrieben werden, 

so dass wir hier einen eigenen Namen vergeben müssen. Der Konstruktor ist eine STATIC-

Funktion, da er nur einmal für die ganze Klasse existiert, die Sortierfunktion wird hingegen 

als MEMBER-Funktion eingerichtet, da sie für jedes Objekt einmal ausgeführt werden muss. 

25  Dieses Beispiel ist in dem Skript crykunde08.sql enthalten, welches man über den Verlagsser-

ver zum herunterladen findet. Wenn man es komplett ausführen lässt, werden auch die Typen für 

Bankverbindung und für Kunden mit Girokonto angelegt. 

26  Dieses Beispiel ist in dem Skript inskunde08.sql enthalten. Die Skriptdatei enthält aber weitere Ein-

fügebefehle, die erst funktionieren, wenn wir die Subklasse für Kunden mit Girokonto erzeugt haben. 

144

8  Objektorientierung und SQL

Die Implementierung der Methoden erfolgt separat. 

8.3  Objektrelationales Modell der Versanddatenbank in Oracle

145

Die MAP-Funktion bildet ein Objekt vom Typ otyp_mwstsatz auf eine Zahl ab. Die 

Abbildungsvorschrift wird mit der Implementierung festgelegt. Wir haben hier einfach 

den Prozentsatz genommen. Es könnte aber jeder beliebige numerische Ausdruck sein, 

der sich beispielsweise bei einer geometrischen Figur aus einer mehr oder weniger kom-

plizierten Flächenberechnung ergäbe. Die Definition dieser Methode eröffnet uns die 

Möglichkeit, bei der Ausgabe der Tupel mit der ORDER BY VALUE-Klausel eine Stan-

dardsortierung anzufordern. 

Die Angabe

ist eine „Compiler-Direktive“. Sie ist notwendig, um „Seiteneffekte“  zu kontrollieren und 

besagt, dass weder Datenbank-Zustände gelesen oder verändert werden noch Prozedurva-

riablen. Wir beschäftigen uns mit diesen mehr technischen Dingen hier nicht weiter. 

Der Bezeichner self zeigt zur Laufzeit auf das Objekt (Exemplar), bei dessen Bearbei-

tung die Methode aufgerufen wurde. 

Wir erzeugen eine Objekttabelle auf Basis des Typen:

In diese können wir nun Tupel mit Hilfe des Konstruktors einfügen, z. B27:

8.3.3   Vererbung

Das UML-Diagramm am Anfang des Abschn. 8.3 enthält eine Spezialisierungsbeziehung zwischen Kunde und Kunde_mit_Bankeinzug. Der Subtyp enthält zusätzliche Attribute. 

Da eine Bankverbindung immer dieselben Attribute hat, können wir verfahren wie bei 

der Adresse und dafür einen eigenen Typen einführen. 

27  Dieses Beispiel ist mit in den Skriptdateien cryartikel.sql und insartikel.sql enthalten. Ein Link 

dazu befindet sich auf dem Verlagsserver. 

146

8  Objektorientierung und SQL

Der Typ für Kunden mit Bankeinzug wird nun als Subtyp erzeugt, indem man mit der 

Klausel UNDER den Obertypen28 referenziert und ansonsten nur die zusätzlichen Attri-

bute (und gegebenenfalls Methoden) spezifiziert. 

Um einen Extent zu erzeugen, der Kunden und Kunden mit Bankverbindung als Objekte 

speichern kann, lässt sich ausnutzen, dass Objekte einer Unterklasse immer zugleich 

Objekte der Oberklasse sind. Das bedeutet, dass es nicht notwendig ist, eine eigene 

Extent-Tabelle für Kunden mit Bankverbindung anzulegen. 29 Der Extent für Kunden 

wird angelegt, wobei wir mit der Klausel SUBSTITUTABLE AT ALL LEVELS verlangen, 

dass immer dann ein Subtyp von otyp_kunde verwendet werden darf, wo ein Kunde 

gefragt ist. Wir brauchen hier also weiter nichts zu tun, da wir oben die Kundentabelle 

bereits so angelegt haben:

Wir fügen nun zwei Tupel in die Objekttabelle otab_kunde ein, eines ohne und eines 

mit Bankverbindung. Beim zweiten Mal müssen wir unbedingt den Konstruktor für 

otyp_kunde benutzen, da dieser prinzipiell auch als Methode an die Unterklasse vererbt 

28 Wir haben hier den Obertypen otyp_kunde angegeben. Dieser hat ein skalares Attribut als  

Kundennummer. Bei der Anlage der Objekttabelle otab_kunde kann man dann deklarativ einen 

Primärschlüssel erzeugen:

Auf dem Verlagsserver befindet sich ein Link zu diesem Beispiel, hier relevant das Skript 

crykunde.sql. 

29 Es wäre zwar möglich, dies zu tun, dann würde der Extent von otyp_kunde aber nicht die 

Objekte von otyp_kunde_mit_Bankverbindung enthalten, im Widerspruch zum Prinzip, dass 

Objekte der Unterklasse Objekte der Oberklasse sind. 

8.3  Objektrelationales Modell der Versanddatenbank in Oracle

147

wird. Sonst würde eine Fehlermeldung erzeugt, die angibt, dass die VALUES-Klausel des 

INSERT-Befehls mehr Spalten enthält als die Tabelle. 

Abfragen von Daten aus einer Objekttabelle behandeln wir wenig später in Abschn. 8.3.6. 

8.3.4   Referenzen

Die Beziehung zu einem Objekt eines eigenständigen Objekttyps wird durch eine 

„Referenz“ hergestellt.30 Implizit wird dafür die OID genutzt, der Nutzer hat jedoch damit nichts zu tun. Voraussetzung für die Referenzierbarkeit eines Objekttyps ist, dass 

ein Extent in Form einer Objekttabelle erzeugt worden ist. 

Die Einbindung einer Referenz in eine Typdefinition geschieht über ein Attribut 

(„Referenzattribut“). Dessen Typ wird auf folgende Weise angegeben:

Wir nutzen dieses Konstrukt, um einen Objekttyp für Artikel zu erzeugen, der eine Refe-

renz auf den zugehörigen MwStSatz enthält.31

30 In imperativen Programmiersprachen wie Pascal, C, C++ entspricht das im Wesentlichen 

einem Pointer bzw. einer Adresse. 

31  Dieses und alle anderen Beispiele sind in vollständiger Ausführung in unseren Skripten enthal-

ten. Ein Link dazu befindet sich auf dem Verlagsserver. 

148

8  Objektorientierung und SQL

Wir haben eine Methode angegeben, die den MwStSatz eines Artikels zurückgibt. Die 

Implementierung überlassen wir als Übung dem Leser. 32 Wie in den vorherigen Fällen richten wir als Extent eine Tabelle ein, zu der dann auch die Integritätsbedingungen so 

formuliert werden, wie wir es bei der relationalen Fassung auch getan haben. 

Beim Einfügen von Objekten muss, wie wir bereits gesehen haben, der Typ der Attri-

bute respektiert werden, was bei ADTs den Einsatz des Konstruktors erfordert. Der Kon-

struktor für den MwstSatz heißt in unserem Fall REF und muss sich auf ein konkretes 

32  In der Datei cryartikel unserer Skriptsammlung findet sich die Lösung. 

8.3  Objektrelationales Modell der Versanddatenbank in Oracle

149

Objekt vom Typ otyp_mwstsatz beziehen. Dies macht eine Abfrage erforderlich, weil wir 

auf andere Weise keine Referenz auf ein Mwst-Objekt erzeugen können. Alle anderen 

Attribute müssen dabei als Konstante mit angegeben werden. 

Mit der obigen Einfügeabfrage wird für das Attribut mwst die OID des Objekts mit dem 

Schlüsselwert mwst = 2 eingetragen. 

Etwas logischer erscheint vielleicht die folgende Variante, bei der die SELECT-Anwei-

sung, die die Referenz auf das MwSt-Objekt liefert, einzeln innerhalb der Werteliste 

auftritt. Diese Variante ist jedenfalls dann zu empfehlen, wenn mehr als eine Referenz 

übergeben werden soll, sonst wird die gesamte Anweisung recht unübersichtlich. 

8.3.5   Abfragen

Bevor wir Abfragen an einzelnen Beispielen erläutern, ein Hinweis: In vielen Fällen, und 

immer dann, wenn objektorientierte Möglichkeiten genutzt werden,  muss in der FROM-

Klausel ein Tabellenalias angegeben werden. Der Grund dafür ist, dass jedes zurückgege-

bene Tupel zunächst in ein Objekt verwandelt werden muss, damit beispielsweise dessen 

Methoden zur Verfügung stehen. 

Für die Abfrage einer Objekttabelle steht zunächst einmal der SELECT-Befehl in sei-

ner bekannten Form zur Verfügung. Allerdings sind die Resultate nicht unbedingt sehr 

leserlich, wenn man in der Projektionsangabe den Namen eines nicht-skalaren Attributs 

angibt. Zum Beispiel liefert die Abfrage des Attributs mwst der Tabelle otab_artikel 

eine Ausgabe der folgenden Art:

Abgesehen davon, dass man die OID eigentlich als Nutzer nicht sehen sollte, ist das 

natürlich keine Aussage von Wert. Man muss daher, um die Mehrwertsteuerangaben 

150

8  Objektorientierung und SQL

eines Artikels im Klartext zu sehen, die Referenz auflösen, sozusagen ersetzen durch das 

konkrete Objekt, auf das sie zeigt. Dafür gibt es den Operator DEREF

In der Antwort werden nicht einfach die Werte des entsprechenden Tupels der Mehr-

wertsteuer-Tabelle ausgegeben, sondern dies geschieht mit vorangestellten Typbezeich-

nern in Klammern. Auch hier sieht man, dass das objektrelationale Modell sehr genau 

Typen und Werte unterscheidet. 

Interessant ist aber die Möglichkeit, die wir im Folgenden vorstellen. Die Einbettung 

eines Verweises auf ein Tupel der Mehrwertsteuer-Tabelle über eine Referenz macht den 

Zugriff auf seine Attribute quasi als Eigenschaft eines Artikels möglich. Dazu dient die 

sogenannte „Punktnotation“.33

33  Dass im Befehl die Wertangabe mit Dezimalpunkt erscheint und in der Ausgabe mit Dezimal-

komma, ist kein Druckfehler. Die Ausgabe ist auf deutsches Zahlenformat eingestellt. In Anwei-

sungen werden Zahlenwerte dagegen stets mit Dezimalpunkt angegeben. Dies gilt auch für fast alle 

Programmiersprachen, da diese normalerweise auf der englischen Sprache basieren. 

8.3  Objektrelationales Modell der Versanddatenbank in Oracle

151

Im Ausdruck a.artikel_nr wird – wie von der relationalen Datenmanipulation her 

bekannt – kundgetan, dass artikel_nr ein Attribut der Tabelle otab_artikel mit dem 

Alias a ist. Der Ausdruck a.mwst.prozent gibt an, dass prozent ein Attribut von mwst 

und mwst ein Attribut von a ist. Gegenüber der oft recht aufwendigen Formulierung eines 

Joins ist der Zugriff hier eindeutig erleichtert. Man bezeichnet diese Art auch als „navigie-

renden Zugriff “, da man über ein Objekt „einsteigt“ und über die von ihm ausgehenden 

Referenzen zu anderen Objekten hin „navigiert“. 

Die Objekte von Kunden mit Bankverbindung waren in Abschn. 8.3.4 in die Objekttabelle für Kunden eingefügt worden, die ja per Definition eigentlich nicht über die 

Attribute der Bankverbindung verfügt. Da wir aber den Typ für Kunden mit Girokonto 

als Subtyp von otyp_kunde eingeführt hatten, lassen sich dessen Objekte wie normale 

Kunden behandeln. Nun muss sich zeigen, dass die Zusatzangaben auch bei Abfragen 

wieder zur Verfügung stehen. Dazu ist es erforderlich, die Behandlung der zusätzlichen 

Attribute explizit anzufordern, indem man verlangt, dass alle Kunden wie Exemplare des 

Subtyps behandelt werden. Damit werden die zusätzlichen Attribute des spezialisierten 

Typs in die Projektionsliste übernommen, und für normale Kunden erhalten sie den 

Wert NULL:

Die Abfrage eines VARRAYS erfordert besondere Vorbereitungen. Der Typ otyp_

kunde enthält ein VARRAY telefonliste für Telefonnummern. Möchte man sich 

im Rahmen einer SELECT Anweisung beispielsweise die erste davon anzeigen lassen, 

funktioniert dies nicht mit dem Ausdruck telefonliste(1) oder auch telefon-

liste[1], wie man es von Programmiersprachen her kennt. Vielmehr ist es notwendig, 

hierzu eine Funktion zu schreiben, die dann in der Abfrage verwendet werden kann. 

152

8  Objektorientierung und SQL

Leider lässt sich die Funktion nicht für alle VARRRAYs verallgemeinern, sie muss auf 

Basis eines mit CREATE TYPE angelegten besonderen Typs definiert werden. 

In einer Abfrageanweisung könnten dann folgendermaßen einzelne Telefonnummern 

angezeigt werden:

8.3.6   Eingebettete  Objekttypen

Oracle unterstützt zur Zeit zwei Kollektionstypen: VARRAY und die eingebettete Tabelle 

(nested table).34 Mit eingebetteten Tabellen als Typ können Attribute definiert werden, die eine Multimenge von Tupeln enthalten. Wenn eine solche Tabelle nur ein Attribut 

enthält, handelt es sich eben um eine Multimenge von Einzelwerten. Die Einbettung einer 

Tabelle, die selbst auf einem Objekttyp beruht, in einen anderen Objekttyp stellt eine sehr 

enge Verbindung dar. Wir haben sie in Abschn. 5.3 als Komposition eingeführt. In unserer Fallstudie kann die Verbindung zwischen einer Bestellung und ihren Positionen als 

Komposition aufgefasst werden. Im Entity-Relationship-Modell würde man einen einge-

betteten Objekttyp in vielen Fällen als abhängigen Entitätstyp modellieren.35

Um diese Idee umzusetzen, müssen wir erst einen Objekttyp für Positionen defi-

nieren, den wir dann in einen Typ für Bestellungen einbetten. Langsam werden unsere 

Objekttypen auch komplexer, denn eine Position enthält einen Verweis auf einen Arti-

kel. Wir verwalten Artikel unabhängig von Bestellpositionen und sollten deshalb hierfür 

eine Referenz einsetzen. Da der Typ otyp_artikel selbst wieder ein Attribut vom Typ 

34  In der Norm entsprechend ARRAY und MULTISET. 

35  Das Konzept der abhängigen Entität ist aber nicht identisch mit dem objektorientierten Kon-

zept der Komposition. Wir haben dies in Abschn. 5.3 dargelegt. 

8.3  Objektrelationales Modell der Versanddatenbank in Oracle

153

REF otyp_mwsatz enthält, haben wir dann gleich eine mehrstufige Referenz. Wir zeigen 

hierbei auch noch einmal ein Beispiel für eine Methode mit dem Namen get_artikel_nr, 

die die Anzeige der Artikelnummer einer Bestellposition etwas einfacher gestaltet. 

Wir haben nunmehr den Typ einer einzelnen Position beschrieben. Wenn wir eine ganze 

Tabelle davon in eine Bestellung einbetten wollen, müssen wir einen Kollektionstyp definieren. 

Jetzt kann otyp_bestellung erstellt werden. 

Wir erzeugen anschließend einen Extent für diesen Typ mit der Besonderheit, dass wir 

auch für die eingebettete Tabelle einen Namen vergeben können. 

154

8  Objektorientierung und SQL

Das Einfügen eines neuen Tupels in Bestellung wird nun wegen der relativ komplizierten 

Struktur schon etwas aufwändig. Es lässt sich aber vermeiden, dass man mit der Bestel-

lung gleich alle Positionen übergibt. Mit dem Ausdruck

wird die Sammlung instanziiert, bleibt aber leer. Die Tupel, die ihn mit Inhalt füllen, 

können später separat an die Datenbank übermittelt werden. 

Die Tatsache, dass ein Attribut nicht einen Wert, sondern eine Tabelle enthalten kann, 

hat weitreichende Konsequenzen. 

Wir können solche Attribute nicht wie einen (skalaren) Wert behandeln, sondern 

müssen den Tabellenkonstruktor TABLE verwenden

Die Klausel 

liefert uns eine Tabelle, die an Stellen, in denen Tabellen auftreten können, eingesetzt 

werden kann. Das sind neben der SELECT-Anweisung auch die INSERT-, UPDATE- 

und DELETE-Anweisung. 

Damit wir das folgende Tupel der richtigen Bestellung zuordnen können, wird die 

Zieltabelle für den folgenden INSERT-Befehl durch eine Abfrage erzeugt. Die Referenz 

auf einen Artikel lässt sich wieder nur über eine SELECT-Anweisung darstellen und in 

das neue Tupel einfügen. 

Die Anzeige von Bestelldaten mit dem Namen des Kunden kommt wieder ohne Join aus. 

8.3  Objektrelationales Modell der Versanddatenbank in Oracle

155

Die Positionsdaten einer Bestellung aus der eingebetteten Tabelle anzuzeigen, erfordert noch 

ein syntaktisches Konstrukt, die CURSOR-Klausel. Der Cursor liefert einen sequenziellen 

Zugriff auf die Tupel der Untertabelle, um dort, wo sonst ein einzelner Attributwert steht, 

eine Menge von Tupeln als Tabelle anzuzeigen. 36 Bei der ersten Variante erscheint wieder die 

unleserliche OID, die die Referenz auf den MwStSatz des Artikels darstellt. In der zweiten 

Varianten projizieren wir, entlang der Referenzen navigierend, auf Einzelattribute. 

1. Variante:

36  Zum Cursor-Konzept vgl. Kap. 4. 

156

8  Objektorientierung und SQL

2. Variante

8.3.7   Schreiboperationen in Objekttabellen

Wir haben bereits vorgeführt, wie man Daten in eine Objekttabelle einfügt. Weitere 

Schreiboperationen sind Änderungen an vorhandenen Objekten und Löschungen. 

Das Löschen von Daten aus Objekttabellen geht genauso vor sich wie bei der relatio-

nalen Variante. Der folgende Befehl löscht die Bestellung 151:

Damit werden gleichzeitig die Positionsdaten in der eingebetteten Tabelle gelöscht. Eine 

Besonderheit gibt es bei eingebetteten Tabellen. Hier muss eine Subquery mit dem Typ-

konstruktor  TABLE verwendet werden. Der folgende Befehl löscht alle Positionen der 

Bestellung 151: 

8.3  Objektrelationales Modell der Versanddatenbank in Oracle

157

Das Ändern von Daten mit dem UPDATE-Befehl unterliegt einigen Besonderheiten, 

wenn es sich nicht um skalare Attribute handelt, sondern Attribute, die auf einem benut-

zerdefinierten Typ beruhen. Im Falle der Kundenadresse haben wir ein Attribut auf Basis 

des Typs otyp_adresse mit innerer Struktur definiert. Der Zugriff auf eine einzelne 

Komponente erfolgt mit der „Punktnotation“:

Der Tabellenalias k darf dabei nicht fehlen. Erlaubt ist auch die Anwendung des UPDATE-

Befehls auf eine konstruierte Tabelle, die Resultat einer Abfrage ist. 

Hier haben wir die Struktur der Adresse aufgelöst, so dass eine „flache“ Tabelle vorliegt. 

Schreiboperationen in eingebettete Tabellen Um Attributwerte in einer eingebette-

ten Tabelle zu aktualisieren, ist es erforderlich, diese sozusagen in eine „normale“ Tabelle 

umzuwandeln. Dazu dient der Typkonstruktor TABLE, den wir in Abschn. 8.3.7 eingeführt haben. Möglich ist dies nur für jeweils eine Bestellung, da für jedes Bestellung-Objekt die 

eingebetteten Positionen eine eigene Tabelle darstellen: der Datentyp des Attributs posi-

tionen ist ntyp_position, letzterer wurde als TABLE OF otyp_position definiert. 

Ändern wir nun für die Bestellung 151 die Bestellmenge für Whisky auf 1000:

Der Befehl UPDATE bezieht sich auf das Attribut in otab_bestellung, das die einge-

bettete Tabelle enthält. Mit dem Konstruktor TABLE wird dieses in eine selbständige 

Tabelle umgewandelt. Dieser Tabelle wird der Aliasname p gegeben. Somit kann auf alle 

Attribute in der WHERE- und SET-Klausel zugegriffen werden. 

Auch mehrere Tupel dieser eingebetteten Tabelle können zugleich mit einer 

UPDATE-Anweisung geändert werden, solange es sich um dieselbe Bestellung handelt. 

158

8  Objektorientierung und SQL

8.3.8   Object  Views

Ein View ist eine virtuelle Tabelle, erzeugt durch eine Abfrage. Wir haben dies in Kap. 9 

unseres ersten Bandes37 beschrieben. Ein object view ist das Gleiche als Objekttabelle. 

Jede Zeile in einem object view ist ein Objekt mit Attributen und möglicherweise Metho-

den. Ein interessanter Aspekt an dieser Form der Datensichten besteht darin, dass es 

möglich ist, object views auf relationalen Basistabellen aufzubauen. Damit gewinnt man 

Vorteile bei der objektorientierten Programmierung von Anwendungen. Die Zugriffe auf 

Daten können beispielsweise über die object views erfolgen, so als wären die Datenstruk-

turen objektorientiert und nicht relational.38 Ein weiterer Vorteil besteht darin, dass die Navigation zu den Werten komplexer, auf abstrakten Datentypen basierender Attribute 

einfacher sein kann, 39 als ein komplizierter Join über 2 oder mehr Tabellen. 

Wir zeigen ein Beispiel, in dem wir object views über den Basistabellen unserer rela-

tionalen Versanddatenbank anlegen. Im Unterschied zu relationalen Datensichten sind 

jeweils zwei Schritte erforderlich. 

Zunächst erzeugen wir einen Datentyp für Kundenobjekte. Dabei wollen wir die 

Adresse als benutzerdefinierten Datentyp verwalten. 

Im zweiten Schritt erzeugen wir den view über eine Abfrage, die natürlich objektspezi-

fische Eigenarten enthält. Die eine ist die optionale Festlegung, dass die OID auf Basis 

des Primärschlüssels erzeugt werden soll. Weiterhin müssen wir den Standardkonstruk-

tor für eine Adresse benutzen, um mit den Werten von Straße, Postleitzahl und Ort ein 

Objekt vom Typ otyp_adresse zu erzeugen. 

37 [UnMa12]. 

38 Schreibende Zugriffe auf Views sind nicht immer zulässig, wie wir in Kap. 9 von [UnMa12] 

ausgeführt haben. Es gibt aber die Möglichkeit, über INSTEAD OF-Trigger das Verhalten eines 

UPDATE-Befehls so umzudefinieren, dass er die gewünschten Operationen auf Basistabellen 

ausführt. 

39 Darüber, was im Endeffekt einfacher ist, können sich nun Anhänger der Objektorientierung 

und Verfechter des "klassischen" relationalen Ansatzes endlos streiten. 

8.3  Objektrelationales Modell der Versanddatenbank in Oracle

159

Der Objekttyp für Bestellungen enthält nun eine Referenz auf den object view für Kunden. 

Eine Abfrage auf diese Datensicht zeigt uns nunmehr die in relationalen Tabellen gespei-

cherten Tupel wie Objekte:

160

8  Objektorientierung und SQL

8.4 

 Logischer Entwurf objektrelationaler Datenbanken  

für Oracle

Der logische Entwurf und die Dokumentation objektrelationaler Datenbanken stellt 

besondere Anforderungen. Die mögliche Vielzahl benutzerdefinierter Datentypen mit 

mehrstufigen Abhängigkeiten und deren Nutzung in Objekttabellen kann schnell dazu 

führen, dass Entwickler und Anwender der Datenbank den Überblick verlieren. 

UML-Klassendiagramme haben sich als Darstellungsmethode für den Technologie-

unabhängigen Entwurf von Datenstrukturen und Verhalten für Datenbanken aller Art 

und objektorientierte Programme durchgesetzt. Sie sind nur gedacht für und können nur 

beim  konzeptuellen Entwurf helfen. Der logische Entwurf ist dann daraus abzuleiten und 

unterstellt die Möglichkeiten der für die Implementierung vorgesehenen technischen 

Plattformen, insbesondere das Datenmodell (relational, objektorientiert, objektrelati-

onal) und sogar deren herstellerspezifische Besonderheiten. Für den Entwurf objekt-

relationaler Datenbanken heißt das: die Umsetzung von Klassen und Assoziationen in 

Datentypen und deren Verwendung in weiteren Datentypen sowie in typisierten Objekt-

tabellen erfordert weitergehende Entscheidungen des Entwicklers. 

Das Klassendiagramm (Abb.  8.5) zeigt intensionale und extensionale Sicht in einem. 

Die intensionale Sicht wird durch die Klassen als Typen, deren Attribute und Metho-

den und durch die Assoziationen angegeben. Die extensionale Sicht existiert darin, dass 

implizit die Klassensymbole auch für die Behälter der Objekte stehen. Außerdem gehö-

ren die Kardinalitäten an den Assoziationen zur extensionalen Sicht, da sie beschreiben, 

wieviele  Objekte einer Klasse B mit jeweils einem Objekt der Klasse A in Beziehung ste-

hen und umgekehrt. Die Vererbungsbeziehung vereint auf besondere Weise intensionale 

und extensionale Sicht: die Subklasse wird hinsichtlich der Strukturelemente „größer“, 

da sie alle Attribute und Methoden der Oberklasse „erbt“, sie ggf. überschreibt und wei-

tere Attribute und Methoden hinzufügen kann. Extensional betrachtet, ist hingegen die 

Oberklasse „größer“, da alle Objekte der Unterklasse auch der Oberklasse angehören. 

Verschiedene Möglichkeiten für die Umsetzung von Beziehungen Für die Trans-

formation des konzeptuellen Modells in Abb.  8.5 in objektrelationale Strukturen gibt 

es verschiedene Möglichkeiten, die Beziehungen zu realisieren. Wir können ein Objekt 

direkt in ein anderes einbetten, indem wir es als Datentyp für ein Attribut verwenden. 

Wir können es alternativ für sich bestehen lassen und von anderen Objekten mit einer 

Referenz darauf verweisen (Typkonstruktor REF). Wir können schließlich auch die rela-

tionalen Fremdschlüssel benutzen, was aber dem objektorientierten Paradigma wider-

spräche. Beziehungen mit Kardinalität „viele“ auf einer Seite und 1 auf der anderen Seite 

können analog dem Fremdschlüssel über eine Referenz auf das Objekt, das einmal an 

der Beziehung beteiligt ist, umgesetzt werden. Sie können auch von der anderen Seite 

her durch ein Varray oder eine eingebettete Tabelle realisiert werden. Schließlich las-

sen sich all diese Möglichkeiten kombinieren, z. B. sodass ein Varray Referenzen ent-

hält usw. Wie auch immer der Entwerfer entscheidet – sicher ist, dass die Struktur der 

8.4  Logischer Entwurf objektrelationaler Datenbanken für Oracle

161

Anwendungsdatenbank durch eine Vielzahl von benutzerdefinierten Datentypen geprägt 

wird, zwischen denen vielfältige Abhängigkeiten bestehen. 

Wir sehen darin einen Grund, für ein eigenes Typmodell zu plädieren, das als Bau-

plan für die CREATE TYPE Anweisungen verstanden werden soll – und natürlich 

genauso der nachträglichen Dokumentation dienen kann. Einige Argumente mögen dies 

untermauern:

•	 Auf Basis eines abstrakten Datentyps können mehrere verschiedene Tabellen als 

Extent erzeugt werden. 

•	 zwischen Typen sind andere (weniger) Beziehungen möglich als zwischen Klassen 

(im Wesentlichen „verwendet“, „referenziert“, „spezialisiert“). 

•	 Die Beziehungen zwischen Extents sind mengenmäßig zu verstehen, Beziehungen 

zwischen Typen nicht. Die Semantik von Typmodell und Extentmodell sind also 

unterschiedlich. 

•	 Bei der Erstellung der Strukturen in einer Objektrelationalen Datenbank unter SQL 

sind CREATE TYPE und CREATE TABLE … OF zwei verschiedene Operationen, die 

in dieser Reihenfolge auszuführen sind. 

•	 Jedes Modell für sich wird übersichtlicher, als wenn die Frage, ob zu einem Typ ein 

Extent erzeugt wird, durch ein Attribut wie „persistent“ gesteuert wird (vgl. Entwurfs-

werkzeuge wie Power Designer, die so verfahren). 

•	 Wichtige Eigenschaften des Datenmodells wie Primary Keys und weitere deklarative 

Einschränkungen können nur auf Basis des Extents festgelegt werden. (Das ist aller-

dings ein Mangel an SQL). 

•	 Schließlich erscheint eine grafische Visualisierung der Abhängigkeiten von Typen 

notwendig, um den Überblick über die Datenstrukturen zu behalten bzw. zu ermögli-

chen. Das Klassendiagramm leistet dies nicht. 

Wir schlagen eine eigene Sorte von Diagrammen vor, das Datentypendiagramm. Soweit 

wie möglich, verwenden wir die UML-Notation. In Anlehnung an UML steht das Klas-

sensymbol für einen Typ, allerdings mit speziellen Abwandlungen, um Arrays und ein-

gebettete Tabellen von Objekttypen zu unterscheiden. Die Darstellung enthält noch viel 

Verbesserungspotenzial – die Autoren sind offen für Vorschläge. Abbildung 8.6 zeigt einen ersten Ausschnitt aus dem logischen Datenmodell. 

Wie im Klassendiagramm ist das Symbol für einen abstrakten Datentyp unterteilt in 

drei Teile, oben Name und ggf. erläuternde Angaben wie Stereotyp (in doppelten spitzen 

Klammern) und Zusicherungen (in einfachen geschweiften Klammern). Der mittlere Teil 

enthält die Attribute respektive Felder. Der untere Teil ist für die Signaturen der Methoden 

vorgesehen, auf die wir hier jedoch nicht eingehen. Weiter benutzen wir Kommentare:

/* schließt einen Kommentar ein */

Standarddatentypen werden im Typsymbol direkt hinter dem Attributbezeichner 

angegeben



162

8  Objektorientierung und SQL

Abb. 8.6  Datentypendiagramm 1. Teil

Typen die als Datentyp von Attributen verwendet werden, werden mit dem Typ, dem 

das Attribut gehört, über eine gerichtete Beziehung verbunden. Der Attributbezeichner 

wird wie eine Rolle als Eigenschaft der Beziehung notiert. Zusätzlich können Attribut 

und Datentyp im Typsymbol auskommentiert dargestellt werden. 

Für Varrays gilt speziell: Die Notation muss einen Datentypbezeichner einschließen, 

aber keine Attributbezeichner, da die Elemente nicht benannt sind. Die maximale Kardi-

nalität ist eine Eigenschaft des Datentyps. Sie wird daher innerhalb des Symbols dargestellt. 

Abbildung 8.7 beschreibt die verwendete Syntax der Pfeile. 

Die Beziehungslinien unterscheiden sich in drei Typen. Die einfache Verwendung 

eines Typs als Datentyp für ein Attribut eines anderen Typs bezeichnen wir als  „uses“, 

die Referenzierung eines Typs durch einen anderen bezeichnen wir als  „references“ und 

die Spezialisierung (Subtypenbildung) wird mit dem aus Klassendiagrammen bekann-

ten Symbol dargestellt und ggf. zusätzlich als  „specializes“ bezeichnet. Alle drei Bezie-

hungsarten sind gerichtet, was normale Assoziationen in UML-Diagrammen nicht sind. 

Kardinalitäten werden grundsätzlich nicht dargestellt, da sie – wie oben begründet – in 

die extensionale Sicht gehören. Allerdings sind Arrays und nested Tables von sich aus 

Typen, die für die Aufnahme mehrerer gleichartiger Werte zuständig sind. 

In Abb.  8.8 wird der „Rest“ des logischen Datenmodells angezeigt. Hier sind die Refe-

renzen als spezielle Beziehungstypen verwendet worden, und das Symbol für die eingebet-

tete Tabelle weicht ab von dem Symbol eines strukturierten Datentyps. Die Sprechblasen 

dienen der Erläuterung und könnten entfallen. Alternativ könnte man die referenzierenden 

Attribute in den Klassensymbolen weglassen und die Benennung der Pfeile beibehalten. 



8.5  Dokumentation einer existierenden objektrelationalen Datenbank

163

Abb. 8.7  Beziehungstypen in 

der intensionalen Sicht

bestellkunde

otyp_bestellung

REF otyp_kunde

otyp_mwstsatz

----------------------

-----------

bestell_nr      

number(6,0), 

mwstinteger

/* bestellkunde            REF 

prozent

otyp_kunde,*/

number(3,3)

bestelldatum            date, 

beschreibung 

lieferdatum             date, 

varchar(10)

/* positionen ntyp_position, */

---------

rechnungsbetrag         

number(10,2)

-------------------------

mwst

REF otyp_mwstsatz

uses

otyp_position

otyp_artikel

ntyp_position

----------------------

pos_artikel

----------------------

/* pos_artikel 

REF 

REF otyp_artikel

artikel_nr

<< Table >> 

otyp_artikel, */

varchar(4)

--------------------------

mwst number (4,3), 

/* mwst */

bestellmenge

number 

bezeichnung

(5,0), 

listenpreis

liefermenge number(5,0), 

bestand

gesamtpreis number(10,2)

mindestbestand

,-------------------------

verpackung

lagerplatz

.... 

Abb. 8.8  Datentypendiagramm Teil 2

8.5 

 Dokumentation einer existierenden objektrelationalen 

Datenbank

Wer schon eine objektrelationale Datenbank hat, braucht eine Dokumentation dersel-

ben, sodass Informationen darüber, welche Typen es gibt, wie diese strukturiert sind und 

wie sie benutzt werden, verfügbar sind. Unser Ziel ist eine geschlossene Darstellung aller 



164

8  Objektorientierung und SQL

Abb. 8.9  Datentypenhierarchie aus dem Systemkatalog angezeigt

Abhängigkeiten der selbstdefinierten Typen, nach Möglichkeit so, dass durch entspre-

chende Einrückungen deutlich wird, welche Typen von welchen anderen Typen in der 

Weise abhängen, dass sie sie benutzen, darauf mit einer Referenz verweisen oder dass sie 

sie spezialisieren. Abbildung 8.9 zeigt diese Auswertung. Die Frage ist nur, wie man sie bekommt. 

Selbstverständlich werden in einem objektrelationalen Datenbanksystem die Metada-

ten über benutzerdefinierte Datentypen und ihre Verwendung im Systemkatalog gehal-

ten. Verschiedene Views stehen dafür zur Verfügung, die von dem Besitzer des Schemas, 

zu dem die Typen und Objekttabellen gehören, abgefragt werden können. 

Der View user_types zeigt alle benutzerdefinierten Datentypen an, wobei neben ande-

ren Informationen auch der Obertyp erkennbar ist, sofern der abgefragte Typ eine Speziali-

sierung darstellt. Die Struktur eines Typs, d. h. seine Attribute, wird in user_type_attrs 

wiedergegeben. Dabei erscheinen alle Attribute, diejenigen mit Standarddatentypen ebenso 

wie die, deren Datentyp ein Objekttyp ist. Der View user_dependencies schließlich 

zeigt alle Abhängigkeiten innerhalb des Typsystems an, wozu auch die Verwendung von 

Objekttypen in Objekttabellen gehört, und dass ein Type Body (die Implementierung 

der Methoden) von der Typdeklaration abhängig ist etc. Was dieser View nicht zeigt, 

sind Typhierarchien im Sinne der Untertypenbildung. Genau das wollen wir aber errei-

chen. Um die folgende Ausgabe (Abb.  8.9) zu erhalten, sind daher ein paar Vorarbeiten 

notwendig. 

Das folgende Listing zeigt die Definition eines VIEW, der bereits die nötigen Daten 

enthält. Die Definition beruht auf Oracle XE Version 11; für andere Versionen können 

8.5  Dokumentation einer existierenden objektrelationalen Datenbank

165

leichte Abänderungen nötig sein. Für die strukturierte Ausgabe brauchen wir dann noch 

eine Abfrageanweisung, die anschließend wiedergegeben wird. 

Die den View erzeugende Abfrage besteht aus drei Teilen, die per UNION verbunden wer-

den. Der erste Teil fragt die Tabelle user_dependencies ab und zeigt alle Typen, die dem 

Benutzer „gehören“, wobei Abhängigkeiten des Type Body vom Typ ausgeblendet werden. 

Weggelassen werden auch die Typen, die durch Spezialisierung aus anderen Typen hervorge-

gangen sind. Diese werden im zweiten Teil hinzugefügt. Für das Attribut dependency_type 

geben wir dabei den Wert ‘SPEC’ aus. Der letzte Teil zeigt die „Spitze“ der Abhängigkeits-

hierarchie, nämlich die Typen, die in user_dependencies nicht vorkommen, weil sie nur 

Standarddatentypen benutzen. Dazu gehört beispielsweise otyp_adresse, der nur Attribute 

von Typ VARCHAR2 hat. 

166

8  Objektorientierung und SQL

Die Ausgabe erfolgt schließlich mit dem folgenden Befehl, wobei mit der CONNECT 

BY-Klausel die innerhalb des VIEW enthaltene Hierarchie zwischen name und refe-

renced_name ausgewertet wird. 

8.6 

 Fazit

Objektrelationale Datenbanken sind der Versuch, mit relationaler Datenbanktechnik 

objektorientierte Konzepte abzubilden. Der Standard wie auch die gezeigte Version 

von Oracle gehen dabei Kompromisse ein, die sowohl vom Standpunkt der relationalen 

Welt als auch vom Standpunkt des objektorientierten Paradigmas erhebliche Abstriche 

von beiden Konzepten bedeuten. Der Umgang mit objektrelationalen Datenbanken, 

was die Datendefinition angeht, aber in fast noch größerem Maß, was die Manipulation 

(Abfrage, Änderung etc.) angeht, bringt einige Umständlichkeiten mit sich. Immerhin ist 

es mit strukturierten Datentypen beispielsweise möglich, XML-Datenstrukturen, die ja 

Hierarchien und Listen etc. enthalten können, gut abzubilden. 

Syntaxnotation

A

Als formale Beschreibung für die Syntax der SQL-Anweisungen werden folgende Kon-

ventionen benutzt:

Schreibweise

Beispiel

Bedeutung

Großbuchstaben SELECT

Schlüsselwort – ist so hinzuschreiben (beim  

Aufschreiben des Schlüsselwortes sind  

allerdings auch Buchstaben in  

Kleinschreibung zulässig). 

Kleinbuchstaben tabelle

Dieser Text ist durch eine entsprechende  

syntaktische Konstruktion zu ersetzen. 

[ ]

DELETE FROM tabelle Der Teil in eckigen Klammern kann fehlen. 

[WHERE bedingung]

|

DISTINCT | ALL

Genau eine der angegebenen Alternativen ist zu 

nehmen. Es können auch mehr als zwei  

Alternativen angegeben werden. 

{ }

UPDATE tabelle

Der Teil in geschweiften Klammern kann  

fehlen, einmal benutzt oder mehrfach  

SET spalte = wert

wiederholt werden. 

{, spalte = wert}

xyz-liste

spaltenliste

Ein Element von xyz

oder mehrere Elemente von xyz; 

Elemente der Liste werden jeweils durch  

ein Komma getrennt. 

::=

modus ::=

Der Begriff links von ::=

IN | OUT | INOUT

ist durch den Ausdruck auf der rechten  

Seite zu ersetzen. 

Die Konstruktion xyz-liste ist eine Kurzschreibweise für xyz {, xyz}. 

M. Unterstein und G. Matthiessen,  Anwendungsentwicklung mit Datenbanken, eXamen.press, 

167

DOI: 10.1007/978-3-642-39003-6, © Springer-Verlag Berlin Heidelberg 2013

Beispieldatenbank

B

Definition der Domänen und Tabellen Die folgenden Befehle erzeugen die Tabellen 

der Beispieldatenbank, die wir in diesem Buch verwenden. Die zugehörige Befehlsdatei 

CreateTable12.sql kann vom Verlagsserver heruntergeladen werden. Dort finden 

sich auch weitere Versionen für andere Datenbanksysteme und eine englische Fassung 

der Datenbank. 

M. Unterstein und G. Matthiessen,  Anwendungsentwicklung mit Datenbanken, eXamen.press, 

169

DOI: 10.1007/978-3-642-39003-6, © Springer-Verlag Berlin Heidelberg 2013

170

Beispieldatenbank

Beispieldatenbank

171

172

Beispieldatenbank

Tabellarische Darstellung der Relationen

Artikel

artikel_nr mwst bezeich-

listenpreis bestand mindest- verpa-

lagerplatz kann_wegfallen

nung

bestand ckung

G001

2

Whisky

38,50

397

50

0,7 l

7

Nein

G002

2

Portwein

12,45

473

100

0,5 l

7

Nein

G003

2

Bier

5,20

1250

250

6er-Pack 7

Nein

K001

2

Schuhe

98,50

120

25

Karton 2

Nein

K002

2

Hose

112,80

62

25

2

Nein

K003

2

Damenhut

65,70

12

20

Karton 2

Nein

K004

1

Sonnen-

76,00

50

20

Karton 2

Nein

brille

L001

1

Ceylon-Tee

6,35

356

100

125 g

5

Nein

L002

1

China-Tee

8,35

42

50

125 g

5

Nein

L003

1

Naturreis

1,78

345

0

1 kg

4

Nein

L004

2

Schokolade

0,98

2101

1000

Tafel

2

Nein

L005

2

Butterkekse

1,72

234

250

250 g

2

Nein

MwStSatz

mwSt

prozent

beschreibung

0

0

ohne

1

0,07

halbe

2

0,19

volle

Kunde − Teil 1

kunden_nr

status

name

strasse

plz

ort

100

S

Voss, Hans

Kuhdamm 12

23863

Nienwohld

101

S

Stein, Peter

Moordamm 34

23863

Kayhude

102

W

Berger, Uwe

Allee 12 b

25813

Husum

103

S

Randers, Nis

Am Seeufer 12

23845

Oering

104

G

Andresen, Ute

Am Abhang

24558

Ulzburg

105

S

Stuff, Werner

Tarper Weg

24853

Eggebek

106

W

Staack, Hannes

An der Alster 1

23863

Kayhude

Kunde − Teil 2

kunden_nr

letzte_bestellung

letzte_werbeaktion

zahlung

100

01.12.2011

N

101

28.04.2012

01.12.2011

B

102

01.12.2011

N

103

15.05.2012

B

Beispieldatenbank

173

(Fortsetzung)

kunden_nr

letzte_bestellung

letzte_werbeaktion

zahlung

104

N

105

12.05.2012

R

106

01.12.2011

N

Girokonto

kunden_nr

konto_inhaber

blz

kontonr

101

Dagmar Stein

23410022

12346789

103

Tetsche Wind

23410112

20001234

Bestellung

bestell_nr

kunden_nr

bestelldatum

lieferdatum

rechnungsbetrag

151

101

28.04.2012

02.05.2012

200,67

152

103

30.04.2012

02.05.2012

2304,36

153

105

12.05.2012

154

103

15.05.2012

Bestellposition

bestell_nr

artikel_nr

mwst

bestellmenge

liefermenge

gesamtpreis

151

G002

0.190

4

4

49.80

151

G003

0.190

3

3

15.60

151

K002

0.190

3

0

0.00

151

K003

0.190

1

1

65.70

151

L002

0.070

10

5

41.75

152

K001

0.190

10

10

985.00

152

K003

0.190

2

2

131.40

152

K004

0.070

12

12

912.00

153

G001

2

153

L002

6

153

L003

25

153

L004

5

154

G001

4

154

G002

12

154

G003

1

Literaturverzeichnis

[Balz00] 

Balzert, H.: Lehrbuch der Software-Technik, 2. Aufl. Spektrum Akademischer Verlag 

(2000)

[Catt97] 

Cattell, R.G.: Object Database Standard ODMG 2.0. Morgan Kaufmann (1997)

[CHRS98]  Christiansen, a., Höding, M., Rautenstrauch, C., Saake, G.: Oracle 8 effizient einset-

zen. Addison Wesley Longman, Reading (1998)

[DaDa00]  Date, C.J., Darwen, H.: Foundation for Future Database Systems – the third Mani-

festo. Addison Wesley Longman, Reading (2000)

[Date90] 

Date, C.J.: An Introduction to Database Systems, 5. Aufl. Addison Wesley (1990)

[FePD05] 

Feuerstein, S., Pribyl, B., Dawes, C.: Oracle PL/SQL kurz und gut. O’Reilly (2005)

[Fran03] 

Frank, U.: Ebenen der Abstraktion und ihre Abbildung auf konzeptionelle Modelle. 

in EMISA FORUM Ausgabe 2003/2 – Mitteilungen der GI-Fachgruppe ‚Entwick-

lungsmethoden für Informationssysteme und deren Anwendung‘ (2003)

[JäHe02] 

Jähnichen, S., Herrmann, S.: Was, bitte, bedeutet Objektorientierung? in Informatik-

Spektrum, Springer, Heidelberg (2002)

[KrHa11] 

Krüger, G., Hansen, H.: Handbuch der Java-Programmierung − Standard Edition 

Version 7, 7. Aufl. http://www.javabuch.de/ Addison Wesley (2011)

[Kudr07] 

Kudraß, T.: Taschenbuch Datenbanken. Hanser Verlag (2007)

[Melt98] 

Melton, J.: Understanding SQL’s Stored Procedures – A Complete Guide to 

SQL/PSM. Morgan Kaufmann Publishers (1998)

[MeSi02] 

Melton, J., Simon, A.R.: SQL: 1999 – Understanding Relational Language Compo-

nents. Morgan Kaufmann Publishers (2002)

[Rako07] 

Rako, T.: Datenbanken im Web. In: [Kudraß, T.: Taschenbuch Datenbanken. Hanser 

Verlag (2007), S. 198–238]

[RiHS05] 

Richter, J.-P., Haller, H., Schrey, P.: Serviceorientierte Architektur. http://www.gi.de/

service/informatiklexikon/detailansicht/article/serviceorientierte-architektur.html 

(2005). Zugegriffen: 6. Aug 2013

[SaSH10] 

Saake, G., Sattler, K., Heuer, A.: Datenbanken Konzepte und Sprachen. Mitp (2010)

[Satt07] 

Sattler, K.-U.: Komponenten eines Datenbankmanagementsystems. In: [Kudraß, 

T.: Taschenbuch Datenbanken. Hanser Verlag (2007), S. 239–280]

[ScSc83] 

Schek, H.-J., Scholl, M.: Die NF2-Relationenalgebra zur einheitlichen Manipulation 

externer, konzeptueller und interner Datenstrukturen. In: [Sprachen für Daten-

banken: Fachgespräch auf d. 13. GI-Jahrestagung, Hamburg, 3–7. Okt 1983. In: 

von  Schmidt, J.W. (Hrsg.)  Springer, Berlin (1983) – (Informatik-Fachberichte: 72), 

S. 113–133] (1983)

M. Unterstein und G. Matthiessen,  Anwendungsentwicklung mit Datenbanken, eXamen.press, 

175

DOI: 10.1007/978-3-642-39003-6, © Springer-Verlag Berlin Heidelberg 2013

176

Literaturverzeichnis

[ScSc90] 

Scholl, M., Schek, H.-J.: Evolution von Datenmodellen: Relational …  geschachtelt 

(NF2) relational … objektorientiert? HMD: Praxis der Wirtschaftsinformatik 

27(152), 103–115 (1990)

[Schm83]  Sprachen für Datenbanken: Fachgespräch auf d. 13. GI-Jahrestagung, Hamburg, 

3–7. Okt 1983. In: von  Schmidt, J.W. (Hrsg.)  Springer, Berlin (1983) – (Informatik-

Fachberichte: 72)

[Ulle12] 

Ullenboom, C.: Java ist auch eine Insel, 10. Aufl. Galileo Computing (2012)

[UnMa12]  Unterstein, M., Matthiessen, G.: Relationale Datenbanken und SQL in Theorie und 

Praxis, 5. Aufl. Springer (2012)

[Unte10] 

Unterstein, M.: Widersprüche. SOA Entwurfsprinzipien versus Datenintegrität. 

Database Pro 5/2010. Verlag Neue Medien, Ulm (2010)

Sachverzeichnis

A

Benutzer

Abfrage, 2

anlegen, 37

Abfrage-Optimierer, 5

Benutzer-Identität, 35

Abfragesprache, 2

Betriebssystem, 6, 35

Abstrakter Datentyp, 141

Beziehung, 76, 127

ACID-Prinzip, 18

in Objektdatenbanken, 135

Adresse

Beziehungstyp, 76

als Datentyp, 139

BI, 12

ADT, 141

Block, 6

After-Image, 7, 20

Blockade, 12

Aggregation, 76, 78

ALTER, 115

Änderungslogs, 12

C

Anfrage, 10

CALL, 49

Anweisung

CallableStatement, 107

UPDATE, 22

JDBC, 93

Application Server, 13

CHARACTER SET, 38

ARRAY, 141

CHECK_CONSTRAINTS, 120

Assoziation, 76, 77, 83

CHECK-Bedingung, 2, 120

Atomar, 2

CHECK-Klausel, 1, 17

Atomarität, 17

Class-Datei, 90

ATOMIC, 49

CLASSPATH, 89

Attribut, 76, 82, 127

CLI, 49

Ausführungsplan, 4, 5

Client, 8

Ausnahme-Bedingung, 63

Client/Server, 8, 10

Ausnahmebehandlung, 63

COLLATION, 38

AUTHORIZATIONS, 117

COLUMNS, 117

AUTOCOMMIT, 94

COMMIT, 94, 117

Autorisierungskontrolle, 4

Compiler-Direktive, 145

CONNECT, 40

Connection, 88

B

Constraint, 2, 120

BASE TABLE, 117

CONTINUE HANDLER, 65

B-Baum, 4

CREATE PROCEDURE, 115

Before-Image, 7, 20, 21, 33

CREATE TABLE, 115, 120

M. Unterstein und G. Matthiessen,  Anwendungsentwicklung mit Datenbanken, eXamen.press, 

177

DOI: 10.1007/978-3-642-39003-6, © Springer-Verlag Berlin Heidelberg 2013

178

Sachverzeichnis

CREATE USER, 115

DOMAIN, 38, 117

CREATE VIEW, 115

DROP, 115

Cursor, 66–68, 155

Dual, 51

D

E

DatabaseMetaData, 111

EclipseLink, 113

Data Dictionary, 115

Eigenschaft, 127

DATEADD, 57

Einfügen

Datei, 11

tupel in Objekttabelle, 143

Dateisystem

Eingebettet, 10

satzorientiert, 10

Eingebettete Datenbank, 10

Datenbankadministrator, 37

Eingebettete Tabelle, 152

Datenbank-Administrator, 9

Entität, 76

Datenbankkatalog s. Systemkatalog, 115

abhängige, 80, 152

Datenbankmaschine, 3, 7, 10

Entitätenmenge, 76

Datenbankobjekt, 3

Entitätentyp, 76

Datenbank-Objekt, 120

ESQL, 49

Datenbankprozedur, 43, 44, 70

EXCEPT, 5

Datenbank-Prozedur, 2, 38

EXCLUSIVE, 32

Datenbankschema, 1–3

Exemplar, 76

Datenintegration, 1

EXIT HANDLER, 65

Datenmodell, 10

Extensionale Sicht, 160

Datenschutz, 2

Extent, 76, 131

Datensicherheit, 3, 9, 10

Externe Spezifikation, 127

Datensicherung,  3, 9, 10

EXTRACT, 57

Datensicht, 2, 38

Datentypendiagramm, 161

Datentyp-Konstruktor, 128

F

Datumsberechnung, 57

Fallunterscheidung, 49

Dauerhaftigkeit, 18

Feiertag, 58

DB2, 44

FETCH, 67

DBA, 37, 40

Firewall, 9

DDL-Anweisung, 3, 94, 115

FOR, 69

Deadlock, 6, 33

FOREIGN KEY, 121

behandlung, 34

Fremdschlüssel, 1, 2, 82, 113, 122

DECLARE , 67

Funktion, 55

Default-Wert, 54

DEFINITION_SCHEMA, 116

DELETE, 7, 74, 117

G

aus Objekttabelle, 156

Gleichheit, 133

eingebettete Tabelle, 156

GLOBAL TEMPORARY, 117

privileg, 39

GRANT, 38, 115

DEREF, 150

GRANT OPTION, 39

Dienst, 10

Granularität von Sperren, 30

Diskriminator, 83

GROUP BY, 4

DISTINCT, 4

Gruppe

DML-Anweisung, 94

benutzer, 40

Sachverzeichnis

179

H

JDBC, 49, 60, 66, 87

H2, 12

JDBC-Treiber, 88

Handler

ausnahme-, 64

CONTINUE, 65

K

EXIT, 65

Kapselung, 134

UNDO, 65

Kardinalität, 77

Hash-Index, 4

Katalog s. Systemkatalog, 115

Hauptspeicher, 6, 11

Klasse, 76, 82

Hierarchie, 129

abstrakt, 82

Host, 7, 39

Klassendiagramm, 75

HSQLDB, 12, 44

Klassenmethode, 139

Hybernate, 113

Kollektionstyp, 128, 153

Komponente, 78

vs. abhängige Entität, 80

I

Komposition, 76, 78, 152

IBM, 12

Konkurrenz

Identifizierbarkeit, 76

im Datenzugriff, 23

Identität, 127, 133

Konsistenz, 2, 23, 44

Impedance mismatch, 66

Konsistenzbedingung, 1, 4

Imperativ, 66

Konsistenzproblem

Implementierung, 140

inkonsistente analyse, 25

IN, 47

lost Update, 24

Index, 4, 5, 115

Konsistenzregel, 10

INFORMATION_SCHEMA, 116

Konstruktor, 128

Inkonsistente analyse, 25

Kontrollstruktur, 51

In-Memory-Datenbank, 11, 12

Kreuzprodukt, 5

INOUT, 47

datenbank-Prozedur, 107

INSERT, 7, 74

L

privileg, 39

LD_LIBRARY_PATH, 89

Instance, 76

Least frequently used, 6

Instanz, 127, 131

Least recently used, 6

Integritätsbedingung, 120

LFU  Siehe least frequently used, 6

bei Objekt, 141

Literal, 127

Intensionale Sicht, 160

Localhost, 7

Internet, 12

LOCK TABLE, 32

INTERSECT, 5

Logdatei, 6, 7

Isolation Level, 5, 27

Log-Datei, 10

Isoliertheit, 18

logischer Entwurf

ISQL, 49

objektrelational, 160

Lost Update, 24

LRU  Siehe least recently used, 6

JJar-Datei, 90

Java, 10, 44, 66, 87

M

Java.sql.*, 91

Mehrbenutzerbetrieb, 2, 10

Java.sql.Date, 97

Mehrfachvererbung, 130

Java.util.Date, 97

MERGE, 74

180

Sachverzeichnis

Metadaten, 1

OUT, 47

JDBC, 109

datenbank-prozedur, 107

Metadaten  s. Systemkatalog, 115

Methode, 127, 134

Methodensignatur, 139

P

MOD, 57

Passwort, 35–37, 89

Multimenge, 129, 152

Persistent, 6

MySQL, 44, 51

Personal server, 10

PL/pgSQL, 44

PL/SQL, 44

N

Polymorphismus, 130

Nachricht, 75

PostgreSQL, 44

Namens-Kollision, 48

Prepared statement, 103

Navigierender Zugriff, 151

JDBC, 93

Nebenläufig, 2

PRESERVE, 117

Nested loop, 5

Primärschlüssel, 120

Nested table, 152

Privileg, 35

Normalform, 141

objekt-, 36, 38

Notationsrichtlinien

zugangs-, 36

fürobjektrelationaleDatenstrukturen, 138

Prozeduraufruf, 49

NOT FINAL, 141

Prozedur-Rumpf, 49

Null

Prozess, 7, 8, 10

Java, 101

Pufferverwaltung, 6

Nullmarke, 53

Punktnotation, 150

JDBC, 101, 105

Nullreferenz

Java, 101

Q

Query optimizer, 5

O

Object relational mapping, 111

R

Objekt, 36, 75, 127

Read uncommited, 30

operation, 75

Recovery, 20

Objekt-identifizierer, 76

Recovery-management, 6

Objektidentität, 132

REFERENCES

Objektorientierte datenbank, 125, 127

privileg, 39

Objektorientierung, 125

REFERENTIAL_CONSTRAINTS, 117, 120

Objektrelational, 135, 136

Referenz, 147, 153

ODBC, 49

Referenzattribut, 147

OID, 132

Referenzielle integrität, 135

OPEN, 67

Referenzielle integritätsbedingung, 120

Operation, 127

Relation, 82

Optimistische konkurrenzkontrolle, 34

Relational, 66

Optimistische sperrmethode, 24

Relational gap, 112

Oracle, 12, 44, 51

RESOURCE, 40

ORACLE, 116, 118

ResultSet

Orthogonal, 129

JDBC, 99

Orthogonalität, 142

ResultSetMetaData, 110

Sachverzeichnis

181

REVOKE, 40, 115

Spring data, 113

ROLLBACK, 6, 65

SQL anywhere, 10, 44, 50

Rollback, 94

SQL/PSM, 44

Rolle, 40, 77

SQLCode, 92

Rollenkonzept, 36

SQLEXCEPTION, 65

ROUTINES, 117

SQLException, 90

ROW EXCLUSIVE, 33

SQL-injection, 103

ROW SHARE, 32

SQLite, 12

SQL-Norm, 47

SQLSTATE, 64, 65

S

Statement

Sammlung, 128

JDBC, 93

SAP, 12

Stored procedure, 44

Savepoint, 22

STRING_AGG, 122

Schema, 120

Strukturvererbung, 129

objektorientierte datenbank, 127

SUBSTITUTABLE

SCHEMATA, 117

bei Objekttabelle, 142

Schlüssel, 1, 2

Subtyp, 131

Schnittstelle, 140

Supertyp

Seiteneffekt, 145

Sybase SQL Anywhere, 116

SELECT

Syntaktische

Privileg, 39

analyse, 3

SELECT INTO, 50

Systemausfall, 2

Selektion, 4

Systemkatalog, 2, 5, 115

Semantisch

analyse, 3

SEQUENCES, 117

T

Serialisierbarkeit, 18

Tabelle, 10, 38

Server, 12

funktions-Ergebnis, 60

Service, 10

eingebettete, 152

SHARE ROW EXCLUSIVE, 33

im systemkatalog, 117

SIGNAL-anweisung, 64

typisierte, 142

S-Lock, 31

Tabellenalias, 157

SOA

in objektorientierten Abfragen, 149

transaktion, 34

TABLE, 38

Spalte, 10

in SELECT-Anweisung, 154

im systemkatalog, 119

in UPDATE-Anweisung, 157

Spätes Binden, 313

Table scan, 4

Speicherresident

TABLE_CONSTRAINTS, 117, 120

datenbank, 11

TABLES, 117

Sperre

Tcp/ip, 9

explizite anforderung, 32

Totalsicherung, 7, 10

typ S, 31

Transaktion, 2, 5, 6, 10, 12, 17, 94

typ X, 31

abschnitt, 22

Sperrmechanismus, 29

ACID-Prinzip, 18

granularität, 30

isolation-level, 27

objekte, 30

Transaktionsmanagement, 20

Spiegel-logdatei, 7

Transaktions-Manager, 5

182

Sachverzeichnis

Transient, 134

Verbund, 5

TRANSLATION, 38

Vererbung, 76, 80, 129

Treiberklasse, 90

Verhalten, 75, 127

Trigger, 43, 71

Verhaltensvererbung, 129

Typ, 127

Verteilte

Typenkompatibilität, 131

datenbank, 8

VIEW, 117

VIEW_DEFINITION, 119

U

VIEWS, 117, 118

Überladen, 131

UML, 76

UNDER, 146

W

UNDO HANDLER, 65

Wertzuweisung, 49

UNION, 5

Wiederherstellung der Konsistenz, 20

UNIQUE, 120

Wiederholungsschleife, 49

Unterklasse, 81

Untertyp, 129

UPDATE, 7, 74

X

privileg, 39

X-Lock, 31

Url, 91

Z

V

Zugangsprivilegien, 36

VALUE, 145

Zugriffsrecht, 1, 2, 43, 49, 77

Variable, 49, 51

Zusicherung, 77

VARRAY, 141

Zustand, 127

position abfragen, 151

Verbindung

zur Datenbank, 92

[bookmark: outline]



Document Outline


	Vorwort

	Inhaltsverzeichnis

	1 Datenbankmaschine und Architektur von Datenbank-Anwendungen

	1.1	Aufgaben einer Datenbankmaschine

	1.2	Bearbeitung von Abfrageanweisungen

	1.2.1	Syntaktische und semantische Analyse der Abfrage

	1.2.2	Autorisierungskontrolle

	1.2.3	Daten-Änderung mit Konsistenzbedingungen

	1.2.4	Erstellung des Ausführungsplans

	1.2.5	Transaktionsverarbeitung

	1.2.6	Speicherverwaltung

	1.2.7	Das Recovery-Management

	1.2.8	Führung der Logdatei und Durchführung von Totalsicherungen





	1.3	Betriebsmodi von Datenbanken

	1.3.1	Die Datenbankdatei

	1.3.2	Datenbank im ClientServer-Betrieb

	1.3.3	Eingebettete Datenbank

	1.3.4	Datenbank im Hauptspeicher

	1.3.5	Datenbanken im Internet

	1.3.6	Datenbanken und SOA









	2 Transaktionen

	2.1	Eigenschaften von Transaktionen

	2.1.1	Gefahren für die Konsistenz

	2.1.2	Transaktionsmanagement





	2.2	Transaktionen in SQL

	2.2.1	Start von Transaktionen

	2.2.2	Beendigung von Transaktionen

	2.2.3	Autocommit

	2.2.4	Start des DBMS nach Systemzusammenbruch





	2.3	Nebenläufige Ausführung von Transaktionen

	2.4	Isolation Level in Transaktionen

	2.5	Sperrmechanismen

	2.6	Explizite Sperrung mit LOCK TABLE

	2.7	Deadlock

	2.8	Kompensation statt ACID





	3 Zugriffsrechte und Rollen

	3.1	Benutzer-Identität

	3.2	Allgemeine Zugangsprivilegien

	3.2.1	Anlegen eines Benutzers

	3.2.2	Datenbankadministrator





	3.3	Objektbezogene Privilegien

	3.4	Rücknahme von Privilegien

	3.5	Rollen





	4 Prozedurale Konzepte in SQL

	4.1	Datenbankprozeduren

	4.1.1	Unterstützung der Konsistenz

	4.1.2	Effizientere Ausführung komplexer Operationen

	4.1.3	Kurzeinführung anhand eines Beispiels

	4.1.4	Erweiterung des Beispiels mit Ausgabe-Parametern

	4.1.5	Beispiele mit Variablen und Kontrollstrukturen

	4.1.6	Übungen





	4.2	Funktionen in Datenbanken

	4.2.1	Formaler Aufbau einer Funktionsdefinition

	4.2.2	Funktionen mit Datumsberechnungen

	4.2.3	Funktionen, die Tabellen zurückgeben

	4.2.4	Übungen





	4.3	Ausnahmebehandlung in Prozeduren und Funktionen

	4.4	Das Cursor-Konzept

	4.4.1	Übungen





	4.5	Trigger in Datenbanken

	4.5.1	Beispiele für Datenbank-Trigger

	4.5.2	Übungen









	5 UML

	5.1	Elemente der UML

	5.2	ER-Diagramme und UML-Klassendiagramme

	5.3	Aggregation und Komposition in UML

	5.4	Das Vererbungskonzept





	6 Datenbankprogrammierung mit JDBC

	6.1	Datenbankverbindung

	6.1.1	Herstellung einer Verbindung zur Datenbank

	6.1.2	Klasse JDBC zur Verwaltung der Datenbank-Parameter





	6.2	Datenänderungen über JDBC

	6.2.1	Die Klasse Statement

	6.2.2	Ausführung einer Anweisung

	6.2.3	Transaktionen in der Datenbank





	6.3	Datenabfragen mit SELECT

	6.3.1	Die Klasse ResultSet

	6.3.2	Navigieren in der Ergebnismenge

	6.3.3	Zugriff auf die Spalten der Abfrage

	6.3.4	Behandlung von Nullmarken





	6.4	Parametrisierte SQL-Anweisungen

	6.4.1	PreparedStatement

	6.4.2	Nullmarken als Parameter

	6.4.3	CallableStatement





	6.5	Aufruf von Datenbankprozeduren mit Ergebnismenge

	6.6	Metadaten

	6.7	Object Relational Mapping





	7 Der Systemkatalog

	7.1	Der Systemkatalog in der SQL-Norm

	7.2	Systemtabellen in SQL-Implementationen

	7.2.1	Informationen über Tabellen

	7.2.2	Informationen über Spalten

	7.2.3	Informationen über Integritätsbedingungen

	7.2.4	Übungsaufgaben









	8 Objektorientierung und SQL

	8.1	Das objektorientierte Datenbankmodell

	8.1.1	Objekte und Literale

	8.1.2	Typen

	8.1.3	Tupel

	8.1.4	Kollektionstypen

	8.1.5	Vererbung

	8.1.6	Klassen und Extents

	8.1.7	Objektidentität und Gleichheit

	8.1.8	Kapselung

	8.1.9	Lebenszeit von Objekten

	8.1.10	Beziehungen





	8.2	Objektorientierung im SQL-Standard

	8.3	Objektrelationales Modell der Versanddatenbank in Oracle

	8.3.1	Abstrakte Datentypen als Wertebereich für Attribute

	8.3.2	Komplexe Objekttypen und Objekttabellen

	8.3.3	Vererbung

	8.3.4	Referenzen

	8.3.5	Abfragen

	8.3.6	Eingebettete Objekttypen

	8.3.7	Schreiboperationen in Objekttabellen

	8.3.8	Object Views





	8.4	Logischer Entwurf objektrelationaler Datenbanken für Oracle

	8.5	Dokumentation einer existierenden objektrelationalen Datenbank

	8.6	Fazit





	Syntaxnotation

	Beispieldatenbank

	Literaturverzeichnis

	Sachverzeichnis





Table of Contents


		Vorwort

	Inhaltsverzeichnis

	1 Datenbankmaschine und Architektur von Datenbank-Anwendungen

		1.1 Aufgaben einer Datenbankmaschine

		1.2 Bearbeitung von Abfrageanweisungen
	
			1.2.1 Syntaktische und semantische Analyse der Abfrage

			1.2.2 Autorisierungskontrolle

			1.2.3 Daten-Änderung mit Konsistenzbedingungen

			1.2.4 Erstellung des Ausführungsplans

			1.2.5 Transaktionsverarbeitung

			1.2.6 Speicherverwaltung

			1.2.7 Das Recovery-Management

			1.2.8 Führung der Logdatei und Durchführung von Totalsicherungen

		

	

		1.2.1 Syntaktische und semantische Analyse der Abfrage

		1.2.2 Autorisierungskontrolle

		1.2.3 Daten-Änderung mit Konsistenzbedingungen

		1.2.4 Erstellung des Ausführungsplans

		1.2.5 Transaktionsverarbeitung

		1.2.6 Speicherverwaltung

		1.2.7 Das Recovery-Management

		1.2.8 Führung der Logdatei und Durchführung von Totalsicherungen

		1.3 Betriebsmodi von Datenbanken
	
			1.3.1 Die Datenbankdatei

			1.3.2 Datenbank im ClientServer-Betrieb

			1.3.3 Eingebettete Datenbank

			1.3.4 Datenbank im Hauptspeicher

			1.3.5 Datenbanken im Internet

			1.3.6 Datenbanken und SOA

		

	

		1.3.1 Die Datenbankdatei

		1.3.2 Datenbank im ClientServer-Betrieb

		1.3.3 Eingebettete Datenbank

		1.3.4 Datenbank im Hauptspeicher

		1.3.5 Datenbanken im Internet

		1.3.6 Datenbanken und SOA

	



	1.1 Aufgaben einer Datenbankmaschine

	1.2 Bearbeitung von Abfrageanweisungen

		1.2.1 Syntaktische und semantische Analyse der Abfrage

		1.2.2 Autorisierungskontrolle

		1.2.3 Daten-Änderung mit Konsistenzbedingungen

		1.2.4 Erstellung des Ausführungsplans

		1.2.5 Transaktionsverarbeitung

		1.2.6 Speicherverwaltung

		1.2.7 Das Recovery-Management

		1.2.8 Führung der Logdatei und Durchführung von Totalsicherungen

	



	1.2.1 Syntaktische und semantische Analyse der Abfrage

	1.2.2 Autorisierungskontrolle

	1.2.3 Daten-Änderung mit Konsistenzbedingungen

	1.2.4 Erstellung des Ausführungsplans

	1.2.5 Transaktionsverarbeitung

	1.2.6 Speicherverwaltung

	1.2.7 Das Recovery-Management

	1.2.8 Führung der Logdatei und Durchführung von Totalsicherungen

	1.3 Betriebsmodi von Datenbanken

		1.3.1 Die Datenbankdatei

		1.3.2 Datenbank im ClientServer-Betrieb

		1.3.3 Eingebettete Datenbank

		1.3.4 Datenbank im Hauptspeicher

		1.3.5 Datenbanken im Internet

		1.3.6 Datenbanken und SOA

	



	1.3.1 Die Datenbankdatei

	1.3.2 Datenbank im ClientServer-Betrieb

	1.3.3 Eingebettete Datenbank

	1.3.4 Datenbank im Hauptspeicher

	1.3.5 Datenbanken im Internet

	1.3.6 Datenbanken und SOA

	2 Transaktionen

		2.1 Eigenschaften von Transaktionen
	
			2.1.1 Gefahren für die Konsistenz

			2.1.2 Transaktionsmanagement

		

	

		2.1.1 Gefahren für die Konsistenz

		2.1.2 Transaktionsmanagement

		2.2 Transaktionen in SQL
	
			2.2.1 Start von Transaktionen

			2.2.2 Beendigung von Transaktionen

			2.2.3 Autocommit

			2.2.4 Start des DBMS nach Systemzusammenbruch

		

	

		2.2.1 Start von Transaktionen

		2.2.2 Beendigung von Transaktionen

		2.2.3 Autocommit

		2.2.4 Start des DBMS nach Systemzusammenbruch

		2.3 Nebenläufige Ausführung von Transaktionen

		2.4 Isolation Level in Transaktionen

		2.5 Sperrmechanismen

		2.6 Explizite Sperrung mit LOCK TABLE

		2.7 Deadlock

		2.8 Kompensation statt ACID

	



	2.1 Eigenschaften von Transaktionen

		2.1.1 Gefahren für die Konsistenz

		2.1.2 Transaktionsmanagement

	



	2.1.1 Gefahren für die Konsistenz

	2.1.2 Transaktionsmanagement

	2.2 Transaktionen in SQL

		2.2.1 Start von Transaktionen

		2.2.2 Beendigung von Transaktionen

		2.2.3 Autocommit

		2.2.4 Start des DBMS nach Systemzusammenbruch

	



	2.2.1 Start von Transaktionen

	2.2.2 Beendigung von Transaktionen

	2.2.3 Autocommit

	2.2.4 Start des DBMS nach Systemzusammenbruch

	2.3 Nebenläufige Ausführung von Transaktionen

	2.4 Isolation Level in Transaktionen

	2.5 Sperrmechanismen

	2.6 Explizite Sperrung mit LOCK TABLE

	2.7 Deadlock

	2.8 Kompensation statt ACID

	3 Zugriffsrechte und Rollen

		3.1 Benutzer-Identität

		3.2 Allgemeine Zugangsprivilegien
	
			3.2.1 Anlegen eines Benutzers

			3.2.2 Datenbankadministrator

		

	

		3.2.1 Anlegen eines Benutzers

		3.2.2 Datenbankadministrator

		3.3 Objektbezogene Privilegien

		3.4 Rücknahme von Privilegien

		3.5 Rollen

	



	3.1 Benutzer-Identität

	3.2 Allgemeine Zugangsprivilegien

		3.2.1 Anlegen eines Benutzers

		3.2.2 Datenbankadministrator

	



	3.2.1 Anlegen eines Benutzers

	3.2.2 Datenbankadministrator

	3.3 Objektbezogene Privilegien

	3.4 Rücknahme von Privilegien

	3.5 Rollen

	4 Prozedurale Konzepte in SQL

		4.1 Datenbankprozeduren
	
			4.1.1 Unterstützung der Konsistenz

			4.1.2 Effizientere Ausführung komplexer Operationen

			4.1.3 Kurzeinführung anhand eines Beispiels

			4.1.4 Erweiterung des Beispiels mit Ausgabe-Parametern

			4.1.5 Beispiele mit Variablen und Kontrollstrukturen

			4.1.6 Übungen

		

	

		4.1.1 Unterstützung der Konsistenz

		4.1.2 Effizientere Ausführung komplexer Operationen

		4.1.3 Kurzeinführung anhand eines Beispiels

		4.1.4 Erweiterung des Beispiels mit Ausgabe-Parametern

		4.1.5 Beispiele mit Variablen und Kontrollstrukturen

		4.1.6 Übungen

		4.2 Funktionen in Datenbanken
	
			4.2.1 Formaler Aufbau einer Funktionsdefinition

			4.2.2 Funktionen mit Datumsberechnungen

			4.2.3 Funktionen, die Tabellen zurückgeben

			4.2.4 Übungen

		

	

		4.2.1 Formaler Aufbau einer Funktionsdefinition

		4.2.2 Funktionen mit Datumsberechnungen

		4.2.3 Funktionen, die Tabellen zurückgeben

		4.2.4 Übungen

		4.3 Ausnahmebehandlung in Prozeduren und Funktionen

		4.4 Das Cursor-Konzept
	
			4.4.1 Übungen

		

	

		4.4.1 Übungen

		4.5 Trigger in Datenbanken
	
			4.5.1 Beispiele für Datenbank-Trigger

			4.5.2 Übungen

		

	

		4.5.1 Beispiele für Datenbank-Trigger

		4.5.2 Übungen

	



	4.1 Datenbankprozeduren

		4.1.1 Unterstützung der Konsistenz

		4.1.2 Effizientere Ausführung komplexer Operationen

		4.1.3 Kurzeinführung anhand eines Beispiels

		4.1.4 Erweiterung des Beispiels mit Ausgabe-Parametern

		4.1.5 Beispiele mit Variablen und Kontrollstrukturen

		4.1.6 Übungen

	



	4.1.1 Unterstützung der Konsistenz

	4.1.2 Effizientere Ausführung komplexer Operationen

	4.1.3 Kurzeinführung anhand eines Beispiels

	4.1.4 Erweiterung des Beispiels mit Ausgabe-Parametern

	4.1.5 Beispiele mit Variablen und Kontrollstrukturen

	4.1.6 Übungen

	4.2 Funktionen in Datenbanken

		4.2.1 Formaler Aufbau einer Funktionsdefinition

		4.2.2 Funktionen mit Datumsberechnungen

		4.2.3 Funktionen, die Tabellen zurückgeben

		4.2.4 Übungen

	



	4.2.1 Formaler Aufbau einer Funktionsdefinition

	4.2.2 Funktionen mit Datumsberechnungen

	4.2.3 Funktionen, die Tabellen zurückgeben

	4.2.4 Übungen

	4.3 Ausnahmebehandlung in Prozeduren und Funktionen

	4.4 Das Cursor-Konzept

		4.4.1 Übungen

	



	4.4.1 Übungen

	4.5 Trigger in Datenbanken

		4.5.1 Beispiele für Datenbank-Trigger

		4.5.2 Übungen

	



	4.5.1 Beispiele für Datenbank-Trigger

	4.5.2 Übungen

	5 UML

		5.1 Elemente der UML

		5.2 ER-Diagramme und UML-Klassendiagramme

		5.3 Aggregation und Komposition in UML

		5.4 Das Vererbungskonzept

	



	5.1 Elemente der UML

	5.2 ER-Diagramme und UML-Klassendiagramme

	5.3 Aggregation und Komposition in UML

	5.4 Das Vererbungskonzept

	6 Datenbankprogrammierung mit JDBC

		6.1 Datenbankverbindung
	
			6.1.1 Herstellung einer Verbindung zur Datenbank

			6.1.2 Klasse JDBC zur Verwaltung der Datenbank-Parameter

		

	

		6.1.1 Herstellung einer Verbindung zur Datenbank

		6.1.2 Klasse JDBC zur Verwaltung der Datenbank-Parameter

		6.2 Datenänderungen über JDBC
	
			6.2.1 Die Klasse Statement

			6.2.2 Ausführung einer Anweisung

			6.2.3 Transaktionen in der Datenbank

		

	

		6.2.1 Die Klasse Statement

		6.2.2 Ausführung einer Anweisung

		6.2.3 Transaktionen in der Datenbank

		6.3 Datenabfragen mit SELECT
	
			6.3.1 Die Klasse ResultSet

			6.3.2 Navigieren in der Ergebnismenge

			6.3.3 Zugriff auf die Spalten der Abfrage

			6.3.4 Behandlung von Nullmarken

		

	

		6.3.1 Die Klasse ResultSet

		6.3.2 Navigieren in der Ergebnismenge

		6.3.3 Zugriff auf die Spalten der Abfrage

		6.3.4 Behandlung von Nullmarken

		6.4 Parametrisierte SQL-Anweisungen
	
			6.4.1 PreparedStatement

			6.4.2 Nullmarken als Parameter

			6.4.3 CallableStatement

		

	

		6.4.1 PreparedStatement

		6.4.2 Nullmarken als Parameter

		6.4.3 CallableStatement

		6.5 Aufruf von Datenbankprozeduren mit Ergebnismenge

		6.6 Metadaten

		6.7 Object Relational Mapping

	



	6.1 Datenbankverbindung

		6.1.1 Herstellung einer Verbindung zur Datenbank

		6.1.2 Klasse JDBC zur Verwaltung der Datenbank-Parameter

	



	6.1.1 Herstellung einer Verbindung zur Datenbank

	6.1.2 Klasse JDBC zur Verwaltung der Datenbank-Parameter

	6.2 Datenänderungen über JDBC

		6.2.1 Die Klasse Statement

		6.2.2 Ausführung einer Anweisung

		6.2.3 Transaktionen in der Datenbank

	



	6.2.1 Die Klasse Statement

	6.2.2 Ausführung einer Anweisung

	6.2.3 Transaktionen in der Datenbank

	6.3 Datenabfragen mit SELECT

		6.3.1 Die Klasse ResultSet

		6.3.2 Navigieren in der Ergebnismenge

		6.3.3 Zugriff auf die Spalten der Abfrage

		6.3.4 Behandlung von Nullmarken

	



	6.3.1 Die Klasse ResultSet

	6.3.2 Navigieren in der Ergebnismenge

	6.3.3 Zugriff auf die Spalten der Abfrage

	6.3.4 Behandlung von Nullmarken

	6.4 Parametrisierte SQL-Anweisungen

		6.4.1 PreparedStatement

		6.4.2 Nullmarken als Parameter

		6.4.3 CallableStatement

	



	6.4.1 PreparedStatement

	6.4.2 Nullmarken als Parameter

	6.4.3 CallableStatement

	6.5 Aufruf von Datenbankprozeduren mit Ergebnismenge

	6.6 Metadaten

	6.7 Object Relational Mapping

	7 Der Systemkatalog

		7.1 Der Systemkatalog in der SQL-Norm

		7.2 Systemtabellen in SQL-Implementationen
	
			7.2.1 Informationen über Tabellen

			7.2.2 Informationen über Spalten

			7.2.3 Informationen über Integritätsbedingungen

			7.2.4 Übungsaufgaben

		

	

		7.2.1 Informationen über Tabellen

		7.2.2 Informationen über Spalten

		7.2.3 Informationen über Integritätsbedingungen

		7.2.4 Übungsaufgaben

	



	7.1 Der Systemkatalog in der SQL-Norm

	7.2 Systemtabellen in SQL-Implementationen

		7.2.1 Informationen über Tabellen

		7.2.2 Informationen über Spalten

		7.2.3 Informationen über Integritätsbedingungen

		7.2.4 Übungsaufgaben

	



	7.2.1 Informationen über Tabellen

	7.2.2 Informationen über Spalten

	7.2.3 Informationen über Integritätsbedingungen

	7.2.4 Übungsaufgaben

	8 Objektorientierung und SQL

		8.1 Das objektorientierte Datenbankmodell
	
			8.1.1 Objekte und Literale

			8.1.2 Typen

			8.1.3 Tupel

			8.1.4 Kollektionstypen

			8.1.5 Vererbung

			8.1.6 Klassen und Extents

			8.1.7 Objektidentität und Gleichheit

			8.1.8 Kapselung

			8.1.9 Lebenszeit von Objekten

			8.1.10 Beziehungen

		

	

		8.1.1 Objekte und Literale

		8.1.2 Typen

		8.1.3 Tupel

		8.1.4 Kollektionstypen

		8.1.5 Vererbung

		8.1.6 Klassen und Extents

		8.1.7 Objektidentität und Gleichheit

		8.1.8 Kapselung

		8.1.9 Lebenszeit von Objekten

		8.1.10 Beziehungen

		8.2 Objektorientierung im SQL-Standard

		8.3 Objektrelationales Modell der Versanddatenbank in Oracle
	
			8.3.1 Abstrakte Datentypen als Wertebereich für Attribute

			8.3.2 Komplexe Objekttypen und Objekttabellen

			8.3.3 Vererbung

			8.3.4 Referenzen

			8.3.5 Abfragen

			8.3.6 Eingebettete Objekttypen

			8.3.7 Schreiboperationen in Objekttabellen

			8.3.8 Object Views

		

	

		8.3.1 Abstrakte Datentypen als Wertebereich für Attribute

		8.3.2 Komplexe Objekttypen und Objekttabellen

		8.3.3 Vererbung

		8.3.4 Referenzen

		8.3.5 Abfragen

		8.3.6 Eingebettete Objekttypen

		8.3.7 Schreiboperationen in Objekttabellen

		8.3.8 Object Views

		8.4 Logischer Entwurf objektrelationaler Datenbanken für Oracle

		8.5 Dokumentation einer existierenden objektrelationalen Datenbank

		8.6 Fazit

	



	8.1 Das objektorientierte Datenbankmodell

		8.1.1 Objekte und Literale

		8.1.2 Typen

		8.1.3 Tupel

		8.1.4 Kollektionstypen

		8.1.5 Vererbung

		8.1.6 Klassen und Extents

		8.1.7 Objektidentität und Gleichheit

		8.1.8 Kapselung

		8.1.9 Lebenszeit von Objekten

		8.1.10 Beziehungen

	



	8.1.1 Objekte und Literale

	8.1.2 Typen

	8.1.3 Tupel

	8.1.4 Kollektionstypen

	8.1.5 Vererbung

	8.1.6 Klassen und Extents

	8.1.7 Objektidentität und Gleichheit

	8.1.8 Kapselung

	8.1.9 Lebenszeit von Objekten

	8.1.10 Beziehungen

	8.2 Objektorientierung im SQL-Standard

	8.3 Objektrelationales Modell der Versanddatenbank in Oracle

		8.3.1 Abstrakte Datentypen als Wertebereich für Attribute

		8.3.2 Komplexe Objekttypen und Objekttabellen

		8.3.3 Vererbung

		8.3.4 Referenzen

		8.3.5 Abfragen

		8.3.6 Eingebettete Objekttypen

		8.3.7 Schreiboperationen in Objekttabellen

		8.3.8 Object Views

	



	8.3.1 Abstrakte Datentypen als Wertebereich für Attribute

	8.3.2 Komplexe Objekttypen und Objekttabellen

	8.3.3 Vererbung

	8.3.4 Referenzen

	8.3.5 Abfragen

	8.3.6 Eingebettete Objekttypen

	8.3.7 Schreiboperationen in Objekttabellen

	8.3.8 Object Views

	8.4 Logischer Entwurf objektrelationaler Datenbanken für Oracle

	8.5 Dokumentation einer existierenden objektrelationalen Datenbank

	8.6 Fazit

	Syntaxnotation

	Beispieldatenbank

	Literaturverzeichnis

	Sachverzeichnis



OEBPS/Images/image00186.png
Anwendungen

Daten -Services

Daten-Quellen

Rel. DBMS

Bestell-
position

Kalkulationsblatt

XML Dokument





OEBPS/Images/image00185.png
Objekt-
klasse

Objekttyp

OODB-
Begriffe

Subtyp






OEBPS/Images/image00184.png
Application
Server

Database Server

Datenbank






OEBPS/Images/image00183.png
Benutzeroberflache
e Datenbank
Anwendungslogik

Datenbankmaschine

Datenbeschreibung
Integritatsregein
Benutzer, Gruppen
und Rechte
Daten

Benutzerverwaltung
Rechteverwaltung
Kommando-
Interpretation
Abfrageoptimierung
Transaktionen

Speicherverwaltung
Datensicherung





OEBPS/Images/image00182.png
Client

Benutzer-
oberflache

Anwendungs-
logk

Benutzer-
oberflache

Anwendungs-
loglk

Benutzer-
oberflache

Anwendungs-
logik

Datenbankmaschine

Benutzerverwaltung
Rechteverwaltung
Kommando-
Interpretation
Abfrageoptimierung
Transaktionen
Speicherverwaltung
Datensicherung

Server

Datenbank

Datenbeschrelbung
Integritstsregeln
Benutzer, Gruppen
und Rechte
Daten






OEBPS/Images/image00181.png





OEBPS/Images/image00180.png
olyp_adresse
<< object >>

strasse varchar(30)
Pz varchar(5)
ot varchar (30)

s

Konlo_inhaber varchar2(30),
bz varchar2(®),

Kontonr  varchar2(10)

var_telefonliste
<< varray >
{max-card=5)

<<element>>

tolofoniiste

adresse

bankverbindung

olyp_kunde
<< object >

kunden_nr  number

status char(1)

name varchar(30)
Pelefonliste  varr_telefonliste™/
Fadresse olyp_adresse’/
letzte_bestellung  date
letzto_werbeaklon  date
zahlungsart char(t)

olyp._kunde_mA_bankeinzug
<< object >>





OEBPS/Images/image00179.png
gibtauf | rechnungsbetrag : double

<<type>>
Adresse | ! Kunde
strasse . Sting 1 ¥ [ kunden_nr
PLZ  :Sting 7 | stetus
Oort String name
tolefoniiste
letzte_bestellung
letzte_werbealdion
zahlungsart
e
g \ Kunde_mit_Bankeinzug

Konto_inhaber : Sting [<————@|

biz  String
konto_nr - String

prozent float

beschreibung : String

Bestellung

bestell_nr int
besteldatum : Date
lisferdaum : Date

1.1
enthalten in

0.
enthaelt

Position

TSt float
bestelimenge  int
liefermenge ~ :int
gesamipreis : double

artikel_nr
bezsichnung
listenpreis
bestand
mindestbestand
verpackung
lagerplatz
kann_wegfallen
bestelvorschiag
nachbestellung
nachbestelimenge





OEBPS/Images/image00176.png
1A

1.1
fiir Bankeinzug






OEBPS/Images/image00188.png
Springer Vieweg





OEBPS/Images/image00187.png
Juses”

Punkt zeigt zum
benutzten Typ

specializes*

Pleilspitze zeigt zum
Supertyp

Jreferences”

Pleilspitze zeigt zum
referenzierten Typ





OEBPS/Images/image00174.png
OTYP_ADRESSE
OTYP_KUNDE
OTYP_BESTELLUNG
OTYP_KUNDE_MIT_BANKEINZUG
OTYP_KUNDE_MIT_BANKEINZUG
OTYP_GIROKONTO
OTYP_KUNDE_MIT_BANKEINZUG
OTYP_MWSTSATZ
OTYP_ARTIKEL
OTYP_POSITION
NTYP_POSITION
OTYP_BESTELLUNG
VARR_TELEFONLISTE
OTYP_KUNDE
OTYP_BESTELLUNG
OTYP_KUNDE_MIT_BANKEINZUG
OTYP_KUNDE_MIT_BANKEINZUG

17 rows selected





OEBPS/Images/image00173.png





OEBPS/Images/image00175.png





OEBPS/Images/cover00177.jpeg
MICHAEL UNTERSTEIN
GUNTER MATTHIESSEN

Anwendungsentwicklung
mit Datenbanken

5. AUFLAGE

*

Q&
O

£) Springer Vieweg





