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Vorwort

Das Ziel des vorliegenden Buches ist, wichtige mathematische Begriffsbildun-

gen, Methoden, Ideen und Resultate zu sammeln, anzuordnen und in je etwa

zwei Seiten lesbar und informativ darzustellen. Die Darstellung ist informell und

sorgt sich nicht – wie bei einer mathematischen Monographie – allzu sehr um

systematische und hierarchische Aspekte, will aber die die Mathematik kenn-

zeichnende Genauigkeit nicht preisgeben. 

Die Leserinnen und Leser, die wir in erster Linie im Blick haben, sind Studie-

rende der Mathematik, die neben den Vorlesungsskripten und den zugehörigen

Lehrbüchern gerne einen Text zur Hand haben möchten, der zwischen Lexikon

und Lehrbuch einzuordnen ist und Überblick, Hilfestellung und Orientierung

bietet, einen Text, der sich zur Wiederholung zentraler Konzepte der mathema-

tischen Grundvorlesungen ebenso eignet wie zur Gewinnung erster Einblicke in

noch unbekannte Teilgebiete der Mathematik. 

Was das Buch nicht kann und will, ist einen vollständigen Katalog der

Schlüsselkonzepte der Mathematik zu geben. Die Auswahl der Begriffe ist sub-

jektiv, und auch ihre Darstellung ist von unseren wissenschaftlichen Erfahrungen

bestimmt, die keinen Anspruch auf Allgemeingültigkeit erheben. Auf der ande-

ren Seite haben wir natürlich versucht, unsere Auswahl am Lernenden zu ori-

entieren, der das gewaltige Wissensgebäude der modernen Mathematik betritt. 

Was ihm dort fast sicher begegnet, sollte reichlich vorhanden sein, zusammen

mit einigen Ausblicken, die ihn auf etwas hinweisen, das ihn vielleicht einmal

besonders fesseln und beschäftigen wird. 

Das Buch ist in zwölf Kapitel unterteilt und jedes Kapitel in zwölf Unterkapi-

tel, die wir in Querverweisen als Abschnitte bezeichnen. Diese Einteilung dient

der Organisation und damit der Lesbarkeit des Buches. Sie soll keineswegs an-

deuten, dass die Mathematik in zwölf Disziplinen so zerfallen würde wie Gallien

in drei Teile. Das Bedürfnis nach Ordnung und Symmetrie ist ein menschliches, 

und die Leserinnen und Leser sind explizit dazu aufgerufen, Linien nicht als

Gräben zu verstehen und sie kritisch zu hinterfragen. 

Das 1. Kapitel beschäftigt sich mit der mathematischen Methode und den

überall verwendeten sprachlichen Grundbegriffen der Mathematik. In Kapitel 2

wird das Zahlsystem von den natürlichen Zahlen bis hin zu den  p-adischen Zah-

len behandelt. Die Zahlentheorie, also die Theorie der natürlichen Zahlen, bildet

das Thema des 3. Kapitels. Kapitel 4 beschäftigt sich mit der diskreten Mathe-

matik, wobei die Graphentheorie im Zentrum steht, die der diskreten Mathe-

matik einen flexiblen sprachlichen Rahmen zur Verfügung stellt. Das 5. Kapitel

behandelt grundlegende Konzepte der linearen Algebra im Umfeld von Vekto-

ren, linearen Abbildungen und Matrizen. Im algebraischen 6. Kapitel reicht der

Bogen von den algebraischen Grundstrukturen bis hin zu einem Ausblick auf die

Galois-Theorie. Der Analysis sind die Kapitel 7 und 8 gewidmet; sie zeichnen
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den langen Weg nach, der von Folgen, Grenzwerten und stetigen Funktionen

zum Gaußschen Integralsatz und der Analysis für die komplexen Zahlen führt. 

Aspekte der Topologie und Geometrie werden in Kapitel 9 betrachtet, und gera-

de hier wird der Auswahlcharakter der einzelnen Abschnitte augenfällig. Grund-

gedanken der Numerik – vor allem in Bezug auf die lineare Algebra – werden in

Kapitel 10 vorgestellt, und Kapitel 11 wählt aus dem weiten Feld der Stochas-

tik und Wahrscheinlichkeitstheorie einige Grundbegriffe und Ausblicke aus. Das

abschließende 12. Kapitel widmet sich der mathematischen Logik, wobei hier

Themen der Mengenlehre dominieren, die in der mathematischen Grundausbil-

dung oft angesprochen, aber nicht im Detail ausgeführt werden. Jedes der zwölf

Kapitel beginnt mit einem einführenden Vorspann, so dass wir uns an dieser

Stelle mit diesem knappen Überblick begnügen können. 

Besonders danken möchten wir Herrn Dr. Andreas Rüdinger vom Spektrum-

Verlag, der das Projekt initiiert und von den ersten Ideen bis zur Fertigstellung

kontinuierlich gestalterisch begleitet hat. Seine kritische Lektüre von Vorabver-

sionen des Texts hat zu zahlreichen Verbesserungen geführt. 

Berlin und München, im Oktober 2010

Oliver Deiser, Caroline Lasser, Elmar Vogt, Dirk Werner
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1 Grundlagen

Unter Grundlagen“ verstehen wir in diesem Kapitel weniger die logischen Fun-

” 

damente der Mathematik, sondern vielmehr die Elemente der mathematischen

Sprache, die einen universellen Charakter besitzen. Hierunter fällt die Art und

Weise des mathematischen Formulierens und Argumentierens an sich, weiter

aber auch das flexible inhaltliche Gerüst, mit dessen Hilfe verschiedene mathe-

matische Theorien errichtet werden können: Mengen, Funktionen und Relatio-

nen. Den Zahlen, die man auch den derart verstandenen inhaltlichen Grundlagen

zuordnen könnte, ist ein eigenes Kapitel gewidmet. 

Im ersten Abschnitt beschreiben wir die drei klassischen charakteristischen

Merkmale mathematischer Texte: Definitionen, Sätze und Beweise. Bei der For-

mulierung mathematischer Aussagen spielen Junktoren wie und“, impliziert“, 

” 

” 

genau dann, wenn“ und Quantifizierungen des Typs für alle“ und

es gibt“

” 

” 

” 

eine Schlüsselrolle, und wir erläutern ihre Verwendung in der Mathematik im

zweiten und dritten Abschnitt. Der vierte Abschnitt schließt dann unsere Be-

schreibung der Struktur der mathematischen Sprache mit einem Blick auf einige

häufig auftauchende Muster der mathematischen Beweisführung ab. Wir können

uns nun den universellen inhaltlichen Konzepten zuwenden. 

Der Grundbegriff der Mathematik schlechthin ist der Mengenbegriff, den wir

im fünften und sechsten Abschnitt samt all den mengentheoretischen Operatio-

nen vorstellen, die in der Mathematik durchgehend im Einsatz sind. Im siebten

und achten Abschnitt führen wir dann Relationen als bestimmte Mengen und

Funktionen als bestimmte Relationen ein. Weiter versammeln wir die wichtigs-

ten Sprechweisen und Notationen im Umfeld von Relationen und Funktionen. 

Zwei fundamentale Typen von Relationen diskutieren wir in den Abschnitten

neun und zehn, nämlich die Äquivalenzrelationen, die mathematische Abstrak-

tionen beschreiben, und die Ordnungsrelationen, die vielfältige Möglichkeiten

der Strukturierung von Mengen zur Verfügung stellen. In den beiden letzten

Abschnitten steht dann der Funktionsbegriff im Vordergrund: Der Unterschied

zwischen mathematischer Existenz und algorithmischer Berechenbarkeit ist das

Thema des elften Abschnitts, und im zwölften Abschnitt betrachten wir in allge-

meiner, aber auch informaler Weise den Begriff einer mathematischen Struktur

und das zugehörige Konzept einer strukturerhaltenden Abbildung. 

O. Deiser et al.,  12 x 12 Schlüsselkonzepte zur Mathematik, 
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1 Grundlagen

1.1

Die Mathematik und ihre Sprache

Beim Überfliegen wissenschaftlicher mathematischer Texte fallen dem Betrach-

ter drei zentrale Elemente ins Auge: Definitionen, Sätze und Beweise. Daneben

finden sich Motivationen, Bemerkungen, Diagramme, Beispiele und Gegenbei-

spiele, anschauliche Erläuterungen, Berechnungen, Hinweise auf Spezialfälle und

Fehlerquellen, Diskussionen von Anwendungen, historische Bemerkungen und

Anekdoten, Literaturverweise und Computerprogramme in Pseudocode. Doch

diese Dinge dienen letztendlich alle dem Trio Definition-Satz-Beweis. Wir wollen

also diese drei Grundbausteine etwas genauer betrachten. 

Eine  Definition  führt einen neuen Begriff oder ein neues mathematisches Ob-

jekt ein. Dabei dürfen nur bereits definierte Begriffe und Objekte verwendet

werden. Da man irgendwo anfangen muss, bleiben einige wenige Grundbegriffe

undefiniert, deren Eigenschaften mit Hilfe von Axiomen beschrieben werden. 

Begriffsdefinitionen haben die Form: Ein Objekt  X  heißt  soundso, falls gilt:

” 

. . . “. Den Begriff einer Basis können wir zum Beispiel wie folgt definieren: Eine

” 

Teilmenge  B  eines Vektorraumes  V  heißt eine  Basis  von  V , falls  B  linear un-

abhängig und erzeugend ist.“ Hier muss zuvor definiert worden sein, was linear

” 

unabhängig“ und erzeugend“ bedeutet. 

” 

Objektdefinitionen werden durch

Wir setzen . . . “ oder ähnliche Formulie-

” 

rungen eingeleitet, und häufig wird dem definierten Objekt dann auch noch ein



Name gegeben. Ein Beispiel ist: Wir setzen  e =

1 . Die Zahl  e  heißt die

” 

 n∈ N  n! 

 Eulersche Zahl.“ Hierzu müssen bekannt sein: unendliche Summen von Folgen

reeller Zahlen, die Menge der natürlichen Zahlen, die Fakultätsfunktion und die

Kehrwertbildung. Zudem muss vor oder unmittelbar nach der Definition bewie-



sen werden, dass die unendliche Reihe

1 konvergiert. Da nicht beliebig

 n∈ N  n! 

viele Zeichen zur Verfügung stehen, kommt es zu Überschneidungen und Dop-

pelverwendungen: In der Analysis ist  e  der Eulerschen Zahl vorbehalten, in der

Gruppentheorie dagegen wird das Zeichen  e  oft für das eindeutig bestimmte

neutrale Element einer gerade betrachteten Gruppe benutzt. 

In Definitionen kommt es auf größte Genauigkeit an. Insbesondere wird zwi-

schen bestimmtem und unbestimmtem Artikel streng unterschieden. Wir spre-

chen von  dem  Supremum einer beschränkten nichtleeren Menge reeller Zahlen, 

aber von  einer  Basis eines Vektorraumes. Entsprechendes gilt dann für die Ver-

wendung der Begriffe. Der Satz Die Vektoren (1 ,  0 ,  0), (0 ,  1 ,  0), (0 ,  0 ,  1) sind  die

” 

Basis des R3“ ist eine mathematische Todsünde. 

Der strenge hierarchische Aufbau unterscheidet die mathematischen von den

umgangssprachlichen Definitionen – und von denen anderer Wissenschaften. Ein

Kleinkind kann nicht jedes Mal nachfragen, wenn es irgendein Wort nicht ver-

steht. Ein Physiker will und kann Elektronen erforschen und verstehen, aber

nicht mathematisch definieren. Ein Mathematiker muss dagegen zurückblättern

oder nachschlagen, wenn er die Definitionen  Basis  liest und vergessen hat, was
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lineare Unabhängigkeit bedeutet. Dessen ungeachtet kann man mathematische

Begriffe so ausführlich vorbereiten und motivieren, dass die eigentliche Defini-

tion dann nur noch als natürliche Präzisierung empfunden wird. 

Mathematische  S¨

 atze  sind beweisbare Aussagen über mathematische Begrif-

fe und Objekte. Sie beschreiben, welchen Umfang Begriffe haben und wie sie

miteinander zusammenhängen, und sie geben an, welche Eigenschaften Objek-

te besitzen. Hat man den Basisbegriff definiert, so wird man fragen, ob jeder

Vektorraum eine Basis besitzt. In der Tat gilt der Satz: Jeder Vektorraum be-

” 

sitzt eine Basis.“ Ein Ergebnis über die Eulersche Zahl  e  ist:

Die Zahl  e  ist

” 

irrational.“

Neben Satz“ finden sich auch Theorem“, Lemma“, Proposition“ und Ko-

” 

” 

” 

” 

” 

rollar“. Alle diese Varianten bezeichnen mathematische Sätze, geben aber infor-

male Hinweise auf die Stellung des Ergebnisses: Ein Theorem ist ein besonders

wichtiger Satz, eine Proposition ein vorbereitendes Ergebnis, ein Lemma ein

auch andernorts einsetzbares Resultat, manchmal aber auch nur ein kleiner

Hilfssatz. Ein Korollar bezeichnet schließlich einen Satz, der sich relativ ein-

fach aus einem anderen Satz gewinnen lässt. Das Wort geht auf das lateinische

corollarium“ zurück, das Geschenk, Zugabe“ bedeutet. 

” 

” 

Was ein  Beweis  ist, ist wesentlich schwieriger zu beschreiben und zu beant-

worten. Ohne die Begriffe Wahrheit“ oder Gültigkeit“ zu verwenden, lässt sich

” 

” 

Folgendes sagen: Ein Beweis überzeugt seinen Leser genau dann, wenn er die

logischen Spielregeln der Mathematik einhält, die der Leser akzeptiert. 

Beweise werden in einer modifizierten und reduzierten Form der Umgangs-

sprache geführt, die man durch Nachahmung lernt. Wir diskutieren unten einige

Strukturen und Sprechweisen, die in Beweisen häufig auftauchen (siehe Ab-

schnitt 1.4). Einen genauen Beweisbegriff stellt schließlich die mathematische

Logik zur Verfügung (siehe Abschnitt 12.9). 

Das Gerüst aus Definitionen, Sätzen und zugehörigen Beweisen bleibt oh-

ne Anschauung nackt und unverstanden. Novizen wie erfahrene Mathematiker

durchlaufen deswegen ständig den folgenden zweiteiligen Prozess: Neuen in der

präzisen mathematischen Sprache definierten Begriffen wird eine individuelle

abstrakte Anschauung zugeordnet, die durch das Betrachten von Beispielen

und Gegenbeispielen, durch das Durchführen von Berechnungen und spieleri-

schen Experimenten und vor allem durch das Studium von Beweisen entwickelt

und oft auch korrigiert wird. Sollen nun eigene Beweise notiert werden, so wird

die Anschauung in eine formale Form übersetzt, die andere Mathematiker le-

sen können. Diese beiden zueinander inversen Tätigkeiten bereiten Anfängern

oft große Schwierigkeiten. Zum Aneignungsproblem Ich verstehe diesen Begriff

” 

nicht“ tritt das Übersetzungsproblem

Ich weiß nicht, wie ich das aufschrei-

” 

ben soll“. Der klassische Weg der Begegnung dieser Schwierigkeiten besteht im

selbständigen und selbstkritischen Bearbeiten von Übungsaufgaben, die den Ler-

nenden auffordern, ein bereits bekanntes Stück Mathematik erneut zu entdecken

und zu formulieren. 
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1.2

Junktoren

Unter einer (mathematischen) Aussage verstehen wir eine Behauptung über

mathematische Objekte:

7 ist eine Primzahl“, 

8 ist eine Primzahl“, 

Jede

” 

” 

” 

natürliche Zahl  n ≥  2 besitzt eine eindeutige Primfaktorzerlegung“. 

Aussagen werden mit Hilfe von  Junktoren  zu neuen Aussagen kombiniert. Da-

bei werden vor allem die Negation (in Zeichen  ¬), die Konjunktion  und ( ∧), die

Disjunktion  oder ( ∨), die Implikation  impliziert/folgt ( →) und die Äquivalenz

 genau dann, wenn ( ↔) verwendet. Die Negation ist ein einstelliger Junktor: Für

jede Aussage  A  ist  ¬ A  wieder eine Aussage. Alle anderen angegebenen Junk-

toren sind zweistellig: Für alle Aussagen  A  und  B  sind  A ∧ B,  A ∨ B,  A → B

und  A ↔ B  wieder Aussagen. 

Wenden wir Junktoren wiederholt an, so verwenden wir Klammern, um den

Aufbau der entstehenden Aussage unmissverständlich festzulegen:

 A ∧ ( B ∨ C) , ( A ∧ B)  ∨ C, A → ( B → C) , ( A ↔ B)  ∨ (( ¬ A)  → C) , . . . 

Um Klammern zu sparen, vereinbart man folgende Bindungsstärke (von stark

nach schwach bindend):  ¬,  ∧,  ∨,  →,  ↔. Damit ist etwa  ¬ A → B∧C  die Aussage

( ¬ A)  → ( B ∧ C), und  A ↔ B → C  ist die Aussage  A ↔ ( B → C). 

Oft verbindet man mit den Junktoren folgendes (nicht unproblematische)

Weltbild: Jede Aussage ist entweder wahr oder falsch, und die Verwendung

eines Junktors liefert einen von den Wahrheitswerten der beteiligten Aussagen

abhängigen neuen Wahrheitswert. Wir schreiben

w“ für

wahr“ und

f“ für

” 

” 

” 

falsch“ und legen für unsere Junktoren folgende Wahrheitstafeln fest:

” 

¬


A

A


∧


B

A


∨


B

A


→


B

A


↔


B

f
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w
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f
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f

f

f

w

f
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w

f

In der Mathematik ist also eine Konjunktion  A ∧ B  genau dann wahr, wenn

sowohl  A  als auch  B  wahr sind. Eine Disjunktion  A ∨ B  ist genau dann falsch, 

wenn sowohl  A  als auch  B  falsch sind. Eine Implikation  A → B  ist wahr, 

es sei denn,  A  ist wahr und  B  ist falsch. Und  A ↔ B  ist wahr, wenn die

Wahrheitswerte von  A  und  B übereinstimmen, und falsch sonst. 

Oft sieht man z. B. lediglich  ∧  und  ¬  als Basisjunktoren an und definiert dann

die anderen Junktoren mit Hilfe dieser Basisjunktoren wie folgt:

 A ∨ B  als  ¬ ( ¬A ∧ ¬B) , A → B  als  ¬A ∨ B, A ↔ B  als ( A → B)  ∧ ( B → A) . 

Diese Definitionen liefern genau die obigen Wahrheitstafeln für  ∨,  →  und  ↔. 
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Dass  A → B äquivalent zu  ¬A ∨ B  ist, ist gewöhnungsbedürftig: Die Im-

plikation  A → B  wird als dynamisch“ empfunden, die Disjunktion  ¬ A ∨ B

” 

dagegen als statisch“. Der Leser vergleiche etwa die Aussage Wenn es regnet, 

” 

” 

benutze ich einen Schirm“ mit Es regnet nicht oder ich benutze einen Schirm“. 

” 

Niemand würde sich umgangssprachlich der zweiten Form bedienen. 

Die Umgangssprache weicht auch in anderen Fällen von der mathematischen

Semantik der Junktoren ab. In Adam isst nichts und wird krank“ und Adam

” 

” 

wird krank und isst nichts“ wird eine Kausalität nahegelegt, die in der Mathe-

matik niemals – auch nicht in der Implikation – vorhanden ist. Speziell ist  A ∧ B

mathematisch stets gleichbedeutend mit  B ∧ A. Ebenso wird das oder“ um-

” 

gangssprachlich oft ausschließlich verwendet, und zudem wirken Vertauschungen

oft befremdlich. Man sagt Gehen Sie oder ich schieße!“, aber nicht Ich schieße

” 

” 

oder Sie gehen!“

Die Wahrheitstafeln für komplexe zusammengesetzte Aussagen lassen sich

algorithmisch mit Hilfe obiger Tafeln für die Junktoren berechnen. Die Wahr-

heitstafel einer aus  A 1 , . . . , An  zusammengesetzten Aussage hat dabei 2 n  Zeilen, 

so dass die Berechnung schnell sehr aufwändig wird. Die Wahrheitstafel des sog. 

 Kontrapositionsgesetzes A → B ↔ ¬B → ¬A  hat zum Beispiel vier Zeilen, und

das Verfahren ihrer Berechnung verläuft wie folgt:


A

→


B

↔
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B
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Die Ziffern geben dabei die durch den Aufbau der Aussage gegebene Reihen-

folge an, in der die Spalten der Tabelle gefüllt werden. Die letzte gefüllte Spalte

ist das Ergebnis der Berechnung. Ist die Ergebnisspalte wie im obigen Beispiel

durchgehend mit dem Wert w“ gefüllt, so nennt man die betrachtete Aussage

” 

eine  Tautologie.  Eine Aussage ist also eine Tautologie, wenn sie bei jeder belie-

bigen wahr-falsch- Belegung“ ihrer Grundaussagen wahr ist. Weitere Beispiele

” 

für Tautologien sind die  Distributivgesetze A ∧ ( B ∨ C)  ↔ ( A ∧ B)  ∨ ( A ∧ C) und

 A ∨ ( B ∧ C)  ↔ ( A ∨ B)  ∧ ( A ∨ C), die  de Morganschen Regeln  für die Verneinung

 ¬ ( A ∧ B)  ↔ ¬ A ∨ ¬ B  und  ¬ ( A ∨ B)  ↔ ¬ A ∨ ¬ B. Eine Erwähnung verdient

auch die Tautologie  A → ( B → C)  ↔ ( A ∧ B)  → C. 

Von grundlegender Bedeutung für die klassische Mathematik sind die bereits

im Mittelalter diskutierten Tautologien für die Negation:

 ¬¬A ↔ A (duplex negatio affirmat), 

 A ∨ ¬A (tertium non datur), 

( A ∧ ¬A)  → B (ex falso quodlibet). 
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1.3

Quantoren

In der Mathematik betrachten wir Aussagen über die Objekte eines bestimmten

kontextabhängigen Bereichs, etwa der Menge der natürlichen Zahlen oder der

Menge der reellen Funktionen. Einige Objekte interessieren uns als solche: Wir

 √

sagen z. B. 2 ist eine Primzahl“, 

2 ist irrational“, Die Sinus-Funktion hat

” 

” 

” 

die Periode 2 π“. Daneben sind aber Aussagen von Interesse, die alle oder einige

Objekte des Bereichs betreffen: Alle Primzahlen größergleich 3 sind ungerade“, 

” 

es gibt transzendente Zahlen“, alle differenzierbaren Funktionen sind stetig“, 

” 

” 

usw. Zudem verwenden wir derartige Quantifizierungen auch, um Aussagen über

spezielle Objekte formulieren zu können. So kann man obige Aussage über den

Sinus auf R schreiben als für alle  x  gilt sin( x) = sin( x + 2 π)“. 

” 

Zwei Quantoren spielen in der Mathematik eine Hauptrolle: der Allquan-

tor für alle“, in Zeichen  ∀ (ein umgekehrtes A), und der Existenzquantor es

” 

” 

gibt (mindestens) ein“, in Zeichen  ∃ (ein gespiegeltes E). Sprechen wir von den

natürlichen Zahlen N, so bedeutet  ∀n A( n)“, dass die Aussage  A( n) für alle

” 

natürlichen Zahlen  n  gilt. Analog bedeutet  ∃x B( x)“ im Kontext von R, dass es

” 

eine reelle Zahl  x  gibt, für die  B( x) gilt. Unmissverständlich können wir den Be-

reich mit Hilfe von Mengen konkret angeben und  ∀n ∈  N  A( n) oder  ∃x ∈  R  B( x)

schreiben. Ähnlich bedeutet  ∀x >  0  A( x) die Aussage  ∀x ( x >  0  → A( x)) und

 ∃x = 0  B( x) bedeutet die Aussage  ∃x ( x = 0  ∧ B( x)). 

Wir betrachten einige Beispiele für Formulierungen mit Quantoren. Für den

Bereich N können wir ausdrücken:

 d | n (d. h.  d  ist ein Teiler von  n)“:

 ∃k d · k =  n. 

” 

 p  ist eine Primzahl“:

 p ≥  2  ∧ ∀d | p ( d = 1  ∨ d =  p) . 

” 

Es gibt unendlich viele Primzahlen“:

 ∀n ∃p ≥ n ( p  ist eine Primzahl). 

” 

Für Funktionen  f : R  →  R können wir mit Hilfe von reellwertigen Quantoren

schreiben:

 f  ist beschränkt“:

 ∃y >  0  ∀x |f( x) | ≤ y, 

” 

 f  ist periodisch“:

 ∃a = 0  ∀x f( x +  a) =  f( x), 

” 

 f  ist stetig bei  x“:

 ∀ε >  0  ∃δ >  0  ∀y ( |x − y| < δ → |f( x)  − f( y) | < ε). 

” 

Ein Beispiel aus der reinen Logik:

Es gibt genau zwei verschiedene Dinge“

” 

können wir schreiben als  ∃x ∃y ( x =  y ∧ ∀z ( z =  x ∨ z =  y)). 

Im Umgang mit Quantoren ist Vorsicht geboten. So ist etwa  ∀x ∃y A( x, y) von

 ∃y ∀x A( x, y) zu unterscheiden. Wir betrachten hierzu den Bereich  M, über den

die Quantoren laufen, und tragen alle ( x, y), für die  A( x, y) gilt, als einen Punkt

in  M ×M  ein. Die Aussage  ∀x ∃y A( x, y) bedeutet dann, dass in jeder Spalte des

Diagramms ein Punkt erscheint. Dagegen bedeutet  ∃y ∀x A( x, y) viel stärker, 

dass das Diagramm eine volle Zeile aus Punkten enthält! Im Allgemeinen dürfen

All- und Existenzquantoren also nicht vertauscht werden. Vertauschen darf man

dagegen offenbar Quantoren des gleichen Typs:  ∀x ∀y A( x, y) ist gleichbedeutend

1.4

Beweise

7

mit  ∀y ∀x A( x, y). Analoges gilt für den Existenzquantor. Man schreibt kurz

auch  ∀x, y A( x, y) anstelle von  ∀x ∀y A( x, y), usw. 

Für die Quantoren für alle“ und es gibt“ gelten die folgenden Verneinungs-

” 

” 

regeln, die im mathematischen Alltag durchgehend im Einsatz sind:  ¬∀x A( x)

ist gleichbedeutend mit  ∃x ¬A( x),  ¬∃x B( x) ist gleichbedeutend mit  ∀x ¬B( x). 

Wiederholt angewendet erhalten wir:  ¬∀x ∃y A( x, y) ist gleichbedeutend mit

 ∃x ∀y ¬A( x, y),  ¬∃x ∀y A( x, y) ist gleichbedeutend mit  ∀x ∃y ¬A( x, y), usw. 

Dieses Durchziehen der Negation mit Quantorenwechsel“ beherrscht man nach

” 

kurzer Zeit im Schlaf. Wir hatten oben formuliert:

 f  ist stetig bei  x“ :

 ∀ε >  0  ∃δ >  0  ∀y ( |x − y| < δ → |f( x)  − f( y) | < ε) . 

” 

Die Verneinungsregeln liefern:

 f  ist unstetig bei  x“ :

 ∃ε >  0  ∀δ >  0  ∃y ( |x − y| < δ ∧ |f( x)  − f( y) | ≥ ε) , 

” 

wobei wir hier auch noch die Tautologie  ¬ ( A → B)  ↔ A ∧ ¬B  verwenden. 

Wir stellen schließlich noch einige Regeln zum Umgang mit Quantoren in

Kombination mit aussagenlogischen Junktoren zusammen:

 ∀x ( A( x)  ∧ B( x))  ↔ ∀x A( x)  ∧ ∀x B( x) , 

 ∀x A( x)  ∨ ∀xB( x)  → ∀x ( A( x)  ∨ B( x)) , 

 ∀x ( A( x)  → B( x))  → ∀x A( x)  → ∀x B( x) , 

 ∃x ( A( x)  ∨ B( x))  ↔ ∃x A( x)  ∨ ∃x B( x) , 

 ∃x ( A( x)  ∧ B( x))  → ∃x A( x)  ∧ ∃x B( x) , 

 ∃x ( A( x)  → B( x))  ↔ ∀x A( x)  → ∃x B( x) . 

Die fehlenden Implikationen von rechts nach links sind im Allgemeinen nicht

gültig. Ist  A( x) =

 x  liebt mich“ und  B( x) =

 x  macht mich glücklich“, so

” 

” 

sind also nach der letzten Äquivalenz die Aussagen

Es gibt jemanden, der

” 

mich glücklich macht, wenn er mich liebt“ und Wenn alle mich lieben, so gibt

” 

es jemanden, der mich glücklich macht“ logisch (aber sicher nicht poetisch)

gleichwertig. 

1.4

Beweise

Die Sätze der Mathematik werden aus bestimmten Annahmen durch logische

Argumentation hergeleitet. Beweise werden oft sehr kompakt notiert, aber letzt-

endlich lassen sich alle verwendeten Argumente immer in leicht nachvollziehbare

Schritte auflösen. In diesem Sinne ist die Mathematik sowohl die einfachste als

auch die friedlichste aller Wissenschaften. 
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Jeder Mathematiker entwickelt eine eigene abstrakte Anschauung, mit deren

Hilfe er die Gegenstände der Mathematik durchdringt und sich aneignet. Beweise

führt er dagegen in einer Form, die von dieser Anschauung keinen Gebrauch

macht. Diese Form ist von bestimmten Strukturen und Sprechweisen geprägt. 

Wir stellen einige häufig vorkommende Beispiele zusammen. 

 Direkter Beweis einer Implikation A → B:  Man nimmt an, dass  A  gilt, und

versucht,  B  zu beweisen. Implikationen sind in diesem Sinne beweisfreundlich, 

da man für den Beweis von  A → B  die Gültigkeit von  A  als Voraussetzung

geschenkt“ bekommt. 

”  Indirekter Beweis einer Implikation A → B:  Man beweist die nach dem Kon-

trapositionsgesetz gleichwertige Implikation  ¬B → ¬A. Die geschenkte Voraus-

setzung lautet hier also  ¬ B  und das Beweisziel ist  ¬A. Statt Ist  n 2 ungerade, 

” 

so ist  n  ungerade“ kann man also gleichwertig indirekt zeigen: Ist  n  gerade, so

” 

ist  n 2 gerade.“

 Widerspruchsbeweis von A (reductio ad absurdum):  Man nimmt  ¬ A  als ge-

schenkte Voraussetzung an und versucht einen Widerspruch wie 0 = 1 zu er-

zeugen. Widerspruchsbeweise haben oft einen unkonstruktiven Charakter: Man

sieht am Ende in vielen Fällen nur, dass  A  deswegen gelten muss, weil  ¬ A  nicht

gelten kann. 

 Beweis von A durch Beweis einer st¨

 arkeren Aussage B:  Zum Beweis von

 A  kann es zuweilen einfacher sein, eine Aussage  B  zu beweisen, für die die

Implikation  B → A  bereits bekannt ist. Die Irrationalität von  π  wird zum

Beispiel gerne bewiesen, indem stärker gezeigt wird, dass  π 2 irrational ist. 

 Beweis von A ∧ B:  Es bleibt einem nichts anderes übrig, als zwei Beweise zu

führen. Die Reihenfolge kann aber eine Rolle spielen, da  A  zum Beweis von  B

nützlich sein kann. 

 Beweis von A ∨ B:  Man kann gleichwertig zeigen:  ¬A → B. Dieser Trick stellt

die implikativen Methoden zur Verfügung. 

 Beweis der ¨

 Aquivalenz von A, B, C:  Statt alle sechs Implikationen  A → B, 

. . . ,  C → A  zwischen  A,  B  und  C  zu zeigen, genügt es, drei Implikationen zu

beweisen, die einen logischen Kreis“ bilden. (Die Methode ist auch als Ring-

” 

” 

schluss“ bekannt.) Der Gewinn wird für vier oder mehr Aussagen deutlicher, 

und spätestens wenn man zeigen soll, dass sieben Versionen des Stetigkeitsbe-

griffs äquivalent sind, wird man die Methode schätzen lernen. Eine geschickte

Anordnung des Implikationskreises zeigt Gespür und spart Arbeit. 

 Beweis von A durch Fallunterscheidung:  Zum Beweis von  A  zeigt man für ein

geschickt gewähltes  B  die beiden Implikationen  B → A  und  ¬ B → A. Statt

einer hat man also zwei Aussagen zu zeigen, die aber eine angenehme implikative

Form haben. 

 Beweis einer Aussage ∀x ∈ M A( x) :  Zum Beweis arbeitet man mit einem

beliebigen Element  x  von  M  und versucht  A( x) zu zeigen. Gelingt dies nicht, 

1.5
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sind oft Fallunterscheidungen wie z. B.  x ≥  0“ und  x <  0“ für  M = R oder

” 

” 

 x  ist gerade“ und  x  ist ungerade“ für  M = N hilfreich. 

” 

” 

 Beweis einer Aussage ∃x ∈ M A( x) :  Der Beweis konstruiert“ im Idealfall ein

” 

 x ∈ M  mit  A( x). Gelingt dies nicht, so kann man durch reductio ad absurdum“

” 

die Annahme  ∀x ¬A( x) zu einem Widerspruch führen. Dann ist  ¬∀x ¬A( x)

bewiesen, was nach den Verneinungsregeln gleichwertig zu  ∃x A( x) ist. 

In Beweisen sind naturgemäß Begründungen von Bedeutung. Typische Be-

gründungen sind Rückgriffe der Form

Nach Voraussetzung ist die Funkti-

” 

on  f  stetig“, Zitate der Form

Nach dem Zwischenwertsatz gibt es ein  x  mit

” 

 f ( x) = 0“, Komplexitätshinweise wie Offenbar ist  x = 0 eine Lösung der Glei-

” 

chung“ oder Der Beweis der Eindeutigkeit ist keineswegs trivial“, und schließ-

” 

lich Kurzbegründungen wie z. B. Es gilt 2  · k =  n, da  n  ungerade ist“. 

” 

Es ist immer gut, die behandelten Objekte beim Namen zu nennen, etwa

durch

Sei also  f : [0 ,  1]  →  R stetig“ oder Sei nun  x ∈ M  beliebig“. Bei

” 

” 

längeren Argumentationen ist es nicht nur für den Leser, sondern auch für

den Beweisführenden oft hilfreich, das aktuelle Beweisziel explizit zu notieren, 

etwa als

Es bleibt zu zeigen, dass . . . “ oder

Als Nächstes zeigen wir, dass

” 

” 

. . . “ Erreichte Zwischenziele sind erfreulich und können durch Dies zeigt, dass

” 

. . . “ oder Damit haben wir bewiesen, dass . . . “ festgehalten werden. Daneben

” 

gibt es die berühmt-berüchtigten Vereinfachungen wie

Ohne Einschränkung

” 

sei  x ≤ y“, z. B. für zwei reelle Lösungen  x,  y  einer Gleichung, deren Namen

man verlustfrei austauschen kann. Schließlich darf und soll man Wiederholungen

vermeiden und schreiben Das zweite Distributivgesetz wird analog bewiesen“, 

” 

wenn der Beweis des ersten Gesetzes alle wesentlichen Ideen vorgestellt hat. 

1.5

Menge und Element

Mathematische Objekte treten zusammengefasst, gebündelt, vereint auf und

bilden so ein neues mathematisches Objekt, eine  Menge.  Die Objekte, die die

Menge bilden, heißen die  Elemente  der Menge. Ist  M  eine Menge und ist  m  ein

Element von  M , so schreiben wir  m ∈ M  und lesen dies als  m  Element  M“

” 

oder  m  in  M“. Ist  m  kein Element von  M , so schreiben wir  m /

 ∈ M. Das  ∈“

” 

” 

ist ein stilisiertes griechisches Epsilon  ε“. 

” 

Wir sprechen heute fast selbstverständlich von der Menge der natürlichen

Zahlen, der Menge der reellen Zahlen, der Menge der reellwertigen Funktionen, 

der Menge der Punkte eines topologischen Raumes, usw. Je mehr man sich auf

den Jargon der Mengen einlässt, desto fremder erscheint eine Welt, in der nicht

oder nur nebenbei von Mengen die Rede war. Und doch ist die mengentheore-

tische Neuschreibung und Expansion der Mathematik relativ jung. Sie stammt

aus der zweiten Hälfte des 19. Jahrhunderts und ist mit Namen wie Georg Can-

tor und Richard Dedekind verbunden. 
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Die gesamte moderne Mathematik kann aus dem auf den ersten Blick un-

problematischen und unscheinbaren Mengenbegriff heraus entwickelt werden. 

Diese in den ersten Jahrzehnten des 20. Jahrhunderts sichtbar gewordene

fundamentbildende Kraft des Mengenbegriffs hat die Mathematik tiefgreifend

verändert und geprägt. Auch außerhalb der Grundlagenforschung sind diese

Veränderungen heute überall spürbar: Die Sprache der modernen Mathematik

ist die Sprache der Mengenlehre. 

Die Mathematik beschreibt ihre Grundbegriffe traditionell axiomatisch, und

sie kann und will deswegen nicht im üblichen strengen Sinne definieren, was eine

Menge wirklich“ ist (vgl. Abschnitt 12.4). Zur Vermittlung des Mengenbegriffs

” 

bedient man sich intuitiver Beschreibungen und vertraut dann auf das Erler-

nen des Begriffs durch Sichtbarmachung all der Eigenheiten, die im täglichen

Gebrauch auftreten. Die bekannteste intuitive Beschreibung des Mengenbegriffs

stammt von Georg Cantor aus dem Jahre 1895:

 Unter einer Menge‘ verstehen wir jede Zusammenfassung M von bestimm-

 ” 

 ’

 ten wohlunterschiedenen Objekten m unserer Anschauung oder unseres Denkens

 (welche die Elemente‘ von M genannt werden) zu einem Ganzen.“

 ’

Mengen werden hier als Zusammenfassungen“ beschrieben und bleiben da-

” 

mit im strengen Sinne undefiniert. Dessen ungeachtet bleibt die Wendung der

Zusammenfassung zu einem Ganzen“ glänzend für die Intuition. 

” Cantors Beschreibung geht in Anschauung und Denken“ über die Welt der

” 

Mathematik hinaus. In der wissenschaftlichen Mathematik beschränkt man sich

naturgemäß auf Mengen, die aus mathematischen Objekten gebildet werden

(und verzichtet also auf Äpfel und Birnen). 

Bestimmte mathematische Objekte  m  werden also zu einer Menge  M  zusam-

mengefasst. Da nun Mengen  M  wieder mathematische Objekte sind, können wir

bestimmte Mengen  M  wiederum zu einer neuen Menge  M – einem sog. Men-

gensystem – zusammenfassen, usw. Daneben sind natürlich auch Mischformen

möglich, z. B. die Zusammenfassung eines einfachen Objekts und eines komple-

xen Mengensystems. Der Mengenbegriff ist insgesamt iterativ: Die Operation

Menge von . . . “ kann wiederholt angewendet werden. 

” Prinzipiell kann jedes Zeichen für eine beliebig verschachtelte Menge stehen. 

Zudem ist aus grundlagentheoretischer Sicht jedes Objekt eine Menge, so dass

strenge notationelle Unterscheidungen künstlich erscheinen. In der mathemati-

schen Praxis ist aber oft folgende Typologie nützlich: Man verwendet  a,  b,  c, . . . , 

 x,  y,  z, usw. für die Grundobjekte des betrachteten Bereichs, etwa reelle Zahlen. 

Weiter stehen dann  A,  B,  C, . . . ,  X,  Y ,  Z  für Mengen von Grundobjekten (in

unserem Beispiel: Mengen reeller Zahlen). Schließlich werden  A ,  B,  C , . . . ,  X , 

 Y ,  Z  für Mengensysteme verwendet (hier: Systeme von Mengen reeller Zahlen

wie z. B. das System der offenen reellen Intervalle). Die Dreistufung  a,  A,  A “

” 

genügt in vielen Fällen. Allerdings können die Grundobjekte bereits recht kom-

plex sein, etwa reellwertige Funktionen, die als Punkte“ einen Funktionenraum

” 

bilden. 
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Mengen werden vollständig durch ihre Elemente bestimmt: Zwei Mengen  A

und  B  sind genau dann gleich, wenn sie dieselben Elemente besitzen. Diese Aus-

sage ist als  Extensionalit¨

 atsprinzip  bekannt. Es gibt also keine

rote“ Menge

” 

zweier Objekte  a,  b, die man von einer entsprechenden grünen“ Menge unter-

” 

scheiden könnte. 

Eine Menge  A  heißt  Teilmenge  einer Menge  B, in Zeichen  A ⊆ B, falls jedes

Element von  A  ein Element von  B  ist. Ist zudem  A =  B, so heißt  A  eine  echte

 Teilmenge  von  B, in Zeichen  A ⊂ B. Die Inklusions-Zeichen  ⊆  und  ⊂  erinnern

an  ≤  und  < . (Viele Mathematiker verwenden das Zeichen  ⊂  für  ⊆  und fügen

dann ein Ungleichheitszeichen unter  ⊂  hinzu, wenn die echte Inklusion ausge-

drückt werden soll. Ursache hierfür ist, dass die Inklusion viel öfter vorkommt

als die echte Inklusion. Die Analogie zu  ≤  und  <  rechtfertigt aber den Mehrauf-

wand.) Statt  A ⊆ B  schreiben wir auch  B ⊇ A  und nennen die Menge  B  dann

eine  Obermenge  von  A. Analoges gilt für  A ⊃ B. Oft zeigt man die Gleichheit

zweier Mengen  A  und  B, indem man in zwei Schritten  A ⊆ B  und  B ⊆ A

beweist. Nach dem Extensionalitätsprinzip gilt dann in der Tat  A =  B. 

Zur Notation von Mengenbildungen haben sich die geschweiften Klammern

durchgesetzt, die ja heute oft schon Mengenklammern genannt werden. Der

einfachste Fall ist die direkte Angabe der Elemente. Für beliebige Objekte

 a 1 , a 2 , . . . , an  sei  M =  {a 1 , . . . , an}  die Menge, deren Elemente genau die Ob-

jekte  a 1 , . . . , an  sind. Für alle Objekte  x  ist also  x ∈ M  gleichwertig mit  x =  a 1

oder  . . .  oder  x =  an. Auf Reihenfolge und Wiederholungen kommt es nach

dem Extensionalitätsprinzip nicht an, es gilt z. B.  {a, b} =  {b, a} =  {a, a, b} =

 {a, b, a, b} =  . . .  Dagegen ist jedoch  ∅ =  {∅}, wobei  ∅  die  leere Menge  bezeichnet, 

die keine Elemente besitzt. Statt  ∅  schreiben wir auch  {}. 

Viel umfassender und stärker ist die Definition von Mengen über Eigenschaf-

ten. Für eine mathematische Eigenschaft  E ( x) sei

 M =  {a | E ( a) }

die Menge aller Objekte  a, die die Eigenschaft  E  besitzen. Für alle  x  ist also

 x ∈ M  gleichwertig mit  E ( x). Diese sog.  Mengenkomprehension über Eigen-

schaften wirft überraschende und komplexe logische Probleme auf, auf die wir

im Abschnitt über die Russell-Antinomie (Abschnitt 12.3) zu sprechen kommen. 

Viele mit  {x | E ( x) }  verwandte Schreibweisen sind üblich und nützlich: Ist

 F  eine Funktion auf  A, so ist  {F ( x)  | x ∈ A  und  E ( x) }  besser lesbar als

 {y |  es gibt ein  x ∈ A  mit  E ( x) und  y =  F ( x) }. Die Menge der ungeraden

Zahlen notiert man oft einfach als  { 1 ,  3 ,  5 ,  7 , . . .}  anstelle der korrekten, aber

umständlicheren Notation  { 2 n + 1  | n ∈  N }, usw. 

Wir hatten schon erwähnt, dass sich der Mengenbegriff hervorragend dafür

eignet, andere fundamentale Objekte der Mathematik definieren zu können. Ein

wichtiges Beispiel für diese Interpretationskraft ist die Einführung des geordne-

ten Paares. Für beliebige Objekte  a,  b  setzen wir ( a, b) =  {{a}, {a, b}} ( geord-

 netes Kuratowski-Paar,  Tupel ). Man zeigt leicht, dass ( a, b) = ( c, d) genau dann

12

1 Grundlagen

gilt, wenn  a =  c  und  b =  d. Diese Eigenschaft ist alles, was benötigt wird. Wie

üblich definieren wir nun  A × B =  {( a, b)  | a ∈ A  und  b ∈ B} ( Kreuzprodukt, 

 kartesisches Produkt ).  Tripel ( a, b, c) definieren wir durch ( a, b, c) = (( a, b) , c), 

usw. Entsprechend ist  A 3 = ( A × A)  × A =  {( a, b, c)  | a, b, c ∈ A}. 

Obwohl man in der Praxis“ die Kuratowski-Definition wieder vergessen kann, 

” 

sind derartige Rückführungen von mathematischen Begriffen auf den Mengen-

begriff von großer Bedeutung. Wir müssen uns nicht mit weiteren Grundbegrif-

fen und zugehörigen axiomatisch gezähmten Vagheiten belasten. Zudem werden

wir zu einem hohen Maß an Exaktheit gezwungen. Die Präzisierung eines ma-

thematischen Begriffs bedeutet, eine mengentheoretische Definition desselben

hinzuschreiben. 

Auch die natürlichen Zahlen lassen sich mengentheoretisch einführen oder, 

wie man vielleicht besser sagt, interpretieren. Wir setzen:

0 =  {},  1 =  { 0 },  2 =  { 0 ,  1 },  3 =  { 0 ,  1 ,  2 }, . . . 

und allgemein  n + 1 =  { 0 ,  1 ,  2 , . . . , n}. Die formale Durchführung (und Moti-

vation) dieser Idee ist Aufgabe der axiomatischen Mengenlehre. Auch hier gilt, 

dass man die Definition gar nicht zu kennen braucht, um z. B. tiefsinnige Sätze

über Primzahlen zu beweisen. Dennoch ist es ein zu Recht gefeierter Triumph, 

dass sich die natürlichen Zahlen in einer mengentheoretischen Umgebung defi-

nieren lassen. Wichtige

Prinzipien“ wie z. B. die vollständige Induktion und

” 

die Rekursion werden so zu beweisbaren Sätzen. 

1.6

Mengenoperationen

Aus gegebenen Mengen lassen sich in vielfacher Weise neue Mengen bilden. Es

gibt eine Vielzahl von Operationen, die in allen Bereichen der Mathematik ge-

braucht werden. Am einfachsten sind hier die logischen oder Booleschen Opera-

tionen. Aussagenlogische Argumentation überträgt sich auf die Mengenbildung. 

So entspricht dem logischen und“ die Bildung des Durchschnitts zweier Men-

” 

gen, dem logischen

oder“ deren Vereinigung. Wir definieren für alle Mengen

” 

 A,  B Durchschnitt, Vereinigung  und  Differenz :

 A ∩ B =  {x | x ∈ A  und  x ∈ B}, 

 A ∪ B =  {x | x ∈ A  oder  x ∈ B}, 

 A − B =  A \ B =  {x | x ∈ A  und  x /

 ∈ B}. 

Gilt  A ∩ B =  ∅, so heißen die Mengen  A  und  B disjunkt. 

Wurde eine Menge  X  spezifiziert, innerhalb derer sich unsere Betrachtungen

abspielen, so können wir auch die logische Negation mengentheoretisch nachbil-

den. Wir definieren für alle  A ⊆ X  die  Komplementbildung  durch

 Ac =  X − A =  {x ∈ X | x /

 ∈ A}. 

1.6
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Beispiele für derartige lokale Objektuniversen“  X  sind die Zahlbereiche N, R, 

” 

C oder topologische Räume. Ist z. B.  G =  {n | n  ist gerade }  im Kontext von N

definiert worden, so ist  Gc =  {n | n  ist ungerade }. 

Für obige Operationen gelten die  de Morganschen Regeln ( A ∪ B) c =  Ac ∩ Bc

und ( A ∩ B) c =  Ac ∪ Bc, sowie die  Distributivgesetze A ∩ ( B ∪ C) = ( A ∩ B)  ∪

( A ∩ C) und  A ∪ ( B ∩ C) = ( A ∪ B)  ∩ ( A ∪ C). 

Eine interessante elementare Operation ist die  symmetrische Differenz . Wir

setzen für alle Mengen  A,  B:

 A Δ  B = ( A − B)  ∪ ( B − A) = ( A ∪ B)  − ( A ∩ B) . 

Es gilt also  x ∈ A Δ  B, wenn  x  genau einer der beiden Mengen  A  und

 B  angehört, und damit entspricht Δ dem logischen

entweder oder“. Diese

” 

Operation ist, was gar nicht selbstverständlich ist, assoziativ, d. h., es gilt

( A Δ  B) Δ  C =  A Δ ( B Δ  C). Iterierte symmetrische Differenzen haben ei-

ne überraschend klare Bedeutung, denn es gilt  A 1 Δ  A 2 Δ  . . . Δ  An =  { x |

die Anzahl der Indizes  i  mit  x ∈ Ai  ist ungerade }, wie man leicht durch Induk-

tion nach  n  zeigt. 

Schnitt und Vereinigung lassen sich auch allgemein für Mengensysteme de-

finieren. Ist  A  ein Mengensystem, so definieren wir den  Durchschnitt von A

bzw. die  Vereinigung von A :

  A =  {x |  für alle  A ∈ A  gilt  x ∈ A},  falls  A =  ∅, 

  A =  {x |  es gibt ein  A ∈ A  mit  x ∈ A}. 

Ist wie bei der Komplementbildung ein Objektbereich  X  unserer Überlegun-



gen festgelegt worden, so ist auch die Konvention

 ∅ =  X üblich. 





Für alle Mengen  A,  B  gilt

 {A, B} =  A ∩ B  und  {A, B} =  A ∪ B. Statt







 A  schreibt man oft suggestiv auch  A∈A A, und analog ist  A∈A A  gleich-



bedeutend mit

 A . Viele Anfänger haben mit den großen“ Versionen des

” 

Durchschnitts und der Vereinigung Schwierigkeiten, die sich aber bald in nichts





auflösen:

=

alles, was überall vorkommt“, 

=

alles, was (mindestens)

” 

” 

einmal vorkommt“. 

Die vielleicht rätselhafteste elementare Operation der modernen Mathematik

ist die Bildung der  Potenzmenge. Für jede Menge  A  setzen wir  P( A) =  {B |

 B ⊆ A}. Es gilt  ∅ ∈ P( A) und  A ∈ P( A) für alle Mengen  A. Speziell ist  P( ∅) =

 {∅}  und  P( {∅}) =  {∅, {∅}}. Für alle  a,  b  gilt  P( {a, b}) =  {∅, {a}, {b}, {a, b}}. 

Ist  A =  {x 1 , . . . , xn}  eine Menge mit genau  n  Elementen, so hat die Potenzmen-

ge von A genau 2 n  Elemente. (Dies gilt auch für  A =  ∅, denn die Potenzmenge

der leeren Menge hat genau ein Element; die arithmetische Festsetzung 20 = 1

ist also auch aus diesem Grund sinnvoll.) Bereits im Endlichen haben wir also

ein exponentielles Wachstum vorliegen. Wie sieht es nun mit unendlichen Men-

gen aus? Wie groß ist  P(N) oder sogar  P(R)? Hier ist zunächst einmal der

Mächtigkeits- oder Kardinalitätsbegriff für unendliche Mengen zu klären. Dies
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kann in überzeugender Weise geschehen, aber es zeigt sich dann – und dieses

Resultat rechtfertigt obiges Adjektiv rätselhaft“ –, dass wir in der klassischen

” 

Mathematik die Größe von  P(N) oder  P(R) nicht bestimmen können. Brisant

wird die Angelegenheit dadurch, dass  P(N) und die Menge der reellen Zahlen

gleichmächtig sind. Wir wissen also nicht, wie groß die Menge der reellen Zahlen

ist! Wir diskutieren dieses bemerkenswerte negative Ergebnis im Abschnitt über

die Kontinuumshypothese genauer (siehe Abschnitt 12.12). 

Die symmetrische Differenz liefert eine algebraisch hochwertige Operation auf

der Potenzmenge einer beliebigen nichtleeren Menge  M :  P( M) ist mit der Ope-

ration Δ eine abelsche Gruppe, und weiter ist  P( M ) mit Δ als Vektoraddition

ein Vektorraum über dem Körper  K =  { 0 ,  1 }, mit der Skalarmultiplikation

0  · A =  ∅  und 1  · A =  A  für alle  A ⊆ M . 

1.7

Relationen

Zwei Objekte zueinander in Beziehung zu setzen, in Beziehung zu sehen oder ih-

re realen Beziehungen ergründen zu wollen ist ein fester (manchmal sogar allzu

fester) Bestandteil unseres Denkens und Handelns. Beispiele sind die Beziehun-

gen

größer als“, 

gleich groß wie“, 

schneller als“, 

besser als“, 

früher als“, 

” 

” 

” 

” 

” 

verwandt mit“, beeinflusst durch“, Ursache von“, ähnlich zu“, unabhängig

” 

” 

” 

” 

” 

von“, und diese Liste ließe sich noch lange fortsetzen. 

Relationen spielen offenbar in der Mathematik eine fundamentale Rolle. Be-

trachtet man die ungeheure Weite des Konzepts, so ist die moderne Definition

einer mathematischen Relation auf den ersten Blick vielleicht verblüffend und

irritierend einfach, nach einer kurzen Gewöhnungsphase erscheint sie dann aber

ebenso natürlich wie sympathisch:

Eine Menge  R  heißt eine  (zweistellige) Relation,  falls  R  eine Menge von ge-

ordneten Paaren ist. Gilt ( x, y)  ∈ R, so sagen wir, dass  x  in der Relation  R

zu  y  steht. Statt ( x, y)  ∈ R  schreiben wir oft auch  x R y. Allgemeiner heißt für

 n ≥  1 eine Menge  R  von  n-Tupeln eine  n-stellige Relation.  Statt ( x 1 , . . . xn)  ∈ R

schreibt man auch  R( x 1 , . . . , xn). 

In dieser Definition steckt ein ganzes Stück Mathematikgeschichte, und sie

spiegelt das moderne extensionale mathematische Denken wider, das einen Be-

griff mit seinem Umfang identifiziert. Aufbauend auf dem Relationsbegriff er-

halten wir zudem auch eine Definition des allgemeinen mathematischen Funk-

tionsbegriffs, die frei von Unklarheiten ist (siehe Abschnitt 1.8). 

Die Kleiner-Relation  <  auf den natürlichen Zahlen kann zum Beispiel durch

 < =  {( n, m)  ∈  N  ×  N  |  es gibt ein  k >  0 mit  n +  k =  m}  definiert werden. Es gilt (2 ,  4)  ∈ < , aber (5 ,  4)  /

 ∈ < , also 2  <  4 und non(5  <  4) in der besser lesbaren

Schreibweise. 

1.7
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Zumeist

leben“ Relationen auf einem bestimmten Bereich von Objekten:

” 

Eine Relation  R  heißt eine Relation  auf  einer Menge  M , falls  R ⊆ M × M  gilt. 

So ist etwa obige Kleiner-Relation eine Relation auf N. Der zugrundeliegende

Bereich ist zumeist aus dem Kontext heraus klar. Genauer müssten wir z. B.  <  N

schreiben, aber wir würden dadurch in vielen Fällen die Lesbarkeit erschweren

und das Satzbild unnötig belasten. 

Wir stellen einige Eigenschaften von Relationen zusammen, die häufig auf-

tauchen. Eine Relation  R  auf  M  heißt:

 reflexiv,  falls für alle  x ∈ M  gilt:  x R x, 

 irreflexiv,  falls für alle  x ∈ M  gilt: non( x R x), 

 symmetrisch,  falls für alle  x, y ∈ M  gilt: Ist  x R y, so ist auch  y R x, 

 antisymmetrisch,  falls für alle  x, y ∈ M  gilt: Ist  x R y  und  y R x, so ist  x =  y, 

 transitiv,  falls für alle  x, y, z ∈ M  gilt: Ist  x R y  und  y R z, so ist  x R z. 

Obige  < -Relation ist irreflexiv und transitiv. Diese beiden Eigenschaften kenn-

zeichnen die sog.  partiellen Ordnungen (siehe Abschnitt 1.10). 

Für jede Menge  M  ist Id M =  {( x, x)  | x ∈ M }  eine reflexive, symmetrische

und transitive Relation auf  M , die  Identit¨

 at  auf  M . Die Kombination

refle-

” 

xiv, symmetrisch, transitiv“ definiert die sog.  ¨

 Aquivalenzrelationen,  denen wir

ebenfalls einen eigenen Abschnitt widmen (siehe Abschnitt 1.9). 

Ist  R  eine Relation, so heißt  R− 1 =  {( y, x)  | ( x, y)  ∈ R}  die  Umkehrrelation

von  R. Offenbar gilt ( R− 1) − 1 =  R. 

Zwei beliebige Relationen können wir miteinander verknüpfen. Sind  R  und  S

zwei Relationen, so heißt  R ◦ S =  {( x, z)  |  es gibt ein  y  mit  x R y  und  y S z}  die

 Verkn¨

 upfung  von  R  und  S. Leicht einzusehen sind die folgenden Äquivalenzen

für eine Relation  R  auf  M :

 R  ist reflexiv genau dann, wenn Id M ⊆ R, 

 R  ist symmetrisch genau dann, wenn  R =  R− 1, 

 R  ist antisymmetrisch genau dann, wenn  R ∩ R− 1  ⊆  Id M , 

 R  ist transitiv genau dann, wenn  R ◦ R ⊆ R. 

Eine Relation  R  auf  M  kann man sich auf verschiedene Arten veranschauli-

chen. Eine Möglichkeit ist die Darstellung als Punktwolke“ in einem abstrakten

” 

Koordinatensystem  M × M . Die Reflexivität besagt dann, dass die Diagonale, 

also Id M , ein Teil der Punktwolke ist. Die Symmetrie besagt, dass die Spiegelung

der Punktwolke an der Diagonalen die Punktwolke nicht ändert. 

Oft ist auch eine ganz andere Visualisierung hilfreich: Wir betrachten  M  als

Punktmenge und zeichnen für alle  x, y ∈ M  mit  x R y  einen Pfeil von  x  nach

 y. Die Relation  x R y  besagt dann, dass wir auf diesem gerichteten Graphen“

” 

in einem Schritt von  x  nach  y  gelangen können. Die Transitivität bedeutet bei

dieser Sicht, dass die Erreichbarkeit in zwei Schritten mit der Erreichbarkeit in

einem Schritt zusammenfällt. Ist  R  symmetrisch, so können wir statt der Pfeile

einfache Linien verwenden. 
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Nicht zuletzt für rechnerische Aspekte ist es oft auch nützlich, eine Relation

 R  auf  M =  {x 1 , . . . , xn}  durch eine  n × n-Matrix  A = ( ai,j)1 ≤i,j≤n  mit 0-

1-Einträgen darzustellen: Wir setzen  aij = 1, falls  xi R xj  gilt, und  aij =

0 sonst. Der Verknüpfung  R ◦ R  entspricht nun eine Variante der bekannten

Matrizenmultiplikation (siehe hierzu auch Abschnitt 4.11). 

1.8

Funktionen

Die Entwicklung des mathematischen Funktionsbegriffs lässt sich grob (und his-

torisch vereinfachend) in drei Stufen einteilen:

 Erste Stufe (Rechnen mit Zahlen):  Eine Zahl  x  eines gewissen Bereichs wird in ei-

ne Zahl  y  nach einer bestimmten Vorschrift umgerechnet. Man schreibt  y =  f ( x)

[gelesen:  f  von  x], wobei das Symbol  f  die Rechenvorschrift bezeichnet. Durch

Abstraktion entsteht ein diesem Vorgehen entsprechender Funktionsbegriff. 

 Zweite Stufe (eindeutige beliebige Zuordnung von Objekten):  Eine Funktion  f

ordnet bestimmten Objekten jeweils eindeutig andere Objekte zu. Man schreibt

 y =  f ( x), falls die Funktion  f  dem Objekt  x  das Objekt  y  zuordnet. Die Objekte

sind hier beliebig, und die Art und Weise der Zuordnung muss nicht explizit

vorliegen. 

 Dritte Stufe (Formalisierung der zweiten Stufe, moderner Funktionsbegriff ):  Ei-

ne Relation  f  heißt eine  Funktion,  falls für alle  x, y, z  gilt: Ist ( x, y)  ∈ f  und

( x, z)  ∈ f , so ist  y =  z ( Rechtseindeutigkeit). Man schreibt  y =  f ( x), falls

( x, y)  ∈ f  gilt. 

Statt von Funktionen spricht man, besonders im geometrischen Kontext, 

gleichwertig auch von  Abbildungen. 

Die Vorstellung, dass  x  durch eine Funktion  f  vermöge einer algorithmischen

Berechnung in  f ( x) verwandelt wird, wird heute im Begriff der  berechenbaren

 Funktion  präzisiert (siehe Abschnitt 12.8). Die für die moderne Mathematik

unerlässliche allgemeine Fassung des Funktionsbegriffs ist dagegen von jeder

algorithmischen Dynamik befreit. Funktionen sind bestimmte Relationen, und

Relationen selbst sind Mengen von geordneten Paaren. Anschaulich sind Funk-

tionen beliebige zweispaltige rechtseindeutige Zuordnungstabellen, und nur be-

stimmte Tabellen erlauben eine algorithmische Berechnung ihrer Einträge. 

Für eine Funktion  f  sei dom( f ) =  { x |  es gibt ein  y  mit ( x, y)  ∈ f }  und

rng( f ) =  {y |  es gibt ein  x  mit ( x, y)  ∈ f } =  {f ( x)  | x ∈  dom( f ) }. Die Menge dom( f ) heißt der  Definitionsbereich  von  f (engl.  domain), die Menge rng( f ) der

 Wertebereich  von  f (engl.  range). Wir schreiben  f :  A → B [gelesen:  f  ist eine

Funktion oder Abbildung von  A  nach  B] für eine Funktion  f  mit dom( f ) =  A

und rng( f )  ⊆ B. Die Menge  B  bezeichnet man dann auch als einen  Wertevorrat

von  f . Gilt  f :  A → B  und ist  C  eine Obermenge von  B, so können wir auch

schreiben  f :  A → C. Definitions- und Wertebereich werden bei dieser Notation

1.8

Funktionen
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also unterschiedlich behandelt. Es gilt beispielsweise sin: R  → [ − 1 ,  1] und auch

sin: R  →  R. 

Ist  f :  An → A, so spricht man auch von einer ( n-stelligen)  Operation  oder

 Verkn¨

 upfung  auf  A. Eine Teilmenge  X  von  A  heißt dann  abgeschlossen  unter  f , 

falls für alle  x 1 , . . . , xn ∈ X  gilt, dass  f ( x 1 , . . . , xn)  ∈ X. Ist beispielsweise  f :

R2  →  R definiert durch  f( x, y) =  x · y, so ist die Menge der positiven reellen

Zahlen abgeschlossen unter  f , im Gegensatz zur Menge der negativen Zahlen. 

Ebenso ist die Menge der geraden Zahlen abgeschlossen unter der Verdopplungs-

funktion  g: N  →  N mit  g( n) = 2 n. Die ungeraden Zahlen sind dagegen nicht

abgeschlossen unter  g. 

Ist  f  eine Funktion und  X ⊆  dom( f ), so heißt  f |X =  {( x, f ( x))  | x ∈ X}  die

 Einschr¨

 ankung  von  f  auf  X. Ist  f :  A → B, so ist  f |X:  X → B. So ist etwa

sin |[0 ,  2 π] eine natürliche Einschränkung der periodischen Sinusfunktion. 

Von universeller Bedeutung in der Mathematik sind die folgenden Struktur-

eigenschaften einer Funktion. Eine Funktion  f :  A → B  heißt

 injektiv,  falls für alle  x, y ∈  dom( f ) gilt: Ist  f ( x) =  f ( y), so ist  x =  y, surjektiv,  falls für alle  y ∈ B  ein  x ∈ A  existiert mit  f ( x) =  y, 

 bijektiv,  falls  f  injektiv und surjektiv ist. 

Die Injektivität – im Deutschen manchmal auch etwas künstlich als  Einein-

 deutigkeit  bezeichnet – besagt also, dass kein Wert doppelt angenommen wird

(Linkseindeutigkeit der Relation  f ). Die Surjektivität bedeutet dagegen, dass je-

der Wert des angegebenen Wertevorrats  B  tatsächlich auch angenommen wird, 

d. h., es gilt rng( f ) =  B. Die Begriffe injektiv, surjektiv, bijektiv“ sind der Aus-

” 

gangspunkt der Mächtigkeitstheorie und weiter grundlegend für das allgemeine

Konzept der strukturerhaltenden Abbildungen (siehe Abschnitt 12.1 und 1.12). 

Ist  f :  A → B  injektiv, so ist die  Umkehrfunktion f− 1 durch  f − 1( f ( x)) =  x  für

alle  x ∈ A  definiert. Formal ist  f− 1 =  {( y, x)  | ( x, y)  ∈ f }, d. h.  f − 1 ist einfach die Umkehrrelation von  f . Die Injektivität von  f  sichert die Rechtseindeutigkeit

von  f − 1. Es gilt  f − 1: rng( f )  → A  bijektiv. 

Sind  f :  A → B  und  g:  B → C  Funktionen, so ist die (funktionale)  Ver-

 kn¨

 upfung  oder  Komposition g ◦ f :  A → C [gelesen:  g  nach  f ] definiert durch

( g ◦ f )( x) =  g( f ( x)) für alle  x ∈ A. 

Damit ist  g ◦ f :  A → C. Ist beispielsweise  g( x) =  x 2 und  f ( x) =  x + 1 für alle

 x ∈  R, so gilt ( g ◦ f )( x) = ( x + 1)2 und ( f ◦ g)( x) =  x 2 + 1 für alle  x ∈  R. 

Die Verknüpfung ist also i. A. nicht kommutativ. Dagegen ist die Verknüpfung

assoziativ, d. h., es gilt stets ( h ◦ g)  ◦ f =  h ◦ ( g ◦ f ). 

Funktionen lassen sich auch in  Folgenschreibweise  angeben und notieren. Ist

 I  eine Menge, so schreiben wir auch  xi | i ∈ I, ( xi | i ∈ I) oder ( xi) i∈I  für

eine Funktion  f  mit  f ( i) =  xi  für alle  i ∈ I  und nennen  f =  xi | i ∈ I  eine

 Folge  oder  Familie  mit  Indexmenge I  oder kurz  I-Folge. Eine Folge  xi | i ∈ I
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heißt eine Folge  in A,  falls  xi ∈ A  für alle  i ∈ I  gilt. Ist  I  die Menge der

natürlichen Zahlen, so sprechen wir auch kurz von einer  Folge  schlechthin. So ist

z. B. (2 n) n∈ N oben schon betrachtete Verdopplungsfunktion auf den natürlichen

Zahlen. 

Ist eine Funktion durch einen Term gegeben, so können wir den Term selbst

als Funktion auffassen. Man ersetzt dann manchmal auch die Variable durch

einen Punkt. So ist z. B. ( ·)2 + 2: R  →  R die Funktion  f  mit  f ( x) =  x 2 + 2 für

alle reellen Zahlen  x. Weiter ist sin( · 2) |[0 ,  2 π] die Funktion  g  mit  g( x) = sin( x 2) für alle  x ∈ [0 ,  2 π]. Weiter ist  g ◦ f =  g( f ( ·)), usw. 

Für alle Mengen  A  und  B  sei  AB =  {f | f :  A → B}. Allgemeiner setzen wir

für eine  I-Folge  Mi | i ∈ I  von Mengen:

 × 





 Mi =

 f | f :  I →

 Mi, f ( i)  ∈ Mi  für alle  i ∈ I . 

 i∈I

 i∈I

Diese Zusammenfassung von Transversalfunktionen“ ist insbesondere zur Kon-

” 

struktion von unendlichen Produkträumen wichtig. Die Bildung von  AB  ist als

Spezialfall enthalten, denn es gilt  AB =  ×

 B. 

 a∈A

Erfahrungsgemäß etwas gewöhnungsbedürftig sind die folgenden Konstruk-

tionen, die überall in der Mathematik zum Einsatz kommen. Für eine beliebige

Funktion  f :  A → B  sei

 f [ X] =  {f ( x)  | x ∈ X}  für alle  X ⊆ A (Bild von X unter f), 

 f − 1[ Y ] =  {x | f ( x)  ∈ Y }  für alle  Y ⊆ B

 (Urbild von Y unter f ). 

Das Formen von Bild und Urbild liefert also neue durch  f  induzierte Funktionen

 f [  · ]:  P( A)  → P( B) und  f− 1[  · ]:  P( B)  → P( A). Anschaulich ist  f [ X] die Menge, die wir erhalten, wenn wir  X

durch  f  hindurchjagen“, und  f − 1[ Y ] ist

” 

alles, was vermöge  f

in  Y  landet“. 

” 

Die Eigenschaften dieser Funktionen sind überraschenderweise nicht durchweg

symmetrisch. Es gelten zum Beispiel für alle  f :  A → B, alle  X 1 , X 2  ⊆ A  und

alle  Y 1 , Y 2  ⊆ B  die folgenden Eigenschaften:

 f [ X 1  − X 2]  ⊇ f [ X 1]  − f [ X 2], 

 f − 1[ Y 1  − Y 2] =  f− 1[ Y 1]  − f− 1[ Y 2], 

 f [ X 1  ∩ X 2]  ⊆ f [ X 1]  ∩ f [ X 2], 

 f − 1[ Y 1  ∩ Y 2] =  f − 1[ Y 1]  ∩ f− 1[ Y 2], 

 f [ X 1  ∪ X 2] =  f [ X 1]  ∪ f [ X 2], 

 f − 1[ Y 1  ∪ Y 2] =  f− 1[ Y 1]  ∪ f− 1[ Y 2]. 

Wir betrachten zur Illustration die Funktion  f :  { 0 ,  1 } → { 0 }  mit (logischer-

weise!)  f (0) =  f (1) = 0. Für  A =  { 0 ,  1 },  B =  { 0 }  ist  f [ A − B] =  { 0 }, aber  f [ A]  − f [ B] =  ∅. Für  C =  { 0 }  und  D =  { 1 }  ist  f [ C ∩ D] =  ∅, aber f [ C]  ∩ f [ D] =  { 0 }. Die Inklusionen in obiger Tabelle können also nicht durch

Gleichheitszeichen ersetzt werden. Urbilder sind in diesem Sinne besser als Bil-

der! Ist aber  f  injektiv, so gilt auch für die Bilder von Differenzen und Schnitten

überall Gleichheit. 

1.9
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Funktionen spielen in der Mathematik eine überragende Rolle. Zunächst sind

hier die arithmetischen Operationen auf den Zahlbereichen zu nennen. Die Ana-

lysis untersucht (stetige, integrierbare, differenzierbare) Funktionen  f : R  →  R

und später mehrdimensionale Funktionen  f : R n →  R m. Die Funktionentheorie

errichtet das analytische Gebäude neu, indem sie die reellen Zahlen R durch die

komplexen Zahlen C ersetzt. In der Funktionalanalysis bilden Räume von Funk-

tionen und Abbildungen zwischen Funktionenräumen den Gegenstand der Un-

tersuchung. Allgemein werden mathematische Strukturen mit Hilfe von struk-

turerhaltenden Abbildungen untersucht. Hierunter fallen die linearen Abbildun-

gen, die Gruppenhomomorphismen, die Homöomorphismen der Topologie, die

Isomorphismen der Graphentheorie, usw. (vgl. hierzu auch Abschnitt 1.12). 

1.9

¨

Aquivalenzrelationen

Im Deutschen gibt es den feinsinnigen Unterschied zwischen

dasselbe“ und

” 

das Gleiche“. Während es

dasselbe“ immer nur genau einmal gibt, nennen

” 

” 

wir oft zwei verschiedene Dinge

gleich“, wenn ihre Unterschiede unmerklich

” 

oder kontextabhängig uninteressant sind. Das gleiche Buch“ gibt es in der Tat

” 

sehr oft, je nach Auflage des Werkes, dasselbe Buch nur einmal. Den gleichen

” 

Löffel“ benutzen in der Regel alle bei Tisch, denselben zumeist nur einer. Mein

” 

Nachbar fährt das gleiche Auto wie ich“ bedeutet, dass Hersteller, Typ und

wahrscheinlich auch noch die Farbe übereinstimmen, während die Kennzeichen

sicher verschieden sind. In der Oper können zwei verschiedene Frauen das glei-

che Abendkleid tragen, aber nicht dasselbe. In diesem Sinne wird die Gleichheit

in der natürlichen Sprache als Abschwächung der strengen Identität verwendet. 

Andererseits wird gleich“ auch nur dann verwendet, wenn die Unterschiede als

” 

unwesentlich empfunden werden. Für andere Fälle stellt die Sprache auch noch

eine Reihe von Abschwächungen der Gleichheit zur Verfügung, etwa gleichar-

” 

tig“, 

ähnlich“, 

verwandt“. (In der Mathematik wird im Gegensatz zur All-

” 

” 

tagssprache identisch“ und gleich“ zumeist ohne Unterschied verwendet. Wir

” 

” 

lesen  a =  b“ als  a  gleich  b“ oder  a  ist identisch mit  b“.)

” 

” 

” 

Hinter den umgangssprachlichen Phänomenen steht letztendlich die elemen-

tare Fähigkeit des menschlichen Geistes zur Abstraktion, dem Absehen von be-

stimmten Eigenschaften und Merkmalen (das Lateinische abstrahere“ bedeutet

” 

wegnehmen“). Abstraktion als Methode kennzeichnet das mathematische Den-

” 

ken, und damit kommt den Abschwächungen der Identität eine zentrale Positi-

on in der Mathematik zu. Sie werden im Begriff der Äquivalenzrelation gefasst. 

Man kann diesen Begriff als Abstraktion der Abstraktion“ lesen, und vielleicht

” 

bereitet er auch deswegen vielen Anfängern größere Schwierigkeiten. 

Eine Relation  R  auf  A  heißt eine  ¨

 Aquivalenzrelation,  falls  R  reflexiv, symme-

trisch und transitiv ist. Gilt  a R b, so heißen  a  und  b R-¨

 aquivalent  oder kurz
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 ¨

 aquivalent,  wenn  R  aus dem Kontext heraus klar ist. Zur Bezeichnung einer

Äquivalenzrelation werden bevorzugt Symbole wie  ∼,  ,  ≡,  ∼

=, usw. verwendet, 

die an =“ erinnern. 

” 

Für jede Menge  A  ist die Identität Id A =  {( x, x)  | x ∈ A}  eine Äquiva-

lenzrelation auf  A. Ebenso ist  R =  A 2 eine Äquivalenzrelation auf  A – diese

Abschwächung der Identität ist vollkommen blind, je zwei Elemente von  A  gelten

hier als äquivalent. Interessanter ist das Rechnen auf den ganzen Zahlen modulo

einer natürlichem Zahl  m ≥  1. Wir setzen für alle  a, b ∈  Z:  a ≡m b, falls ein

 k ∈  Z existiert mit  a−b =  k·m, falls also  a  und  b  bei Division durch  m  denselben

ganzzahligen Rest ergeben. Man zeigt leicht, dass  ≡m  eine Äquivalenzrelation

auf Z ist. Gilt  a ≡m b, so heißen  a  und  b  auch  äquivalent modulo m. Man

schreibt auch  a ≡ b  mod( m). 

Eine Äquivalenzrelation begleitet eine Reihe von Konstruktionen und Sprech-

weisen. Sei also  ∼  eine Äquivalenzrelation auf  A. Für jedes  a ∈ A  heißt

 a/∼ =  {b ∈ A | a ∼ b} [gelesen:  a  modulo  ∼]

die zu a gehörige  ¨

 Aquivalenzklasse  bezüglich  ∼. Jedes  b ∈ a/∼  heißt ein  Re-

 pr¨

 asentant  der Klasse. Weiter setzen wir

 A/∼ =  {a/∼ | a ∈ A} [gelesen:  A  modulo  ∼]. 

Das Mengensystem  A/∼  heißt auch die  Faktorisierung  von  A  bezüglich  ∼. Eine

Menge  S ⊆ A  heißt ein  vollständiges Repräsentantensystem  bzgl.  ∼, falls die

Elemente von  S  paarweise nicht äquivalent sind und zudem  {a/∼ | a ∈ S} =

 A/∼  gilt. 

Ein auf den ersten Blick ganz anderer, aber letztendlich gleichwertiger Zugang

zum Begriff der Äquivalenzrelation basiert auf Zerlegungen einer Menge. Ein

Mengensystem  Z ⊆ P( A) heißt  Zerlegung  von  A, falls die Elemente von  Z



nichtleer und paarweise disjunkt sind und zudem

 Z =  A  gilt. Das System  Z

beschreibt also die Einteilung von  A  in verschiedene Länder“ oder Gebiete“. 

” 

” 

Ein vollständiges Repräsentantensystem wählt aus jedem Land“ genau einen

” 

Bewohner“ aus. 

” Ist  Z  eine Zerlegung von  A, so setzen wir für alle  a, b ∈ A:

 a ∼Z b,  falls ein  X ∈ Z  existiert mit  a, b ∈ X, 

d. h., wir sehen Elemente von  A  als äquivalent an, wenn sie im selben Gebiet

der Zerlegung liegen. Die Relation  ∼Z  ist offenbar eine Äquivalenzrelation auf

 A. Ist umgekehrt  ∼  eine Äquivalenzrelation auf  A, so ist die Faktorisierung

 Z =  A/∼  eine Zerlegung von  A. Weiter gilt  ∼Z =  ∼. 

Hat man eine Äquivalenzrelation  ∼  auf  A  eingeführt, so werden häufig neue

Objekte  f ( a/∼) auf den Äquivalenzklassen  a/∼  eingeführt. Zur Definition von

 f ( a/∼) wird aber oft nur  a  und nicht  a/∼  verwendet. Bei diesem Vorgehen

ist dann die  Wohldefiniertheit  oder die  Unabh¨

 angigkeit von der Wahl der Re-

 pr¨

 asentanten  zu zeigen. Man muss beweisen: Ist  a ∼ b, so stimmt die mit  a

1.10
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durchgeführte Definition von  f ( a/∼) mit der mit  b  durchgeführten Definition

von  f ( b/∼) überein. Kurz: Man zeigt, dass  f ( a/∼) =  f ( b/∼) gilt. 

Umgekehrt hat man in vielen Fällen bereits Operationen auf  A  vorliegen und

möchte diese auf der Faktorisierung weiterhin benutzen. Ist  g:  A → A, so setzt

man

¯

 g( a/∼) =  g( a) /∼  für alle  a ∈ A. 

Im Falle der Wohldefiniertheit dieser Festsetzung liefert dieses Vorgehen eine

Operation ¯

 g:  A/∼ → A/∼. Die Äquivalenzrelation  ∼  heißt dann eine  Kongru-

 enzrelation  bzgl.  g. Analog sind Kongruenzrelationen bzgl. mehrstelliger Ope-

rationen  g:  An → A  definiert: Die Bedingung für eine Addition + lautet z. B., 

dass die Festsetzung ¯

 g( a/∼ +  b/∼) =  g( a +  b) /∼  für alle  a, b ∈ A  wohldefiniert

ist. Die wichtigsten Beispiele für Kongruenzrelationen liefert erneut das Rech-

nen modulo  m. Die Relation  ≡m  ist eine Kongruenzrelation bzgl. der Addition

und der Multiplikation auf Z, denn die Definitionen

 a/≡m +  b/≡m = ( a +  b) /≡m, 

 a/≡m · b/≡m = ( a · b) /≡m

sind wohldefiniert. 

1.10

Partielle und lineare Ordnungen

Zu jedem Adjektiv stellt uns die natürliche Sprache einen Komparativ zur

Verfügung:

schöner“, 

schneller“, 

besser“, 

schwerer“, usw. Wir ordnen da-

” 

” 

” 

” 

durch die Welt und richten unsere Handlungen danach aus. Zuweilen verges-

sen wir dabei auch, dass sich viele Dinge in bestimmter Hinsicht gar nicht

miteinander vergleichen lassen. Und der noch weiter simplifizierende zeit-

genössische Ranking- und Mess-Zwang behindert oft nur die Wahrnehmung und

Einschätzung komplexer Gebilde. Dabei können wir Vergleiche oft anstellen, be-

vor wir zählen, messen und wiegen. Viele Dinge sind in natürlicher Weise unter

sich selbst angeordnet. Die Ordnung kommt vor Zahl und Maß. 

Die Grundlage der mathematischen Ordnungstheorie bilden die sog. partiellen

Ordnungen. Sie treten in zwei Typen auf, die dem kleiner“ bzw. dem kleiner

” 

” 

gleich“ entsprechen:

Eine Relation  R  auf  A  heißt eine  partielle Ordnung vom strikten Typ,  falls  R

irreflexiv und transitiv ist. Dagegen heißt eine Relation  R  auf  A  eine  partielle

 Ordnung vom nichtstrikten Typ,  falls  R  reflexiv, antisymmetrisch und transitiv

ist. (Der Tausch von symmetrisch“ zu antisymmetrisch“ führt also von den

” 

” 

Äquivalenzrelationen zu den partiellen Ordnungen – zwei gänzlich verschiedene

Welten!)

Die bevorzugten Zeichen für strikte partielle Ordnungen sind  <, <∗, ≺, . . . ; 

für nichtstrikte Ordnungen verwendet man  ≤, ≤∗, , . . . . Durch die Wahl ei-

nes derartigen Zeichens ist der Typ klar und man kann einfach von partiellen
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Ordnungen sprechen. Zudem induzieren die beiden Typen einander: Ist  <  eine

(strikte) partielle Ordnung auf  A, so setzen wir  a ≤ b, falls  a < b  oder  a =  b. Ist

umgekehrt  ≤  eine (nichtstrikte) partielle Ordnung auf  A, so setzen wir  a < b, 

falls  a ≤ b  und  a =  b  gilt. Wir haben also immer automatisch partielle Ordnun-

gen beider Typen vorliegen. 

Das Paradebeispiel für eine partielle Ordnung ist die Inklusion: Für jede Men-

ge  A  ist  ⊆  eine partielle Ordnung auf  A (und  ⊂  die strikte Version). 

Weitere wichtige partielle Ordnungen werden durch Folgen gegeben: Für je-

de Menge  M  ist die Menge  A  aller endlichen Folgen in  M  partiell geordnet

durch die Anfangsstückrelation. Ist z. B.  M =  { 0 ,  1 }, so gilt 0110  <  011011

aber non(0110  <  01001100). Die Folgenordnung hat eine baumartige Struktur, 

während die Inklusionsordnung eine netzartige Struktur besitzt. 

Für ein weiteres Beispiel sei  A  die Menge der Folgen natürlicher Zahlen, also

 A = NN . Wir definieren  g <∗ h, falls ein  n 0 existiert mit  g( n)  < h( n) für alle

 n ≥ n 0. Diese Relation der schließlichen Dominanz“ ist eine partielle Ordnung

” 

auf  A. 

Im Umfeld der partiellen Ordnungen gibt es viele Begriffsbildungen, die die

Beschreibung und Untersuchung von Ordnungen erleichtern. Sie sind zumeist

suggestiv und entsprechend einprägsam. Sei also  <  eine partielle Ordnung auf

 A, und sei  B ⊆ A. Wir schreiben zur Vereinfachung der Notation  B < a, falls

 b < a  für alle  b ∈ B  gilt. Analog sind  B ≤ a,  a < B  und  a ≤ B  definiert, und

 A ≤ B  bedeutet, dass  a ≤ b  für alle  a ∈ A  und alle  b ∈ B  gilt. 

Ein  a ∈ A  heißt: (1) ein  maximales Element von B,  falls  a ∈ B  und kein  y ∈ B

existiert mit  a < y, (2) das  gr¨

 oßte Element von B,  falls  a ∈ B  und  B ≤ a, (3)

eine  obere Schranke von B, falls  B ≤ a, (4)  Supremum von B,  falls  a  die kleinste

obere Schranke von  B  ist, d. h.,  a  ist obere Schranke von  B, und für alle oberen

Schranken  y  von  B  gilt  a ≤ y. Analog sind minimale und kleinste Elemente

sowie untere Schranken und Infima (größte untere Schranke) definiert. 

Wir betrachten zur Illustration die partielle Ordnung  ⊆  auf  A =  P( { 0 ,  1 ,  2 }). 

Sei  B =  A − {∅, { 0 ,  1 ,  2 }}. Dann sind genau  { 0 }, { 1 }, { 2 }  minimal in  B  und

 { 0 ,  1 }, { 1 ,  2 }, { 0 ,  2 }  maximal in  B.  B  hat weder ein größtes noch ein kleinstes Element. Die leere Menge ist das Infimum von  B  und  { 0 ,  1 ,  2 }  ist das Supremum

von  B. 

Wir schreiben  a = sup( B), falls  a  das Supremum von  B  ist, und analog

 a = inf( B), falls  a  das Infimum von  B  ist.  B  heißt  nach oben (unten) beschr¨

 ankt, 

falls eine obere (untere) Schranke von  B  existiert.  B  heißt  beschr¨

 ankt,  falls  B

nach unten und oben beschränkt ist. Eine partielle Ordnung  <  heißt  vollst¨

 andig, 

falls jede beschränkte nichtleere Teilmenge  B  von  A  ein Supremum (und folglich

ein Infimum) besitzt. Für jede Menge  M  ist die Inklusion  ⊆  eine vollständige

partielle Ordnung auf  A =  P( M ): Alle nichtleeren  B ⊆ A  sind beschränkt





(durch  ∅  und  M ) und es gilt sup( B) =

 B  und inf( B) =

 B. Weiter sind

die reellen Zahlen unter ihrer natürlichen Ordnung vollständig. 

1.11

Existenz und algorithmische Berechenbarkeit

23

Eine partielle Ordnung  ≤  auf  A  heißt eine  lineare  oder  totale  Ordnung, falls

für alle  x, y ∈ A  gilt, dass  x ≤ y  oder  y ≤ x. In einer linearen Ordnung sind

also je zwei Elemente miteinander vergleichbar. 

Die natürlichen Ordnungen auf den Zahlbereichen N, Z, Q und R sind lineare

Ordnungen. In N und Z hat jedes Element einen direkten Nachfolger, d. h., es

gilt  ∀x ∃y ( x < y ∧¬∃z ( x < z < y). In Z hat jedes Element auch einen direkten

Vorgänger. Die 0 ist in N das eindeutige Element, das keinen direkten Vorgänger

besitzt. 

Die Ordnungen Q und R sind  dicht,  d. h., zwischen je zwei Elementen der

Ordnung liegt ein weiteres Element:  ∀x, y ( x < y → ∃z ( x < z < y). Zum Beweis

setzen wir einfach  z = ( x +  y) / 2. 

Weitere Beispiele für lineare Ordnungen sind die  lexikographischen Ordnun-

 gen: Sei  <  eine lineare Ordnung auf einer Menge  M , und sei  A = N M  die Menge

aller Folgen in  M . Dann setzen wir für alle  g, h ∈ A  mit  g =  h:  g <  lex  h, falls

 g( n∗)  < h( n∗), wobei  n∗ = das kleinste  n  mit  g( n)  =  h( n)“. Dann ist  < 

” 

lex eine

lineare Ordnung auf  A. 

Noch spezieller als die linearen Ordnungen sind die Wohlordnungen: Eine

lineare Ordnung  <  auf  A  heißt eine  Wohlordnung,  falls jede nichtleere Teilmenge

 B  von  A  ein kleinstes Element besitzt, d. h.  ∃x ∈ B ∀y ∈ B ( x ≤ y). 

Die natürliche Ordnung auf N ist eine Wohlordnung. Dagegen ist  <  auf Z

keine Wohlordnung, da die Menge der negativen ganzen Zahlen kein kleinstes

Element besitzt. Ebenso ist die Menge Q+ der positiven rationalen Zahlen keine

Wohlordnung, denn die Menge  { 1 /n | n ∈  N , n ≥  1 }  hat kein kleinstes Element. 

Wohlordnung“ und Induktion“ hängen eng miteinander zusammen, wie wir

” 

” 

bei der Diskussion der natürlichen und der transfiniten Zahlen noch sehen wer-

den (siehe Abschnitt 2.1 und 12.11). 

1.11

Existenz und algorithmische Berechenbarkeit

Viele mathematische Beweise zeigen, dass Objekte mit bestimmten Eigenschaf-

ten existieren. Speziell im Bereich der diskreten Mathematik enthalten viele

Beweise aber mehr Information als den bloßen Nachweis der Existenz. Sie er-

lauben die Konstruktion“ eines Objektes mit den gewünschten Eigenschaften:

” 

Aus dem Beweis lässt sich ein Verfahren gewinnen, das die gesuchten Objek-

te produziert“ oder berechnet.“ Man spricht dann von  konstruktiven Bewei-

” 

” 

 sen  und aus Beweisen  extrahierten Algorithmen.  Da Algorithmen neben ihrer

mathematischen Schönheit und Eleganz auch eine hohe praktische Bedeutung

zukommt, steht weiter das Auffinden von effektiven und stabilen Verfahren im

Vordergrund, die es erlauben, die gewünschten Objekte schnell und ohne großen

Aufwand zu berechnen, siehe auch Kapitel 10. Nicht selten sind diese geistrei-

chen Algorithmen dann besonders elegant. Die Beispiele für die praktische Be-
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deutung von effektiven Algorithmen beginnen bei einfachen Taschenrechnern, 

die etwas mehr als die Grundrechenarten beherrschen, umschließen Navigati-

onssysteme, die Routen in einem Verkehrsnetz bestimmen, und reichen bis zur

Computersimulation physikalischer Systeme. 

Als Beispiel für einen nichtkonstruktiven Beweis betrachten wir die Aussage:

(a) Es gibt irrationale  x, y ∈  R derart, dass  xy  rational ist. 

 √

Zum Beweis sei  z =

2. Dann ist  z  irrational. Ist  zz  rational, so ist  x =  y =  z

wie gewünscht. Andernfalls sei  x =  zz  und  y =  z. Dann sind  x  und  y  wie

gewünscht, denn  x  und  y  sind irrational und es gilt  xy =  z 2 = 2. Der Beweis

produziert kein Beispiel für irrationale Zahlen  x  und  y, für die  xy  rational ist. 

 √

Wir wissen nur, dass  zz  oder ( zz) z  für  z =

2 rational ist. 

Ein anderes Beispiel ist der Beweis von:

(b) Es gibt transzendente Zahlen. 

als Korollar der Überabzählbarkeit der reellen Zahlen und der Abzählbarkeit

der algebraischen Zahlen. Der Beweis zeigt, dass fast alle“ reellen Zahlen die

” 

Aussage (b) belegen, aber wir können konkrete Zahlen wie die Kreiszahl  π  oder

die Eulersche Zahl  e  nicht unmittelbar als transzendent erkennen. Das zum Be-

weis der Überabzählbarkeit von R verwendete Diagonalverfahren ist andererseits

konstruktiv in dem Sinne, dass es erlaubt, aus einer effektiv vorgelegten Liste

reeller Zahlen eine reelle Zahl zu berechnen, die nicht in der Liste auftaucht. 

(Die Berechnung einer reellen Zahl wird dabei als Berechnung ihrer Dezimal-

darstellung verstanden.)

Die Überabzählbarkeit von R zeigt auch, dass wir die meisten“ reellen Zahlen

” 

nicht berechnen können, denn es gibt nur abzählbar viele Algorithmen. Derarti-

ge Diskrepanzen können den Ausgangspunkt für die Frage bilden, was mathe-

” 

matische Existenz“ eigentlich bedeuten soll. In der heutigen Mathematik sind

jedenfalls Existenz“ und algorithmische Berechenbarkeit“ verschiedene Dinge. 

” 

” 

Zur Diskussion von effektiven Algorithmen betrachten wir für natürliche Zah-

len  a  und  b  die Aussage:

(c) Es gibt es einen größten gemeinsamen Teiler  d∗  von  a  und  b. 

Dies ist sicher richtig, denn alle gemeinsamen Teiler sind unter den endlich

vielen Zahlen 1 ,  2 , . . . ,  min( a, b) enthalten, und damit ist ein Teiler der größte. 

Wir können der Reihe nach die Zahlen min( a, b) , . . . ,  1 daraufhin überprüfen, 

ob sie  a  und  b  teilen. Damit können wir  d∗  durch einen ineffektiven und un-

eleganten

brute-force“-Algorithmus ermitteln. Interessanter ist folgende Me-

” 

thode: Wir bestimmen die Primfaktorzerlegungen von  a  und  b  und lesen dann

 d∗  durch Vergleich der Exponenten ab. Das ist geistreich und ansprechend, 

aber die Berechnung der Primfaktorzerlegung ist für große Zahlen in der Re-

gel sehr aufwändig. In jeder Hinsicht untadelig ist der klassische Euklidische

Algorithmus der Wechselwegnahme“ (siehe Abschnitt 3.1). Er liefert effektiv

” 

den größten gemeinsamen Teiler und überzeugt darüber hinaus durch mathe-

matischen Reichtum. Analoge Überlegungen gelten für viele Beispiele der Gra-

phentheorie: In jedem zusammenhängenden Graphen ist es sicher richtig, dass

1.12
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es einen kürzesten Weg zwischen je zwei Punkten gibt. Das effektive Auffinden

eines solchen Weges ist dann die eigentliche Aufgabe. 

Zum Messen der Effektivität eines Verfahrens werden die sogenannten

 Landau-Symbole  verwendet, die das Wachstum von Funktionen beschreiben. Sei

hierzu  f : R  →  R eine Funktion, und sei  k ∈  N. Dann schreibt man traditionell

(unter Missbrauch des Gleichheitszeichens):

 f =  O( xk), falls  c, x 0  ∈  R existieren, so dass  |f ( x) | ≤ cxn  für alle  x ≥ x 0, f =  o( xk), falls lim x→∞ f ( x) /xk = 0, 

 f ∼ xk, falls lim x→∞ f ( x) /xk = 1. 

So gilt z. B. cos( x) =  O(1) (=  O( x 0)),  x =  O( x),  x =  o( x 2),  x +  a ∼ x, ax +  b =  O( x) und  ax 2 +  bx +  c =  O( x 2) für alle  a, b, c ∈  R. 

Genauso sind für exponentielle Betrachtungen  f =  O( ex),  f =  o( ex) und

 f ∼ ex  definiert, und allgemein erklärt man in analoger Weise  f =  O( g),  f =

 o( g) und  f ∼ g  für reelle Funktionen  g  mit positiven Werten. Gilt  f ∼ g, d. h. 

lim x→∞ f ( x) /g( x) = 1, so heißen  f  und  g asymptotisch gleich.  Statt  f =  o( g)

schreibt man oft auch  f ≺ g  und sagt, dass  g (asymptotisch) schneller wächst

als  f . 

Diese Wachstumsbegriffe übertragen sich auf Funktionen  f : N  →  N, indem

wir statt  x ∈  R“ nur  n ∈  N“ verwenden, und sie sind dann zur Beschreibung

” 

” 

eines Algorithmus geeignet: Jedem Input  a  wird eine natürliche Zahl  n( a) zu-

geordnet, die sog.  Eingabegr¨

 oße, z. B. die Länge der Zeichenkette  a, der Grad

des Polynoms  a, die Anzahl der Kanten des Graphen  a, usw. Weiter wird dem

Verfahren eine von der Eingabegröße  n  abhängige Komplexität  f ( n) zugeord-

net, die angibt, wie viel es kostet“, den Output für Inputs  a  mit  n( a) =  n  zu

” 

berechnen, z. B. die Anzahl der Rechenschritte (Laufzeit) oder die Größe des

benötigten Speichers. Wir sagen, dass der Algorithmus von der Komplexität

 O( g),  o( g) bzw.  g  ist, falls  f =  O( g),  f =  o( g) bzw.  f ∼ g  gilt. Speziell hat ein Algorithmus  quadratische Komplexit¨

 at (in einer bestimmten Eingabegröße und

Kostenfunktion), falls  f =  O( n 2) gilt. 

1.12

Strukturen und strukturerhaltende Abbildungen

Mengen werden in der Mathematik selten nackt verwendet. Eine Menge  M

erhält Struktur, indem wir eine Reihe von Operationen, Relationen und Kon-

stanten auf  M  einführen und studieren. So statten wir die natürlichen Zahlen N

mit einer Addition und Multiplikation aus, mit einer linearen Ordnung  < , und

wir betrachten oftmals die speziellen Zahlen 0 und 1. Wir erhalten so die Struk-

” 

tur“ (N , + , ·, <,  0 ,  1) auf dem Universum“, Träger“ oder Bereich“ N. 

” 

” 

” 

Im Laufe der Untersuchung der natürlichen Zahlen reichern wir diesen Aus-

gangspunkt an durch neue Funktionen wie die Exponentiation oder die Fakultät, 

und durch neue Relationen wie  a  ist durch  b  teilbar“ oder auch einstellige Re-

” 
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lationen wie

 p  ist eine Primzahl“. Das Studium dieser Begriffe führt dann

” 

wiederum zur Einführung neuer strukturierender Begriffe, usw. Wir erhalten

die Eigendynamik der klassischen Zahlentheorie. 

Analog haben die reellen Zahlen die Grundstruktur (R , + , ·, <,  0 ,  1), die wir

im Laufe von analytischen Untersuchungen durch Funktionen wie sin( x), cos( x), 

tan( x), log( x),  ex  und Konstanten wie  π  und  e  anreichern. Weiter gehen wir

dann zu den komplexen Zahlen (C , + , ·,  0 ,  1 , i) über, und ihre analytische Un-

tersuchung liefert dann oft auch neue und überraschende Einsichten über die

natürlichen Zahlen N. So entsteht die analytische Zahlentheorie. 

Neben diesen konkreten Strukturen mit unerreichter Bedeutung für die Ma-

thematik gibt es allgemeine Strukturen, die axiomatisch eingeführt werden – oft

auch deswegen, um konkrete Strukturen wie N, Z, R und C besser zu verste-

hen. Wir sagen zum Beispiel: Eine Menge  G  mit einer Operation  ◦:  G 2  → G

heißt Gruppe, falls die und die Aussagen gelten, die sog. Gruppenaxiome. Wir

definieren dadurch eine bestimmte Klasse ( G, ◦) von Strukturen. Ähnliches gilt

z. B. für die Äquivalenzrelationen ( A, ≡), die partiellen Ordnungen ( P, < ), die

Körper ( K, + , ·,  0 ,  1), die Graphen ( E, K), die metrischen Räume ( X, d), usw. 

Im Umgang mit Strukturen reduzieren wir oft die Struktur auf ihren Träger

und sprechen von einer Menge  G  als einer Gruppe, einer Menge  M  als einer li-

nearen Ordnung, usw. Die strukturstiftenden Funktionen, Relationen und Kon-

stanten sind dann stillschweigend mit dabei. 

Bei der Untersuchung von allgemeinen Strukturen werden zunächst die kon-

stituierenden Axiome ausgelotet. Am Beispiel der Gruppen geschieht vereinfacht

geschildert Folgendes. Wir versuchen zunächst möglichst viele Aussagen zu be-

weisen, die in jeder beliebigen Gruppe gelten. Das Weltbild“ ist: Es liegt eine

” 

nicht weiter spezifizierte Gruppe  G  vor, und wir erkunden, nichts als die Grup-

penaxiome im Gepäck, was in dieser Gruppe alles gelten muss. Wir erforschen

dadurch diejenigen Eigenschaften, die wir den Gruppen implizit durch die Grup-

penaxiome aufgenötigt haben, die wir aber, infolge der Beschränktheit unseres

Geistes, nicht sofort sehen können. 

Neben Aussagen, die für alle Gruppen gelten, werden wir auch interessante

gruppentheoretische Aussagen entdecken, die wir mit unseren Gruppenaxiomen

weder beweisen noch widerlegen können. Wir versuchen dann zwei Beispiele für

Gruppen zu konstruieren, die eine derartige Aussage erfüllen bzw. verletzen. 

So finden wir, dass manche, aber nicht alle Gruppen kommutativ sind, und

ebenso finden wir, dass manche, aber nicht alle Gruppen zyklisch sind. Nun

wiederum werden wir nach der axiomatischen Methode die Eigenschaften aller

kommutativen Gruppen untersuchen, danach die aller zyklischen Gruppen, usw. 

Schnell tauchen bei diesem Unterfangen zwei wesentliche Erweiterungen des

obigen Weltbildes auf: Zum einen entdecken wir, z. B. beim Sammeln von Bei-

spielen für Gruppen, dass manche Teilmengen einer Gruppe  G  wieder eine Grup-

pe bilden, wenn sie die Struktur von  G  erben. Wir entdecken also die sog. Un-

tergruppen. Zum anderen rücken Abbildungen zwischen zwei Gruppen, die ihre

1.12
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Struktur respektieren, in das Zentrum des Interesses. Wir entdecken sie z. B. 

bei der Beobachtung, dass viele Gruppen eine Untergruppe enthalten, die wie

(Z , +) aussieht“. 

” 

Allgemein heißt eine Teilmenge  N  einer Struktur  M  eine  Unterstruktur  von

 M , wenn  N  abgeschlossen unter allen Operationen von  M  ist und zudem alle

Konstanten von  M  enthält. Wird  M  nur durch Relationen strukturiert, so ist

diese Bedingung leer, und damit sind alle Teilmengen von  M  auch Unterstruk-

turen. Dagegen ist die Menge  U  der ungeraden Zahlen keine Unterstruktur von

(N , +), denn die Addition führt aus den ungeraden Zahlen heraus. Dagegen ist

die Menge der geraden Zahlen eine Unterstruktur von (N , +). 

 Axiomatische Unterstrukturen  sind nun diejenigen Unterstrukturen, die un-

ter der ererbten Struktur alle betrachteten Axiome erfüllen. Die axiomatischen

Unterstrukturen der Gruppen nennt man  Untergruppen,  die der Körper  Un-

 terk¨

 orper,  die der partiellen Ordnungen  Teilordnungen,  usw. Jede Teilmenge

einer linearen Ordnung ist unter der ererbten Ordnung wieder linear geordnet. 

Jede Unterstruktur ist hier also auch axiomatisch. Dagegen ist nicht jede Un-

terstruktur einer Gruppe auch eine Untergruppe: N  ⊆  Z ist abgeschlossen unter

der Addition, aber mangels der Existenz von inversen Elementen für  n = 0 keine

Untergruppe von (Z , +). 

Zur Definition einer strukturerhaltenden Abbildung betrachten wir (der no-

tationellen Einfachheit halber) zwei Strukturen ( M, f, R, c) und ( N, g, P, d) mit

zweistelligen Funktionen  f ,  g, zweistelligen Relationen  R,  P  und Konstanten

 c,  d. Eine Abbildung  s:  M → N  heißt  strukturerhaltend  oder ein  Homomorphis-

 mus,  falls die drei folgenden Bedingungen erfüllt sind:

(a) Für alle  a, b ∈ M  gilt  s( f ( a, b)) =  g( s( a) , s( b)). 

(b) Für alle  a, b ∈ M  gilt  a R b  genau dann, wenn  s( a)  P s( b). 

(c) Es gilt  d =  s( c). 

(Haben die Strukturen mehrere Funktionen  f 1 , . . . , fn  bzw.  g 1 , . . . , gn, so wird

die Bedingung (a) für alle einander entsprechenden Paare  fi, gi  gefordert. Ana-

loges gilt für mehrere Relationen und Konstanten. Sind  R  und  P  einstellig, so

lautet (b): Für alle  a ∈ M  gilt  a ∈ R  genau dann, wenn  s( a)  ∈ P . Analog

werden (a) und (b) für  n-stellige Relationen oder Funktionen modifiziert.)

Ist eine strukturerhaltende Abbildung injektiv, so heißt sie eine  Einbettung

oder ein  Monomorphismus.  Ihr Wertebereich ist dann automatisch eine Unter-

struktur von  N . Ist sie bijektiv, so heißt sie ein  Isomorphismus  zwischen  M

und  N . Die Strukturen  M  und  N  heißen  isomorph,  falls ein Isomorphismus  s:

 M → N  existiert. Analog heißt  M einbettbar  in  N , falls ein Monomorphismus

 s:  M → N  existiert. 

Wir betrachten einige Beispiele. Die Funktion  s: R  →  R2 mit  s( x) = ( x,  0) ist

eine Einbettung von (R , + , ·,  0 ,  1) in (C , + , ·,  0 ,  1) und in diesem Sinne können

wir R samt Struktur als Teilmenge von C auffassen. Ebenso ist  s: Z  →  Z mit

 s( z) = 2 z  eine Einbettung von (Z , +) in sich selbst (denn 2( a +  b) = 2 a + 2 b), 

aber nicht von (Z , ·) in sich selbst (denn 2( a · b)  = 2 a ·  2 b) für  a, b = 0). 
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Zwei Strukturen  M  und  N , auf denen jeweils gleichbezeichnete Operationen

+ und  ·  erklärt sind, sind isomorph, wenn es eine Bijektion  s:  M → N  gibt mit

 s( a +  b) =  s( a) +  s( b) und  s( a · b) =  s( a)  · s( b) für alle  a, b ∈ M . Hier werden auf der linken Seite der beiden Gleichheitszeichen die Operationen in  M  ausgewertet, auf der rechten Seite diejenigen in  N . 

Im Allgemeinen haben diese Operationen nichts miteinander zu tun, aber die

Lesbarkeit der Isomorphiebedingung wird erhöht. 

Sind auf  M  und  N  lediglich Relationen  R ⊆ M 2 und  P ⊆ N  2 gegeben, 

so sind  M  und  N  bereits dann isomorph, wenn es ein bijektives  s:  M → N

gibt, das lediglich obige Bedingung (b) erfüllt. Diese Situation liegt sowohl für

Äquivalenzrelationen ( M, ≡), ( N, ∼), partielle Ordnungen ( A, < ), ( B, ≺) und

gerichtete Graphen ( E 1 , K 1) , ( E 2 , K 2) vor. Die Bedingung (b) lautet hier jeweils

explizit:

Für alle  a, b ∈ M  gilt  a ≡ b  genau dann, wenn  s( a)  ∼ s( b). 

Für alle  a, b ∈ A  gilt  a < b  genau dann, wenn  s( a)  ≺ s( b). 

Für alle  a, b ∈ E 1 gilt ( a, b)  ∈ K 1 genau dann, wenn ( s( a) , s( b))  ∈ K 2. 

Allgemein hängt der Einbettungs- und Isomorphiebegriff nicht von einer axio-

matischen Umgebung, sondern nur vom Typ der betrachteten Strukturen ab. 

Um zum Beispiel zu notieren, wann zwei Körper isomorph sind, muss man gar

nicht genau wissen, was ein Körper ist. 

Anschaulich drückt man die Einbettbarkeit von  N  in  M  zuweilen so aus, dass

 M  eine Kopie von  N  enthält. Und zwei Strukturen  M  und  N  sind isomorph, 

wenn sie bis auf die Namen ihrer Elemente übereinstimmen. Als reine Strukturen

aufgefasst sind sie also identisch. Alle Eigenschaften, die sich in der Sprache“

” 

einer Struktur ausdrücken lassen, übertragen sich automatisch von  M  auf eine

zu  M  isomorphe Struktur  N . Sind zwei partielle Ordnungen ( M, < ) und ( N, < )

isomorph und ist  M  linear geordnet, so ist auch  N  linear geordnet. Ist  M  dicht, 

so ist auch  N  dicht. Hat  M  ein kleinstes Element, so auch  N . Sind zwei Graphen

 G 1 = ( E 1 , K 1) und  G 2 = ( E 2 , K 2) isomorph und ist  G 1 zusammenhängend, so

ist auch  G 2 zusammenhängend. Enthält  G 1 einen Kreis mit 5 Ecken, so auch

 G 2, usw. 

Zwei Strukturen als isomorph zu erkennen kann ein schwieriges Problem sein, 

und zwar nicht nur aus theoretischer, sondern auch aus praktischer Sicht. Es

gibt z. B. vermutlich keinen effektiven Algorithmus, der zwei Graphen daraufhin

überprüft, ob sie isomorph sind oder nicht (siehe Abschnitt 4.4). 

2 Zahlen

Die Mathematik gilt als die Welt der Zahl“ (so der Titel des Schulbuchs, das

” 

einer der Autoren in der Grundschule benutzte), und das folgende Kapitel führt

in diese Welt ein. Dabei bleiben wir die Antwort auf die Frage, was eine Zahl

eigentlich ist, schuldig; in dieser Allgemeinheit ist sie auch kaum zu beantworten. 

Stattdessen beschreiben wir den Weg, der von den natürlichen Zahlen zu den

komplexen Zahlen und noch weiter führt. 

Dabei folgen wir Kroneckers Diktum: Die ganzen Zahlen hat der liebe Gott

” 

gemacht, alles andere ist Menschenwerk.“ Tatsächlich beginnen wir bei den

natürlichen Zahlen, die durch einen Satz von auf Peano zurückgehenden Axio-

men definiert werden. Im zweiten Abschnitt werden daraus durch geeignete

Äquivalenzklassenbildung zuerst die ganzen Zahlen und aus diesen dann die ra-

tionalen Zahlen konstruiert. Schwieriger ist der Übergang von den rationalen zu

den reellen Zahlen in Abschnitt 3. Man kann R aus Q wiederum mittels einer

geeigneten Äquivalenzklassenbildung erhalten; eine andere Möglichkeit bieten

die Dedekindschen Schnitte. Wir stellen beide Verfahren vor, die jeweils zum

vollständigen archimedisch geordneten Körper der reellen Zahlen führen. 

Demgegenüber ist der Weg von R zu C in Abschnitt 4 für die moderne Ma-

thematik fast trivial, wenngleich die komplexen Zahlen über Jahrhunderte auf

einem nur schwachen gedanklichen Fundament standen. Heute stellt man sich

unter C schlicht R2 mit einer passenden Addition und Multiplikation vor. Über

die Versuche, auch Vektoren des R n  zu multiplizieren, berichtet der Abschnitt 5; 

das funktioniert nur noch in den Dimensionen 4 und 8, und das auch nur mit

Abstrichen. 

Der nächste Abschnitt beschäftigt sich wieder mit den reellen Zahlen, und

zwar mit der Zifferndarstellung. Die Abschnitte 7 und 8 diskutieren irrationale, 

algebraische und transzendente Zahlen, und in Abschnitt 9 stellen wir mit  π  und

 e  die (außer 0 und 1) wohl wichtigsten reellen Zahlen genauer vor. Schließlich

werfen wir in Abschnitt 10 einen Blick auf die unendlich kleinen“ Größen der

” 

Nichtstandardanalysis und in Abschnitt 11 auf die mitunter bizarre Welt der

 p-adischen Zahlen. Der abschließende 12. Abschnitt ist Zufallszahlen gewidmet. 

O. Deiser et al.,  12 x 12 Schlüsselkonzepte zur Mathematik, 

DOI 10.1007/978-3-8274-2298-9_2, © Spektrum Akademischer Verlag Heidelberg 2011
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2.1

Nat¨

urliche Zahlen

Das Zählen gehört zu den grundlegenden menschlichen Tätigkeiten: Wir zählen

Schafe, Pfeile, Geld, Schritte, Treppenstufen, Sterne, Tage, Jahre, Herzschläge, 

Kalorien, Blutkörperchen. Weiter bildet das Zählen auch die Grundlage des Mes-

sens von Längen, Flächen, Volumina und Zeiten. Die Ergebnisse von Zählungen

notieren wir mit Hilfe eines bestimmten Notationssystems, etwa:

 |,  ||,  |||,  ||||,  |||||,  . . . ( Kerbennotation“)

 ” 

I, II, III, IV, V, VI, VII, VIII, IX, X, . . .  (r¨

 omische Notation)

1, 2, 3, . . . , 10, 11, 12, . . .  (Dezimalnotation)

Da zuweilen der Köcher leer und nichts zu zählen ist, ist auch die Einführung

eines Zeichens für eine Zählung der Leere“ sinnvoll, etwa eine waagrechte Kerbe

” 

-“ oder die 0 in unserem heutigen Dezimalsystem. Ob man die Null als eine

” 

natürliche Zahl ansieht oder nicht, ist letztendlich eine Frage der Konvention. 

In der mathematischen Logik und in der Informatik gilt die Null als natürliche

Zahl, in der Zahlentheorie ist es dagegen oft bequemer, das Zählen mit der

Eins zu beginnen. In jedem Falle existiert ein je nach Konvention eindeutig

bestimmtes  Anfangselement  des Zählens. 

Die Mathematik hat die natürlichen Zahlen lange als undefinierte Grund-

objekte betrachtet. Erst im späten 19. Jahrhundert wurde von Richard Dede-

kind und anderen die von einem Notationssystem unabhängige Struktur der

natürlichen Zahlen ans Licht gebracht und so eine Definition der natürlichen

Zahlen ermöglicht. Das entscheidende Merkmal ist die  Nachfolgerbildung, die

einer natürlichen Zahl  n  ihren  (direkten) Nachfolger S( n) zuordnet. Die Nach-

folgerbildung hat die folgenden Eigenschaften:

(1) Jede natürliche Zahl besitzt einen eindeutigen Nachfolger. 

(2) Haben zwei natürliche Zahlen denselben Nachfolger, so sind sie gleich. 

(3) Das Anfangselement ist kein Nachfolger einer natürlichen Zahl. 

(4) Sei  A  eine Menge von natürlichen Zahlen, die das Anfangselement als

Element enthält und die mit jedem  n  auch  S( n) als Element enthält. 

Dann ist jede natürliche Zahl ein Element von  A.  (Induktionsprinzip)

Möchte man also zeigen, dass alle natürlichen Zahlen  n  eine bestimmte Eigen-

schaft  E  besitzen, so genügt es, die beiden folgenden Aussagen zu beweisen:

(I1) Das Anfangselement besitzt die Eigenschaft  E .  (Induktionsanfang)

(I2) Es gelte  E ( n) für ein  n. Dann gilt auch  E ( S( n)).  (Induktionsschritt)

Hat man (I1) und (I2) bewiesen, so gilt  E ( n) für alle natürlichen Zahlen nach

dem Induktionsprinzip für  A =  {n | E ( n) }. In (I2) bezeichnet man die Annahme

 E ( n) (oder gleichwertig  n ∈ A) als  Induktionsvoraussetzung. 

Die Eigenschaften (1)–(4) genügen bereits für eine strukturelle Definition der

natürlichen Zahlen: Ein Tripel ( N, S, d) heißt eine  Z¨

 ahlreihe  oder  Dedekind-

 Struktur  mit  Nachfolgerfunktion S  und  Anfangselement d ∈ N , falls gilt:

2.1
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(a)  S:  N → N . 

(b)  S  ist injektiv. 

(c)  d /

 ∈  rng( S). 

(d) Für alle  A ⊆ N  gilt:  d ∈ A ∧ ∀n ( n ∈ A → S( n)  ∈ A)  → A =  N . 

 (Induktionsprinzip)

Die Eigenschaften (1)–(4) (bzw. (a)–(d)) oder äquivalente Formulierungen wer-

den zuweilen auch  Peano-Axiome  genannt. Sie gehen aber auf Dedekind zurück. 

Es lässt sich zeigen, dass es bis auf Isomorphie genau eine Zählreihe gibt. Wir

fixieren also eine Zählreihe (N , S,  0) und nennen N die  Menge der natürlichen

 Zahlen.  Dass unser Anfangselement 0 die Rolle der Null übernimmt, wird erst

bei der Einführung der Addition auf N klar werden. 

Mit Hilfe des Induktionsprinzips lässt sich beweisen, dass eine Funktion  f  auf

N wie folgt eindeutig definiert werden kann:

(R1) Man definiert  f (0).  (Rekursionsanfang)

(R2) Man definiert, für alle  n ∈  N, den Wert  f ( S( n)) mit Hilfe von  f ( n). 

 (Rekursionsschritt)

Eine derartige Definition von  f  nennt man eine  Rekursion (nach n ∈  N ).  Oft

verwendet man im Rekursionsschritt die Sprechweise, dass der Wert  f ( n) be-

” 

reits definiert“ ist, und gibt an, wie sich  f ( S( n)) aus  f ( n) errechnet. 

Mit Rekursion kann eine Arithmetik auf N erklärt werden. Wir definieren für

alle  m ∈  N die Addition  m +  n  durch Rekursion nach  n:

 m + 0 =  m

 m +  S( n) =  S( m +  n) für alle  n ∈  N . 

Mit Hilfe der Addition definieren wir nun für alle  m ∈  N die Multiplikation  m·n

durch Rekursion nach  n:

 m ·  0 = 0 , 

 m · S( n) = ( m · n) +  m  für alle  n ∈  N . 

Damit sind wir bei einer arithmetischen Struktur (N , S,  0 , + , ·) angelangt. Es gilt

 S( n) =  n + 1 für alle  n ∈  N. Die Addition und die Multiplikation sind assozia-

tiv und kommutativ, und es gilt das Distributivgesetz. All diese Eigenschaften

kann man durch geeignete Induktionen beweisen. In analoger Weise erklärt man

schließlich auch noch die Exponentiation, d. h., man definiert für alle  m  rekursiv

 m 0 = 1 und  mS( n) =  mn · m. 

Mit Hilfe der Addition definieren wir für alle  n, m ∈  N:

 n < m,  falls es ein  k = 0 mit  n +  k =  m  gibt . 

Die Relation  <  erweist sich als eine lineare Ordnung auf N. Für alle  n ∈  N sei

 W ( n) =  {m ∈  N  | m < n}  die Menge aller Vorgänger von  n. Man kann nun

zeigen, dass für alle  A ⊆  N das  starke Induktionsprinzip  gilt:
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(4 ∗)  ∀n ( W ( n)  ⊆ A → n ∈ A)  → A = N. 

Wollen wir also  A = N für eine Teilmenge  A  von N zeigen, so können wir

wie folgt vorgehen: Sei  n ∈  N beliebig. Wir nehmen an, dass  W ( n)  ⊆ A  gilt, 

d. h., dass jedes  m < n  ein Element von  A  ist. Diese Annahme bezeichnet

man erneut als  (starke) Induktionsvoraussetzung.  Nun zeigen wir mit Hilfe der

Induktionsvoraussetzung, dass  n  selbst ein Element von  A  ist. Dieses Argument

nennt man wieder den  (starken) Induktionsschritt.  Nach (4 ∗) ist damit gezeigt, 

dass  A = N. (Ein Induktionsanfang entfällt bei der starken Induktion. Für  n = 0

ist  W ( n) die leere Menge und der allgemeine Induktionsschritt zeigt mit Hilfe

der trivialen Induktionsvoraussetzung  ∅ ⊆ A, dass 0  ∈ A  gilt.)

Den Beweisen durch starke Induktion entsprechen die  Wertverlaufsrekursio-

 nen  in Definitionen. Eine Funktion  f  auf N kann wie folgt eindeutig definiert

werden:

(R ∗) Man definiert, für alle  n ∈  N, den Wert  f ( n) mit Hilfe der Werte  f ( m), 

 m < n.  (Rekursionsschritt)

Hier darf man also zur Definition von  f ( n) annehmen, dass  f ( m) für alle  m < n

bereits definiert ist. 

Wir wollen das starke Induktionsprinzip noch etwas umformulieren. Schreiben

wir die Implikation in (4 ∗) kontrapositiv, so sehen wir, dass für alle  A ⊆  N gilt:

 A = N  → ∃n ¬( W ( n)  ⊆ A → n ∈ A) , 

d. h. 

 A = N  → ∃n ( W ( n)  ⊆ A ∧ n /

 ∈ A) . 

Setzen wir hier  B = N  − A, so erhalten wir, dass für alle  B ⊆  N gilt:

(4 ∗∗)  B =  ∅ → ∃n ( W ( n)  ∩ B =  ∅ ∧ n ∈ B).  (Prinzip vom kleinsten Element

 f¨

 ur B ⊆  N )

Jede nichtleere Teilmenge von N hat also ein kleinstes Element, d. h., die

lineare Ordnung  <  ist eine Wohlordnung auf N. Unsere Überlegung zeigt zudem, 

dass die starke Induktion und die Wohlordnungseigenschaft von  <  rein logisch

äquivalent sind: Die beiden Aussagen gehen durch das Kontrapositionsgesetz

auseinander hervor, die starke Induktion für  A ⊆  N entspricht dem Prinzip des

kleinsten Elements für  B = N  − A. 

2.2

Ganze und rationale Zahlen

Die natürlichen Zahlen N und die zugehörigen Operationen der Addition und

der Multiplikation reichen für viele Zähl- und Messvorgänge nicht aus. Beispiele

sind Reste ( noch 4 von 10 Runden zu fahren“), Geldschulden ( 1210 Euro

” 

” 

roter Kontostand“), Anteile ( ein Drittel des Gewinns“), Verhältnisse ( Meter

” 

” 

zu Yard“). Diese Beispiele legen eine Erweiterung der natürlichen Zahlen zu

einem Zahlbereich nahe, in welchem wir die Addition und Multiplikation so frei

2.2
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wie möglich umkehren können, d. h., für möglichst viele Zahlen  a  existieren

Zahlen  b  und  c  mit  a +  b = 0 und  a · c = 1. Wir erreichen dies in zwei Schritten. 

Gilt  m > n  für natürliche Zahlen  n  und  m, so können wir die Differenz  m − n

definieren als das eindeutige  k  mit  n +  k =  m. Beim Rechnen mit Differenzen

entsteht schnell das Bedürfnis, dass

 −n“ für alle  n ∈  N ein mathematisches

” 

Objekt ist und dass die Differenz  m − n  als  m + ( −n) gelesen werden kann. 

Dieses Bedürfnis kann durch eine formale Erweiterung der natürlichen Zahlen

um die  negativen Zahlen −n,  n ≥  1, und eine geeignete Fortsetzung der Arith-

metik befriedigt werden. Man gelangt so zum Zahlbereich Z der ganzen Zahlen. 

Alternativ zur Verwendung eines formalen Vorzeichens lässt sich Z aus N kon-

struieren, indem wir ein Paar ( n, m) von natürlichen Zahlen als Differenz  n − m

lesen. Aus dieser Idee entspringt die folgende elegante algebraische Konstruktion

von Z. Wir setzen für alle  n, m, n, m ∈  N:

( n, m)  ∼ ( n, m) ,  falls  n +  m =  n +  m. 

Die Relation  ∼  ist eine Äquivalenzrelation auf N  ×  N, und wir setzen:

[ n, m] = ( n, m) /∼  für alle  n, m ∈  N , 

Z = N2 /∼ =  {[ n, m]  | n, m ∈  N }. 

Die Elemente von Z heißen  ganze Zahlen. Für ganze Zahlen definieren wir:

 −[ n, m] = [ m, n]  (additive Inversenbildung), 

[ n, m] + [ n, m] = [ n +  n, m +  m]  (Addition), 

[ n, m]  − [ n, m] = [ n, m] + ([ n, m])  (Subtraktion), 

[ n, m]  · [ n, m] = [ nn +  mm, mn +  nm]  (Multiplikation), 

[ n, m]  < [ n, m] ,  falls  n +  m < n +  m (Ordnung). 

Die Struktur (Z , + , ·) ist ein kommutativer Ring (siehe Abschnitt 6.2), und  < 

ist eine lineare Ordnung auf Z. Wir können N  ⊆  Z annehmen, indem wir  n ∈  N

mit [ n,  0]  ∈  Z identifizieren. Diese Einbettung respektiert die Arithmetik und

Ordnung auf N. Wie gewünscht gilt für alle [ n, m]  ∈  Z:

[ n, m]  − [ n, m] = [ n, m] + [ m, n] = [ n +  m, n +  m] = [0 ,  0] = 0 , 

[ n, m] = [ n,  0] + [0 , m] = [ n,  0]  − [ m,  0] =  n − m. 

Die ganzen Zahlen erlauben eine Subtraktion, aber keine allgemeine Division

(Umkehrung der Multiplikation). Wir führen deswegen obigen Erweiterungspro-

zess in analoger Weise noch einmal durch. Die Idee ist nun, ein Paar ( a, b) von

ganzen Zahlen mit  b = 0 als Bruch  a/b  zu lesen. Die Null muss hier eine Sonder-

rolle spielen, denn wenn wir elementare Rechengesetze aufrechterhalten wollen, 

gilt 0  · x = (0 + 0)  · x = 0  · x + 0  · x  und folglich 0 = 0  · x  für alle  x. Damit ist aber

0  ·  1 / 0 = 1 unmöglich, im Gegensatz zu  b ·  1 /b = 1 für alle  b = 0. Wir setzen

also Z ∗ = Z  − { 0 }  und definieren für alle ganzen Zahlen  a, c ∈  Z und  b, d ∈  Z ∗:

( a, b)  ∼ ( c, d) falls  ad =  cb. 
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Dann ist  ∼  eine Äquivalenzrelation auf Z  ×  Z ∗, und wir setzen:

 a/b = ( a, b) /∼  für alle  a ∈  Z , b ∈  Z ∗, 

Q = (Z  ×  Z ∗) /∼ =  {a/b | a ∈  Z , b ∈  Z ∗}. 

Die Elemente von Q heißen  rationale Zahlen.  Wir definieren analog zu oben:

 −( a/b) = ( −a) /b (additive Inversenbildung), 

( a/b) − 1 =  b/a,  falls  a = 0  (multiplikative Inversenbildung), 

 a/b +  c/d = ( ad +  cb) /( bd)  (Addition), 

 a/b − c/d =  a/b + ( −c/d)  (Subtraktion), 

 a/b · c/d = ( ac) /( bd)  (Multiplikation), 

( a/b) /( c/d) = ( a/b)  · ( c/d) − 1 ,  falls  c = 0  (Division), 

 a/b < c/d,  falls  abd 2  < cdb 2  (Ordnung). 

Die Struktur (Q , + , ·) ist ein Körper (siehe Abschnitt 6.3), und  <  ist eine

lineare Ordnung auf Q. Wir können wieder Z  ⊆  Q erreichen, indem wir  a ∈  Z

mit  a/ 1  ∈  Q identifizieren. Dann ist insgesamt N  ⊆  Z  ⊆  Q. Die Arithmetik auf

Q hat die gewünschten Eigenschaften, speziell gelten

( a/b) /( a/b) =  a/b · ( a/b) − 1 = ( ab) /( ba) = 1 / 1 = 1 für alle  a, b ∈  Z ∗, a/b =  a/ 1  ·  1 /b =  a · b− 1 für alle  a ∈  Z und  b ∈  Z ∗. 

Die Menge der rationalen Zahlen ist abzählbar, denn wir können alle ratio-

nalen Zahlen z. B. auflisten durch

0 / 1 ,  1 / 1 , − 1 / 1 ,  2 / 1 , − 2 / 1 ,  1 / 2 , − 1 / 2 ,  3 / 1 , − 3 / 1 ,  1 / 3 , − 1 / 3 , . . . 

Die Ordnung  <  auf Q ist dicht, d. h., zwischen zwei rationalen Zahlen  q  und  p

liegt eine weitere rationale Zahl, etwa ( p +  q) / 2. Zudem existiert kein größtes

und kein kleinstes Element. Man kann zeigen, dass diese Eigenschaften eine

abzählbare lineare Ordnung charakterisieren, d. h., jede abzählbare und dichte

lineare Ordnung ( M, < ) ohne größtes und ohne kleinstes Element ist isomorph

zu (Q , < ). Dieser ordnungstheoretische Satz stärkt noch einmal die Stellung der

rationalen Zahlen. Q hat aber auch Schwächen, was uns zum nächsten Abschnitt

bringt. 

2.3

Reelle Zahlen

Die mathematische Modellierung eines räumlichen oder zeitlichen Kontinuums

bildet die Grundlage der durch die Infinitesimalrechnung eingeleiteten Natur-

beschreibung: Ein Stein fällt und ein Kreisel rotiert kontinuierlich, und auch

die Zeit fließt in kontinuierlicher Weise. Obwohl bei diesem Ansatz gerade kein

2.3
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Fortschreiten von Punkt zu Punkt stattfinden soll, bleibt der Mathematik wohl

nichts anderes übrig, als ein Kontinuum aus Punkten aufzubauen. Der fallende

Stein wird durch eine Funktion beschrieben, die angibt, an welchem Punkt eines

räumlichen Kontinuums sich der Stein zu einem gegebenen Punkt eines zeitli-

chen Konntinuums befindet. Räumliches und zeitliches Linearkontinuum werden

mathematisch gleich behandelt, ein mehrdimensionales Kontinuum wird als ein

kartesisches Produkt eines Linearkontinuums aufgefasst. Die Punkte eines Line-

arkontinuums sind durch ein links und rechts“, ein vorher und nachher“, ein

” 

” 

früher und später“ geordnet. Zu diesen ordnungstheoretischen Gesichtpunkten

” 

gesellt sich der arithmetische Charakter der Punkte, denn wir wollen mit den

Punkten eines Kontinuums rechnen und messen. 

Die Mathematik hat die Aufgabe der Konstruktion eines arithmetischen

Kontinuums durch eine Erweiterung der rationalen Zahlen Q gelöst, die den

Zahlkörper R der  reellen Zahlen  erzeugt. Wie für die Schritte von N nach Z und

von Z nach Q lässt sich die Erweiterung von Q nach R als die bis auf Isomor-

phie eindeutige Behebung eines gewissen Mangels ansehen, die nicht mehr neue

Zahlen hinzufügt als zur Behebung des Mangels notwendig sind. 

Auf den ersten Blick sehen die rationalen Zahlen Q schon wie ein gutes Modell

für ein Kontinuum aus: Die Punkte von Q sind dicht geordnet, und wir können

mit ihnen frei rechnen. Die folgende Eigenschaft, die  lineare Vollst¨

 andigkeit, ist

nun aber geeignet, die Schwächen von Q ans Licht zu bringen: Eine lineare

Ordnung  K  heißt  vollst¨

 andig,  falls jede nichtleere beschränkte Teilmenge von  K

ein Supremum und ein Infimum besitzt. 

Anschaulich bedeutet die lineare Vollständigkeit, dass wir eine obere Schranke

einer beschränkten nichtleeren Teilmenge  A  von  K  so weit an  A  heranschieben

können, dass sie  A  berührt. Dieser Berührpunkt – das Supremum von  A – soll

immer eindeutig existieren. Analoges gilt für die Existenz von Infima. 

Die Ordnung der rationalen Zahlen ist unvollständig:  A =  {q ∈  Q  | q 2  <  2 }

besitzt kein Supremum und kein Infimum in Q (siehe hierzu Abschnitt 2.8, 

Irrationalität der Quadratwurzel aus 2). Die Funktion  f : Q  →  Q mit  f ( q) =  q 2 −

2 für alle  q  besitzt also keine Nullstelle. Damit ist Q als Kontinuum ungeeignet. 

De facto wimmelt es nur so an derartigen Unvollständigkeiten in Q, denn eine

vollständige und dichte lineare Ordnung ist, wie man beweisen kann, notwendig

überabzählbar. Der Vollständigkeitsbegriff ist damit weit weniger harmlos als

er aussieht. 

Es lässt sich zeigen, dass es bis auf Isomorphie genau eine Erweiterung der

rationalen Zahlen gibt, die linear vollständig ist und die Rechengesetze von Q

bewahrt. Genauer lautet das Ergebnis: Es gibt einen bis auf Isomorphie eindeu-

tig bestimmten linear vollständigen angeordneten Körper (R , + , ·, < ). R enthält

automatisch Q als Unterkörper und dient als mathematisches Modell eines Kon-

tinuums. Die Elemente von R heißen  reelle Zahlen. 
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Zwei klassische Konstruktionen von R stammen von Cantor und Dedekind. 

Für die Cantorsche Konstruktion sei  F  die Menge aller Cauchy-Folgen in Q, 

d. h., die Menge aller Folgen ( xn) n∈ N rationaler Zahlen mit der Eigenschaft

 ∀k ≥  1  ∃n 0  ∀n, m ≥ n 0  |xn − xm| <  1 /k. 

Wir setzen ( xn) n∈ N  ∼ ( yn) n∈ N für zwei Folgen in  F , falls die Differenzenfolge

der Folgen eine Nullfolge ist, d. h.,  ∀k ≥  1  ∃n 0  ∀n ≥ n 0  |xn − yn| <  1 /k. Die

Relation  ∼  ist eine Äquivalenzrelation auf  F , und wir setzen

R =  F/∼ =  {( xn) n∈ N /∼ | ( xn) n∈ N  ∈ F }. 

Wir können Q  ⊆  R erreichen, indem wir  q ∈  Q mit ( q) n∈ N /∼  identifizieren. Auf

der Menge R können wir eine Arithmetik durch punktweise Addition und Multi-

plikation von Folgen einführen. Schließlich setzen wir ( xn) n∈ N /∼ < ( yn) n∈ N /∼, 

falls gilt:  ∃k ≥  1  ∃n 0 ∀n ≥ n 0  yn − xn >  1 /k. 

Bei der Konstruktion von Dedekind steht die Ordnung der rationalen Zahlen

im Vordergrund und sie strebt ohne Umschweife die lineare Vollständigkeit an. 

Ein Paar ( L, R) von nichtleeren Teilmengen von Q heißt ein  Schnitt  in Q, falls

gilt: (1)  L ∩ R =  ∅,  L ∪ R = Q, (2) für alle  q ∈ L  und  p ∈ R  gilt  q < p, 

(3) existiert sup( L) in Q, so gilt sup( L)  ∈ L. Ein Schnitt ( L, R) beschreibt also

eine Zerlegung der rationalen Zahlen in einen linken und einen rechten Teil, und

er markiert genau dann eine Lücke in Q, falls sup( L) nicht existiert. Die Idee ist

nun, die Schnitte (und damit insbesondere die Lücken von Q) als Punkte und

dann weiter als Zahlen aufzufassen. Wir setzen also

R =  {( L, R)  | ( L, R) ist ein Schnitt in Q }. 

Wir erhalten hier Q  ⊆  R, indem wir  q ∈  Q mit dem durch  q  markierten Schnitt

( Lq, Rq) mit  Lq =  {r ∈  Q  | r ≤ q}  identifizieren. Die Inklusion liefert eine

vollständige Ordnung auf R. Mit etwas Mühe lässt sich auch wieder die Arith-

metik von Q nach R fortsetzen. Wir erhalten ein zur Cantorschen Konstruktion

gleichwertiges Ergebnis. 

Die lineare Vollständigkeit lässt eine interessante Aufspaltung zu: Ein ange-

ordneter Körper ( K, + , ·, < ) heißt  metrisch vollständig,  falls jede Cauchy-Folge

in  K  konvergiert, und er erfüllt das  archimedische Axiom,  falls für alle positi-

ven  x, y  in  K  ein  n ∈  N existiert mit  nx > y. Beide Bedingungen zusammen

sind äquivalent zur linearen Vollständigkeit. Damit können wir die reellen Zah-

len auch als metrisch vollständigen angeordneten Körper charakterisieren, der

das archimedische Axiom erfüllt. Aus dem archimedischen Axiom folgt, dass für

alle positiven  x ∈ K  ein  n ∈  N existiert mit 1 /n < x. Damit schließt unser

Kontinuumsbegriff infinitesimale Größen aus (vgl. hierzu auch Abschnitt 2.11). 

2.4
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2.4

Komplexe Zahlen

Als Konsequenz der Vollständigkeit der Menge R kann man beweisen, dass dort

alle Gleichungen, die offensichtlich“ eine Lösung haben, auch tatsächlich lösbar

” 

sind. Bei  x 5 +  x = 1 zum Beispiel glaubt man das dem Graphen anzusehen, und

der Zwischenwertsatz aus Abschnitt 7.3 schafft endgültige Gewissheit. Anders

liegt der Fall bei der Gleichung  x 2 =  − 1, die in R (natürlich) nicht lösbar ist. 

Seit mehr als 400 Jahren operiert man jedoch erfolgreich mit einer imaginären

 √

” 

Zahl“  i =

 − 1, die das Quadrat  − 1 haben soll. Es ist zunächst vielleicht einen

Kommentar wert, warum solche imaginären“ Größen nützlich sind. 

” 

Im 16. Jahrhundert wurden von italienischen Mathematikern, namentlich von

N. Tartaglia, Methoden entwickelt, um kubische Gleichungen der Form  x 3 +

 a 2 x 2 +  a 1 x +  a 0 = 0 zu lösen. Die Substitution  x =  t − a 2 / 3 eliminiert den

quadratischen Term und führt zur standardisierten Form  t 3 = 3 pt + 2 q (mit

gewissen reellen Koeffizienten  p  und  q), für die Tartaglia die Lösung









3

3

 q +

 q 2  − p 3 +

 q −

 q 2  − p 3

(2.1)

angab. Wendet man diese Formel im Beispiel  t 3 = 15 t + 4 an, ergibt sich



 √



 √

3 2 + 11  − 1 + 3 2  −  11  − 1, also eine Größe, die in der Welt der reellen Zah-

len nicht handhabbar ist. Und doch hat jede kubische Gleichung nach dem

Zwischenwertsatz mindestens eine reelle Lösung, in unserem Beispiel  t = 4. Das

lässt einen Kalkül wünschenswert erscheinen, in dem die Rechenregeln von R

 √

gelten, aber eine

imaginäre Einheit“  i =

 − 1 existiert, so dass man (2.1)

” 

auswerten kann. 

Dieser Kalkül wird im Körper der komplexen Zahlen realisiert. Zum Begriff

des Körpers vgl. Abschnitt 6.3; es sei hier nur gesagt, dass in einem Körper

die traditionellen Kommutativ-, Assoziativ- und Distributivgesetze der Addi-

tion und Multiplikation gelten. Diese Rechenregeln erzwingen wegen  i 2 =  − 1

für die Summe ( x +  iy) + ( x +  iy) den Wert ( x +  x) +  i( y +  y) und für das

Produkt ( x +  iy)  · ( x +  iy) den Wert ( xx − yy) +  i( xy +  xy). In der modernen Mathematik nimmt man solche Heuristiken als Ausgangspunkt einer rigorosen

Begriffsbildung. Man definiert daher die Menge der komplexen Zahlen als Er-

weiterung von R wie folgt. Auf R2 werden eine Addition und eine Multiplikation

gemäß

( x, y) + ( x, y) = ( x +  x, y +  y)

( x, y)  · ( x, y) = ( xx − yy, xy +  xy)

erklärt. (Warum man das so macht, ist nach der Vorbemerkung klar.) Man

kann nun nachweisen, dass R2 so zu einem Körper wird, in den R mittels  x →

( x,  0) kanonisch eingebettet ist; lax gesagt erhält man also eine Obermenge

von R, in der die gleichen Rechenregeln wie dort gelten. Definitionsgemäß ist

(0 ,  1) ·(0 ,  1) = ( − 1 ,  0), also ist (0 ,  1) als Quadratwurzel aus  − 1 in dieser größeren
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Struktur anzusehen. Natürlich erhält man keinen  angeordneten  Körper, denn

sonst wären ja alle Quadrate nichtnegativ. 

Die übliche Bezeichnungsweise für diesen Körper ist C. Man setzt  i := (0 ,  1)

und kann dann jedes Element ( x, y) von R2 als  x +  iy ∈  C schreiben. Die alge-

braische Definition von komplexen Zahlen als Paare reeller Zahlen nimmt ihnen

alles Imaginäre und macht sie zu genauso realen mathematischen Objekten wie

die reellen Zahlen. 

Bei der komplexen Zahl  z =  x +  iy  nennt man die reelle Zahl  x  den  Realteil

und die reelle Zahl  y  den  Imagin¨

 arteil ; die  konjugiert komplexe Zahl  ist  z =



 √

 x − iy. Man nennt  |z| =

 x 2 +  y 2 =

 zz  den  Betrag  von  z; wie der reelle

Betrag erfüllt auch der komplexe Betrag die Eigenschaften  |z 1 z 2 | =  |z 1 ||z 2 |, 

 |z 1 +  z 2 | ≤ |z 1 | +  |z 2 |. Weiter induziert der Betrag mittels  d( z 1 , z 2) =  |z 1  − z 2 |

eine Metrik, bezüglich der C vollständig ist. 

Stellt man sich komplexe Zahlen geometrisch als Punkte in der Ebene vor, 

spricht man von der  Gaußschen Zahlenebene. Die Addition komplexer Zahlen

entspricht dann der Addition von Vektoren in R2. Alle komplexen Zahlen vom

Betrag 1 liegen in der Gaußschen Zahlenebene auf dem Rand des Einheitskrei-

ses. Die in Abschnitt 7.4 besprochene Eulersche Formel cos  ϕ +  i  sin  ϕ =  eiϕ

ermöglicht es, komplexe Zahlen vom Betrag 1 als  eiϕ  mit  ϕ ∈  R zu schreiben

und allgemein eine komplexe Zahl in der  Polardarstellung z =  |z|eiϕ. Für  z = 0

ist das  Argument ϕ  als Winkel zwischen dem Vektor  z  und der positiven reellen

Achse zu interpretieren. Mit Hilfe der Polardarstellung kann man nun auch die

Multiplikation komplexer Zahlen visualisieren; man multipliziert zwei komplexe

Zahlen, indem man ihre Beträge multipliziert und ihre Argumente addiert:

 |z 1 |eiϕ 1  · |z 2 |eiϕ 2 =  |z 1 ||z 2 |ei( ϕ 1+ ϕ 2) . 

Sind weitere Ausdehnungen von C wünschenswert oder gar notwendig? Exis-

 √

 √

tiert z. B. 

 i  in C? Was

 i  angeht, so zeigt die Polardarstellung  i =  eiπ/ 2, dass

 √

 √

sowohl  z 1 =  eiπ/ 4 = (1 +  i) /  2 als auch  z 2 =  −eiπ/ 4 =  −(1 +  i) /  2 die Glei-

 √

chung  z 2 =  i  lösen, also als

 i“ angesehen werden können. Im Gegensatz zur

” 

 √

reellen Analysis, wo

 a  die nichtnegative Lösung von  x 2 =  a ( ≥  0) bezeichnet, 

ist in der komplexen Analysis das Wurzelsymbol mit Vorsicht zu gebrauchen. Im

obigen Beispiel zeichnet keine natürliche Eigenschaft  z 1 vor  z 2 aus oder umge-

 √

kehrt. Daher sollte man im Komplexen

 a“ wirklich nur in Anführungszeichen

” 

benutzen, denn eine gedankenlose Verwendung führt zum Beispiel zur Gleichung

 √



 √

 √

 √

 √

4 =

16 =

( − 2)  · ( − 8) =

 − 2  · − 8 = 2 i ·  8 i =  − 4 . 

Ein korrekter Umgang mit komplexen Wurzeln basiert auf den  n-ten Einheits-

 wurzeln ωk,n =  ei 2 πk/n  mit  k = 1 , . . . , n. Es sind dies die  n  komplexen Lösungen

von  zn = 1. Die  n-ten Einheitswurzeln bilden in der Gaußschen Zahlenebene

ein regelmäßiges  n-Eck. 

2.5
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Dass eine weitere Ausdehnung von C nicht notwendig ist, um algebraische

Gleichungen zu lösen, ist eine Folge des  Fundamentalsatzes der Algebra, wonach

jede Gleichung der Form  zn +  an− 1 zn− 1 +  · · · +  a 1 z +  a 0 = 0 mit Koeffizienten

 aj ∈  C und  n ≥  1 stets eine komplexe Lösung hat. 

Über eine Ausdehnung von C anderer Natur berichtet der nächste Abschnitt. 

2.5

Quaternionen

Das algebraische Fundament des Rechnens mit komplexen Zahlen in der Form

einer Addition und Multiplikation auf R2, wie sie im letzten Abschnitt erklärt

wurden, wurde 1835 von dem irischen Mathematiker W. R. Hamilton geschaffen. 

(Wir werden seinem Namen erneut in Abschnitt 4.4 in ganz anderem Zusam-

menhang begegnen.) Durch diesen Erfolg angetrieben, beschäftigte er sich jah-

relang mit dem Problem, die Multiplikation von C = R2 auf R3 auf vernünftige

” 

Weise“ fortzusetzen – ohne Erfolg. 

Dass das in der Tat unmöglich ist, kann man heute mit ein wenig linearer

Algebra leicht einsehen. Hätte man auf R3 nämlich eine nullteilerfreie Multipli-

kation ( u, v)  → uv  mit einem Einselement  e, könnte man die lineare Abbildung

 Lu:  v → uv  betrachten; die Linearität ergibt sich aus dem Distributivgesetz, das

man von einer vernünftigen“ Multiplikation auf dem Vektorraum R3 verlangen

” 

sollte. Nun hat jede lineare Abbildung auf R3 einen Eigenwert (Abschnitt 5.10), 

es gibt also eine Zahl  λ ∈  R und einen Vektor  v = 0 mit  Lu( v) =  λv, d. h. 

( u − λe) v = 0, woraus wegen der Nullteilerfreiheit  u =  λe  folgt: Ein beliebiges

Element  u  von R3 wäre ein Vielfaches von  e, was ein Widerspruch ist. 

Zurück zu Hamilton. Er erkannte schließlich, dass es keine

vernünftige“

” 

kommutative Multiplikation auf R3 gibt, denn seine Überlegungen zeigen für

 e 2 = (0 ,  1 ,  0) und  e 3 = (0 ,  0 ,  1), dass  e 2 e 3 =  −e 3 e 2 sein muss. Aber er kam nicht weiter bei der Frage, was der Wert des Produkts  e 2 e 3 sein kann. Der entscheidende Durchbruch gelang am 16. Oktober 1843. Hamilton hatte die Idee,  e 2 e 3

nicht in R3 zu suchen, sondern eine vierte Dimension hinzuzunehmen. So gelang

es ihm schließlich, auf R4 eine Multiplikation einzuführen (die Addition ist ka-

nonisch, nämlich die Vektoraddition), die bis auf die Kommutativität alle von R

oder C bekannten Eigenschaften hat; dies ist der mit H bezeichnete Schiefkörper

der Hamiltonschen  Quaternionen. (Ein  Schiefk¨

 orper  erfüllt alle Axiome eines

Körpers bis auf die Kommutativität der Multiplikation.) Aus Hamiltons Brie-

fen weiß man nicht nur, wann ihm der Gedankenblitz mit der vierten Dimension

gekommen ist, sondern auch, wo: unter der Brougham Bridge bei einem Spazier-

gang entlang des Royal Canal im Norden Dublins. Hamilton war so von seinen

Quaternionen eingenommen, dass er dort seine Produktformeln buchstäblich in

Stein gemeißelt hat; heute befindet sich an dieser Stelle eine Gedenkplakette, 

die an diesen Moment in der Geschichte der Mathematik erinnert. 
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Explizit definiert Hamilton für  e 1 = (1 ,  0 ,  0 ,  0),  e 2 = (0 ,  1 ,  0 ,  0),  e 3 =

(0 ,  0 ,  1 ,  0),  e 4 = (0 ,  0 ,  0 ,  1)

 e 2 e 3 =  −e 3 e 2 =  e 4 , 

 e 3 e 4 =  −e 4 e 3 =  e 2 , 

 e 4 e 2 =  −e 2 e 4 =  e 3 , 

 e 22 =  e 23 =  e 24 =  −e 1

sowie  e 1 em =  eme 1 =  em  für  m = 1 , . . . ,  4 und erhält durch distributives Aus-





rechnen einen Term für das Produkt  xy = (

4

 x

4

 y

 m=1

 mem)(

 m=1

 mem). Man

kann dann nachrechnen, dass die so definierte Multiplikation das Distributivge-

setz erfüllt, assoziativ ist, jedes von 0  ∈  R4 verschiedene Element invertierbar

ist und der Körper C in H durch  r +  is → ( r, s,  0 ,  0) eingebettet ist. 

Einfacher ist es jedoch, H mittels komplexer (2  ×  2)-Matrizen zu beschreiben. 

Der R-Vektorraum  H  der komplexen (2  ×  2)-Matrizen der Form  M( z, w) =





 z −w

ist abgeschlossen unter der Matrixmultiplikation, die Matrixmultiplika-

 w

 z

tion ist natürlich distributiv und assoziativ, und wegen det  M ( z, w) =  |z| 2 + |w| 2

ist jedes von 0  ∈ H  verschiedene Element invertierbar, wobei die Inverse eben-

falls in  H  liegt. Die Quaternionenmultiplikation lässt sich äquivalent durch

diese Matrizen beschreiben: Für  x, y ∈  H ist  xy =  u  genau dann, wenn

 M ( x 1 +  ix 2 , x 3 +  ix 4) M ( y 1 +  iy 2 , y 3 +  iy 4) =  M ( u 1 +  iu 2 , u 3 +  iu 4). Da, wie gerade begründet,  H  ein Schiefkörper ist, ist es H also auch. 

Prägnant formuliert ist die Abbildung





 x 1 +  ix 2  −x 3  − ix 4

Φ: H  → H , 

Φ( x) =

 x 3  − ix 4

 x 1  − ix 2

ein Isomorphismus von R-Algebren. Dabei versteht man unter einer R -Algebra

einen R-Vektorraum  V , auf dem eine  Multiplikation  genannte Abbildung

( u, v)  → uv  von  V × V  nach  V  erklärt ist, für die nur die Distributivität voraus-

gesetzt wird (mit anderen Worten, die Abbildungen  v → uv  und  v → vu  sind

stets linear); a priori wird weder die Kommutativität noch die Assoziativität

noch die Existenz eines Einselements verlangt. 

Eine (reelle)  Divisionsalgebra  ist eine R-Algebra, in der die Gleichungen

 xu =  v  und  uy =  v  für  u = 0 stets eindeutig lösbar sind. R, C und H sind

Divisionsalgebren. Gibt es noch weitere? Von Frobenius wurde 1877 bewiesen, 

dass dies die einzigen endlich-dimensionalen assoziativen Divisionsalgebren sind. 

Aber schon 1845 hatte Cayley eine Multiplikation auf R8 entdeckt (die  Oktaven-

oder  Oktionenalgebra  O), die nicht mehr assoziativ ist, aber zu einer Divisionsal-

gebra führt. Die Elemente von O heißen auch  Cayley-Zahlen. Sie erfüllen noch ei-

ne schwache Form der Assoziativität, nämlich  u( uv) = ( u 2) v  und ( uv) v =  u( v 2)

für  u, v ∈  O. Außer R, C und H ist O die einzige endlich-dimensionale Divisi-

onsalgebra, die im obigen Sinn schwach assoziativ ist. Das letzte Wort in dieser

Angelegenheit hat ein Satz von Kervaire und Milnor aus dem Jahr 1958: Je-

de endlich-dimensionale Divisionsalgebra hat notwendig die Dimension 1, 2, 4

oder 8. Der Beweis benutzt tiefliegende Resultate der algebraischen Topologie. 

2.6

 b-adische Darstellungen

41

2.6

 b-adische Darstellungen

Die reellen Zahlen hatten wir in Abschnitt 2.3 aus den rationalen Zahlen durch

eine Vervollständigung gewonnen, die entweder mit Hilfe von Cauchy-Folgen ra-

tionaler Zahlen oder mit Hilfe von Dedekindschen Schnitten in Q durchgeführt

wurde. Beiden Konstruktionen ist gemeinsam, dass eine reelle Zahl

von Ge-

” 

burt an“ mit beliebig genauen rationalen Approximationen ausgestattet ist, ja

sogar durch ein System von rationalen Approximationen definiert wird. Auch

im rechnerischen Umgang mit reellen Zahlen sind rationale Approximationen

von großer Bedeutung. Die Mathematik kennt heute viele rationale Entwick-

” 

lungen“ von reellen Zahlen, etwa die endlichen und unendlichen Kettenbrüche

oder analytisch motivierte Summen wie etwa log(1 +  x) =  x − x 2 / 2 +  x 3 / 3  ± · · · , 

 |x| <  1, die für rationale  x  rationale Approximationen von oftmals irrationa-

len Funktionswerten liefern. Aber es sind vor allem die Dezimaldarstellungen

und ihre Verwandten, die sich im Alltag und im wissenschaftlichen Rechnen als

Standard bewährt haben. 

Die Idee der Dezimaldarstellung ist, das reelle Intervall [0 ,  1] wiederholt in je

10 gleich lange Teilintervalle zu zerlegen. Nach einer derartigen Zerlegung kann

man eine beliebige Zahl des Einheitsintervalls mit einer Genauigkeit von 1 / 10

lokalisieren, nach zwei Zerlegungen mit einer Genauigkeit von 1 / 100, nach drei

Zerlegungen mit einer Genauigkeit von 1 / 1000. (Der Leser hat dies vor Augen, 

wenn er einen üblichen Meterstab zur Hand nimmt.) Nach  k  Zerlegungen haben

wir eine Genauigkeit von 1 / 10 k  erreicht, und mit Hilfe eines Grenzübergangs

kann jede reelle Zahl durch diese iterierte Intervallzerlegung exakt beschrieben

werden, in vielen Fällen auch eindeutig. 

Die skizzierte Idee wollen wir nun noch mathematisch präzisieren. Dabei be-

deutet es kaum Mehraufwand, allgemeinere Zerlegungen zu betrachten, die das

reelle Einheitsintervall nicht in je 10, sondern in je  b  Teile zerlegen, für eine belie-

bige vorgegebene natürliche Zahl  b ≥  2. Sei also  b ≥  2 eine natürliche Zahl. Für

jede natürliche Zahl  n  und jede Folge  a 1 , a 2 , . . . , ai, . . . ,  i ≥  1, von natürlichen

Zahlen  ai ∈ { 0 , . . . , b −  1 }  definieren wir

 k



 n.a 1  . . . ak =  n +  a 1 /b +  a 2 /b 2 +  · · · +  ak/bk =  n +

 ai/bi

 i=1

sowie

 ∞



 n.a 1  . . . ak . . . =  n +  a 1 /b +  a 2 /b 2 +  · · · =  n +

 ai/bi. 

 i=1

Die unendliche Summe existiert, da für alle  k ≥  1 gilt:

 k



 k



 k− 1



 ai/bi ≤

1 /bi− 1 =

(1 /b) i. 

 i=1

 i=1

 i=0
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Damit sind nach der Konvergenz der geometrischen Reihe die Partialsummen



von

 ∞ a

 i=1

 i/bi  beschränkt, und wegen  ai/bi ≥  0 existiert daher die unendliche



Summe

 ∞ a

 i=1

 i/bi. Nach Konstruktion ist die reelle Zahl  n.a 1 a 2  . . . ak . . .  das

Supremum der rationalen Zahlen  n.a 1 a 2  . . . ak. 

Gilt  x =  ±n.a 1 a 2  . . . ak . . .  für eine reelle Zahl  x, so heißt  ±n.a 1 a 2  . . . ak . . . 

eine (unendliche)  b-adische Darstellung  oder  b-adische Entwicklung  von  x. Für

 b = 10 sprechen wir auch von einer  Dezimaldarstellung. Seit Leibniz findet auch

die kleinstmögliche Basis  b = 2 besondere Beachtung, und sie führt zu  Dual-

oder  Bin¨

 ardarstellungen  reeller Zahlen. Für jedes  i  heißt  ai  die  i-te ( b-adische)

Nachkommaziffer der  b-adischen Darstellung  ±n.a 1 a 2  . . . ak . . . , und  ±n  heißt

der ganzzahlige Teil der Darstellung. Für alle  k  nennen wir die rationale Zahl

 ±n.a 1 a 2  . . . ak  die  k-te  b-adische Näherung von  ±n.a 1 a 2  . . . . 

Ist ein  x ≥  0 gegeben, so können wir eine  b-adische Darstellung von  x  wie

folgt finden. Wir definieren zunächst:  n =

die größte natürliche Zahl  m  mit

” 

 m ≤ x“. Weiter definieren wir dann:  a 1 = das größte  a ∈ { 0 , . . . , b −  1 }  mit

” 

 n +  a/b ≤ x“, und rekursiv für alle  i ≥  1:  ai+1 = das größte  a ∈ { 0 , . . . , b −  1 }

” 

mit  n.a 1  . . . ai +  a/bi+1  ≤ x“. Es ist leicht zu zeigen, dass  x =  n.a 1  . . . ak . . . 

gilt, d. h., das Verfahren produziert eine  b-adische Darstellung von  x. Für eine

negative reelle Zahl  x  wenden wir das Verfahren auf  −x  an und erhalten dann

durch Vorschalten eines Minuszeichens eine  b-adische Entwicklung von  x. Damit

ist gezeigt, dass jede reelle Zahl mindestens eine  b-adische Darstellung besitzt. 

Für  x >  0 können wir anstelle der Bedingung  ≤ x“ in der Definition von  n

” 

und der Nachkommaziffern  ai  auch die Bedingung  < x“ einsetzen. Wir erhalten

” 

dann ebenfalls eine  b-adische Entwicklung von  x. Für  x = 1 und  b = 10 liefern

die beiden Methoden zum Beispiel die Entwicklungen  x = 1 .  000  . . .  und  x =



0 .  999  . . . . In der Tat ist 1 =

9 / 10 i = 9 / 10 + 9 / 100 + 9 / 1000 +  · · · . Nach

 i≥ 1

unserer Definition ist eine Dezimaldarstellung ein Grenzwert, und dadurch wird

befriedigend beantwortet, warum 0 .  999  . . .  wirklich gleich 1 ist und nicht noch

immer etwas zur Eins fehlt“. 

” Man kann leicht einsehen, dass keine weiteren  b-adischen Entwicklungen re-

eller Zahlen existieren. Damit besitzt jede reelle Zahl also mindestens eine und

höchstens zwei  b-adische Darstellungen. Für irrationale Zahlen ist die Darstel-

lung stets eindeutig, da dann die

 ≤ x“- und  < x“-Definitionen zusammen-

” 

” 

fallen. Für rationale Zahlen  x >  0 finden wir genau dann zwei verschiedene

Darstellungen, wenn  x  von der Form  n.a 1  . . . ak  ist, mit  ak ≥  1. In diesem Fall

sind  x =  n.a 1  . . . ak 000  . . .  und  x =  n.a 1  . . . akccc . . .  mit  ak =  ak −  1 und c =  b −  1 die beiden  b-adischen Darstellungen von  x. Der nichteindeutige Fall

ist dadurch charakterisiert, dass die Primfaktoren des Nenners des gekürzten

Bruchs  x =  p/q  allesamt Teiler von  b  sind. So hat also 1 / 125 zwei unendli-

che Dezimaldarstellungen, 1 / 14 dagegen nur eine. Schließlich ist leicht zu sehen, 

dass eine  b-adische Darstellung  n.a 1  . . . ai . . .  genau dann eine rationale Zahl ist, 

wenn die Folge der Nachkommaziffern  ai  periodisch ist, d. h., wenn ein  k ≥  1 und

2.7
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ein  p ≥  1 existieren derart, dass die Ziffern-Blöcke  ak . . . ak+ p,  ak+ p+1  . . . ak+2 p, 

 . . . übereinstimmen. 

2.7

Irrationale Zahlen

Die pythagoreische Verhältnislehre besagte, dass es zu jeder positiven Größe  d

natürliche Zahlen  n  und  m  gibt derart, dass sich  d  zur gewählten Maßeinheit

1 so verhält wie  n  zu  m, d. h., das  m-fache von  d  ist das  n-fache der 1. Diese

Lehre, die später oft mit Alles ist Zahl“ zusammengefasst wurde, war aber, wie

” 

die Pythagoreer erkennen mussten, nicht haltbar. Es gibt kompliziertere, sog. 

irrationale Größen. Ein Beispiel ist die Länge  d  der Diagonalen eines Quadrats

mit Seitenlänge 1. Nach dem Satz des Pythagoras erfüllt  d  die Gleichung  d 2 =

12 + 12 = 2. Wir nehmen an, es gilt  d =  n/m  für gewisse natürliche Zahlen

 n  und  m. Aufgrund von  d 2 = 2 gilt dann also 2 m 2 =  n 2. Ist  e 1 =  Z( m) die

Anzahl der Zweien in der Primfaktorzerlegung von  m, so ist 2 e 1 =  Z( m 2), und

damit ist 2 e 1 + 1 =  Z(2 m 2). Die Zahl 2 m 2 lässt sich also ungerade oft durch

2 ohne Rest teilen. Ist analog  e 2 =  Z( n), so ist 2 e 2 =  Z( n 2), und damit lässt

sich  n 2 gerade oft durch 2 ohne Rest teilen. Aus 2 m 2 =  n 2 erhalten wir einen

Widerspruch. 

Die Gleichung  x 2 = 2 ist also in Q unlösbar. Mit anderen Worten: Die Menge

 A =  {q ∈  Q  | q 2  <  2 }  besitzt kein Infimum und kein Supremum in Q. Die

Erweiterung von Q zu R fügt also tatsächlich neue Zahlen zu den rationalen

Zahlen hinzu (siehe Abschnitt 2.3). Die Elemente von R  −  Q heißen  irrationale

 Zahlen.  Wir haben gezeigt, dass die positive Quadratwurzel der Zahl 2 eine

irrationale Zahl ist. Da die rationalen Zahlen abgeschlossen unter Addition und

Multiplikation sind, sind auch alle reellen Zahlen  qd +  r  mit  q, r ∈  Q,  q = 0, 

irrational. Damit haben wir bereits unendlich viele irrationale Zahlen vorliegen. 

Viel stärker sind fast alle“ reellen Zahlen irrational, denn die rationalen Zahlen

” 

bilden eine abzählbare Teilmenge der überabzählbaren Menge der reellen Zahlen

(siehe Kapitel 12). 

Es sind verschiedene Methoden gefunden worden, die es erlauben, bestimmte

reelle Zahlen als irrational zu erkennen. Eine starke Verallgemeinerung der Irra-

tionalität der Quadratwurzel aus 2 ist der folgende Satz von Gauß: Jede reelle

Lösung einer algebraischen Gleichung

 xk +  ak− 1 xk− 1 +  . . . +  a 1 x +  a 0 = 0

mit ganzzahligen Koeffizienten  ai  ist entweder eine ganze Zahl oder aber irra-

tional. Offenbar hat die Gleichung  x 2  −  2 = 0 keine Lösungen in den ganzen

Zahlen, und damit sind die Lösungen von  x 2 = 2 irrational. Ebenso sind alle

Lösungen der Gleichungen  x 2 = 3,  x 2 = 5,  x 2 = 6, usw. irrationale Zahlen. 
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Auch die Eulersche Zahl  e  ist irrational: Nach Definition ist  e =

 k∈ N 1 /k!. 

Wäre nun  e =  n/m  für gewisse natürliche Zahlen  n, m ≥  1, so wäre die Zahl



 r =  m!( e −

1 /k!) eine natürliche Zahl ungleich 0, also  r ≥  1. Aber

0 ≤k≤m





 r =

 m!  /k!  < 

1 /( m + 1) k = (1  −  1 /( m + 1))1  −  1 = 1 /m ≤  1 , 

 k>m

 k≥ 1

also  r <  1, im Widerspruch zu  r ≥  1. Subtilere analytische Methoden liefern die

Irrationalität der Kreiszahl  π. 

Ein herausragendes Werkzeug zur Darstellung und Untersuchung der irratio-

nalen Zahlen sind die unendlichen Kettenbrüche. Wir definieren rekursiv:

[ n 0] =  n 0 , 

[ n 0 , . . . , nk+1] =  n 0 + 1 /[ n 1 , . . . , nk+1] . 

Hierbei ist  n 0 eine beliebige ganze Zahl, während alle  n 1 , . . . , nk  als positive

natürliche Zahlen vorausgesetzt werden. Die rationale Zahl [ n 0 , . . . , nk] heißt

ein (endlicher)  Kettenbruch  der Tiefe  k + 1 (zu Kettenbrüchen siehe auch Ab-

schnitt 3.8). Auf die eigenartige Form der Kettenbrüche kommt man durch eine

Analyse des Euklidischen Algorithmus aus Abschnitt 3.1. Es gilt zum Beispiel

[1] = 1 , [1 ,  1] = 2 , [1 ,  1 ,  1] = 3 / 2 , [1 ,  1 ,  1 ,  1] = 5 / 3 , [1 ,  1 ,  1 ,  1 ,  1] = 8 / 5 , . . . . 

Hier tauchen die Fibonacci-Zahlen 1, 1, 2, 3, 5, 8, 13, . . . auf, die rekursiv durch

 b 0 = 1,  b 1 = 1,  bn+2 =  bn +  bn+1 für alle  n ∈  N definiert sind. 

Man kann nun zeigen, dass für jede Folge ( ni) i∈ N mit  n 0  ∈  Z und positiven

natürlichen Zahlen  n 1 , n 2 , . . .  der Grenzwert

lim [ n 0 , . . . , nk]

 k→∞

der zugehörigen endlichen Kettenbrüche existiert. Wir bezeichnen diesen Grenz-

wert mit [ n 0 , n 1 , . . . ] und nennen [ n 0 , n 1 , . . . ] auch den unendlichen  Kettenbruch

mit den  N¨

 aherungsbr¨

 uchen [ n 0 , . . . , nk],  k ∈  N. Es zeigt sich:

(a) Jeder unendliche Kettenbruch [ n 0 , n 1 , . . . ] ist eine irrationale Zahl. 

(b) Jede irrationale Zahl lässt sich eindeutig als unendlicher Kettenbruch

[ n 0 , n 1 , . . . ] darstellen. 

(Aus topologischer Sicht gilt stärker, dass die irrationalen Zahlen, ausgestattet

mit der Relativtopologie von R, homöomorph sind zum Raum aller betrachteten

unendlichen Folgen ( ni) i∈ N, ausgestattet mit der Produkttopologie der diskreten

Topologie. Siehe hierzu Kapitel 9.)

Beschränkt man auch den ersten Index  n 0 auf die positiven natürlichen Zah-

len, so stellen die unendlichen Kettenbrüche genau die irrationalen Zahlen dar, 

die größer als Eins sind. Der als Folge gesehen einfachste Kettenbruch lautet

dann [1 ,  1 ,  1 , . . . ]. Es gilt

 √

[1 ,  1 ,  1 ,  1  . . . ] = lim  bn+1 /bn = ( 5 + 1) / 2  ≈  1 .  6180339887 . 

 n→∞

Als Verhältnis zweier Größen ist dieser Wert bekannt als  goldener Schnitt. 

2.8
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Ein weiteres Beispiel einer konkreten Berechnung ist [1 ,  2 ,  2 ,  2 , . . . ] =

2. All-

gemein lässt sich zeigen, dass die periodischen Kettenbrüche genau die irratio-

nalen Lösungen von quadratischen Gleichungen mit ganzzahligen Koeffizienten

darstellen. 

Weiteres zu Kettenbrüchen findet man in den Abschnitten 3.8 und 3.9. 

2.8

Algebraische und transzendente Zahlen

Eine komplexe Zahl heißt  algebraisch, wenn sie Nullstelle eines nichtkonstanten

Polynoms mit rationalen Koeffizienten ist, andernfalls heißt sie  transzendent. 

Eine Zahl  α ∈  C ist also algebraisch, wenn sie eine Gleichung der Form

 anxn +  an− 1 xn− 1 +  · · · +  a 1 x +  a 0 = 0

(2.2)

mit  n ≥  1,  an = 0 und  aj ∈  Q löst. Es ist klar, dass man äquivalenterweise

 aj ∈  Z fordern kann, denn man kann (2.2) mit dem Hauptnenner der rationalen

Zahlen  aj  multiplizieren. Zum Beispiel sind alle mit Wurzeln gebildeten Zahlen



 √

wie etwa 3 7  −  5 2 algebraisch; letztere löst die Gleichung (7  − x 3)5 = 2. Es

gibt jedoch auch andere algebraische Zahlen, wie z. B. die eindeutig bestimmte

reelle Lösung der Gleichung  x 5 + 20 x + 16 = 0, von der man in der Algebra

zeigt, dass sie nicht durch Radikale“ auflösbar ist (vgl. Abschnitt 6.12). Auch

” 

 i  ist eine algebraische Zahl, da  i  ja  x 2 + 1 = 0 löst. 

Mit  α  sind auch  −α  und 1 /α  algebraisch; löst  α  etwa (2.2), so löst  −α  die

Gleichung  anxn − an− 1 xn− 1 +  · · · ± a 1 x ∓ a 0 = 0 und 1 /α  die Gleichung

 an +  an− 1 x +  · · · +  a 1 xn− 1 +  a 0 xn = 0. Erstaunlicher ist, dass Summe und

Produkt algebraischer Zahlen wieder algebraisch sind. Der Beweis hierfür ist

nicht ganz offensichtlich, denn sind  P 1 und  P 2 nichtkonstante Polynome über Q

mit  P 1( α 1) =  P 2( α 2) = 0, so drängt sich auf den ersten Blick kein Polynom  Q

mit  Q( α 1 +  α 2) = 0 auf. Hier helfen ein Trick und ein bisschen lineare Algebra:

Man kann nämlich quadratische Matrizen  M 1 und  M 2 mit rationalen Einträgen

sowie einen Vektor  v = 0 mit  M 1 v =  α 1 v  und  M 2 v =  α 2 v  finden; in der Sprache der linearen Algebra haben  M 1 bzw.  M 2 die Eigenwerte  α 1 und  α 2 mit

demselben Eigenvektor (zu diesen Begriffen siehe Abschnitt 5.10). Es ist nun

klar, dass  v  auch ein Eigenvektor von  M 1 +  M 2 zum Eigenwert  α 1 +  α 2 ist. Das

charakteristische Polynom von  M 1 +  M 2 ist dann ein Polynom mit rationalen

Koeffizienten, das  α 1 +  α 2 als Nullstelle hat. (Das Argument für das Produkt

ist analog.)

Diese Resultate kann man so zusammenfassen, dass die algebraischen Zahlen

einen Körper (Abschnitt 6.3) bilden, der mit Q bezeichnet wird. Nun könnte

man versuchen, die Definition der algebraischen Zahlen zu iterieren, indem man

jetzt die Nullstellen aller Polynome wie in (2.2) mit Koeffizienten in Q statt in

Q betrachtet. Es stellt sich jedoch heraus, dass man nichts Neues erhält: Q ist

 algebraisch abgeschlossen, was bedeutet, dass ein nichtkonstantes Polynom mit
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Koeffizienten in Q nur Nullstellen in Q besitzt bzw., in der Sprache der Algebra, 

dass jedes Polynom über Q in Linearfaktoren zerfällt. 

Die Menge der algebraischen Zahlen ist abzählbar (zu diesem Begriff sie-

he Abschnitt 12.1). Weil nämlich Q abzählbar ist, gibt es nur abzählbar viele

Polynome über Q vom festen Grad  n (hier wird benutzt, dass das Produkt

zweier abzählbarer Mengen abzählbar ist) und daher nur abzählbar viele Poly-

nome über Q überhaupt (hier wird benutzt, dass eine abzählbare Vereinigung

abzählbarer Mengen abzählbar ist), und jedes dieser Polynome hat nur endlich

viele Nullstellen. Da C überabzählbar ist, ist klar, dass es transzendente Zahlen

gibt und diese sogar die überwältigende Mehrheit der komplexen Zahlen bilden. 

Damit liegt freilich noch kein einziges explizites Beispiel vor. Das erste konkrete

Beispiel einer transzendenten Zahl stammt von Liouville, nämlich

 ∞



 αL =

10 −k! = 0 .  110001 00  . . .  00

   1 00  . . .  00

   100  . . . . 

 k=1

17 Nullen

95 Nullen

Über diese Zahl bewies Liouville 1844, dass sie sich gut durch rationale Zahlen

approximieren lässt, genauer gilt für  α =  αL





 ∀





 n ∈  N  ∃pn, qn ∈  Z , qn ≥  2  α − pn   ≤  1  , 

(2.3)

 qn

 qn

 n

und dass alle Zahlen, die diese Bedingung erfüllen, transzendent sind. Zahlen

wie in (2.3) heißen  Liouvillesche Zahlen; für die Liouvillesche Zahl  αL  kann man



 p

 n

 n =

10 n!  −k! und  q

 k=1

 n = 10 n! wählen. Weiteres zu Liouvilleschen Zahlen

berichten wir in Abschnitt 3.9. 

Viel tiefer liegt die Frage nach der Transzendenz klassischer mathematischer

Konstanten wie  e  oder  π. Die Transzendenz von  e  wurde 1873 von Hermite be-

wiesen und die von  π  1882 von Lindemann, aber bis heute weiß man nicht, ob

 e +  π  irrational geschweige denn transzendent ist. Die Transzendenzbeweise für

 e  und  π  verlassen den Bereich der elementaren Zahlentheorie und benutzen Me-

thoden der Analysis, insbesondere Abschätzungen von Integralen. Lindemann



zeigte sogar, dass f

 ∞

ür eine algebraische Zahl  b = 0 die Zahl  eb (=

 bk/k!)

 k=0

transzendent ist. Wegen  e 2 πi = 1 liefert das insbesondere die Transzendenz

von  π. 

Mit dem Beweis der Transzendenz von  π  ist das uralte Problem der Qua-

dratur des Kreises gelöst: Es ist unmöglich, mit Zirkel und Lineal ein Quadrat

zu konstruieren, das denselben Flächeninhalt wie ein Kreis vom Radius 1 hat. 

In der Algebra zeigt man, dass nur gewisse algebraische Zahlen mit Zirkel und

 √

Lineal konstruiert werden können, und da mit  π  auch

 π  transzendent ist, ist

die Quadratur des Kreises unmöglich. 

Eine große Klasse transzendenter Zahlen liefert der  Satz von Gelfond-

 Schneider, den wir für reelle Zahlen formulieren, um komplexe Potenzen zu

umgehen: Sind  a >  0 und  b ∈  R algebraisch sowie  a = 1 und  b  irrational, so

ist  ab  transzendent. Dieser Satz löst das siebte der 23 berühmten Probleme, die

2.9
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Hilbert 1900 auf dem Weltkongress in Paris formuliert hat. Hilbert hielt es in der

Schwierigkeit der Riemannschen Vermutung (Abschnitt 3.6) oder dem Großen

Fermatschen Satz (Abschnitt 3.10) für ebenbürtig, und noch 1919 vermutete er

in einem Vortrag, zu Lebzeiten des Publikums werde selbst die Transzendenz

 √

von 2 2 nicht entschieden werden können. Mit dieser Einschätzung lag er falsch:

Dieser Spezialfall wurde schon 1930 von Kuzmin bewiesen, bevor Gelfond und

Schneider 1934 unabhängig voneinander ihren allgemeinen Satz veröffentlichten. 

2.9

Die Zahlen  π und  e

Schon Archimedes wusste, dass der Flächeninhalt eines Kreises dem Quadrat

seines Radius proportional ist und der Umfang seinem Durchmesser, und zwar

mit derselben Proportionalitätskonstanten, die seit dem 17. Jahrhundert mit  π

bezeichnet wird:  F =  πr 2,  U = 2 πr. Im heutigen streng deduktiven Aufbau der

Mathematik betritt  π üblicherweise zum ersten Mal die Bühne als das Doppelte

der kleinsten positiven Nullstelle der Cosinusfunktion (vgl. Abschnitt 2.5); alle

Eigenschaften der Zahl  π  werden daraus abgeleitet. 

Für  π  sind diverse analytische Ausdrücke gefunden worden, angefangen beim

 Wallisschen Produkt (2.4) aus dem Jahr 1655 bis zur  Bailey-Borwein-Plouffe-

 Formel (2.9) aus dem Jahr 1997; hier eine Auswahl:

 π

2  ·  2

=

 ·  4  ·  4  ·  6  ·  6  · · ·

(2.4)

2

1  ·  3 3  ·  5 5  ·  7

 π

1

= 1  −  1 +

 −  1  ± · · · (= arctan 1)

(2.5)

4

3

5

7

 π 2

1

1

1

= 1 +

+

+

+  · · ·

(2.6)

6

4

9

16

 π

1

1

= 4 arctan

 −  arctan

(2.7)

4

5

239

 √ ∞

1

2 2  (4 k)!(1103 + 26390 k)

=

(2.8)

 π

9801

( k!)43964 k

 k=0

 ∞







1

4

 π =

 −

2

 −

1

 −

1

(2.9)

16 k

8 k + 1

8 k + 4

8 k + 5

8 k + 6

 k=0

In den vorangegangenen Abschnitten wurde bereits erwähnt, dass  π  ir-

rational und sogar transzendent ist. Die Dezimaldarstellung ist daher nicht

periodisch, und seit Jahrhunderten werden immer mehr Dezimalstellen von

 π = 3 .  14159265  . . .  berechnet. Zur praktischen Berechnung sind (2.4), (2.5)

und (2.6) allerdings ungeeignet, da die Konvergenz viel zu langsam ist. Die

Formel (2.7), die 1706 von Machin gefunden wurde, gestattet mittels der Rei-

henentwicklung der Arcustangensfunktion recht problemlos, 100 Stellen von  π
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zu finden. Heute sind über 2 Billionen Stellen bekannt; die Berechnung benutzt

Algorithmen, deren Urvater die seltsame Formel (2.8) von Ramanujan ist. Das

Neue an (2.9) ist, dass man damit die  n-te Stelle von  π  berechnen kann, ohne

die vorhergehenden Stellen auszurechnen, allerdings nicht im Dezimalsystem, 

sondern im Binärsystem (Basis 2) oder Hexadezimalsystem (Basis 16). 

Die Zahl  π  taucht nicht nur in den obigen Reihenentwicklungen auf

überraschende Weise auf, sondern auch in anderen Gebieten der Mathematik, 

z. B. in der Wahrscheinlichkeitstheorie beim  Buffonschen Nadelproblem. Hierbei

werden in der Ebene parallele Geraden im Abstand 1 gezogen. Dann lässt man

zufällig eine Nadel der Länge 1 auf die Ebene fallen. Mit welcher Wahrschein-

lichkeit trifft die Nadel dann eine der Geraden? Die Antwort ist 2 /π. 

Die Zahl  e, auch  Eulersche Zahl  genannt, wird als Grenzwert





 ∞

1  n

 1

 e = lim

1 +

=

 n→∞

 n

 k! 

 k=0

erklärt; dass diese beiden Grenzwerte übereinstimmen, wurde zuerst von Euler

gezeigt. Wie  π  ist auch  e  transzendent; der recht einfache Beweis der Irrationa-

lität wurde in Abschnitt 2.7 vorgeführt. Auch von  e = 2 .  71828  . . .  wurden immer

mehr Dezimalstellen berechnet, momentan sind über 200 Milliarden bekannt. 

Für  e  gibt es weit weniger spektakuläre Darstellungen als für  π; erwähnenswert

ist vielleicht der mit [2 ,  1 ,  2 ,  1 ,  1 ,  4 ,  1 ,  1 ,  6 , . . . ] abgekürzte Kettenbruch (siehe Abschnitt 3.8)

1

 e = 2 +

 . 

1

1 +

1

2 +

. 

1 + . . 

Die Zahlen  e  und  π  sind eng miteinander verwoben, z. B. im Integral



 √

 ∞

 π =

 e−x 2  dx

 −∞

oder in der  Stirlingschen Formel

 n! 

lim  √

  n = 1 , 

 n→∞

 n

2 πn e

am prägnantesten jedoch in der  Eulerschen Formel (vgl. (7.3) in Abschnitt 7.4)

 e 2 πi = 1 . 

Auch  e  tritt in der Wahrscheinlichkeitstheorie an vielleicht unerwarteter Stel-

le auf. Ein einfaches Beispiel ist folgende Aufgabe. Sind  n  Personen auf einer

Party und greift am Ende jeder Gast zufällig einen Mantel (zugegebenermaßen

kein realistisches Szenario), mit welcher Wahrscheinlichkeit trägt dann niemand

seinen eigenen Mantel? Die Lösung lautet 1  −  1 + 1  −  1 +  · · · + ( − 1) n , was eine

1! 

2! 

3! 

 n! 
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Partialsumme der Exponentialreihe für  e− 1 ist. Die gesuchte Wahrscheinlichkeit

ist für große  n  also approximativ 1 /e. Subtiler ist die Allgegenwärtigkeit der Nor-

malverteilung mit der Dichte

1

 √

 e−x 2 / 2, die sich im Satz von de Moivre-Laplace

2 π

und allgemeiner im zentralen Grenzwertsatz manifestiert (vgl. Abschnitt 11.7); 

was Ersteren angeht, so ist es die Stirlingsche Formel, durch die die Zahl  e  und

die Exponentialfunktion in die Stochastik Einzug halten. 

2.10

Infinitesimale Gr¨

oßen

Seit dem 19. Jahrhundert hat es sich als Standard durchgesetzt, die Differen-

zierbarkeit einer Funktion mit Hilfe des Grenzwertbegriffs zu erklären; siehe Ab-

schnitt 7.5. Bei den Begründern der Differentialrechnung, insbesondere Leibniz, 

taucht die Ableitung jedoch als Differentialquotient“  dy/dx  zweier unendlich

” 

” 

kleiner“, aber – zumindest, was  dx  angeht – von 0 verschiedener Größen auf. 

In der Welt der reellen Zahlen gibt es so etwas natürlich nicht, und die Leib-

nizschen Differentiale dienen bestenfalls zum intuitiven Verständnis der in die

präzise Form des Grenzwertkalküls gebrachten Aussagen. 

Im Jahre 1960 gelang es A. Robinson jedoch, diese Ideen mit der rigorosen

Präzision der zeitgenössischen Mathematik in Einklang zu bringen, indem er

eine Erweiterung  ∗ R des Körpers R definierte, die unendlich kleine“ Elemente

” 

enthält, aber in der im Übrigen dieselben“ Aussagen wie in R gelten (auf diese

” 

sehr vage Weise wird hier das in der Sprache der mathematischen Logik und

Modelltheorie verankerte

Übertragungsprinzip“ wiedergegeben). 

” 

Die Konstruktion von  ∗ R aus R folgt derselben Idee wie die Konstruktion

von R aus Q mit dem Cantorschen Verfahren (siehe Abschnitt 2.3). Diesmal

gehen wir von der Menge  F  aller reeller Folgen aus. Wir wollen ( xn)  ∼ ( yn)

setzen, wenn oft“  x

” 

 n =  yn  ist. Das wird mit dem Begriff des  freien Ultrafilters

realisiert. Dies ist ein System  U  von Teilmengen von N mit den Eigenschaften:

 ∅ /∈ U , 

 U ∈ U ,  U ⊆ V ⇒ V ∈ U , 

 U 1 , U 2  ∈ U ⇒ U 1  ∩ U 2  ∈ U , 

 U ∈ U  oder N  \ U ∈ U  für alle Teilmengen  U ⊆  N, 

 { m ∈  N  | m ≥ n } ∈ U  für alle  n ∈  N. 

Mit dem Zornschen Lemma (Abschnitt 12.6) kann man die Existenz freier Ul-

trafilter beweisen, aber leider ist dies ein nichtkonstruktiver Existenzbeweis, 

der kein explizites Beispiel liefert. Fixiert man nun einen solchen freien Ultra-

filter, so setzt man ( xn)  ∼ ( yn), falls  { n | xn =  yn } ∈ U . Der Raum der

Äquivalenzklassen  ∗ R =  F/∼  enthält dann R via  x → ( x, x, x, . . . ) /∼  auf kano-

nische Weise. Darüber hinaus trägt  ∗ R die Struktur eines angeordneten Körpers, 

der R als Unterkörper enthält, im Gegensatz zu R aber weder vollständig noch
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archimedisch ist, und der Betrag generiert keine Metrik auf  ∗ R. Die Elemente

von  ∗ R werden auch  hyperreelle Zahlen  genannt. 

In der Sprache der Algebra handelt es sich bei der Konstruktion von  ∗ R

um nichts anderes als die Bildung des Quotientenrings von  F  nach dem Ideal

 { ( xn)  | ( xn)  ∼ (0)  }; die Ultrafiltereigenschaften implizieren, dass dieses Ideal

maximal ist, so dass der Quotientenring  F/∼  sogar ein Körper ist (zu diesen

Begriffen vgl. Abschnitt 6.5). 

Wir wollen nun die Stetigkeit und Differenzierbarkeit von Funktionen auf R

im Rahmen der Analysis auf  ∗ R, der  Nichtstandardanalysis, beschreiben; der

klassische Zugang wird in den Abschnitten 7.3 und 7.5 dargestellt. Zunächst

einige Vokabeln. Man nennt  x ∈ ∗ R  infinitesimal, wenn 0  < |x| < ε  für alle

 ε ∈  R mit  ε >  0 gilt. Zwei hyperreelle Zahlen  x, y ∈ ∗ R heißen  infinitesimal

 benachbart, in Zeichen  x ∼

=  y, wenn  x − y  infinitesimal oder  x =  y  ist. Ist  x ∈ ∗ R

 endlich  in dem Sinn, dass eine natürliche Zahl  n  mit  |x| ≤ n  existiert, so kann

man zeigen, dass  { y ∈ ∗ R  | y ∼

=  x }, die  Monade  von  x, genau eine reelle Zahl

enthält, die als  Standardteil  von  x  bezeichnet wird. 

Sei nun  f : R  →  R eine Funktion.  f  kann durch ( xn) /∼ → ( f( xn)) /∼  kano-

nisch zu einer Funktion  ∗f :  ∗ R  → ∗ R fortgesetzt werden. Dass  f  bei  x 0 stetig

ist, bedeutet intuitiv

 x ≈ x 0

 ⇒

 f ( x)  ≈ f ( x 0) . 

Ersetzt man hier  ≈  durch  ∼

=, so wird aus dieser ungenauen (und mathematisch

unbrauchbaren) Aussage ein rigoros beweisbarer Satz:

 f ist genau dann bei x 0  stetig, wenn

 x ∈ ∗ R , x ∼

=  x 0

 ⇒

 ∗f( x)  ∼

=  f ( x 0) . 

Auch die gleichmäßige Stetigkeit lässt sich nach diesem Muster charakterisieren, 

nämlich durch

 x, x ∈ ∗ R , x ∼

 ∗

=  x

 ⇒

 ∗f( x)  ∼

=  f ( x) . 

Nun zur Differenzierbarkeit. Sei  dx  eine beliebige infinitesimale Größe. Dann

ist  dy :=  ∗f ( x 0 +  dx)  − f ( x 0)  ∈ ∗ R wohldefiniert, und man kann im Körper  ∗ R

den Quotienten  dy/dx  bilden. Die Differenzierbarkeit lässt sich jetzt so charak-

terisieren. 

 f ist genau dann bei x 0  differenzierbar mit Ableitung l, wenn für

 jedes infinitesimale dx

 dy

 ∗f( x

:=

0 +  dx)  − f ( x 0)  ∼

=  l

 dx

 dx

 ist, mit anderen Worten, wenn stets l der Standardteil von dy/dx

 ist. 
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Auf diese Weise hält die Leibnizsche Notation  dy/dx  für eine Ableitung Einzug

in die rigorose Mathematik. 

Auch das Riemannsche Integral (Abschnitt 7.6) kann im Rahmen der Nicht-

standardanalysis eingeführt werden, und in diverse Gebiete der höheren Analysis

sind Nichtstandardmethoden eingebracht worden. 

2.11

 p-adische Zahlen



Die  b-adische Darstellung einer ganzen Zahl

 n

 a

 k=0

 k bk , 0  ≤ ak < b, erinnert

äußerlich an ein Polynom in der Unbestimmten  b; in der Tat werden beide

durch die endliche Folge  a 0 , . . . , an  kodiert. Am Beginn des 20. Jahrhunderts

hatte K. Hensel die Idee, diese Analogie auf unendliche Folgen auszudehnen, 

um diophantische Gleichungen (Abschnitt 3.10) zu lösen. Aus den Polynomen

werden dann (formale) Potenzreihen, aber wie die in R nicht konvergente Reihe

 ∞ a

 k=0

 k bk  zu interpretieren ist, ist höchst unklar. 



Schreibt man statt

 ∞

 a

 k=0

 k bk  die Ziffernfolge  . . . a 3 a 2 a 1 a 0, so wie man für

 n a

 k=0

 k bk  die Ziffernfolge  an . . . a 1 a 0 schreibt, so lassen sich auf der Men-

ge Z b =  { 0 , . . . , b −  1 } N dieser Ziffernfolgen eine Addition und Multiplikati-

on gemäß den Regeln der Grundschularithmetik einführen, z. B.  . . .  85479 +

 . . .  22627 =  . . .  08106. (Formal wird induktiv die  m-te Ziffer von  . . . a 3 a 2 a 1 a 0 +



 . . . a

 m

3 a 2 a 1 a 0 als die  m-te Ziffer der natürlichen Zahl

( a

) bk  definiert.)

 k=0

 k +  ak

Es zeigt sich, dass Z b  so mit der Struktur eines kommutativen Rings mit Einsele-

ment (siehe Abschnitt 6.2) versehen wird, der Z als Unterring enthält. (In diesem

Kontext darf Z b  nicht mit dem oft genauso bezeichneten Restklassenring Z /b Z

verwechselt werden.) Allerdings ist Z b  im Allgemeinen nicht nullteilerfrei; z. B. 

ist für  b = 10

 . . .  10112  · . . .  03125 =  . . .  00000 . 

Genau dann ist Z b  nullteilerfrei, wenn  b  eine Primzahl ist. In diesem Fall ist es

möglich, den zugehörigen Quotientenkörper (siehe Abschnitt 6.7) Q b  zu bilden. 

Im Folgenden bezeichne  p  eine Primzahl; die Elemente von Q p  heißen  p-adische

 Zahlen  und die von Z p ganze p-adische Zahlen. 

 p-adische Zahlen können durch unendliche Reihen dargestellt werden; aller-

dings ist die Konvergenz dieser Reihen anders zu verstehen als in der Analysis

reeller Zahlen (siehe dazu Abschnitt 7.2). Um das zu erklären, setzen wir für

 y =  . . . a 2 a 1 a 0  ∈  Z p,  y = 0, 

 ν( y) = min {s | as = 0 }

und

 |y|p =  p−ν( y) für  y = 0 , | 0 |p = 0
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sowie für  x =  y 1 /y 2  ∈  Q p  mit  y 1 , y 2  ∈  Z p,  y 2  = 0, 

 |

 |

 y

 x|

1 |p

 p =

 . 

 |y 2 |p

Dieser Ausdruck hängt nur von  x  und nicht von der Darstellung von  x  als Quoti-

ent ab. Die Funktion  | . |p: Q p →  R, genannt  p-adische Bewertung, hat ähnliche

Eigenschaften wie der Betrag in R oder C, nämlich  |x|p ≥  0 und  |x|p = 0 ge-

nau dann, wenn  x = 0,  |x 1 x 2 |p =  |x 1 |p|x 2 |p. Ferner gilt nicht nur die übliche

Dreiecksungleichung  |x 1 +  x 2 |p ≤ |x 1 |p +  |x 2 |p, sondern sogar die  ultrametrische

 Dreiecksungleichung

 |x 1 +  x 2 |p ≤  max {|x 1 |p, |x 2 |p}. 

(1)

Sie impliziert, dass N eine beschränkte Teilmenge von Z p  oder Q p  ist:  |n|p =

 | 1 +  · · · + 1 |p ≤  1. Daher spricht man von einer  nichtarchimedischen Bewertung. 

Die  p-adische Bewertung induziert gemäß  dp( x 1 , x 2) =  |x 1  − x 2 |p  eine Metrik

auf Q p, die Q p  zu einem vollständigen metrischen Raum macht; Z p =  {x ∈  Q p |

 |x|p ≤  1 }  ist eine kompakte Teilmenge. Der metrische Raum (Q p, dp) hat einige

vom Standpunkt der üblichen Analysis auf R ungewöhnliche Eigenschaften, die

auf der ultrametrischen Dreiecksungleichung (1) beruhen. Zum Beispiel ist jedes

Element einer Kugel  B( y, r) =  { x | dp( x, y)  < r }  ein Mittelpunkt, d. h., für

 y ∈ B( y, r) ist  B( y, r) =  B( y, r), denn  dp( x, y)  ≤  max {dp( x, y) , dp( y, y) }  und daher  dp( x, y)  < r  genau dann, wenn  dp( x, y)  < r. Es stellt sich ferner heraus, 



dass eine Reihe

 ∞

 x

 n=0

 n p-adischer Zahlen genau dann konvergiert, wenn ( xn)

eine Nullfolge bildet, d. h.  |xn|p →  0 erfüllt. 

Man kann beweisen, dass jede ganze  p-adische Zahl  x =  . . . a 2 a 1 a 0, wobei

 ak ∈ { 0 , . . . , p −  1 }, eine Darstellung als bezüglich der  p-adischen Bewertung



konvergente Reihe  x =

 ∞

 a

 k=0

 k pk  besitzt. Insbesondere ist Z dicht in Z p. Be-

achtet man z. B. (mit  q =  p −  1) die Addition  . . . qqqq +  . . .  0001 =  . . .  0000, so



folgt, dass  . . . qqqq  additiv invers zu  . . .  0001 ist. Also gilt

 ∞

 qpk =  − 1. 

 k=0

Eine  p-adische Zahl  x ∈  Q p  kann eindeutig als Reihe

 ∞



 x =

 akpk, 

0  ≤ ak < p, n ∈  N

 k= −N

dargestellt werden, symbolisch  x =  . . . a 2 a 1 a 0 .a− 1  . . . a−N . Umgekehrt konver-

giert jede solche Reihe gegen eine  p-adische Zahl. Im Gegensatz zur  p-adischen

Darstellung einer reellen Zahl (siehe Abschnitt 2.6) hat man hier endlich viele

Nachkommastellen“ und unendlich viele

Vorkommastellen“, und die Ziffern

” 

” 

sind eindeutig bestimmt. 

In der Zahlentheorie liegt die Bedeutung der  p-adischen Zahlen darin, dass

die Lösbarkeit diophantischer und anderer Gleichungen in Q auf die Lösbarkeit

der entsprechenden Gleichung in Q p  zurückgeführt werden kann. Ein einfaches

Beispiel für dieses sogenannte  Lokal-Global-Prinzip  ist folgende Aussage: Sei
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 a ∈  Q,  a ≥  0. Genau dann existiert eine rationale Zahl  x  mit  x 2 =  a, wenn

die Gleichung  x 2 =  a  in allen Q p  lösbar ist. Der Satz von Minkowski-Hasse

präzisiert Bedingungen, unter denen das Lokal-Global-Prinzip anwendbar ist. 

2.12

Zufallszahlen

Welche Eigenschaften hat eine Folge von reellen Zahlen  x 1 , x 2 , x 3 , . . .  im In-

tervall [0 ,  1], so dass wir sie als gleichverteilte  Zufallszahlen  ansehen wollen? 

Wahrscheinlichkeitsmaße und Zufallsvariablen haben eine etablierte mathema-

tische Definition (siehe die Abschnitte 11.1 und 11.3). Bei der Gleichverteilung

auf dem Intervall [0 ,  1] geht es beispielsweise um das Wahrscheinlichkeitsmaß  μ, 

welches jedem Teilintervall [ a, b]  ⊆ [0 ,  1] seine Länge  μ([ a, b]) =  b − a  zuweist. 

Welche Eigenschaften jedoch eine Folge von Zahlen zufällig machen, entzieht

sich bislang dem präzisen mathematischen Zugriff. Der Begriff Zufallszahl hat

keine Definition, und wir werden deshalb im Folgenden zumeist Gleichvertei-

lungseigenschaften diskutieren. 

Sei  d ∈  N. Man nennt eine Folge  x 1 , x 2 , x 3 , . . .  im  d-dimensionalen Einheitsin-

tervall [0 ,  1] d gleichverteilt, wenn für jedes Intervall  J = [ a 1 , b 1]  × · · · × [ ad, bd]  ⊆

[0 ,  1] d  Folgendes gilt:

 n

1 

lim

 χJ ( xj) = ( b 1  − a 1)  · . . . · ( bd − ad) . 

 n→∞ n j=1

Man zählt also über die charakteristische Funktion ( χJ ( x) = 1 für  x ∈ J, 

 χJ ( x) = 0 sonst), wie oft die Folge in das Intervall  J  trifft, und möchte, dass

die relative Häufigkeit dieser Ereignisse gegen das Volumen von  J  konvergiert. 

Hermann Weyl hat in einer Arbeit aus dem Jahr 1916 gezeigt, dass für jede

irrationale Zahl  α  die durch  xn = frac( α n),  n ∈  N, definierte Folge der nicht-

ganzzahligen Anteile von  α n  gleichverteilt auf [0 ,  1] ist. Ebenso ist die Folge

 xn = frac( θn),  n ∈  N, für fast alle reellen Zahlen  θ  mit  |θ| >  1 gleichverteilt

auf [0 ,  1] (Jurjen Koksma, 1935), wobei fast alle“ sich auf das Lebesgue-Maß

” 

bezieht. Mit anderen Worten: Die  |θ| >  1, für welche die Folge (frac( θn)) n  nicht

gleichverteilt ist, bilden eine Menge vom Lebesgue-Maß Null. 

Es sind nun weitere Schritte möglich, systematisch die Anforderungen an ei-

ne gleichverteilte Zahlenfolge zu verschärfen. Man kann beispielsweise aus einer

eindimensionalen Folge  d-dimensionale Folgen konstruieren und überprüfen, ob

diese gleichverteilt sind. Die einfachste Verschärfung in diese Richtung lautet:

Eine Folge  x 1 , x 2 , x 3 , . . .  im Einheitsintervall [0 ,  1] heißt  gleichmäßig gleichver-

 teilt, wenn für jede Dimension  d  die durch

 yn = ( xn, xn+1 , . . . , xn+ d− 1) , 

 n ∈  N , 

definierte Folge in [0 ,  1] d  gleichverteilt ist. Für die gleichverteilte Weyl-Folge

(frac( α n)) n  mit irrationalem  α  scheitert die gleichmäßige Gleichverteilung be-
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reits an der Dimension  d = 2. Die Koksma-Folge (frac( θn)) n  ist hingegen für

fast alle  |θ| >  1 auch gleichmäßig gleichverteilt (Joel Franklin, 1963). 

Konstruiert man aus einer endlichen Menge mit  M  Elementen über eine Funk-

tion  f :  { 0 ,  1 , . . . , M −  1 }k → { 0 ,  1 , . . . , M −  1 }  die Rekursionsvorschrift zn+1 =  f ( zn−k+1 , . . . , zn) , 

 n =  k, k + 1 , . . . 

mit Startwerten  z 1 , z 2  . . . , zk, so entsteht eine Folge natürlicher Zahlen ( zn), die

durch die Division  xn =  zn/M  ins Einheitsintervall [0 ,  1] abgebildet wird. Mit

diesem natürlichen und für stochastische Simulationsverfahren wichtigen Ansatz

trifft man unausweichlich auf genuin Unzufälliges, nämlich Periodizität. Man

kann sich leicht davon überzeugen, dass es für eine solche Rekursion natürliche

Zahlen  N  und  P ≥  1 gibt, so dass  xn+ P =  xn  für alle  n ∈  N gilt. Die kleinste

solche Zahl  P  heißt die  Periode  der Folge  x 1 , x 2 , x 3 , . . .  und wird im Folgenden

mit per( xn) bezeichnet. Es gilt per( xn)  ≤ Mk. 

Die durch zwei vorgegebene natürliche Zahlen  a ≥  1 und  c ≥  0 definierte

 lineare Kongruenzmethode

 zn+1 = ( azn +  c) mod  M

ist besonders einfach. Sie erreicht ihre maximale Periode  M  genau dann, wenn

 c  und  M  teilerfremd sind,  a = 1 mod  p  für jeden Primteiler  p  von  M  gilt, und, 

falls 4 ein Teiler von  M  ist, auch noch  a = 1 mod 4 erfüllt ist. Ist  M  eine Potenz

von 2, so ist also ( a, c) = (5 ,  1) ein Parametersatz, der den Kriterien für die

maximale Periode entspricht. 

Es sind jedoch nicht nur die kurzen Perioden per( xn)  ≤ M , welche lineare

Kongruenzmethoden ins akademische Abseits stellen. Bilden wir wie zuvor für

beliebige Dimensionen  d  aus der Folge ( xn)  ⊂ [0 ,  1] die Folge ( yn)  ⊂ [0 ,  1] d, so

finden sich Gitterstrukturen. Für den obigen Parametersatz gilt beispielsweise

 {y 1 , . . . , yM} =  {α 1 b 1 +  · · · +  αdbd | α 1 , . . . , αd ∈  Z } ∩ [0 ,  1] d, wobei  b 1 = 1 (1 , a, . . . , ad− 1) ist und die  b


M

 j  die  j-ten kanonischen Einheitsvek-

toren des R d  für  j = 2 , . . . , d  sind. 

Das Verfahren der Wahl, nach dem derzeit in Software-Paketen wie Mat-

lab, Maple oder R

gleichverteilte Zufallszahlen“  x

” 

1 , x 2 , x 3 , . . .  erzeugt wer-

den, ist der 1998 von Makoto Matsumoto und Takuji Nishimura vorgeschla-

gene  Mersenne-Twister. Hier wird auf einer Menge mit  M = 232 Elementen

eine Rekursion der Tiefe  k = 624 angesetzt. Die Periode dieses Verfahrens ist

eine Mersennesche Primzahl, welche in der Zusammenfassung der 1998er Ar-

beit von den beiden Autoren als super astronomical“ bezeichnet wird. Es gilt

” 

per( xn) = 219937  −  1. 

3 Zahlentheorie

Zahlentheorie ist eines der wenigen Gebiete der Mathematik, das auch bei Nicht-

mathematikern und in den Medien auf Interesse stößt. Das liegt sicher mit daran, 

dass es in ihr viele für nahezu jeden verständliche, aber meist ungelöste oder nur

mit ungaublich komplexen Methoden lösbare Probleme gibt. Natürlich liegt es

auch daran, dass jeder seine persönlichen Erfahrungen mit Zahlen gemacht hat. 

Viele dieser Probleme haben mit der Suche nach ganzzahligen Lösungen polyno-

mialer Gleichungen oder Gleichungssysteme zu tun. Die dabei zu überwindenden

Schwierigkeiten zwangen dazu, Fragen über Teilbarkeit, Primzahlen und Prim-

faktorzerlegungen intensiv zu studieren und führten auf natürlichem Weg zum

Studium erweiterter Zahlbereiche und ihrer zugehörigen ganzen Zahlen. Wa-

ren im frühen 20. Jahrhundert viele Zahlentheoretiker fast stolz darauf, dass ihr

Forschungsstreben nicht der Verwendbarkeit ihrer Resultate, sondern allein dem

tieferen Verständnis und dem Aufdecken der Schönheit der Strukturen diente, so

ist heute der Einsatz der Zahlentheorie bei Daten- und Internetsicherheit nicht

mehr wegzudenken. Von all dem handelt dieses Kapitel ein wenig. 

Wir beginnen im ersten Abschnitt mit den grundlegenden Definitionen zur

Teilbarkeitstheorie. Bezüglich der Addition reicht uns ein Element, nämlich die

1, um alle natürlichen Zahlen zu erzeugen. Bezüglich der Multiplikation, der für

die Teilbarkeit wichtigen Verknüpfung, brauchen wir unendlich viele, nämlich

alle Primzahlen; sie bilden den Gegenstand des 2. Abschnitts. Abschnitt 3 führt

in die Kongruenzrechnung ein, und mit den dabei gewonnenen Erkenntnissen

besprechen wir einfache Primzahltests und das RSA-Verschlüsselungsverfahren. 

In Abschnitt 6 wird versucht, die Aussage über Primzahlen im Kleinen chao-

” 

tisch, im Großen regelmäßig“ plausibel zu machen. In diesem Abschnitt werfen

wir auch einen Blick auf die für viele Fragen der Zahlentheorie wichtige Rie-

mannsche  ζ-Funktion. Abschnitt 7 handelt von einem Juwel der Zahlentheorie, 

dem Gaußschen Reziprozitätsgesetz, das beim Lösen quadratischer Gleichungen

in der Kongruenzrechnung, und nicht nur da, von großer Bedeutung ist. Die

Abschnitte 8 und 9 widmen sich den Kettenbrüchen und deren Anwendung auf

rationale Approximation. Damit lassen sich transzendente Zahlen nachweisen. 

Sie spielen aber auch beim Lösen von Gleichungen in ganzen Zahlen eine Rolle, 

was in Abschnitt 10 deutlich wird. Elliptische Kurven sind hilfreich beim ganz-

zahligen Lösen kubischer Gleichungen und werden sehr knapp im Abschnitt 11

vorgestellt. Der etwas lange letzte Abschnitt über Zahlkörper gibt einen ersten

Einblick in die algebraische Zahlentheorie, in der erweiterte Zahlbereiche und

die Struktur ihrer ganzen Zahlen untersucht werden. An Beispielen wird klar, 

wie nützlich dies für Fragen über die gewöhnlichen ganzen Zahlen ist. 

O. Deiser et al.,  12 x 12 Schlüsselkonzepte zur Mathematik, 

DOI 10.1007/978-3-8274-2298-9_3, © Spektrum Akademischer Verlag Heidelberg 2011
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3.1

Teilbarkeit

Teilbarkeit, Primzahlen und Primfaktorzerlegung betrafen ursprünglich den Be-

reich der positiven ganzen Zahlen. Wir gönnen uns aber die Möglichkeit beliebi-

ger Subtraktion zur Verkürzung einiger Schlussketten und betrachten die Menge

Z der ganzen Zahlen. Addition und Multiplikation machen Z zu einem kommu-

tativen Ring mit 1 (siehe Abschnitt 6.2). Teilbarkeit betrifft die multiplikative

Struktur. 

Es seien  a, b ∈  Z. Wir sagen,  a ist ein Teiler von b  oder  a teilt b  und schreiben

 a|b, wenn es eine ganze Zahl  c  gibt, so dass  b =  ac  ist. Insbesondere gelten  a| 0

und  ± 1 |a  für alle  a. Ist  b = 0 und  a|b, so gilt 0  < |a| ≤ |b|, und die Menge aller

Teiler von  b  ist endlich. Sind  a, b ∈  Z und sind nicht beide gleich 0, so ist der

 gr¨

 oßte gemeinsame Teiler von a und b  die größte ganze Zahl, die  a  und  b  teilt. 

Wir bezeichnen sie mit ggT( a, b); ggT( a, b) ist immer positiv. 

Eine schnelle Berechnung von ggT( a, b) liefert der  Euklidische Algorithmus. 

Dieser beruht auf der Tatsache, dass es zu  a, b ∈  Z mit  a = 0 eindeutig be-

stimmte  q, r ∈  Z gibt mit  b =  qa +  r  und 0  ≤ r < |a|. Ist dann  c  ein Teiler

von  a  und  b, so gilt  c|r, und ist  c  ein Teiler von  a  und  r, so gilt  c|b. Also gilt

ggT( a, b) = ggT( a, r). Die Zahlen  q  und  r  findet man wie folgt. Betrachte alle

Intervalle [ ca, ( c + 1) a) :=  {x ∈  Z  | ca ≤ x < ( c + 1) a},  c ∈  Z. Jede gan-

ze Zahl liegt in genau einem dieser Intervalle. Dann ist  q  die ganze Zahl mit

 b ∈ [ qa, ( q + 1) a) und  r =  b − qa. Wir sagen dann, dass Division (von  b  durch

 a) mit Rest die Gleichung  b =  qa +  r  liefert. Der Algorithmus zur Berechnung

von ggT( a, b) geht nun wie folgt; wir dürfen  a = 0 annehmen. Setze  r 0 :=  |b|, 

 r 1 :=  |a|. Für  i = 0 ,  1 ,  2 , . . .  liefert uns Division mit Rest, solange  ri+1  >  0, die Gleichung

 ri =  qi+1 ri+1 +  ri+2 . 

Wegen  ri ≥  0 und  r 1  > r 2  > . . .  gibt es ein kleinstes  k ≥  0 mit  rk+2 = 0. Dann

ist  rk+1 als Teiler von  rk  gleich ggT( rk, rk+1), und für jedes  i = 0 ,  1 , . . . , k −  1

gilt ggT( ri, ri+1) = ggT( ri+1 , ri+2). Also ist ggT( a, b) =  rk+1. 

Ist  k = 0, so gilt ggT( a, b) =  r 1 =  |a| = ( |a|/a) ·a+0 ·b. Ist  k >  1, so ist  rk+1 =

 rk− 1 −qkrk, also  rk+1 eine ganzzahlige Linearkombination von  rk  und  rk− 1. Nun

ist für  i ≥  2 jedes  ri  eine ganzzahlige Linearkombination von  ri− 1 und  ri− 2. 

Indem wir also sukzessive  rk, rk− 1 , . . . , r 2 durch Linearkombinationen von  ri’s

mit kleinerem Index substituieren, erhalten wir ggT( a, b) =  rk+1 als ganzzahlige

Linearkombination von  r 0 und  r 1 und damit als ganzzahlige Linearkombination

von  a  und  b. Wir halten fest:

 Sind a und b zwei ganze Zahlen, die nicht beide gleich  0  sind, so gibt

 es ganze Zahlen c und d mit  ggT( a, b) =  ac +  bd. 

Zum Abschluss formulieren wir kurz einige häufig benutzte Bezeichnungen. 

Gilt  a|b, so heißt  b Vielfaches von a. Nach unserer Definition ist 0 Vielfaches

3.2

Primzahlen und der Fundamentalsatz der Arithmetik
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jeder ganzen Zahl. Sind  a, b ∈  Z und nicht beide 0, so ist das  kleinste gemein-

 same Vielfache von a und b  die kleinste positive Zahl, die Vielfaches von  a  und

von  b  ist. Wir bezeichnen sie mit kgV( a, b). Aus dem Satz über die eindeutige

Primfaktorzerlegung, über den wir im nächsten Abschnitt reden, folgt die Glei-

chung  |ab| = ggT( a, b)  ·  kgV( a, b). Die Zahlen  a  und  b  heißen  relativ prim  oder

 teilerfremd, wenn ggT( a, b) = 1 ist. 

3.2

Primzahlen und der Fundamentalsatz der Arithmetik

Eine  Einheit in einem kommutativen Ring mit  1 ist ein Element, das ein multi-

plikatives Inverses besitzt, d. h., es ist ein Element  a, zu dem es ein  b  mit  ab = 1

gibt. Die Einheiten von Z sind  ± 1. Ein Element  a  heißt  unzerlegbar, wenn  a

keine Einheit ist und eine Gleichung  a =  bc  nur dann gelten kann, wenn  b  oder

 c  eine Einheit ist. Traditionell heißen die positiven unzerlegbaren Elemente von

Z  Primzahlen. 

In der Algebra (vgl. Abschnitt 6.5) wird ein  Primelement p  durch folgende

Eigenschaft gekennzeichnet: Teilt  p  das Produkt  ab, so teilt  p  mindestens einen

der Faktoren. Primzahlen in Z erfüllen dieses Kriterium. Denn sei die Primzahl

 p  ein Teiler von  ab  und kein Teiler von  a. Dann gibt es  c  mit  cp =  ab. Da

 p  Primzahl ist, sind  ± 1 und  ±p  die einzigen Teiler von  p. Da  p  kein Teiler

von  a  ist, ist ggT( p, a) = 1. Dann gibt es ganze Zahlen  d, e  mit 1 =  dp +  ea

(siehe Abschnitt 3.1), und es gilt  b =  bdp +  eab =  bdp +  ecp = ( bd +  ec) p. 

Also ist  p  ein Teiler von  b. Umgekehrt ist klar, dass eine ganze Zahl, die das

Primelementkriterium erfüllt, unzerlegbar ist. Diese Begriffe fallen also in Z

zusammen. 

Ist  n  eine zerlegbare ganze Zahl, so gibt es von  ± 1 verschiedene Zahlen  a, b

mit  n =  ab. Dann gilt, dass  |n| >  max {|a|, |b|}. Durch starke Induktion nach

 |n| (vgl. Abschnitt 2.1) sehen wir, dass jede Zahl ein Produkt unzerlegbarer

Elemente ist, dass also jedes von 0,  ± 1 verschiedene Element von Z bis auf das

Vorzeichen ein Produkt von Primzahlen ist. Dies ist der erste Teil des folgenden

Satzes. 

(Fundamentalsatz der Arithmetik)

 Jede von  0  und ± 1  verschiedene ganze Zahl lässt sich bis auf einen

 eventuellen Faktor − 1  als Produkt von Primzahlen darstellen. Diese

 Darstellung ist bis auf die Reihenfolge der Faktoren eindeutig. 

Zum Nachweis der zweiten Aussage betrachten wir Primzahlen  p 1 , . . . , pr  und

 q 1 , . . . qs  mit  p 1 p 2  · · · pr =  q 1 q 2  · · · qs. Aus dem Primelementkriterium folgt, dass p 1 eines der  qi  teilt. Nach Umordnen dürfen wir annehmen, dass  p 1 ein Teiler

von  q 1 ist. Da  p 1 keine Einheit und  q 1 Primzahl ist, ist  p 1 =  q 1. In Z können

wir kürzen, da das Produkt zweier von 0 verschiedenen ganzen Zahlen von 0

verschieden ist. Deshalb gilt  p 2 p 3  · · · pr =  q 2 q 3  · · · qs. Ist  r >  1, so ist auch
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 s >  1, denn Primzahlen sind keine Einheiten. Induktiv folgt nach eventuellem

Umordnen der  qi, dass  r ≤ s, dass  p 1 =  q 1,  p 2 =  q 2, . . . ,  pr =  qr  und dass

1 =  qr+1  · · · qs. Da Primzahlen keine Einheiten sind, muss dann  s =  r  sein. 

Mit Hilfe des Fundamentalsatzes sieht man auch leicht, dass es unendlich viele

Primzahlen gibt. Denn ist  {p 1 , . . . , pk}  eine endliche Menge von Primzahlen, 

dann taucht in der Primfaktorzerlegung von  n =  p 1  · · · pk + 1 keines der  pi  auf. 

Alle Primfaktoren von  n  sind somit weitere Primzahlen. Wegen  n >  2 besitzt

 n  eine Primfaktorzerlegung, und wir erhalten eine weitere Primzahl. Die Menge

der Primzahlen ist also unendlich. Dieser Beweis stammt von Euklid (ca. 300

vor Christus). Übrigens ist die Menge P der Primzahlen sogar so groß, dass die



Summe

 p∈ P 1 /p  divergiert. 

Auf einen weiteren Griechen geht ein hilfreiches Konzept für das Studium

der Primzahlen zurück, das  Sieb des Eratosthenes (ca. 250 vor Christus). Insbe-

sondere liefert es einen schnellen Algorithmus, um alle Primzahlen bis zu einer

gegebenen natürlichen Zahl  n  zu finden. Betrachte dazu die Menge aller Zahlen

von 2 bis  n. Ist 22  ≤ n, so entferne alle Vielfachen von 2. Das kleinste Element

der übrigbleibenden Menge ist dann eine Primzahl  p 2 (in unserem Fall 3, aber

das spielt für das Verfahren keine Rolle), und zwar die kleinste nach  p 1 = 2. Ist

 p 2  ≤

2

 n, so entferne alle Vielfachen von  p 2. Es sei  p 3 das kleinste Element der

verbleibenden Menge. Dann ist  p 3 wieder eine Primzahl, und zwar die kleins-

te nach  p 2. Dies machen wir bis zum kleinsten  k  mit  p 2  > n. Dann ist die

 k

verbliebene Menge vereinigt mit  {p 1 , p 2 , . . . , pk− 1 }  die Menge aller Primzahlen

kleiner gleich  n. Denn ist  p  ein Element der verbliebenen Menge, so ist keines

der  p 1 , . . . , pk− 1 ein Teiler von  p. Alle Primfaktoren von  p  sind also mindestens

so groß wie  pk. Wegen  p ≤ n < p 2 gibt es h

 k

öchstens einen solchen Faktor. Also

ist  p  eine Primzahl. Dieses Argument zeigt auch, dass wir, falls  pi ≤ n  ist, beim

 i-ten Schritt nur die Vielfachen  mpi  von  pi  mit  p 2  ≤

 i

 mpi ≤ n  entfernen müssen. 

Global kann man das Sieb auch wie folgt beschreiben: Beginne mit  N 1 =

 { n ∈  N  | n >  1  }; für  k ≥  1 entstehe  Nk+1 aus  Nk  durch Aussieben aller

Vielfachen des kleinsten Elements  pk  von  Nk, beginnend mit  p 2 . Dann ist  {p

 k

1  < 

 p 2  < . . .}  die Menge aller Primzahlen. 

Diese einfache Idee lässt sich bei vielen Fragen über Primzahlen nutzen. Zum

Beispiel sind die Lücken von  Nk, d. h. die Differenzen zweier aufeinanderfolgen-

der Elemente von  Nk, leicht zu beschreiben. Sie sind periodisch mit der Periode

 ϕ( p 1  · · · pk− 1), wobei für  n ∈  N mit  ϕ( n) die Anzahl der zu  n  teilerfremden

positiven Zahlen kleiner  n  bezeichnet wird. Rekursiv lassen sich die Lücken von

 Nk+1 aus denen von  Nk  bestimmen und so Aussagen über die Lücken zwischen

den Primzahlen gewinnen. Hier gibt es viele, viele ungelöste Probleme, zum

Beispiel die Frage, ob es unendlich viele Primzahlzwillinge gibt. Ein  Primzahl-

 zwilling  ist ein Paar von Primzahlen  p, q  mit  q =  p + 2 wie etwa 101 und 103. 

Es gibt so viele Primzahlzwillinge wie es in der Primzahlmenge Lücken der

Länge 2 gibt. Der momentan größte bekannte Primzahlzwilling ist das Paar

65516468355  ·  2333333  −  1 und 65516468355  ·  2333333 + 1. 

3.3
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Kongruenzen

Im Folgenden sei  m  eine fest gewählte positive ganze Zahl. Wir nennen  a, b ∈  Z

 kongruent modulo m  und schreiben  a ≡ b  mod  m, falls  m  ein Teiler von  a − b

ist. Das ist gleichbedeutend damit, dass  a  und  b  nach Division durch  m  den-

selben Rest  r  haben. Kongruenz modulo  m“ ist eine Äquivalenzrelation (siehe

” 

Abschnitt 1.7), und die Äquivalenzklassen heißen aus naheliegenden Gründen

 Restklassen  mod  m. Die Menge aller Restklassen mod  m  bezeichnen wir mit

Z /m Z. Insgesamt gibt es  m  Restklassen, für jeden Rest 0 ,  1 , . . . , m −  1 eine. 

Die Restklasse von  a ∈  Z bezeichnen wir mit [ a]. Restklassen addieren und

multiplizieren wir repräsentantenweise. D. h., wir setzen [ a] + [ b] := [ a +  b] und

[ a][ b] := [ ab]. Dies ist wohldefiniert. Denn sind  a  bzw.  b  irgendwelche Repräsen-

tanten von [ a] bzw. [ b], so gibt es  s, t ∈  Z mit  a =  a +  sm  und  b =  b +  tm. Dann ist  a +  b =  a +  b + ( s +  t) m  und  ab =  ab + ( at +  sb +  stm) m, also  a +  b ≡ a +  b und  ab ≡ ab. Mit dieser Addition und Multiplikation ist Z /m Z ein kommutativer Ring mit Einselement [1] und Nullelement [0] =  {mn | n ∈  Z } =:  m Z, 

und die Abbildung  a → [ a], die jeder ganzen Zahl ihre Restklasse mod  m  zu-

ordnet, ist ein surjektiver Ringhomomorphismus. (Für diese Begriffe siehe die

Abschnitte 6.1 und 6.2.)

Als kleine Anwendung des eingeführten Begriffs geben wir einen kurzen Be-

weis der 11 -er Probe. Um diese zu formulieren, sei  n =  a 0100+ a 1101+ · · ·+ ak 10 k

mit 0  ≤ ai ≤  9 die Dezimaldarstellung der natürlichen Zahl  n. Die 11-er Probe

besagt, dass  n  genau dann durch 11 teilbar ist, wenn die alternierende Quer-

summe  a 0  − a 1  ± · · · + ( − 1) kak, also die Summe der Ziffern mit abwechselnden

Vorzeichen, durch 11 teilbar ist. Um das einzusehen, bemerken wir, dass  n  genau

dann durch 11 teilbar ist, wenn  n ≡  0 mod 11, also wenn [ n] das Nullelement

von Z / 11Z ist. Aber [ n] = [ a 0][10]0 + [ a 1][10]1 +  · · · + [ ak][10] k. Da 10  ≡ − 1

mod 11, ist [10] i = ( − 1) i[1], also  n ≡ a 0  − a 1  ± · · · + ( − 1) kak  mod 11. 

Analog beweist man die 9 -er  und 3 -er Probe. Diese besagen, dass  n  genau

dann durch 9 bzw. 3 teilbar ist, wenn es die Quersumme ist. Beachte zum

Beweis, dass 10  ≡  1 mod 9 und mod 3 ist, so dass modulo 3 und 9 jede Potenz

von 10 gleich 1 ist. 

Zerlegung ganzer Zahlen in Produkte hat ein Pendant bei den Restklassenrin-

gen: die direkte Summe. Dabei ist die direkte Summe  R ⊕ S  der Ringe  R  und  S

als Menge das kartesische Produkt  {( r, s)  | r ∈ R,  s ∈ S}  mit der komponenten-

weisen Addition und Multiplikation: ( r, s)+( r, s) = ( r+ r, s+ s) , ( r, s)( r, s) =

( rr, ss). Das Nullelement ist (0 ,  0), das Einselement ist (1 ,  1), wenn  R  und  S  ein

Einselement haben, die wir beide mit 1 bezeichnen. Analog bilden wir direkte

Summen von mehr als zwei Ringen. 

Ist  k >  0 ein Teiler von  m, so definiert die Zuordnung [ a] m → [ a] k  einen

Ringhomomorphismus von Z /m Z nach Z /k Z, wobei der Index an den Restklas-

sen andeuten soll, modulo welcher Zahl die Restklasse zu bilden ist. Beachte, 
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dass jede Restklasse von Z /m Z in genau einer Restklasse von Z /k Z enthalten

ist, wenn  k  ein Teiler von  m  ist. Unsere Zuordnung bildet jede Restklasse von

Z /m Z in die Klasse von Z /k Z ab, in der sie liegt. Ist  m =  m 1  · · · mr, so liefert

die Zuordnung [ a] m → ([ a] m , . . . , [ a]

) einen Ringhomomorphismus

1

 mr

 f : Z /m Z  →  Z /m 1Z  ⊕ · · · ⊕  Z /mr Z . 

Das Element [ a] m  wird durch  f  auf 0 abgebildet, wenn [ a] m  f

 i

ür alle  i  das Null-

element ist, d. h., dass  a  ein Vielfaches jedes  mi  ist. Der Kern von  f  ist demnach

die Menge der Vielfachen der Restklasse [kgV( m 1 , . . . , mr)] m. Die Abbildung  f

ist also genau dann injektiv, wenn  m =  m 1  · · · mr = kgV( m 1 , . . . , mr) gilt. Be-

trachtet man die Primzahlzerlegung der  mi, so gilt das genau dann, wenn je

zwei der  mi  relativ prim sind, also außer 1 keinen gemeinsamen positiven Teiler

haben. 

Da auf beiden Seiten des Pfeils Ringe mit  m  Elementen stehen, ist  f  bijektiv, 

falls es injektiv ist. Wir erhalten somit:

 Ist m =  m 1  · · · mr und sind m 1 , . . . , mr paarweise relativ prim, so

 ist die obige Abbildung f ein Isomorphismus von Ringen. 

Dieses Ergebnis wird auch als  Chinesischer Restsatz  bezeichnet. Es ist nämlich

äquivalent zu folgender Aussage:

(Chinesischer Restsatz)

 Gegeben seien paarweise relativ prime nat¨

 urliche Zahlen m 1 , . . . , mr. 

 Dann hat das Gleichungssystem

 x ≡ a 1 mod  m 1

 ... 

 x ≡ ar  mod  mr

 f¨

 ur jedes r-Tupel ganzer Zahlen ( a 1 , . . . , ar)  eine ganzzahlige Lösung. 

 Genauer gesagt ist die Menge aller ganzzahligen L¨

 osungen des Glei-

 chungssystems eine Restklasse  mod  m 1  · · · mr. 

Finden z. B. in einem Prüfungsamt jede Woche von Montag bis Freitag

Prüfungen statt und wechseln sich zwei Prüfer und drei Beisitzer im werktägli-

chen Rhythmus ab, so muss ein Prüfling maximal 6 Wochen warten, um einen

Freitagstermin mit seinem Lieblingsprüfer und -beisitzer zu finden. 

Im nächsten Abschnitt beschreiben wir einige Primzahltests. Dafür benötigen

wir Aussagen über die Einheiten des Rings Z /m Z. Ist  R  ein kommutativer Ring

mit 1, so bezeichnen wir die Menge seiner Einheiten (siehe Abschnitt 3.2) mit

 R∗. Bezüglich der Multiplikation in  R  ist  R∗  eine abelsche Gruppe. Denn ist  R

ein Ring mit 1, so erfüllt ( R, ·) alle Gruppenaxiome (siehe Abschnitt 6.1) bis

auf die Existenz eines Inversen, das aber wird für Einheiten explizit gefordert. 
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Ein Ringisomorphismus  g:  R → S  bildet dann die Gruppe  R∗  isomorph auf

die Gruppe  S∗  ab. Die Menge der Einheiten ( R ⊕ S) ∗  der direkten Summe der

Ringe  R  und  S  ist die direkte Summe  R∗ ⊕ S∗. Denn sind  a ∈ R  und  b ∈ S

Einheiten mit Inversen  c  bzw.  d, so ist ( c, d) Inverses von ( a, b) in  R ⊕ S. 

Die Einheiten von Z /m Z sind genau die Restklassen [ r] mit ggT( r, m) = 1. 

Denn ggT( r, m) = 1 gilt genau dann, wenn es ganze Zahlen  s  und  t  mit  sr+ tm =

1 gibt. Dies ist genau dann der Fall, wenn es eine Restklasse [ s] mod  m  gibt mit

[ r][ s] = [1]. Die  Eulersche ϕ-Funktion  ordnet jeder positiven ganzen Zahl  m  die

Anzahl  ϕ( m) aller zu  m  relativ primen Zahlen  k  mit 0  < k < m  zu. Also ist  ϕ( m)

die Ordnung, d. h. die Anzahl der Elemente, der Einheitengruppe (Z /m Z) ∗  von

Z /m Z. Aus dem Chinesischen Restsatz folgt, dass  ϕ( m 1 m 2) =  ϕ( m 1) ϕ( m 2) ist, 

falls  m 1 und  m 2 relativ prim sind. 

Ist  m =  pi  eine Primzahlpotenz, so sind bis auf die Vielfachen von  p  alle

Zahlen zu  pi  relativ prim. Also ist  ϕ( pi) =  pi− 1( p −  1). Es folgt, dass

 r

  i

 ϕ( m) =

 p j− 1( p

 j

 j −  1)

 j=1

ist, wenn  m =  pi 1  · · · pir

1

 r

die Primfaktorzerlegung von  m  ist. 

Die Ordnung des Elements [ r] in der Gruppe (Z /m Z) ∗  ist die kleinste positive

ganze Zahl  n  mit [ rn] = [1]. Nach dem Satz von Lagrange (vgl. Abschnitt 6.1)

ist die Ordnung eines Elements einer endlichen Gruppe ein Teiler der Ordnung

der Gruppe. Wir erhalten deshalb als Spezialfall des Satzes von Lagrange:

(Satz von Euler)

 Sind r und m relativ prim, so gilt die Kongruenz

 rϕ( m)  ≡  1 mod  m. 

Ein Spezialfall hiervon wiederum ist der sogenannte  kleine Satz von Fermat :

 Ist p eine Primzahl, die r nicht teilt, so ist rp− 1  ≡  1 mod  p. 
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In Abschnitt 3.5 werden wir sehen, dass das Kennen vieler großer“ Primzahlen

” 

für sichere Datenübertragung wichtig ist. Aber wie stellt man fest, ob eine gege-

 √

bene Zahl  n  prim ist? Kennt man alle Primzahlen unterhalb von

 n, kann man

einfach durch sukzessives Dividieren von  n  durch diese Primzahlen feststellen, 

ob  n  selbst prim ist. Aber selbst wenn wir eine Liste dieser Primzahlen hätten, 

würde für große  n  dieses Verfahren zu lange dauern. Zum Beispiel ist die größte

bis Anfang 2010 bekannte Primzahl 243112609  −  1 eine Zahl mit 12 978 189 Zif-

fern. Die Wurzel davon hat etwa halb so viele Ziffern. Unterhalb von  k  gibt es
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stets mehr als  k/(8 log  k) Primzahlen (siehe Abschnitt 3.6), und für  k ≥  64 ist

 √k >  8log( k). Wir müssten also über 103 · 106 Primzahlen gespeichert haben und

ebenso viele Divisionen durchführen, um mit diesem Verfahren nachzuweisen, 

dass 243112609  −  1 prim ist. Um zu sehen, wie hoffnungslos die Situation ist, 

sei daran erinnert, dass die Anzahl der Teilchen unseres Universums auf unter

1090 geschätzt wird und dass wir in 1000 Jahren weniger als 3 .  16  ·  1015 Rechen-

operationen durchführen können, die mindestens eine 10-Milliardstel Sekunde

dauern. Wir benötigen bessere Testverfahren. 

Es gibt eine Reihe von notwendigen und hinreichenden Kriterien zum Nach-

weis der Primalität einer natürlichen Zahl. Ein bekanntes, aber praktisch nicht

sehr nützliches ist die  Wilsonsche Kongruenz :

 Eine ganze Zahl n >  1  ist genau dann eine Primzahl, wenn ( n− 1)!  ≡

 − 1 mod  n ist. 

Ist  n >  1 keine Primzahl, so hat  n  einen Teiler  d  mit 1  < d < n −  1, also ist

ggT(( n −  1)!  , n)  >  1 und ( n −  1)!  ≡ ± 1 mod  n. Ist  n  Primzahl, so ist jedes  d

mit 1  ≤ d < n  relativ prim zu  n, und es gibt ein eindeutig bestimmtes  e  mit

1  ≤ e < p, so dass  de ≡  1 mod  n. Dabei ist  e =  d  genau dann, wenn  d ≡  1 mod  n. 

Für die letzte Behauptung nutzt man die Tatsache, dass Z /n Z ein Körper ist

und das Polynom  X 2 = 1 in jedem Körper höchstens zwei Nullstellen hat (siehe

Abschnitt 6.8). Wir können daher die Faktoren von 2  ·  3  · · · ( n −  2) paarweise so

zusammenfassen, dass das Produkt jedes Paares kongruent 1 mod  n  ist. 

Etwas nützlicher ist folgendes Ergebnis, das wie die Sätze von Euler und

Fermat auf dem Satz von Lagrange (Abschnitt 6.1) beruht. 

 Die ganze Zahl n >  1  ist eine Primzahl, wenn zu jedem Primfaktor

 p von n −  1  eine Zahl q existiert, so dass

(a)  qn− 1  ≡  1 mod  n, 

 n− 1

(b)  q p

 ≡  1 mod  n

 gelten. 

Gilt (a), so ist [ q] eine Einheit in Z /n Z, also ein Element von (Z /n Z) ∗, einer

Gruppe mit  ϕ( n)  ≤ n −  1 Elementen, und die Ordnung  o  von [ q] ist ein Teiler

von  n −  1. (Zur Erinnerung (Abschnitt 3.3):  ϕ( n) ist die Anzahl der zu  n  relativ

primen Zahlen zwischen 0 und  n.) Bedingung (b) besagt, dass  o  kein Teiler von

( n −  1) /p  ist. Also muss  pk  Teiler von  o  und damit auch von  ϕ( n) sein, wenn  pk

die höchste Potenz von  p  ist, die  n −  1 teilt. Da dies für alle Primteiler  p  von

 n −  1 gilt, ist  n −  1 ein Teiler von  ϕ( n). Also ist  ϕ( n) =  n −  1. Dann muss jedes

 k  mit 1  ≤ k < n  zu  n  relativ prim sein, also  n  eine Primzahl sein. 

Übrigens gilt im letzten Satz auch die Umkehrung. 

Der kleine Satz von Fermat, so leicht er zu beweisen ist, ist nützlich als not-

wendiges Kriterium für die Primalität einer Zahl  n. Denn gibt es ein zu  n  relativ

primes  r  mit  rn− 1  ≡  1 mod  n, so wissen wir, dass  n  keine Primzahl ist, und das, 
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ohne eine Produktzerlegung von  n  zu kennen. Es gibt aber Nicht-Primzahlen

 n, so dass für jedes zu  n  relativ prime  r  die Gleichung  rn− 1  ≡  1 mod  n  gilt, 

die sogenannten  Carmichael-Zahlen. Die kleinste von ihnen, 561, ist durch 3, 11

und 17 teilbar. 

Aber eine leichte Verbesserung des Fermatschen Satzes ist Grundlage des

 Miller-Rabin-Tests, mit dem man nachweisen kann, dass ein gegebenes  n

höchstwahrscheinlich“ eine Primzahl ist. Sei  n  ungerade und  n −  1 = 2 ab  mit

” 

ungeradem  b. 

(i)  Ist n prim und r relativ prim zu n, so gilt

 rb ≡  1 mod  n oder r 2 cb ≡ − 1 mod  n für ein c mit  0  ≤ c < a. 

( ∗)

(ii)  Ist n nicht prim, dann gibt es h¨

 ochstens ( n −  1) / 4  zu n relativ prime

 Zahlen r, die ( ∗)  erfüllen. 

Mit diesem Test kann man zwar zweifelsfrei feststellen, dass  n  nicht prim

ist, nämlich wenn man ein zu  n  relativ primes  r < n  findet, das ( ∗) nicht

erfüllt. Erfüllt ein primer Rest  r  jedoch ( ∗), folgt daraus noch nicht, dass  n  eine

Primzahl ist. Aber (ii) lässt folgende statistische Interpretation zu: Nehmen wir

an,  n  ist keine Primzahl. Wir wählen zufällig bezüglich der Gleichverteilung auf

 { 1 , . . . , n −  1 }  einen Rest  r. Dann ist die Wahrscheinlichkeit, dass  r  relativ prim

ist und ( ∗) gilt, kleiner als 1 / 4. Daher ist bei  k  unabhängigen zufälligen Wahlen

solcher  r  die Wahrscheinlichkeit, dass jedes Mal ( ∗) erfüllt ist, kleiner als 4 −k, bei

 k = 20 also kleiner als 10 − 12. Man wird sich dann auf den Standpunkt stellen, 

dass dies zu unwahrscheinlich ist, um wahr zu sein (obwohl es natürlich nicht

ausgeschlossen ist), und die Nullhypothese“, dass  n  nicht prim ist, verwerfen

” 

(vgl. Abschnitt 11.9 über statistische Tests). In diesem Sinn ist es dann sehr

plausibel,  n  als Primzahl anzusehen. 

Sollte die erweiterte Riemannsche Vermutung (siehe unten) gelten, so lässt

sich (i) zu einer notwendigen und hinreichenden Bedingung aufwerten:

 Gilt die erweiterte Riemannsche Vermutung und ist n −  1 = 2 ab mit

 ungeradem b, so ist n genau dann eine Primzahl, wenn ( ∗)  für alle

2

 zu n relativ primen r mit  0  < r < 

(log  n)2  gilt. 

(log 3)2

Die Riemannsche Vermutung besagt etwas über die Nullstellen der  ζ-Funktion, 

die wir in Abschnitt 3.6 kennenlernen. Die  erweiterte Riemannsche Vermutung

besagt etwas über die Nullstellen der Dedekindschen  L-Funktionen. Das sind

gewisse Verallgemeinerungen der  ζ-Funktion. 

Ist  n  eine  Mersenne-Zahl, d. h. eine Zahl der Form  n = 2 p −  1 mit einer

Primzahl  p, so ist  n −  1 = 2(2 p− 1  −  1). In diesem Fall ist  a = 1, und ( ∗)

reduziert sich zu  rb ≡  1 mod  n  mit  b = 2 p− 1  −  1. Es ist daher viel weniger

zu prüfen. Mersenne-Zahlen sind sehr beliebt bei Menschen, die nach möglichst

großen Primzahlen suchen. Tatsächlich sind die neun größten zurzeit (März

2010) bekannten Primzahlen alles Mersenne-Zahlen. Beachte, dass eine Zahl
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der Form  ab −  1 mit  a, b >  1 höchstens dann eine Primzahl ist, wenn  a = 2 und

 b  prim ist. Denn  a −  1 teilt  ab −  1 und  ak −  1 teilt  akl −  1. Daher kommt die

spezielle Form der Mersenne-Zahlen. Für Mersenne-Zahlen kennt man allerdings

schon seit langem ein Primalitätskriterium, das ohne die erweiterte Riemannsche

Vermutung auskommt:

(Primzahltest von Lucas und Lehner)

 Es sei S 1 = 4  und für k ≥  2  sei Sk :=  S 2

 −  2 . Ist p prim, so ist

 k− 1

 die Mersenne-Zahl  2 p −  1  genau dann eine Primzahl, wenn sie ein

 Teiler von Sp− 1  ist. 

Der Beweis benutzt die Theorie der Kettenbrüche, auf die wir in Abschnitt 3.8

eingehen, insbesondere die Rolle der Kettenbrüche bei den ganzzahligen Lösun-

gen der Pellschen Gleichung  x 2  − dy 2 = 1 für  d = 3. Das Finden ganzzahliger

Lösungen von Gleichungen mit ganzzahligen Koeffizienten ist Thema der Theo-

rie der diophantischen Gleichungen, womit wir uns in Abschnitt 3.10 beschäfti-

gen. 

Eine Bemerkung zum Zeitaufwand von Rechnungen (am Computer). Mul-

tiplizieren und Dividieren geht schnell. Auch Potenzieren geht schnell. Z. B. 

erhalten wir  a 2 n  durch  n-maliges sukzessives Quadrieren. Ebenso geht das Be-

rechnen des ggT schnell mit Hilfe des Euklidischen Algorithmus. Damit hält

sich der Zeitaufwand für das Überprüfen von ( ∗) in Grenzen. 

3.5

Das RSA-Verfahren

Im letzten Abschnitt haben wir einige Primzahltests kennengelernt. Sie sind

schnell in dem Sinne, dass die zugehörigen Algorithmen eine polynomiale Lauf-

zeit haben. Das heißt, dass es ein  k  und  C  gibt, so dass die Laufzeit durch

 Cnk  beschränkt ist, wenn  n  die Eingabelänge für den Algorithmus ist. Man

benötigt z. B. für die binäre Darstellung der positiven ganzen Zahlen der Form



 m =

 n a

 m  bits, so dass ein

0

 i 2 i  mit  ai ∈ { 0 ,  1 }  und  an = 1 genau  n <  log2

Algorithmus für das Testen der Primalität von  m  polynomial ist, wenn die Lauf-

zeit für geeignete  C  und  k  durch  C(log  m) k  beschr

2

änkt werden kann. Seit dem

Jahr 2002 weiß man, dass es einen polynomialen Algorithmus mit  k = 13 gibt

(Algorithmus von Manindra Agrawal, Neeraj Kayal und Nitin Saxena). 

Es lässt sich also relativ schnell entscheiden, ob eine gegebene Zahl prim ist. 

Aber die Algorithmen gewinnen die Aussage, dass  m  nicht prim ist, ohne eine

Zerlegung von  m  in mindestens zwei Faktoren angeben zu müssen. Ist z. B. 

ggT( r, m) = 1 und  rm− 1  ≡  1 mod  m, so wissen wir nach dem kleinen Satz von

Fermat (Abschnitt 3.3), dass  m  nicht prim ist, ohne eine Zerlegung zu kennen. 

Die Sicherheit des RSA-Verfahrens, benannt nach seinen Entwicklern Rivest, 

Shamir und Adelman, beruht auf der Überzeugung, dass das Faktorisieren zu-

sammengesetzter Zahlen schwierig, d. h. überaus langwierig ist. Es wird in der
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Kryptographie zur Chiffrierung und Dechiffrierung von Nachrichten genutzt und

ist ein sogenanntes  asymmetrisches Kryptoverfahren. Ein asymmetrisches Ver-

fahren lässt sich wie folgt beschreiben. 

(i) Der Empfänger von Nachrichten verfügt über zwei Schlüssel, von denen

er einen veröffentlicht. Der andere bleibt geheim. 

(ii) Mit Hilfe des öffentlichen Schlüssels kann jeder, der will, eine Nach-

richt verschlüsseln und an den Empfänger verschicken. Dabei ist der

Verschlüsselungsprozess einfach. 

(iii) Mit Hilfe des geheimen zweiten Schlüssels ist die Dechiffrierung ein-

fach, aber ohne diesen zweiten Schlüssel schwierig, und zwar schwierig

genug, dass eine Entschlüsselung in der Zeit, für die die Nachricht

geheim bleiben soll, nicht zu erwarten ist. 

Beim RSA-Verfahren verschafft sich der Empfänger zwei große Primzahlen  p

und  q. Zurzeit wird empfohlen, Primzahlen mit mindestens 100 Dezimalziffern

zu wählen. Weiter wählt er eine nicht allzu kleine zu ( p −  1)( q −  1) relativ prime

Zahl  a  und verschafft sich mit Hilfe des Euklidischen Algorithmus eine Zahl  b, 

so dass  ab ≡  1 mod ( p −  1)( q −  1) ist. Er veröffentlicht die beiden Zahlen  a  und

 n =  pq. 

Ein Absender verwandelt eine Nachricht nach einem vereinbarten einfachen

Standardverfahren in eine Zahl  m  zwischen 0 und  n. Ist die Nachricht zu lang, 

so zerlegt er sie in passende Blöcke. Dann bildet er  l : ≡ ma  mod  n  mit 0  ≤

 l < n  und schickt  l  an den Empfänger. Der Empfänger bildet nun mit Hilfe

seines geheimen Schlüssels  b  die Zahl  k : ≡ lb  mod  n  mit 0  ≤ k < n. Mit Hilfe

des Standardverfahrens verwandelt der Empfänger die Zahl  k  wieder in eine

Nachricht. 

Dieses ist die ursprüngliche Nachricht. Dazu müssen wir nur zeigen, dass für

jede ganze Zahl  m  die Gleichung  mab ≡ m  mod  n  gilt. Das gilt, falls  mab ≡ m

mod  p  und  mab ≡ m  mod  q  gelten. Teilt  p  das  m, so gilt 0  ≡ m ≡ mab  mod  p. Ist

 m  relativ prim zu  p, so gilt nach dem kleinen Satz von Fermat  mp− 1  ≡  1 mod  p. 

Nach Konstruktion von  b  existiert ein ganzzahliges  c  mit  ab =  c( p − 1)( q − 1)+1. 

Also gilt  mab = ( mp− 1) c( q− 1)  · m ≡  1  · m  mod  p. Das gleiche Argument zeigt, 

dass  mab ≡ m  mod  q  gilt. 

Wir haben schon bemerkt, dass Potenzieren schnell geht. Will man z. B.  m 43

berechnen, so bildet man durch sukzessives Quadrieren  m 2 , m 4 , m 8 , m 16 , m 32

und anschließend  m 32 m 8 m 2 m =  m 43. Das sind insgesamt weniger als 2  ·  5 =

2 log 32 Multiplikationen. Allgemein braucht man bei diesem Vorgehen für die

2

Berechnung  ma  maximal 2 log  a  Multiplikationen. 

2

Zum Entschlüsseln ohne den geheimen Schlüssel benötigt man die Kenntnis

von ( p −  1)( q −  1). Das ist gleichbedeutend mit der Kenntnis der Faktorisie-

rung von  n =  pq. Denn kennt man  pq  und ( p −  1)( q −  1), so kennt man auch

 p +  q =  pq − ( p −  1)( q −  1)  −  1 und ( p − q)2 = ( p +  q)2  −  4 pq. Quadratwur-zelziehen von Quadraten in Z geht schnell, so dass wir auch  p − q  kennen und
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damit  p  und  q. Bisher ist kein polynomialer Algorithmus für Faktorzerlegungen

bekannt, und es wird vermutet, dass das Ziehen von  a-ten Wurzeln mod  pq, 

was der Entschlüsselung der Nachricht  ma  mod  pq  entspricht, im Prinzip auf

eine Faktorisierung von  pq  hinausläuft. Selbst das Ziehen von Quadratwurzeln

mod  n  wird für große  n  als schwierig angesehen. 

3.6

Die Verteilung der Primzahlen

Zwei sich scheinbar widersprechende Aspekte beschreiben die Verteilung der

Primzahlen innerhalb der ganzen Zahlen: völlig unvorhersehbar, wenn es um

die genaue Lage geht, und sehr regelmäßig, wenn nur die Asymptotik inter-

essiert. Das offenbar chaotische Verhalten im Kleinen ist Rechtfertigung für

Kryptosysteme, die davon ausgehen, dass das Faktorisieren großer ganzer Zah-

len schwierig ist. Indiz für dieses unregelmäßige Verhalten ist die Existenz einer

großen Anzahl unbewiesener relativ alter Vermutungen. Man weiß zwar, dass

für  n >  1 zwischen  n  und 2 n  immer eine Primzahl liegt, aber nicht, ob zwi-

schen  n 2 und ( n + 1)2 auch immer eine zu finden ist. Da, wie wir sehen werden, 

mit wachsendem  n  der Anteil der Primzahlen unterhalb von  n  gegen 0 strebt, 

muss es beliebig große Lücken zwischen den Primzahlen geben. Man kann sol-

che Lücken auch leicht angeben. Ist  m  gegeben und  n  das Produkt sämtlicher

Primzahlen  pj ≤ m, so ist jede der Zahlen  n + 2,  n + 3, . . . ,  n +  m  durch

eine dieser Primzahlen  pj  teilbar, so dass eine Lücke mindestens der Länge  m

vorliegt. Andererseits wird vermutet, dass es unendlich viele Primzahlzwillin-

ge, d. h. Primzahlpaare der Form ( p, p + 2) gibt, dass also die kleinstmögliche

Lücke der Länge 2 unendlich oft vorkommt. Allgemeiner gibt es unendlich viele

Lückenfolgen, von denen vermutet wird, dass sie unendlich oft auftreten. Dies

wird z. B. von der Lückenfolge 2 ,  4 ,  2 vermutet. Beispiele für diese Folge sind die

Primzahlquadrupel (101 ,  103 ,  107 ,  109), (191 ,  193 ,  197 ,  199), (821 ,  823 ,  827 ,  829) und (3251 ,  3253 ,  3257 ,  3259). 

Eine dieser alten Vermutungen konnten 2004 Ben J. Green und Terence Tao

beweisen. Diese besagt, dass es beliebig lange arithmetische Progressionen von

Primzahlen gibt. Die Frage nach der Existenz beliebig langer arithmetischer

Progressionen, also von Folgen der Form  {a, a +  d, a + 2 d, . . . , a +  kd}, in ge-

wissen Teilmengen von N spielte in der Zahlentheorie stets eine wichtige Rolle. 

Eines der gefeierten Ergebnisse ist der Beweis einer langen offenen Vermutung

von Erd˝

os und Turàn durch Szemerédi im Jahre 1975. Er zeigte, dass jedes

 A ⊆  N mit lim sup # {a ≤ N | a ∈ A}/N >  0 beliebig lange arithmetische


N

Progressionen enthält. Wie wir weiter unten sehen, ist # {p ≤ N | p  prim }

asymptotisch gleich log  N , so dass Szemerédis Satz nicht greift. Aber ein auf

Methoden der Wahrscheinlichkeitsrechnung beruhender Beweis des Satzes von

Szemerédi diente Green und Tao als Leitfaden für ihre Arbeit. Wie bahnbre-
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chend der Satz von Green und Tao ist, wird deutlich, wenn man bedenkt, dass

es bis 2004 nur den Satz von van der Korput aus dem Jahr 1939 gab, der besagt, 

dass es unendlich viele arithmetische Progressionen der Länge 3 von Primzahlen

gibt, und dass es mit intensiven Computersuchen erst 2004 gelang,  eine  arith-

metische Progression der Länge 23 von Primzahlen zu finden. Der vorherige

Rekord einer Progression der Länge 22 stammte aus dem Jahr 1995. 

Um eine arithmetische Progression der Länge  k  zu garantieren, muss man

schon bis zu sehr großen Primzahlen gehen, also einen globalen Blick entwi-

ckeln. Tut man das, so zeigt sich oft ein erstaunlich regelmäßiges Verhalten. Die

naheliegende Frage, wie sich asymptotisch für wachsende  x  der Anteil der Prim-

zahlen unterhalb  x  verändert, ist ein frappierendes Beispiel dafür. Der folgende

Satz ist einer der Meilensteine der Zahlentheorie. Er wurde von Legendre und

dem erst 15-jährigen Gauß ca. 1792 vermutet und 100 Jahre später von Jac-

ques Hadamard und Charles-Jean de la Vallée Poussin unabhängig voneinander

bewiesen. Zunächst nennen wir zwei für hinreichend große  x ∈  R definierte

Funktionen  f  und  g  asymptotisch gleich, falls lim x→∞ f ( x) /g( x) = 1 ist. Wir

schreiben dafür  f ( x)  ∼ g( x). Dann besagt der  Primzahlsatz :

 Ist π( x)  die Anzahl der Primzahlen kleiner oder gleich x, so gilt

 π( x)  ∼

 x

 . 

log( x)

Als Korollar erhält man daraus die Asymptotik  pn ∼ n  log  n  für die  n-te Prim-

zahl. 

Der Beweis dieses Satzes ist inzwischen relativ einfach, wenn man mit den

Methoden der Funktionentheorie, insbesondere mit dem Cauchyschen Integral-

satz und Residuenkalkül (vgl. Abschnitt 8.9 und 8.10) ein wenig vertraut ist. 

Er steht in enger Verbindung mit der schon im Abschnitt 3.4 angesprochenen

 ζ-Funktion, ganz besonders mit deren Nullstellen. Sie wurde von Euler für reelle



Zahlen  x >  1 durch die Reihe

 ∞

1 /nx  definiert, und Riemann dehnte diese

 n=1

Definition auf komplexe Zahlen  z  mit Realteil Re  z >  1 aus:

 ∞



 ζ( z) =

1 /nz. 

 n=1

Wegen  |n−z| =  n−  Re  z  ist die Reihe gleichmäßig konvergent auf Re  z ≥ r  für

jedes  r >  1. Also ist nach dem Weierstraßschen Konvergenzsatz (Abschnitt 8.9)

 ζ( z) in der Halbebene Re  z >  1 holomorph. Für  z = 1 erhält man die har-

monische Reihe, deren Partialsummen gegen  ∞  wachsen. Aber das ist schon

das einzige Hindernis,  ζ  holomorph fortzusetzen. Denn eine clevere Umformung

zeigt, dass  ζ( z) − 1 /( z − 1) für Re  z >  1 mit einer in Re  z >  0 holomorphen Funk-

tion übereinstimmt. Damit hat  ζ  eine meromorphe Erweiterung auf Re  z >  0

mit einem einfachen Pol bei 1. (Riemann hat gezeigt, dass  ζ  sogar auf ganz C

meromorph fortsetzbar ist.)
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Einen ersten Hinweis, dass  ζ  etwas mit Primzahlen zu tun hat, gibt die auf

Euler zurückgehende Produktdarstellung

 ∞

 1



 ζ( z) =

=

(1  − p−z) − 1 , 

Re  z >  1 , 

 nz

 n=1

 p



die man durch Einsetzen von (1 −p−z) − 1 =

 ∞

 p−zk  in das Produkt einsieht. 

 k=0

Denn nach Ausmultiplizieren tritt jeder Term ( pk 1  · · · pkr

1

 r ) −z  genau einmal als

Summand auf und entspricht dem Summanden  n−z  in der  ζ-Funktion, wenn

 n =  pk 1  · · · pkr

1

 r

die Primfaktorzerlegung von  n  ist. Da alles absolut konvergiert, 

brauchen wir uns beim Umordnen keine Gedanken zu machen. 

Was nun den Beweis des Primzahlsatzes angeht, sind es Funktionen wie

 h( z) =  ζ( z) /ζ( z)  −  1 /( z −  1), die dort auftauchen, und um den Cauchyschen

Integralsatz darauf anzuwenden, benötigt man Gebiete der rechten Halbebene, 

in denen  h  holomorph ist. Deswegen sind die Nullstellen von  ζ  so entscheidend. 

Aus der Eulerschen Produktdarstellung folgt  ζ( z)  = 0 für Re  z >  1; erheblich

raffinierter ist der Nachweis, dass sogar  ζ( z)  = 0 für Re  z ≥  1 ist. Diese Aussage

ist der archimedische Punkt des Beweises des Primzahlsatzes mit funktionen-

theoretischen Methoden. 

Asymptotische Gleichheit zweier Funktionen sagt wenig aus über die Diffe-

renz der Funktionen. Schon Gauß hat anstelle von  x/ log  x  den dazu asympto-

  x

tisch gleichen  Integrallogarithmus  Li( x) =

log  t dt  als Approximation für  π( x)

2

herangezogen. Das Studium großer Primzahltabellen ließ ihn vermuten, dass der

Anstieg von  π( x) gleich 1 /  log( x) ist. Dass in der Tat Li( x) bessere Werte liefert, 

soll folgende Tabelle illustrieren. 

 π( x)

 x

 π( x)

[Li( x)]  − π( x)

 π( x)

Li( x)

 x/ log  x

104

1229

16

0.987

1.131

106

78498

128

0.998

1.084

108

5 761 455

754

0.999 986

1.061

1010

455 052 511

3104

0.999 993

1.047

1012

37 607 912 018

38263

0.999 998

1.039

Die Beziehung  π( x)  ∼  Li( x) besagt nur, dass für jedes  ε >  0 die Ungleichung



 |

 x

 π( x)  −

log  t dt| < εx  log  x  für genügend große  x  gilt. Kann man aber die Lage

2

der Nullstellen der auf die Halbebene Re  z >  0 erweiterten  ζ-Funktion besser

eingrenzen, erhält man deutlich bessere Abschätzungen. In dem kritischen Strei-

fen  { 0  <  Re  z <  1 }  liegen die Nullstellen symmetrisch zur kritischen Geraden

Re  z = 1 / 2. Auf der kritischen Geraden fand Riemann viele Nullstellen, ab-

seits davon aber keine, und er stellte die heute nach ihm benannte  Riemannsche

 Vermutung  auf:

 Alle Nullstellen von ζ in  Re  z >  0  liegen auf der Geraden  Re  z = 1 / 2 . 
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Dies ist eine der wichtigsten offenen Vermutungen der Mathematik mit vielen

Konsequenzen nicht nur für die Primzahlen. (Es ist eines der sieben Millenniums-

Probleme. Sie zu beweisen oder zu widerlegen, dafür hat die Clay-Stiftung ein

Preisgeld von 1 Million Dollar ausgelobt.) Die folgende Aussage stellt die Be-

ziehung zwischen Nullstellen von  ζ  und Abschätzungen für  π( x) her:

 Hat ζ f¨

 ur ein a ≥  1 / 2  in  Re  z > a keine Nullstelle, so gibt es ein

 c >  0 , so dass







 x





 π( x)  −

log  t dt  < cxa  log  x

2

 f¨

 ur alle x ≥  2  gilt. 

Es gilt auch die Umkehrung. Stimmt die Riemannsche Vermutung, so können

wir für  a  den bestmöglichen Wert 1 / 2 nehmen. Wir wissen, dass auf der kriti-

schen Geraden unendlich viele Nullstellen liegen, aber bis heute hat noch nie-

mand beweisen können, dass es ein  a <  1 gibt, so dass  ζ  rechts von Re  z =  a

keine Nullstellen hat. Der Rand aller bisher gefundenen nullstellenfreien Berei-

che schmiegt sich bei wachsendem Absolutwert des Imaginärteils rapide an die

Gerade Re  z = 1 an. 

Übrigens stützen sämtliche Primzahltabellen (s. o.) die These, dass stets

Li( x)  > π( x) ist. Aber schon 1914 konnte Littlewood beweisen, dass das nicht

stimmt, denn er zeigte, dass Li( x)  − π( x) unendlich oft das Vorzeichen wech-

selt! Der erste Vorzeichenwechsel tritt definitionsgemäß bei der  Skewes-Zahl  auf; 

heute weiß man, dass diese zwischen 1016 und 10381 liegt. 

Ein weiteres Ergebnis zur regelmäßigen Verteilung der Primzahlen im Großen

ist ein Satz von Dirichlet, der besagt, dass sich die Primzahlen gleichmäßig auf

die zu  m  primen Restklassen mod  m  verteilen. Ist ggT( a, m)  >  1, so enthält

die Restklasse von  a  mod  m  höchstens eine Primzahl. Aber auf die restlichen

 ϕ( m) zu  m  relativ primen Restklassen verteilen sich die Primzahlen gleichmäßig:





lim

 p− 1 /

 p− 1 = 1 /ϕ( m); bei den Summen wird nur über

 n→∞ p≡a  mod  m, p≤n

 p≤n

Primzahlen summiert. Insbesondere liegen in all diesen Restklassen unendlich

viele Primzahlen. 
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Lineare Gleichungen in einer Unbekannten in Z /n Z sind leicht zu behandeln. 

Sie haben die Form [ a][ x] = [ b] oder, als Kongruenz geschrieben, die Form

 ax ≡ b  mod  n. Ist ggT( a, n) = 1, so gibt es ganze Zahlen  c, d  mit  ca +  dn = 1. 

Also ist [ c][ a] = [1] in Z /n Z, und [ cb] ist die eindeutige Lösung. Die Zahlen  c

und  d  finden wir mit Hilfe des Euklidischen Algorithmus (Abschnitt 3.1). Ist

ggT( a, n) =  e >  1, so gibt es höchstens dann eine Lösung, wenn  e  auch ein
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Teiler von  b  ist, und nach Division von  a  und  b  durch  e  sind wir wieder im

vorhergehenden Fall. 

Quadratische Gleichungen sind wesentlich interessanter. Die Hauptschwie-

rigkeit bei deren Lösung ist das Problem, zu entscheiden, ob eine Restklasse

[ r]  ∈  Z /n Z Quadratwurzeln in Z /n Z besitzt, also ob [ r] ein Quadrat ist. Ist das

der Fall, so nennt man  r  einen  quadratischen Rest  mod  n. Andernfalls heißt  r

 quadratischer Nichtrest  mod  n. 

Wir konzentrieren uns in diesem Abschnitt auf den Fall, dass  n  eine un-

gerade Primzahl ist. Der allgemeine Fall lässt sich ohne große Mühe darauf

zurückführen. Z. B. folgt aus dem Chinesischen Restsatz, dass  r  genau dann

quadratischer Rest mod  n  ist, wenn es für jedes  i = 1 , . . . , s  quadratischer Rest

mod  pki  ist. Hier ist  n =  pk 1  · · · pks

 i

1

 s

die Primfaktorzerlegung von  n. Weiter ist

für eine ungerade Primzahl  p  das zu  p  relativ prime  r  genau dann quadratischer

Rest mod  pk, wenn es quadratischer Rest mod  p  ist. 

Der Vollständigkeit halber vermerken wir, dass jede ungerade Zahl quadrati-

scher Rest mod 2 ist, dass 1, aber nicht 3 ein quadratischer Rest mod 4 ist, und

für  k >  2 die ungerade Zahl  r  genau dann quadratischer Rest mod 2 k  ist, wenn

 r ≡  1 mod 8 ist. 

Bei der Frage, welche  r  für ungerade Primzahlen  p  quadratische Reste mod  p

sind, können wir uns auf den Fall beschränken, dass  r  eine Primzahl ist. Um

dies einzusehen, ist es nützlich, das  Legendre-Symbol (  r ) einzuführen. Hier ist  p

 p

eine Primzahl und  r  eine ganze Zahl, und wir setzen

⎧

 

⎪

⎪

⎨ 1 ,  falls  p  nicht  r  teilt und  r  quadratischer Rest mod  p  ist, 

 r

:=

 − 1 ,  falls  p  nicht  r  teilt und  r  quadratischer Nichtrest mod  p  ist, 

 p

⎪

⎪

⎩ 0 ,  falls  p  Teiler von  r  ist. 

Dass  p  das  r  teilt, ist gleichbedeutend damit, dass [ r] das Nullelement von

Z /p Z ist. Diesen Fall wollen wir nicht weiter betrachten. [0] ist natürlich ein

Quadrat. Die Menge (Z /p Z) ∗  der von 0 verschiedenen Elemente des Körpers

Z /p Z bilden bezüglich der Multiplikation eine abelsche Gruppe der Ordnung

 p −  1. Diese Gruppe ist zyklisch. Das heißt, dass es ein Element [ a]  ∈ (Z /p Z) ∗

gibt, so dass jedes Element von (Z /p Z) ∗  eine Potenz von [ a] ist. ( Übrigens ist

jede endliche Untergruppe der multiplikativen Gruppe der von 0 verschiedenen

Elemente eines beliebigen Körpers zyklisch. Dies folgt aus der Klassifikation

endlicher abelscher Gruppen (Abschnitt 6.6) und der Tatsache (Abschnitt 6.8), 

dass Polynome vom Grad  n über einem Körper höchstens  n  Nullstellen haben.)

Die Elemente von (Z /p Z) ∗  sind also  {[ a] , [ a 2] , . . . , [ ap− 2] , [ ap− 1] = [1] }. Insp− 1

 p− 1

besondere ist [ a  2 ] = [ − 1], denn [ a  2 ] ist verschieden von [1] und Nullstelle

von  X 2  −  1. Nun ist [ ak] genau dann ein Quadrat, wenn  k  gerade ist, und wir

erhalten für eine ungerade Primzahl und nicht durch  p  teilbare Zahlen  r, s:

 p− 1

(i) (  r )  ≡ r  2 mod  p. 

 p
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(ii)  − 1  ist quadratischer Rest  mod  p, genau dann, wenn p −  1  durch  4

 teilbar ist. 

(iii) (  rs ) = (  r )(  s ). 

 p

 p

 p

Wegen Aussage (iii) müssen wir uns nur noch um prime  r  mit 0  < r < p

kümmern, wegen (ii) reicht sogar 0  < r ≤ ( p −  1) / 2. 

Dieser Fall wird durch das  quadratische Reziprozit¨

 atsgesetz, ein Juwel der ele-

mentaren Zahlentheorie, auf elegante Weise gelöst. Es erlaubt einen schnellen

Algorithmus zur Bestimmung des Legendre-Symbols (  q ) für ungerade Primzah-

 p

len  q  und  p. Der erste Beweis dieses Gesetzes erschien in den

Disquisitiones

” 

Arithmeticae“, die C. F. Gauß 1801 im Alter von 24 Jahren veröffentlichte. Es

besagt:

(Quadratisches Reziprozitätsgesetz)

 Seien p und q verschiedene ungerade Primzahlen. Dann gilt

  

 q

 p

( p− 1)( q− 1)

= ( − 1)

4

 . 

 p

 q

Insbesondere ist (  p ) = (  q ), wenn mindestens eines von  p  und  q  kongruent 1

 q

 p

mod 4 ist. 

Für den Primfaktor 2 und ungerades  p  hat man

 

2

= 1

 ⇔

 p ≡ ± 1 mod 8 . 

 p

Es gibt viele elementare Beweise des Reziprozitätsgesetzes, Gauß selbst hat

acht veröffentlicht. 

Wir demonstrieren an einem Beispiel, wie man das Gesetz nutzt, zumindest

für kleine Zahlen, deren Primfaktorzerlegung leicht zu erhalten ist:





















1927

41  ·  47

41

47

3877

3877

=

=

=

3877

3877

3877

3877

41

47







  

3877  −  94  ·  41

3877  −  82  ·  47

23

23

=

=

41

47

41

47

     

 

 

41

47

17

1

23

6

=  −

 −

=  −

=  −

23

23

23

23

17

17

  

 

 

2

3

17

2

=  −

=  −

=  −

= 1

17

17

3

3

Also ist 1927 ein quadratischer Rest mod 3877. 

Das quadratische Reziprozitätsgesetz war einer der zentralen Ausgangspunkte

der algebraischen Zahlentheorie und war Anlass für viele weitreichende Entwick-

lungen. Seine Verallgemeinerung für höhere Potenzen, das Artinsche Rezipro-

zitätsgesetz, ist eines der Hauptergebnisse der  Klassenk¨

 orpertheorie, die sich

mit der Klassifikation aller galoisschen Erweiterungen (Abschnitt 6.10) eines

Zahlkörpers (Abschnitt 3.12) mit abelscher Galoisgruppe beschäftigt. 
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3.8

Kettenbr¨

uche

Kettenbrüche dienen, ähnlich wie Dezimal-, Binär- oder, allgemeiner,  b-adische

Darstellungen (siehe Abschnitt 2.6), der Beschreibung reeller Zahlen durch end-

liche oder unendliche Ziffernfolgen. Offensichtlich hängt die Ziffernfolge für die

 b-adischen Darstellungen wesentlich von der Wahl des  b  ab. Hingegen hängt die

Kettenbruchentwicklung einer reellen Zahl  r  nur von dieser ab. Sie spiegelt, wie

wir sehen werden, unmittelbar zahlentheoretische Eigenschaften von  r  wider. 

Der Begriff des Kettenbruchs wurde bereits in Abschnitt 2.7 erwähnt. Ein

endlicher Kettenbruch ist ein Ausdruck der Form

1

[ a 0 , a 1 , . . . , ak] =  a 0 +

1

 a 1 + ... 

1

+

 . 

1

 ak− 1 +  ak

Dabei seien immer  a 0 , . . . , ak  reelle Zahlen mit  ai >  0 für  i >  0. Ein endlicher

Kettenbruch bestimmt damit eine reelle Zahl, die rational ist, wenn alle  ai  ganz

sind. 

Ist  a 0 , a 1 , . . .  eine unendliche Folge reeller Zahlen mit  ai >  0 für  i >  0, so ver-

stehen wir unter dem unendlichen Kettenbruch [ a 0 , a 1 , . . . ] im Moment einfach

die Folge der endlichen Kettenbrüche [ a 0 , a 1 , . . . , ak],  k = 1 ,  2 , . . . . Konvergiert

die Folge, so identifizieren wir [ a 0 , a 1 , . . . ] mit dem Grenzwert. 

Jedem endlichen Kettenbruch [ a 0 , . . . , ak] ordnen wir einen Bruch  pk/qk =

[ a 0 , . . . , ak] zu mit eindeutig bestimmtem reellem Zähler und Nenner. Dies ge-

schieht induktiv nach der Länge  k  des Kettenbruchs. Ist  k = 0, so setzen wir

1

 p 0 =  a 0 und  q 0 = 1. Sei  k >  0. Dann ist [ a 0 , . . . , ak] =  a 0 +

. Dem

[ a 1 , . . . , ak]

kürzeren Kettenbruch [ a 1 , . . . , ak] haben wir schon einen Bruch, sagen wir  a/b, 

zugeordnet. Dann setzen wir  pk =  a 0 b +  a  und  qk =  b. Mit dieser Festlegung

folgt mit ein wenig Rechnung die Rekursionsformel für die  pk, qk:

Wir setzen  p− 1 = 1,  q− 1 = 0,  p 0 =  a 0,  q 0 = 1. 

Dann gilt für  k ≥  1:  pk =  akpk− 1 +  pk− 2,  qk =  akqk− 1 +  qk− 2. 

Wir nennen  pk/qk  den  k-ten N¨

 aherungsbruch  oder die  k-te Konvergente

des Kettenbruchs [ a 0 , a 1 , . . . ]. Diese Bezeichnung gilt auch für Kettenbrüche

[ a 0 , a 1 , . . . , an] für  k ≤ n. 

Ab jetzt nehmen wir an, dass alle  ai  ganz und, wie zuvor, für  i >  0 alle  ai >  0

sind. Dann sind auch alle  pi, qi  ganz. Die Gleichungen

 p

( − 1) k

 q

 k− 1

 k pk− 1  − pkqk− 1 = ( − 1) k

und

 − pk =

 , 

 qk− 1

 qk

 qkqk− 1
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die auch für nicht ganzzahlige Kettenbrüche gelten, zeigen, dass alle Näherungs-

brüche gekürzt sind und dass die Näherungsbrüche mit geradzahligen Indizes

monoton wachsen, während die mit ungeradem Index monoton fallen. Weiter

 k− 1

folgt aus der Rekursionsformel, dass  qk ≥  2 2 für alle  k ≥  2 gilt. Insbesondere

ist die Folge der Näherungsbrüche immer konvergent. Nach Vereinbarung ist

dieser Grenzwert der  Wert des Kettenbruchs. 

Jede reelle Zahl ist der Wert eines eindeutig bestimmten endlichen oder un-

endlichen Kettenbruchs. Der Kettenbruch zur reellen Zahl  r  wird dabei durch

folgende Rekursion beschrieben. 

 r 0 =  r, 

 a 0 =  $r 0 %; 

1

solange  ri  nicht ganz ist:  ri+1 =

 , ai

 r

+1 =  $ri+1 %. 

 i − ai

Dabei ist  $x%  der ganzzahlige Anteil der reellen Zahl  x, d. h. die größte ganze

Zahl, die  x  nicht übersteigt. Wir erhalten genau dann einen endlichen Ketten-

bruch, wenn ein  rk  ganz ist. Dann ist  ak =  rk  und  r = [ a 0 , . . . , ak]. Insbesondere

ist dann  r  rational. Ist umgekehrt  r  rational, so sind alle  ri  rational, und der

Nenner (nach Kürzen) von  ri+1 ist echt kleiner als der von  ri, so dass wir nach

endlich vielen Schritten bei einem ganzzahligen  rk  ankommen. Ist  r  irrational, 

so sind alle  ri  irrational, und wir erhalten einen unendlichen Kettenbruch, der

gegen  r  konvergiert. Die letzte Aussage folgt aus der Tatsache, dass  r  stets

zwischen zwei aufeinanderfolgenden Näherungsbrüchen liegt, was man am bes-

ten induktiv beweist. Aus den obigen Gleichungen folgt dann sogar, dass die





Ungleichung  r − pk   <  1 für alle Näherungsbrüche  pk  von  r  gilt. 

 qk

 q 2

 k

 qk

Die obige Rekursion kommt nicht von ungefähr. Denn ist  r  der Wert eines

Kettenbruchs [ b 0 , b 1 , . . . ], so zeigt man induktiv, dass  ri = [ bi, bi+1 , . . . ] und  ai =

 bi  gelten. Damit das bei endlichen Kettenbrüchen bis zum letzten Glied wirklich

stimmt, besteht man darauf, dass das letzte Glied eines endlichen Kettenbruchs

größer als 1 ist. Es gilt nämlich [ a 0 , . . . , ak + 1] = [ a 0 , . . . , ak,  1]. Berücksichtigt

man dies, so sind also Kettenbruchdarstellungen reeller Zahlen eindeutig. 

Die Ziffernfolge einer Kettenbruchdarstellung einer reellen Zahl  r  hängt so-

mit nur von  r  ab. Kettenbruchdarstellungen haben aber einen weiteren Vorzug, 

der sie für zahlentheoretische Fragen attraktiv macht. Die Näherungsbrüche be-

schreiben die beste Approximation von  r  durch rationale Zahlen im folgenden

Sinn. Die rationale Zahl  a/b,  b >  0, heißt  beste rationale Approximation  der

reellen Zahl  r, falls gilt: Ist  c/d  rational mit 0  < d ≤ b  und  c/d =  a/b, so ist

 |br − a| < |dr − c|. Das heißt, dass unter allen rationalen Zahlen, deren Nenner

nicht größer als  b  sind,  a/b  die Zahl  r  am besten approximiert, selbst wenn die

Differenz noch mit dem Nenner multipliziert wird. 

 r  darf dabei durchaus rational sein. In der Dezimaldarstellung von 1 / 3 sind

0 / 1 ,  3 / 10 ,  33 / 100 , . . .  die

Näherungsbrüche“. 3 / 10, 33 / 100 und alle weiteren

” 

Näherungsbrüche“ sind aber keine besten Approximationen, da 1 / 3 einfach

” 

besser ist. Die Näherungsbrüche des Kettenbruchs [0 ,  3] von 1 / 3 sind 0 / 1 ,  1 / 3, 
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also tatsächlich am besten. Abgesehen von einer trivialen Ausnahme gilt dies

allgemein. 

(i) Jede beste rationale Approximation der reellen Zahl  r  ist ein Nähe-

rungsbruch der Kettenbruchentwicklung von  r. 

(ii) Bis auf den nullten Näherungsbruch  a 0 / 1 von  a 0 + 1 / 2 , a 0 ganzzahlig, 

ist jeder Näherungsbruch eine beste rationale Approximation. 

Für  a 0 +1 / 2 ist ( a 0 +1) / 1 genauso gut wie  a 0 / 1, also ist nach unserer Definition

 a 0 / 1 keine beste Approximation. 

Aus Aussage (i) folgt mit ein wenig Rechnung, dass jeder Bruch  a/b  mit  b >  0

und  |r − a/b| <  1 /(2 b 2) ein Näherungsbruch von  r  ist. 

Oben haben wir gesehen, dass für alle Näherungsbrüche von  r  die Ungleichung





 r − pk   <  1 gilt. Die 1 im Zähler der rechten Seite lässt sich nicht verkleinern, 

 qk

 q 2

 k

wenn man darauf besteht, dass die Ungleichung für alle  r  und alle  k  gelten

soll. Ist z. B. 0  < ε <  1,  n >  2(1  − ε) /ε  und  r = [0 , n,  1 , n] =

 n+1 , so ist

 n( n+2)





 r − p 1   >  1 −ε . Für gute rationale Approximationen irrationaler Zahlen reicht

 q 1

 q 2

1

es aber schon aus, eine unendliche Teilfolge der Folge der Näherungsbrüche zu

betrachten. Man interessiert sich also für die kleinste Konstante  c >  0, für die es





für jedes irrationale  r  unendliche viele  k  mit  r − pk   < c  gibt. Die Antwort ist

 qk

 q 2

 k

 √

 c = 1 /  5. Denn es gilt, dass unter drei aufeinanderfolgenden Näherungsbrüchen

 √

mindestens einer die gewünschte Ungleichung für  c = 1 /  5 erfüllt. Dass sich

 √

1 /  5 nicht unterbieten lässt, liegt an einer in vielen Zusammenhängen immer

 √

wieder auftretenden Zahl: dem goldenen Schnitt  τ = (1 +

5) / 2. 

Die Rekursionsformel für Zähler und Nenner der Näherungsbrüche ergibt

für den Kettenbruch [1 ,  1 ,  1 , . . . ] für Zähler und Nenner die Fibonacci-Folge

1 ,  1 ,  2 ,  3 ,  5 ,  8 ,  13 , . . . , wobei der Nenner um Eins hinterherhinkt ( pk =  qk+1). 

Der Quotient aufeinanderfolgender Fibonacci-Zahlen konvergiert gegen den gol-

denen Schnitt, so dass [1 ,  1 ,  1 , . . . ] der Kettenbruch von  τ  ist. Hier gilt nun: Ist

 √

 c <  1 /  5, so gibt es für die Näherungsbrüche von  τ  nur endlich viele  k  mit





 τ − pk   < c . 

 qk

 q 2

 k

Die schöne Zahl  τ  zählt also zu den Zahlen, die sich am schlechtesten durch

rationale Zahlen approximieren lassen. Dass es für manche Zahlen besser geht

und welche zahlentheoretischen Eigenschaften dafür verantwortlich sind, damit

beschäftigen wir uns im folgenden Abschnitt 3.9. 

3.9

Rationale Approximationen algebraischer Zahlen; 

Liouvillesche Zahlen

Dieser Abschnitt setzt den Inhalt des vorhergehenden Abschnitts voraus. Dort

haben wir gesehen, dass ohne Einschränkung an die irrationale Zahl  r  die Un-





gleichung  r − pk   < c  für unendlich viele Näherungsbrüche  p

 q

 k /qk  von  r  genau

 k

 q 2

 k

 √

dann erfüllt ist, wenn  c ≥  1 /  5 ist. Es ist aber leicht, zu einer beliebigen
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positiven Funktion  f überabzählbar viele  r  anzugeben, so dass für alle  k  die





Ungleichung  r − pk   < f ( q

 q

 k ) erfüllt ist. 

 k

Beginne nämlich mit einem beliebigen ganzzahligen  a 0, d. h. mit  p 0 =  a 0, 

 q 0 = 1, und wähle anschließend für  k ≥  0 eine natürliche Zahl  ak+1, so dass

1

 ak+1  > q 2 f( q

 k

 k )

erfüllt ist. Die Werte aller auf diese Weise konstruierten Kettenbrüche erfüllen

die gewünschten Ungleichungen. Wir sehen, dass sich Zahlen, deren Ketten-

bruchglieder rapide steigen, besser durch rationale Zahlen approximieren las-

sen als solche mit schwach oder gar nicht wachsenden  ak. In dem Sinne ist

 τ = [1 ,  1 ,  1 , . . . ] tatsächlich die Zahl, die sich am schlechtesten durch rationale

Zahlen approximieren lässt. Etwas allgemeiner gilt:

(a) Sind die Glieder der Kettenbruchentwicklung der irrationalen Zahl  r

beschränkt, so gibt es  c >  0, so dass die Ungleichung  |r − p/q| < c

 q 2

keine ganzzahligen Lösungen  p, q  mit  q >  0 besitzt. 

(b) Sind die Kettenbruchglieder von  r  unbeschränkt, so gibt es für jedes

 c >  0 unendlich viele ganzzahlige  p, q, die diese Ungleichung erfüllen. 

Die Frage, wie gut sich irrationale Zahlen durch rationale approximieren las-

sen, spielte eine wichtige Rolle, um transzendente Zahlen explizit anzugeben. 

Wir erinnern uns (vgl. Abschnitt 2.8), dass eine reelle oder komplexe Zahl al-

gebraisch heißt, wenn sie Nullstelle eines Polynoms mit rationalen Koeffizienten

ist. Hat das Polynom den Grad  n, so heißt die Zahl algebraisch vom Grad  n. Da

ein Polynom vom Grad  n  höchstens  n  Nullstellen besitzt und es nur abzählbar

viele rationale Polynome gibt, ist die Menge aller algebraischen Zahlen abzähl-

bar. Die Menge aller reellen Zahlen ist überabzählbar. Also sind nahezu“ alle

” 

reellen Zahlen nicht algebraisch, d. h. transzendent. Es ist aber schwierig, kon-

kret transzendente Zahlen anzugeben. Dies gelang Liouville 1844 zum ersten

Mal, indem er folgende Eigenschaft algebraischer Zahlen nachwies (siehe Ab-

schnitt 2.8). 

 Es sei r irrational und algebraisch vom Grad n. Dann gibt es c >  0 , 

 so dass die Ungleichung |r − p/q| < c

 qn keine ganzzahligen L¨

 osungen

 p, q mit q >  0  besitzt. 

Der Beweis ist nicht sehr schwierig; die entscheidende Leistung des Satzes ist

es, einen Zusammenhang zwischen rationaler Approximierbarkeit und Transzen-

denz herzustellen. Es ist nun leicht, mit Hilfe von Kettenbrüchen explizit trans-

zendente Zahlen anzugeben. Wir wählen  a 0 beliebig. Angenommen,  a 0 , . . . , ak

sind gewählt und  pk/qk  ist der zugehörige Näherungsbruch. Wir wählen dann

irgendein  ak+1  > qk− 1. Ist  r  der Wert des so konstruierten Kettenbruchs, dann

 k

gilt









1

1

1

 r − pk   < 

 < 

 < 

 . 

 qk

 qkqk+1

 q 2 a

 k

 k+1

 qk+1

 k
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Sind jetzt eine natürliche Zahl  n  und ein  c >  0 gegeben, so wähle  k ≥ n  so groß, 

dass 1 /qk < c  ist. Dann gilt  |r − pk/qk| < c/qn. Also ist  r  keine algebraische

 k

Zahl vom Grad  n  und somit insgesamt keine algebraische Zahl. 

Reelle Zahlen  r, für die es zu jedem natürlichen  n  und positiven  c  einen Bruch

 p/q  mit  |r − p | < c

 q

 qn  gibt, heißen  Liouvillesche Zahlen. Dies sind also irrationale

Zahlen, die sich besonders gut durch rationale Zahlen approximieren lassen. Es

gibt zwar überabzählbar viele, sie haben aber das Lebesguemaß 0. Die meisten“

” 

transzendenten Zahlen sind daher keine Liouvilleschen Zahlen. 

Für Kettenbruchentwicklungen algebraischer Zahlen vom Grad zwei, soge-

nannter quadratischer Irrationalitäten, besagt der Satz von Liouville zusammen

mit (b) weiter oben, dass die Glieder beschränkt sind. Aber es gilt mehr. Denn

schon lange vor Liouville hat Lagrange folgende wunderbare Aussage bewiesen:

 Kettenbr¨

 uche quadratischer Irrationalit¨

 aten sind periodisch. D. h., 

 dass es l ≥  0  und n >  0  gibt, so dass für die Folge ( ak)  der Glieder

 des Kettenbruchs ak+ n =  ak für alle k ≥ l gilt. Umgekehrt ist der

 Wert jedes periodischen Kettenbruchs eine quadratische Irrationa-

 lit¨

 at. 

Übrigens ist die Umkehrung des Satzes von Liouville nicht richtig. Nicht jede

schlecht approximierbare reelle Zahl ist algebraisch. Im Gegenteil: Es sei  ε >  0; 

dann hat die Menge aller irrationalen  r ∈ [0 ,  1], für die ein  c >  0 existiert, so

dass für alle Brüche  p/q,  q >  0, die Ungleichung  |r − p/q| ≥ c/q 2+ ε  gilt, das

Lebesguemaß 1. 

Gute und schlechte rationale Approximierbarkeit spielt auch außerhalb der

Zahlentheorie eine Rolle. Bei mechanischen Systemen treten bei rationalen

Größenverhältnissen störende Resonanzen auf. Diese machen sich auch bei irra-

tionalen Verhältnissen noch bemerkbar, falls das Verhältnis eine Liouvillezahl

ist. Bei schlechter rationaler Approximierbarkeit verschwinden diese Phänome-

ne. Ein bemerkenswertes und zum Nachdenken aufforderndes Beispiel dazu ist

das einer schwingenden Saite der Länge  L, deren Auslenkungen zu den Zeiten 0

und  T >  0 und deren Endpunktauslenkungen während des gesamten Zeitinter-

valls [0 , T ] vorgegeben sind. Dann hat das Problem, die Auslenkung zu jedem

Zeitpunkt zu bestimmen, maximal eine Lösung, wenn das Verhältnis  r =  T /L

irrational ist. Ist  r  schlecht durch rationale Zahlen approximierbar, so kann man

zeigen, dass bei unendlich oft differenzierbaren Vorgaben auch die Lösung un-

endlich oft differenzierbar ist. Bei anderen Irrationalzahlen  r  kann es sein, dass

die formale Lösung, die bei irrationalem  r  immer existiert, unstetig oder nicht

einmal messbar ist. Die Größen  L  und  T  hängen natürlich von den gewählten

Einheiten ab. Diese sind so zu wählen, dass die Auslenkung  u( x, t) der Saite die

Standardwellengleichung  ∂ 2

 ∂t 2  u − ∂ 2

 ∂x 2  u = 0 erfüllt. Es bleibt aber verwunderlich, 

dass die Lösbarkeit von solch subtilen Eigenschaften des Quotienten  r  abhängt. 
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3.10

Diophantische Gleichungen

Diophantische Gleichungen sind eigentlich gewöhnliche Gleichungen, meistens

eine endliche Familie von Gleichungen zwischen Polynomen in mehreren Va-

riablen mit ganzzahligen Koeffizienten, wie zum Beispiel  X 2 +  Y  2 =  n  oder

 X 2 +  Y  2 =  Z 2. Diophantisch“ wird das Gleichungssystem, wenn man sich nur

” 

für die ganzzahligen Lösungen interessiert. Der im 3. Jahrhundert in Alexandri-

en lebende (wahrscheinlich) griechische Mathematiker Diophantos diskutierte

in seinem Werk  Arithmetika  eine große Anzahl von Gleichungen dieses Typs, 

insbesondere auch  X 2 +  Y  2 =  Z 2. Diese soll Fermat zu seiner berühmten Rand-

notiz in seinem Exemplar der  Arithmetika  inspiriert haben. Diese Notiz besagt, 

dass keine von 0 verschiedenen ganzen Zahlen die Gleichung  Xn +  Y n =  Zn

erfüllen, wenn  n >  2 ist. Er, Pierre de Fermat, habe einen wunderbaren Beweis

dieser Aussage, für den der Seitenrand leider nicht genug Platz biete. Ob Fermat

tatsächlich einen korrekten Beweis kannte, wissen wir nicht. Jedenfalls hat es

fast 350 Jahre gedauert bis zum Beweis dieser Aussage durch A. Wiles im Jahr

1994. (Die über Jahrhunderte unbewiesene Fermatsche Vermutung wurde im

deutschsprachigen Raum etwas irreführend  großer Fermatscher Satz  genannt.)

Die Auseinandersetzung vieler ganz großer Mathematiker mit dem Fermatschen

Problem war eine der treibenden Kräfte der algebraischen Zahlentheorie. 

Das Studium der Nullstellenmenge einer endlichen Familie von Polynomen

(genannt  Variet¨

 at ) ist Gegenstand der algebraischen Geometrie, einer hochent-

wickelten, als schwierig angesehenen mathematischen Theorie mit weitreichen-

der Ausstrahlung in andere mathematische Gebiete und in die Physik. Darauf zu

bestehen, dass die Lösungen nur ganze Zahlen sein dürfen, erhöht den Schwie-

rigkeitsgrad weiter. 

Wir beschränken uns im Folgenden nur auf die diophantischen Probleme, 

die durch eine einzelne Gleichung gegeben sind, und schauen uns exemplarisch

einige Gleichungen an, die auch historisch von Bedeutung sind. 

Die typische Frage bei der Behandlung einer diophantischen Gleichung ist, 

ob die Gleichung keine, endlich viele oder unendlich viele ganzzahlige Lösungen

besitzt. Weiter interessiert die Frage, ob man alle Lösungen effektiv angeben

kann. 

Die lineare diophantische Gleichung  aX +  bY =  c  mit ganzzahligen  a, b  und  c

ist genau dann lösbar, wenn  c  ein Vielfaches des ggT( a, b) ist. Mit Hilfe des Eukli-

dischen Algorithmus erhält man ganze Zahlen  e  und  f  mit  ae +  bf = ggT( a, b)

(siehe Abschnitt 3.1). Damit sind  x 0 =  ec/ ggT( a, b) und  y 0 =  f c/ ggT( a, b)

Lösungen. Jede andere Lösung erhalten wir, indem wir  e, f  durch  e +  kb, f − ka, 

 k ∈  Z, ersetzen. 

Deutlich interessanter sind quadratische Gleichungen. Z. B. gibt es für  n ≡

3 mod 4 keine ganzzahligen Lösungen von  X 2 +  Y  2 =  n. Denn dann ist eines

von  X, Y  ungerade und das andere gerade. Die Summe der Quadrate ist folglich
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kongruent 1 mod 4. Ist  n  eine Primzahl  p ≡  3 mod 4, so gilt umgekehrt, dass

 p  Summe zweier Quadrate ist. Da 2 = 12 + 12 ist, haben wir dazu nur zu

zeigen, dass für eine ungerade Primzahl  p  mit  p ≡  1 mod 4 auf dem Kreis

 x 2 +  y 2 =  p  ein Punkt mit ganzzahligen Koordinaten liegt. Dazu betrachten wir

die Menge  G  aller Punkte mit ganzzahligen Koordinaten im Quadrat  {( x, y)  |

0  ≤ x ≤ √p, 0  ≤ y ≤ √p}. Sie enthält mehr als  p  Punkte. Deshalb gibt es

zu jeder ganzen Zahl  r  zwei verschiedene Punkte ( x, y) und ( x, y) aus  G  mit

 x − ry ≡ x − ry  mod  p. Da  − 1 ein quadratischer Rest mod  p  ist, wenn  p ≡  1

mod 4 ist (siehe Abschnitt 3.7), gibt es  r  mit  r 2  ≡ − 1 mod  p. Nehmen wir ein

solches  r, dann gilt für  a =  |x − x|,  b =  |y − y|  die Gleichung  a 2 +  b 2 =  p. 

Nutzt man weiter die Tatsache, dass ein Produkt zweier Zahlen eine Summe

von zwei Quadraten ist, wenn die Faktoren es sind, so erhält man allgemein die

Aussage, dass  n ≥  0 genau dann eine Summe von zwei Quadraten ist, wenn in

der Primfaktorzerlegung von  n  die Primzahlen, die mod 4 zu 3 kongruent sind, 

mit geradem Exponenten auftreten. Weiterhin gibt es zu gegebenem  n  höchstens

ein ungeordnetes Paar positiver ganzer Zahlen  x, y  mit  x 2 +  y 2 =  n. 

Es ist auch nicht jede nichtnegative Zahl Summe von drei Quadraten, aber

Lagrange konnte zeigen:

 Jede nichtnegative ganze Zahl ist Summe von vier Quadraten. 

Anstelle von Summen von Quadraten kann man allgemeiner Summen  k-ter Po-

tenzen betrachten. Das  Waringsche Problem, ob es zu jedem  k  eine Zahl  w( k)

gibt, so dass jede natürliche Zahl Summe von  w( k)  k-ten Potenzen ist, wurde

Anfang des letzten Jahrhunderts von David Hilbert positiv beantwortet. 

Bei einer homogenen Gleichung wie  X  2 +  Y  2 =  Z 2 interessiert man sich nur

für von (0 ,  0 ,  0) verschiedene Lösungen ( x, y, z) mit ggT( x, y, z) = 1, da alle

anderen Lösungen ganzzahlige Vielfache davon sind. Division durch  ±z  ergibt

einen rationalen Punkt auf dem Einheitskreis  x 2 +  y 2 = 1. Umgekehrt erhält

man durch Multiplikation mit dem Hauptnenner der Koordinaten eines rationa-

len Punkts des Einheitskreises eine Lösung von  X 2 + Y  2 =  Z 2. Man rechnet nun

leicht nach, dass ein von ( − 1 ,  0) verschiedener Punkt ( x, y) des Einheitskreises

genau dann rational ist, wenn die Steigung der durch ( − 1 ,  0) und ( x, y) gehenden

Geraden rational ist. Damit lassen sich alle relativ primen Lösungstripel bestim-

men: Bis auf Reihenfolge der ersten beiden Zahlen und bis auf Vorzeichen sind

dies genau die Tripel der Form ( s 2  −r 2 ,  2 rs, s 2 + r 2) mit  s > r ≥  0, ggT( s, r) = 1

und  s − r ≡  0 mod 2. Die positiven ganzzahligen Lösungen von  X 2 +  Y  2 =  Z 2

heißen in Anlehnung an den Satz von Pythagoras  Pythagor¨

 aische Tripel. Geord-

net nach der Größe ihrer  z-Koordinaten sind (3 ,  4 ,  5) , (5 ,  12 ,  13) , (15 ,  8 ,  17), und (7 ,  24 ,  25) die ersten vier relativ primen Pythagoräischen Tripel. 

Eine weitere diophantische Gleichung historischen Ursprungs ist die  Pellsche

 Gleichung

 X 2  − dY  2 = 1 . 
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Hier betrachten wir nur positive  d’s, die keine Quadrate sind. Die anderen Fälle

sind leicht zu behandeln. Ebenso betrachten wir nur positive Lösungen, da sich

die anderen daraus ergeben. Die Gleichung ist interessant, da die Quotienten

 √

ihrer Lösungen gute rationale Approximationen an

 d  sind und deshalb mit

Kettenbrüchen zu tun haben (siehe die Abschnitte 3.8 und 3.9). Denn ist ( a, b)

 √

 √

eine Lösung, so gilt ( a +  b d)( a − b d) =  ± 1, also



 √ 

 a −



1

1

1

 d =

 √

=

 √

 < 

 . 

 b

 b( a +  b d)

 b 2( a/b +

 d)

2 b 2

Wie wir aus dem Abschnitt über Kettenbrüche wissen, ist dann  a/b  ein Nähe-

 √

rungsbruch von

 d. Da Näherungsbrüche eindeutig bestimmte Zähler und Nen-

ner haben, müssen wir zum Lösen der Pellschen Gleichung nur noch wissen, wel-

che Näherungsbrüche zu Lösungen gehören. Es ist ein Satz von Lagrange (siehe

Abschnitt 3.9), dass die Kettenbrüche quadratischer Irrationalitäten periodisch

sind. Bei irrationalen Wurzeln beginnt die Periode mit dem ersten Glied. Es gibt

 √

 √

also zu jedem irrationalen

 d  ein  p >  0 mit

 d = [ a 0 , a 1 , . . . , ap, a 1 , . . . , ap, . . . ]. 

Damit können wir leicht alle Näherungsbrüche bestimmen und überprüfen, wel-

che die Pellsche Gleichung lösen. Mit den bisherigen Bezeichnungen lautet das

Ergebnis:

 √

 Es sei pn/qn der n-te N¨

 aherungsbruch von

 d = [ a 0 , a 1 , . . . , ap, 

 a 1 , . . . , ap, . . . ] . Dann sind die positiven Lösungen der Gleichung

 X 2  − dY  2 = 1  genau die Paare ( pn, qn) , für die n die Form kp −  1 , 

 k >  0 , hat und ungerade ist. Insbesondere hat X 2  − dY  2 = 1  stets

 unendlich viele L¨

 osungen. 
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Insgesamt sind quadratische diophantische Gleichungen (und Gleichungssys-

teme) gut verstanden. Hat man überhaupt eine rationale Lösung, so erhält

man wie bei der Gleichung  x 2 +  y 2 = 1 eine Parametrisierung aller rationa-

len Lösungen durch Tupel rationaler Zahlen. Die Existenz überprüft man mit

dem  Minkowski-Hasse-Prinzip (Lokal-Global-Prinzip) (vgl. Abschnitt 2.11), das

grob Folgendes besagt: Haben die Gleichungen eine reelle Lösung und für alle  m

eine sogenannte primitive Lösung in Z /m Z, so haben sie auch rationale Lösun-

gen. Schon für Gleichungen dritten Grades gilt das Minkowski-Hasse-Prinzip

allerdings nicht mehr. 

Hat man aber im Falle einer homogenen diophantischen Gleichung dritten

Grades mit drei Unbekannten eine ganzzahlige Lösung, so können wir eine abel-

sche Gruppenstruktur auf der Lösungsmenge nutzen, um aus einer oder mehre-

ren Lösungen neue zu gewinnen. In diesem Falle lässt sich nämlich die Gleichung

durch einen rationalen Koordinatenwechsel in die Form  Y  2 Z =  X 3+ aXZ 2+ bZ 3
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oder, nach Division durch  Z, in die Form  y 2 =  x 3 +  ax +  b  mit rationalen  a,  b

bringen. Die durch diese Gleichungen beschriebenen Kurven heißen  elliptische

 Kurven, nicht weil die Kurven Ellipsen sind, sondern weil Integrale der Form



 dx

 √

beim Berechnen der Längen von Ellipsensegmenten auftreten. Wir

 x 3+ ax+ b

suchen dann wieder nach den rationalen Punkten dieser Kurven. Bei der Di-

vision durch  Z  ist uns die nichttriviale Lösung (0 ,  1 ,  0) verloren gegangen, die

wir als unendlich fernen Punkt der Kurve hinzufügen. Dieser ist das Nullele-

ment einer auf der Kurve definierten abelschen Gruppenstruktur, die man im

Fall, dass 4 a 3 + 27 b 2  = 0 ist, geometrisch beschreiben kann. Sind  P ,  Q  Punkte

der Kurve, so schneidet die Gerade durch  P  und  Q  die Kurve in genau einem

weiteren Punkt  R, wobei im Fall einer vertikalen Geraden  R  der unendlich

ferne Punkt ist. Ist  P =  Q, so ist die Gerade durch  P  und  Q  die Tangente an

die Kurve in  P . Die Summe  P +  Q  von  P  und  Q  ist dann der Spiegelpunkt

 R  von  R  bezüglich der Spiegelung an der  x-Achse, wobei der unendlich ferne

Punkt sein eigener Spiegelpunkt ist. Die Punkte mit rationalen Koordinaten

bilden dabei eine Untergruppe, so dass wir weitere rationale Punkte erhalten, 

indem wir bezüglich dieser Gruppenstruktur Vielfache eines oder ganzzahlige

Linearkombinationen mehrerer rationaler Punkte bilden. 

Die Struktur dieser Untergruppe ist verbunden mit vielen wichtigen Ergeb-

nissen und Problemen der Zahlentheorie. Ein Satz von Mordell besagt, dass sie

für jede elliptische Kurve endlich erzeugt ist, sie also isomorph zu einer direkten

Summe einer endlichen abelschen Gruppe und Z k  ist für ein geeignetes  k ≥  0

(vgl. Abschnitt 6.6). Das  k  hängt natürlich von der elliptischen Kurve, also

von  a  und  b  ab. Die Birch-und-Swinnerton-Dyer-Vermutung, eines der sieben

Millenniumsprobleme des Clay Mathematical Institute, behauptet, dass  k  die

Ordnung des Pols bei 1 einer der elliptischen Kurve zugeordneten  ζ-Funktion

ist. Ein weiteres offenes Problem ist, ob die Menge dieser  k  beschränkt ist. 

Die Gruppenstruktur elliptischer Kurven spielt auch in der Kryptographie

eine wichtige Rolle, wobei hier die Lösungen über einem endlichen Körper be-

trachtet werden. Das Verfahren beruht darauf, dass es bei gegebener elliptischer

Kurve  E  und gegebenem Element  b ∈ E  leicht ist, das Vielfache  nb  in  E  zu be-

rechnen, dass es aber bei genügend großem Körper und vernünftiger Wahl von

 E  und  b  ungemein schwierig ist, bei Kenntnis von  E,  b  und  nb  die natürliche

Zahl  n  zu bestimmen. 

3.12

Zahlk¨

orper

Dieser Abschnitt setzt Vertrautheit mit einigen Begriffen und Aussagen aus

Kapitel 6 voraus, insbesondere aus den Abschnitten über Körpererweiterun-

gen (6.9) und über Ideale und Teilbarkeit (6.5). Denn ein Zahlkörper ist nichts

anderes als eine endliche Körpererweiterung von Q. Bis auf Isomorphie ist

3.12
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ein Zahlkörper damit ein Unterkörper  K  von C, der als Vektorraum über Q

endlich-dimensional ist. Beachte, dass Q  ⊆ K  ist und damit die Multiplika-

tion in  K  den Körper  K  zu einem Q-Vektorraum macht. Alle Elemente von

 K  sind dann algebraisch (vgl. Abschnitt 2.8). Das Hauptinteresse an einem

Zahlkörper  K  gilt nicht  K  selbst, sondern seinem Ring  OK  ganz-algebraischer

Zahlen. Das sind die Elemente aus  K, die Nullstellen eines Polynoms der Form

 Xn +  an− 1 Xn− 1 +  · · · +  a 1 X +  a 0 mit ganzzahligen  a 0 , . . . , an− 1 sind. Beachte, dass jedes Element von  K  Nullstelle eines Polynoms mit ganzzahligen

Koeffizienten ist. Für eine ganz-algebraische Zahl muss zusätzlich der höchste

Koeffizient gleich 1 sein. Ein solches Polynom nennen wir  normiert. Wir werden

gleich sehen, dass  OK  für  K  eine ganz analoge Rolle spielt wie Z für Q. 

Offensichtlich ist jedes  n ∈  Z als Nullstelle von  X − n  ganz-algebraisch. Es

gibt keine weiteren ganz-algebraischen Zahlen in Q. Denn sind  a  und  b  relativ

prime ganze Zahlen und gilt (  a ) n +  a

) n− 1 +  · · · +  a

 b

 n− 1(  a

 b

0 = 0, so ist  an +

 ban− 1 an− 1 +  · · · +  bna 0 = 0; also ist jeder Primteiler von  b  ein Teiler von  a. 

Da ggT( a, b) = 1 ist, ist  b =  ± 1 und deshalb  a ∈  Z. Dies rechtfertigt den

 b

Namensteil ganz“ in ganz-algebraisch. Zur Vereinfachung der Sprechweise ist

” 

es günstig, ganz-algebraische Zahlen einfach ganz zu nennen und die Elemente

aus Z rationale ganze Zahlen zu nennen. Analog heißen die Primelemente von

 OK  einfach prim und die gewöhnlichen Primzahlen rationale Primzahlen. 

 √

Betrachten wir den Zahlkörper Q( i),  i =

 − 1. Ganz allgemein ist ein Ele-

ment  x  eines Zahlkörpers ganz, wenn sein Minimalpolynom ganzzahlig ist. Ein

Element von Q( i) ist also ganz, wenn es Nullstelle eines ganzzahligen normier-

ten Polynoms vom Grad höchstens 2 ist. Man rechnet leicht nach, dass dies

genau die Elemente der Form  a +  ib  mit  a, b ∈  Z, also die Elemente des Rings

Z[ i] sind. Die Elemente von Z[ i] heißen auch  Gaußsche ganze Zahlen. Sie sind

die ganzzahligen Gitterpunkte der Gaußschen Zahlenebene. Für die Teilbar-

keitstheorie ist wichtig, wie die Einheiten, unzerlegbaren Elemente und Prim-

elemente aussehen und ob die eindeutige Primfaktorzerlegung gilt. Für diese

Fragen ist die  Normabbildung N  von Z[ i] in die nichtnegativen ganzen Zahlen, 

 N ( a+ ib) = ( a+ ib)( a−ib) =  a 2 + b 2, sehr nützlich. Diese Abbildung ist multipli-

kativ, so dass genau die Zahlen mit Norm 1 Einheiten sind. Das sind die Zahlen

 ± 1 , ±i. Weiter gibt es zu  α, β ∈  Z[ i] mit  β = 0 Zahlen  q, r ∈  Z[ i] mit  α =  qβ +  r und  N ( r)  < N ( β). Damit ist Z[ i] ein euklidischer Ring und insbesondere ein

Hauptidealring, so dass Primelemente und unzerlegbare Elemente dasselbe sind

und die eindeutige Primfaktorisierung gilt. 

Interessant ist auch die Bestimmung der Primelemente. Ist  z =  a +  ib  prim, 

so teilt  z  eine rationale Primzahl  p, da  N ( z) ein Produkt rationaler Primzahlen

ist. Also ist  N ( z) Teiler von  N ( p) =  p 2 und deshalb  N ( z) =  p  oder  N ( z) =  p 2. 

Ist  N ( z) =  p, so ist zum einen  p  nicht prim in Z[ i], und  p  ist Summe von zwei

Quadraten. Wir sehen, dass die rationale Primzahl  p  genau dann Summe von

zwei Quadraten ist, wenn  p  in Z[ i] nicht mehr prim ist. Aus Abschnitt 3.10

wissen wir, dass genau die zu 3 mod 4 kongruenten Primzahlen keine Summe
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von zwei Quadraten sind. Diese bleiben also prim in Z[ i]. Bis auf Multiplikation

mit Einheiten gibt es keine weiteren Primelemente. Denn ist  N ( z) =  p 2 =  N ( p), 

so unterscheiden sich  p  und  z  um eine Einheit, so dass  p  wie  z  ein Primelement

ist. Interessant ist auch, dass 2 =  −i(1 +  i)2 bis auf eine Einheit ein Quadrat

ist. Die anderen rationalen Primzahlen bleiben entweder prim oder zerfallen in

ein Produkt zweier echt verschiedener Primelemente. 

Kommen wir wieder zurück zu allgemeinen Zahlkörpern  K. Dass  OK

tatsächlich ein Ring ist, ist nicht unmittelbar der Definition zu entnehmen. Es

folgt aber mit ähnlichen Argumenten, wie der Nachweis in Abschnitt 2.8, dass

die algebraischen Zahlen einen Körper bilden. Diese Argumente zeigen auch, 

dass ein Element von  K, das Nullstelle eines normierten Polynoms mit Koeffi-

zienten in  OK  ist, schon selbst in  OK  liegt. Jedes Element  x ∈ K  hat die Form

 a/b  mit  a ∈ OK  und  b ∈  Z. Denn ist  x  Nullstelle des ganzzahligen Polynoms

 bXn + an− 1 Xn− 1 + · · ·+ a 1 X + a 0, so ist ( bx) n +( bx) n− 1 an− 1 + · · ·+ bn− 1 a 0 = 0, also  bx ∈ OK. Insbesondere ist  K  der Quotientenkörper (vgl. Abschnitt 6.7) von

 OK . 

Die letzten Aussagen bestärken die Analogie zwischen  OK ⊆ K  und Z  ⊆  Q. 

Wir haben aber schon am Beispiel von Z[ i] gesehen, dass zu  ± 1 weitere Einheiten

hinzukommen und Primzahlen von Z in  OK  nicht mehr prim zu sein brauchen. 

Aber, und darauf hat uns das Beispiel Z[ i] nicht vorbereitet, die Unterschiede

werden gravierender und mathematisch interessanter, wenn wir uns der Frage

der Eindeutigkeit von Faktorisierungen in unzerlegbare Elemente in  OK  zuwen-

den. Dies geschieht nicht nur aus Freude am Verallgemeinern, sondern man wird

durch konkrete Fragen über ganze Zahlen darauf geführt. Um z. B. die Fermat-

sche Vermutung zu zeigen, genügt es nachzuweisen, dass  Xp + Y p =  Zp  für unge-

rade Primzahlen  p  keine ganzzahligen von Null verschiedenen Lösungen hat. Ist

 ζ =  e 2 πi/p, so ist Z[ ζ] der Ring der ganzen Zahlen von Q( ζ), und in Z[ ζ] gilt für

ganzzahlige  y  und  z  die Gleichung  zp−yp = ( z−y)( z−ζy)( z−ζ 2 y)  · · · ( z−ζp− 1 y). 

Ein Gegenbeispiel zur Fermatvermutung führt daher zu zwei verschiedenen Fak-

torisierungen von  xp, und man kann daraus folgern, dass im Ring Z[ ζ] die Fak-

torisierung in unzerlegbare Elemente anders als in Z nicht eindeutig ist. Man er-

hielte somit einen Widerspruch, wenn Faktorisierungen in Z[ ζ] eindeutig wären. 

Dies wäre ein wirklich einfacher Beweis der Fermatschen Vermutung. Aber in

Z[ ζ] ist leider die Faktorisierung selten eindeutig. 

 √

Der Ganzheitsring von Q(  − 5) ist ein einfaches Beispiel eines Ganzheitsrings, 

 √

in dem die Faktorisierung nicht eindeutig ist. Ganz allgemein gilt für  K = Q(  d)

mit ganzem quadratfreien  d, dass



 √

 {a +  b d | a, b ∈  Z }, 

 d ≡  1 mod 4

 OK =

 √

 {a+ b d | a, b ∈  Z und  a − b ≡  0 mod 2 }, d ≡  1 mod 4 . 

2

 √

Im Ganzheitsring von  K = Q(  − 5) haben wir die Gleichung 2  ·  3 =

 √

 √

(1+

 − 5)(1 − − 5). Man kann zeigen, dass alle vier Faktoren in  OK  unzerlegbar
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 √

sind. Hierzu kann man wieder die Norm nutzen, die hier  a +  b − 5 auf  a 2 + 5 b 2

 √

 √

abbildet. Da 1 ± − 5 und 1 ± − 5 nicht in  O

2

3

 K  liegen und damit keine Einheiten

von  OK  sein können, ist die Faktorzerlegung nicht eindeutig. Diese zunächst

überraschende Tatsache war der Anstoß zu einer der fruchtbarsten Ideen der

klassischen Algebra: der Einführung der Ideale. Zunächst von E. E. Kummer

als ideale Zahlen“ in einem größeren Zahlbereich gedachte Zahlen, um die ein-

” 

deutige Faktorisierung zu retten, wurde die Idee von R. Dedekind in unserem

heutigen Idealbegriff konkretisiert. 

Verfolgen wir also die Idee, die Elemente von  OK  durch die Ideale von  OK

zu ersetzen. Zunächst definiert jedes  r ∈ OK  das Hauptideal ( r) =  rOK  al-

ler Vielfachen von  r  in  OK . Schon dieser Übergang birgt ein Problem, da ein

Hauptideal sein erzeugendes Element nur bis auf Multiplikation mit einer Ein-

heit festlegt: Für  r, s ∈ OK  ist ( r) = ( s) genau dann, wenn es eine Einheit  e

von  OK  gibt, so dass  s =  er  ist. Daher ist die Einheitengruppe von  OK  wichtig

für uns, und wir werden weiter unten darauf eingehen. Auf der anderen Sei-

te verlangt man bei der eindeutigen Primfaktorzerlegung die Eindeutigkeit der

Faktoren nur bis auf Multiplikation mit einer Einheit. Für diese Frage der Ein-

deutigkeit ist es also angenehm, dass für Hauptideale Einheiten sich nicht vom

Einselement unterscheiden. 

Ideale können wir multiplizieren und für sie eine Teilbarkeitstheorie entwickeln

(siehe Abschnitt 6.6): Das Produkt  IJ  der Ideale  I  und  J  ist das kleinste Ideal, 

das alle Produkte  ij,  i ∈ I,  j ∈ J, enthält;  I  teilt  J, wenn  J ⊆ I  ist, und  P  ist

ein Primideal, wenn für je zwei Ideale  I, J  das Ideal  P  eines der Ideale  I  und  J

enthält, wenn  IJ ⊆ P  ist (vgl. Abschnitt 6.6). Die Frage, ob sich jedes Ideal von

 OK  eindeutig in ein Produkt von Primidealen zerlegen lässt, ist also sinnvoll. 

Und tatsächlich, der Übergang von den Elementen in  OK  zu den Idealen zahlt

sich aus, denn:

 Jedes von  0  und R verschiedene Ideal in OK l¨

 asst sich bis auf Rei-

 henfolge eindeutig in ein Produkt von Primidealen zerlegen. 

Dies liegt daran, dass  OK  ein  Dedekind-Ring  ist. Das ist ein nullteilerfreier kom-

mutativer Ring  R  mit 1, in dem jedes Ideal endlich erzeugt ist, jedes über  R

ganze Element des Quotientenkörpers schon in  R  liegt und jedes von 0 verschie-

dene Primideal maximal ist. Diese drei Eigenschaften genügen, um die Existenz

und Eindeutigkeit von Primidealfaktorisierungen in  R  nachzuweisen. 

 √

 √

Kommen wir zurück zum Ganzheitsring Z[  − 5] von Q(  − 5) und betrachten

 √

 √

 √

in ihm die drei Ideale  I = (2 ,  1 +

 − 5),  J = (3 ,  1 +  − 5) und  L = (3 ,  1  − − 5). 

Dabei bezeichnet ( a, b), das kleinste Ideal, das  a  und  b  enthält. Diese Ideale sind

 √

maximal, also prim, und eine kleine Rechnung zeigt, dass (2) =  I 2, (1 +

 − 5) =

 √

 IJ , (1  −

 − 5) =  IL  und (3) =  JL  ist. Also ist  I 2 JL  die Primidealzerlegung

 √

 √

von (2)(3) = (1 +

 − 5)(1  − − 5). 

Keines der drei Ideale  I,  J  oder  L  ist ein Hauptideal, da sonst die Elemente

 √

2, 3 und 1  ±

 − 5 zerlegbar wären. Dass beim Übergang von den Elementen
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zu den Idealen Ideale hinzukommen würden, die keine Hauptideale sind, war

unumgänglich, da in einem Hauptidealring die eindeutige Primfaktorzerlegung

gilt. Die Frage ist, wie viel kommt hinzu? 

Im Folgenden wollen wir aus naheliegenden Gründen das Nullelement und

Nullideal (0) aus unseren Betrachtungen ausschließen. Wollen wir jedes Ideal  I

als äquivalent zu ( r) I  ansehen, so führt das zu folgender Definition: Die Ideale  I

und  J  heißen äquivalent, wenn es Elemente  r  und  s  gibt mit ( r) I = ( s) J . Dies ist

eine Äquivalenzrelation, und die Anzahl  hK  der Äquivalenzklassen ist ein Maß

dafür, um wie viel der Idealbereich größer ist als der Bereich der Hauptideale. 

Sie heißt  Klassenzahl des Zahlk¨

 orpers K. Es ist ein grundlegendes Ergebnis der

algebraischen Zahlentheorie, dass  hK  für jeden Zahlkörper  K  endlich ist. Sie

zu bestimmen ist nicht leicht und ist eine der großen Herausforderungen der

Theorie. 

Kommen wir noch einmal zurück zur Frage, ob  Xp +  Y p =  Zp  für ungera-

de Primzahlen  p  von 0 verschiedene ganzzahlige Lösungen besitzt. Wir hatten

bemerkt, dass solche Lösungen nicht existieren, wenn in Z[ ζp] die eindeutige

Primfaktorzerlegung gilt, also wenn  h Q( ζp) = 1 ist. Kummer konnte zeigen, dass

man die Argumentation bei von 1 verschiedener Klassenzahl retten kann, wenn

man weiß, dass  p  die Klassenzahl von Q( ζp) nicht teilt. Die Primzahlen  p, die

 h Q( ζp) nicht teilen, heißen  reguläre Primzahlen. 

Die Klassenzahl eines imaginär-quadratischen Zahlkörpers, d. h. eines Körpers

 √

Q(  d) mit quadratfreiem negativem  d, ist genau dann 1, wenn  d =  − 1,  − 2,  − 3, 

 − 7,  − 11,  − 19,  − 43,  − 67,  − 163. Dies wurde von Gauß vermutet, aber erst Mitte

des 20. Jahrhunderts bewiesen. Bei reell-quadratischen Zahlkörpern tritt Klas-

senzahl 1 viel häufiger auf. Es wird vermutet, dass dies unendlich oft geschieht. 

Man weiß aber bis heute nicht, ob es überhaupt unendlich viele Zahlkörper mit

Klassenzahl 1 gibt. 

Anders als die Klassenzahl ist die Gruppe  O∗  der Einheiten fast immer unend-


K

lich. Nur für imaginär-quadratische Zahlkörper ist sie endlich, und man erhält:

 √

Sei  K = Q(  d) mit negativem quadratfreiem  d, so ist  O∗ =  { 1 , − 1 }, es sei


K

denn,  d =  − 1 , − 3. Für  d =  − 1 ist  OK = Z[ i], der Ring der Gaußschen ganzen

Zahlen, und  O∗  ist zyklisch von der Ordnung 4 mit  i  als Erzeugendem. F


K

ür

 d =  − 3 ist  O∗  zyklisch von der Ordnung 6 mit  ζ


K

6 als Erzeugendem. 

Ist  d  quadratfrei und positiv, also  K  ein reell-quadratischer Zahlkörper, so

 √

sind alle Elemente  a+ b d ∈ OK, für die ( a, b) ganzzahlige Lösung der Pellschen

 √

 √

Gleichung  a 2  − db 2 =  ± 1 ist, Einheiten, denn es gilt dann ( a +  b d)( a − b d) =

 ± 1. Ist  d ≡  1 mod 4, so sind dies alle Einheiten, wie man an der multiplikativen

 √

Normabbildung  OK →  Z , a +  b d → a 2  − db 2 erkennt. Im anderen Fall kommen

 √

noch die Elemente  a+ b d  mit ungeraden  a, b  hinzu, für die  a 2 −db 2 =  ± 1 gilt. Die

2

4

Pellsche Gleichung hat unendlich viele ganzzahlige Lösungen (Abschnitt 3.10). 

Also ist  O∗  f


K

ür reell-quadratische Zahlkörper  K  stets unendlich. 

4 Diskrete Mathematik

Die diskrete Mathematik untersucht endliche Strukturen, also endliche Men-

gen samt ihren Relationen und Funktionen. Neben allgemeinen Struktursätzen

sind hier vor allem auch Algorithmen von Interesse, die bestimmte kombinatori-

sche Objekte effizient konstruieren. Algorithmisch gelöste Optimierungsproble-

me bestimmen auch die vielen Anwendungen der diskreten Mathematik in der

Informationstechnologie. 

Wir beginnen mit einigen kombinatorischen Verfahren zur rechnerischen Be-

stimmung der Anzahl der Elemente von endlichen Mengen. Diese Zählungen

spielen nicht zuletzt auch in der elementaren Wahrscheinlichkeitstheorie eine

wichtige Rolle. Im zweiten Abschnitt führen wir die grundlegenden Begriffe und

Sprechweisen der Graphentheorie ein. Sie sind für die diskrete Mathematik von

universeller Bedeutung, da sie immer eingesetzt werden können, wenn Relatio-

nen auf endlichen Mengen untersucht werden. Viele Fragestellungen der diskre-

ten Mathematik erlauben eine elegante graphentheoretische Formulierung. 

In den zehn folgenden Abschnitten stellen wir dann, in loser historischer Rei-

henfolge, wichtige Grundbegriffe der Theorie vor, oft zusammen mit Algorith-

men und exemplarischen Beispielen. Wir beginnen mit den klassischen Euler-

Zügen, in denen die Graphentheorie historisch wurzelt. Begrifflich verwandt, 

aber viel komplizierter sind die Hamilton-Kreise, die wir zusammen mit dem

noch ungelösten P  = NP-Problem besprechen. Die Bäume sind das Thema

des fünften Abschnitts. Wir diskutieren aufspannende Teilbäume von Graphen, 

werfen aber auch einen Blick auf den Baumbegriff der Ordnungstheorie und das

fundamentale Lemma von König. Der sechste Abschnitt beginnt mit dem ele-

mentaren Dirichletschen Taubenschlagprinzip und stellt dann den berühmten

Satz von Ramsey in der Sprechweise der Färbungen vor. Danach wenden wir

uns den bipartiten Graphen zu und besprechen den Heiratssatz in verschiedenen

Varianten. Im achten Kapitel isolieren wir ausgehend von der Frage nach der

Konstruktion von aufspannenden Bäumen mit minimalem Gewicht den Begriff

eines Matroids und die zugehörigen Greedy-Algorithmen. Im neunten Kapitel

definieren wir Netzwerke und Flüsse und stellen den Min-Max-Satz über maxi-

male Flüsse und minimale Schnitte vor. Kürzeste Wege in gewichteten Graphen

sind das Thema des zehnten Kapitels – die Algorithmen dieser Fragestellung

sind die Grundlage der modernen Routenplanung. Das elfte Kapitel behandelt

die effektive Transitivierung von Relationen mit Hilfe von Matrizen. Wir schlie-

ßen mit den planaren Graphen, die von der Eulerschen Polyederformel über das

Vierfarbenproblem bis zum modernen Begriff eines Minors einen weiten Bogen

spannen, der die vielen Facetten der Theorie besonders schön widerspiegelt. 

O. Deiser et al.,  12 x 12 Schlüsselkonzepte zur Mathematik, 
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4.1

Kombinatorisches Z¨

ahlen

Eine Grundaufgabe der endlichen Kombinatorik ist das Zählen der Elemente

von endlichen Mengen. Für eine endliche Menge  M  ist die  M¨

 achtigkeit  oder

 Kardinalit¨

 at  von  M , in Zeichen  |M |, definiert als die Anzahl der Elemente von

 M . Die einfachsten für alle endlichen Mengen  M  und  N  gültigen Zählungen

sind:

 |M ∪ N| =  |M| +  |N| − |M ∩ N|, |M × N| =  |M| · |N|, |MN| =  |N||M|, 

wobei  M N =  {f | f :  M → N }. Die letzte Aussage können wir so begründen:

Definieren wir eine Funktion  f  von  M  nach  N , so haben wir, für jedes  x ∈ M , 

genau  |N |  Möglichkeiten zur Definition von  f ( x). Insgesamt gibt es dann  |N ||M|

Funktionen von  N  nach  M . (Einen strengeren Beweis liefert eine Induktion nach

 |M|.) Ähnliche Argumente zeigen, dass für alle Mengen  M  und  N  mit  |M| =  m

und  |N | =  n  gilt:

 |{f:  M → N | f  ist injektiv }| =  n( n −  1)  · · · ( n − m + 1) =  n!  /( n − m)!  , 

 |{f:  N → N | f  ist bijektiv }| =  n! 

Speziell gibt es also  n! Permutationen der Zahlen 1 , . . . , n. 

Eines der wichtigsten Prinzipien des kombinatorischen Zählens lautet, dass

 |M| =  |N|  genau dann gilt, wenn es eine Bijektion  f:  M → N  gibt (vgl. hier-

zu auch Abschnitt 12.1). Eine Anwendung dieses Prinzips ist die Zählung der

Potenzmenge  P( M) einer Menge  M. Hier gilt:

 |P( M) | =  |M { 0 ,  1 }| = 2 |M|. 

Zum Beweis ordnen wir einem  A ⊆ M  die Indikatorfunktion  χA:  M → { 0 ,  1 }

mit  χA( x) = 1, falls  x ∈ A,  χA( x) = 0, falls  x /

 ∈ A, zu. Die Funktion  F :

 P( M)  → M{ 0 ,  1 }  mit  F ( A) =  χA  für alle  A ⊆ M  ist bijektiv, und hieraus folgt die Behauptung. 

Ist  |M | =  n  und  M =  {x 1 , . . . , xn}, so können wir in ähnlicher Weise ein

 A ⊆ M  mit einem 0-1-Tupel ( a 1 , . . . , an) identifizieren: Wir setzen  ai = 1, falls

 xi ∈ A, und  ai = 0 sonst. Dieser Übergang erlaubt uns, mengentheoretische

Operationen als Rechenoperationen mit 0-1-Tupeln darzustellen. Der Schnitt-

bildung entspricht die punktweise Minimumsbildung von 0-1-Tupeln, der Kom-

plementbildung der Tausch von 0 und 1, usw. Der Menge  A =  {x 1 , x 3 }  entspricht

z. B. das Tupel 10100, und  Ac  entspricht dem Tupel 01011. 

Statt alle Teilmengen einer Menge  M  mit  n  Elementen zu zählen, können

wir für jedes  k ≤ n  fragen: Wie viele Teilmengen von  M  gibt es, die genau  k

Elemente besitzen? Wir definieren hierzu

[ M ] k =  Pk( M ) =  {A ⊆ M | |A| =  k}. 

4.1
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Es gilt nun  |[ M ] k| =  n , wobei die  Binomialkoeffizienten n [gelesen:  n über

 k

 k



 k] definiert sind durch  n =  n!  /(( n − k)!  k!). 

 k



Zur Begründung von  |[ M ] k| =  n  beobachten wir, dass es genau  n · ( n −  1)  ·

 k

 . . . · ( n − k + 1) =  n!  /( n − k)! Tupel ( a 1 , . . . , ak) mit paarweise verschiede-

nen Einträgen  ai  in  { 1 , . . . , n}  gibt. Für jedes derartige Tupel ( a 1 , . . . , ak) gibt

es aber genau  k! Tupel ( b 1 , . . . , bk) mit  {a 1 , . . . , ak} =  {b 1 , . . . , bk}. Damit ist



 |[ M] k| =  n · . . . · ( n − k + 1) /k! =  n . 

 k

Ein hübsches Korollar der Bestimmung der Mächtigkeit von [ M ] k  ist die Sum-







menformel

 n

= 2 n, die sich aus  P( M) =

[ M ] k (mit paar-

0 ≤k≤n

 k

0 ≤k≤n

weise disjunkten Summanden) ergibt. 

Lesen wir Teilmengen von  M  wieder als


S

0-1-Tupel der Länge  |M |, so ergibt unsere

Zählung von [ M ] k  noch eine weitere Interpre-



tation der Binomialkoeffizienten:

 n

ist die

 k

…

Anzahl der 0-1-Tupel der Länge  n  mit ge-



nau  k  vielen Einsen. Damit ist  n  die Anzahl

 k

1

k

n + 1

der Möglichkeiten,  k  Murmeln auf  n  Plätze zu

verteilen. 



Ebenso gibt es

 n

Zick-Zack-Pfade im obenstehenden Diagramm, die in  n

 k

Schritten vom Startpunkt  S  der ersten Zeile zum ( k + 1)-ten Punkt der ( n + 1)-

ten Zeile führen, wobei man bei jedem Schritt entweder um eins nach links oder

rechts unten gehen darf. 

Weitere Zählungen, die die Binomialkoeffizienten involvieren, sind z. B.:



 |{( a

 n

1 , . . . , ak)  |  1  ≤ a 1  < . . . < ak ≤ n}| =  |[ { 1 , . . . , n}] k| =

, 

 k





 |{( a

 n

1 , . . . , ak)  |  1  ≤ a 1  ≤ . . . ≤ ak ≤ n}| =  |[1 , . . . , n +  k −  1] k| =

. 

 n+ k− 1



Die Bezeichnung Binomialkoeffizienten“ rührt daher, dass die Werte  n  beim

” 

 k

Ausmultiplizieren von Binomen ( x +  y) n  auftauchen. Es gilt die  binomische

 Formel

  

 n

( x +  y) n =

 xkyn−k. 

 k

0 ≤k≤n

In der Tat wählen wir beim distributiven Ausmultiplizieren von ( x +  y) n n-

oft entweder  x  oder  y. Wählen wir  k-oft  x, so erhalten wir den Term  xkyn−k. 



Nun ist die Wahl  k-oft  x“ auf  n -viele Weisen möglich, und wir erhalten die

” 

 k

binomische Formel. 



Eine Umformulierung unserer Zählung von [ M ] k  lautet:  n  ist die Anzahl der

 k

Möglichkeiten, eine Menge mit genau  n  Elementen so in zwei nummerierte Teile

zu zerlegen, dass der erste Teil  k  und der zweite Teil  n − k  Elemente besitzt. 

Dies suggeriert folgende allgemeinere Frage: Wieviele Möglichkeiten gibt es, eine

Menge  M  mit genau  n  Elementen so in  r  nummerierte Teile zu zerlegen, dass der

 i-te Teil genau  ki-viele Elemente besitzt? Diese Zahl ist für alle  k 1 , . . . , kr ≥  0

mit  k 1 +  · · · +  kr =  n  von Null verschieden. Eine Analyse des Problems ergibt, 
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dass die gesuchte Anzahl gleich

 n

=  n!  /( k

 k 1 ...kr

1!  . . . kr !) ist. Diese Werte sind

als  Multinomialkoeffizienten  bekannt. Analog zur binomischen Formel gilt







 n

( x 1 +  · · · +  xr) n =

 xk 1  · . . . · xkr

 r , 

 k

1

1  . . . kr

0 ≤ki≤n,k 1+ ···+ kr= n

der sog.  Multinomialsatz . 

4.2

Graphen

Wir betrachten Diagramme der folgenden Art: Wir zeichnen Punkte auf ein

Papier und verbinden einige Punkte mit einer Linie oder auch einem Pfeil; 

die Verbindungen zwischen den Punkten können zudem mit Zahlen beschriftet

sein. Die mathematischen Fragen, die derartige Diagramme aufwerfen, bilden

die Themen der Graphentheorie. Wir fragen zum Beispiel: Gibt es einen Weg

von einem Punkt  a  zu einem Punkt  b? Wie findet man einen kürzesten Weg? 

Wie findet man einen preiswertesten Weg, wenn wir die Zahlen an den Verbin-

dungen als Kosten lesen? Enthält das Diagramm einen Kreis? Lassen sich alle

Verbindungen in einem ununterbrochenen Zug zeichnen? Können wir die Verbin-

dungslinien ohne Überschneidungen zeichnen? Sind zwei gegebene Diagramme

strukturell identisch? Kaum eine Theorie der Mathematik operiert mit so an-

schaulichen Begriffen wie die Graphentheorie. Hinzu kommen die vielfältigen

Anwendungen der Theorie, die von der Organisation von komplexen Verkehrs-

netzen über Job-Zuordnung und Stundenplanerstellung bis hin zur spielerischen

Frage reichen, wie man ein Labyrinth erkundet und wieder herausfindet. His-

torisch stehen die spielerischen Fragen sogar im Vordergrund, die Vielzahl der

praktischen Anwendungen ist ein jüngeres Phänomen. 

Der einfachste Strukturtyp der Graphentheorie ist der folgende: Ein  Graph  ist

ein Paar  G = ( E, K), bestehend aus einer endlichen nichtleeren Menge  E  von

 Ecken  und einer Menge  K ⊆ {{a, b} | a, b ∈ E,  a =  b}  von  Kanten.  Die Anzahl

der Ecken heißt die  Ordnung  von  G, während man die Anzahl der Kanten als

die  Gr¨

 oße  von  G  bezeichnet. In Visualisierungen von  G  zeichnen wir die Ecken

 E  als benannte Punkte und verbinden dann genau die Punkte  a  und  b  mit einer

Linie, für die  {a, b} ∈ K  gilt. 

Obige Graphen sind endlich,  ungerichtet (keine Pfeile an den Verbindungs-

linien),  einfach (keine Mehrfachverbindungen zwischen zwei Ecken),  schlingen-

 frei (keine Verbindungen von einer Ecke zu sich selbst) und  ungewichtet (keine

Zahlen an den Kanten). Entsprechend allgemeinere Graphen sind oft nützlich. 

Gerichtete Graphen kann man z. B. in der Form  G = ( E, K) mit  K ⊆ E 2 no-

tieren. Hier bedeutet ( a, b)  ∈ K, dass ein Pfeil von der Ecke  a  zur Ecke  b  führt. 

Gerichtete Graphen sind damit beliebige Relationen auf endlichen Mengen, und

obige ungerichtete Graphen kann man als spezielle symmetrische Relationen auf

endlichen Mengen  E  ansehen. 
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Wir schreiben auch  ab ∈ K, falls die Ecken  a  und  b  durch eine Kante verbun-

den sind. (In ungerichteten Graphen ist  ab =  ba, in gerichteten Graphen ist  ab

von  ba  zu unterscheiden.) Gilt  ab ∈ K, so heißt die Ecke  b  ein  Nachbar  von  a. 

Eine Ecke  b  heißt ein  Nachbar einer Teilmenge A  von  E, falls es ein  a ∈ A  gibt, 

das mit  b  benachbart ist. Die Anzahl der Nachbarn einer Ecke  a  heißt der  Grad

von  a  und wird mit  d( a) bezeichnet. 

Ein  Kantenzug  der  L¨

 ange n von a nach b  in einem Graphen ist eine endliche

Folge  a =  a 0 , a 1 , . . . , an =  b  von Ecken derart, dass  aiai+1 für alle  i < n  eine

Kante ist. Gilt  a =  b, so heißt der Kantenzug  geschlossen,  andernfalls heißt er

 offen.  Die Ecken  a 0 , . . . , an  heißen die  besuchten Ecken  und die Kanten  aiai+1

die  besuchten Kanten  des Kantenzuges. Ein Kantenzug heißt ein  Weg,  wenn er

keine Ecke zweimal besucht. Wird keine Kante zweimal besucht, so heißt der

Kantenzug  einfach.  Jeder Weg ist offenbar ein einfacher Kantenzug. 

Ist  a 0 , . . . , an  ein Weg mit  n ≥  2 und ist zudem  ana 0  ∈ K, so heißt der

Kantenzug  a 0 , . . . , an, a 0 ein  Kreis  mit  n + 1 Ecken. Die kleinsten Kreise eines

Graphen sind seine  Dreiecke,  d. h. Kreise mit 3 Ecken. 

Wichtige spezielle Graphen sind:

 Kn = ( { 1 , . . . , n}, {ij |  1  ≤ i < j ≤ n}) für  n ≥  1 , 

 Kn,m = ( { 1 , . . . , n +  m}, {ij |  1  ≤ i ≤ n, n + 1  ≤ j ≤ n +  m}) für  n, m ≥  1 , 

 Cn = ( { 1 , . . . , n}, {i( i + 1)  |  1  ≤ i < n} ∪ {n 1 }) für  n ≥  3 . 

1

1

1

4

5

2

2

5

2

5

3

4

3

4

3

K5

K3, 2

C5

Ein Graph heißt  vollst¨

 andig,  wenn je zwei seiner Ecken durch eine Kante

verbunden sind. Die Graphen  Kn  sind vollständig. Ein Graph heißt  bipartit, 

wenn es eine Zerlegung seiner Eckenmenge in Mengen  E 1 und  E 2 gibt derart, 

dass die Nachbarn aller Ecken in  E 1 der Menge  E 2 angehören und umgekehrt. 

Die Graphen  Kn,m  sind bipartit. Ein Graph heißt ein  Kreis,  falls er einen Kreis

besitzt, der alle Ecken besucht. Die Graphen  Cn  sind Kreise. 

Ein Graph  G = ( E, K) heißt ein  Untergraph  von  G = ( E, K), falls  E ⊆ E

und  K =  {ab ∈ K | a, b ∈ E}, d. h.,  G  ist eine Unterstruktur von  G  im

üblichen Sinne. Dagegen heißt  G  ein  Teilgraph  von  G, falls  E ⊆ E  und  K ⊆ K

gilt. 
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Ein Graph  G = ( E, K) heißt  zusammenh¨

 angend,  wenn sich je zwei seiner

Ecken durch einen Kantenzug verbinden lassen. Statt Kantenzug“ können wir

” 

hier gleichwertig Weg“ fordern, denn wir können alle Kreise aus Kantenzügen

” 

herausschneiden. 

Eine Ecke  a  heißt  erreichbar  von einer Ecke  b, falls es einen Weg von  a

nach  b  gibt. Die Erreichbarkeit ist eine Äquivalenzrelation auf den Ecken. Die

Äquivalenzklassen dieser Relation heißen die  Zusammenhangskomponenten  des

Graphen. Ein Graph ist genau dann zusammenhängend, wenn er nur eine Zu-

sammenhangskomponente besitzt. Schließlich heißt eine Kante eine  Br¨

 ucke,  falls

das Entfernen der Kante die Anzahl der Zusammenhangskomponenten erhöht. 

4.3

Euler-Z¨

uge

Euler bewies im Jahre 1736, dass es nicht möglich ist, alle sieben Brücken der

Stadt Königsberg so abzulaufen, dass man jede Brücke genau einmal überquert

und am Ende wieder am Startpunkt ankommt. Weiter fand er einfaches Kri-

terium für das hinter der Frage liegende allgemeine Problem. Diese Ergebnisse

gelten als der Beginn der Graphentheorie. 

Ein  (geschlossener) Euler-Zug  in einem Graphen  G  ist ein geschlossener Kan-

tenzug  a 0 , . . . , an =  a 0 in  G  derart, dass jede Kante von  G  genau einmal be-

sucht wird. Ein Graph  G  heißt  eulersch, wenn ein Euler-Zug in  G  existiert. 

Anschaulich ist ein Graph eulersch, wenn wir ihn in einem Zug zeichnen können

und dabei Anfangs- und Endpunkt gleich sind. Von praktischer Bedeutung sind

Euler-Züge zum Beispiel für Postboten, die jede Straße genau einmal abfahren

und am Ende wieder beim Postamt ankommen wollen. 

Alle Kreise  Cn  sind eulersch. Die vollständigen Graphen  K 3 und  K 5 sind eu-

lersch, wie man sich leicht überlegt, nicht aber die Graphen  K 2 und  K 4. Ebenso

ist der bipartite Graph  K 2 ,  2 eulersch, nicht aber der Graph  K 2 ,  3. Beim Experi-

mentieren mit diesen und weiteren Graphen entdeckt man folgende notwendige

Bedingung für die Existenz von Euler-Zügen: Ist  G  eulersch, so haben alle Ecken

einen geraden Grad. Denn laufen wir auf einer Kante in eine Ecke hinein, so

müssen wir auf einer bislang unbenutzten Kante die Ecke wieder verlassen. Da

zudem die Startecke auch die Endecke sein soll, paart sich in dieser Weise auch

der letzte Schritt mit dem ersten. 

Streichen wir alle Ecken mit dem Grad 0, so ist ein eulerscher Graph sicher zu-

sammenhängend. Erstaunlicherweise gilt nun folgende hinreichende Bedingung

für die Existenz von Euler-Zügen: Sei  G  ein zusammenhängender Graph und

jede Ecke habe einen geraden Grad; dann existiert ein Euler-Zug in  G. Zum

Beweis beobachten wir: Starten wir bei einer beliebigen Ecke  a  und laufen wir

nun entlang beliebiger, aber bislang unbesuchter Kanten entlang, so gelangen

wir irgendwann wieder zur Ecke  a  zurück. Wir bleiben nämlich niemals bei einer
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Ecke  b =  a  stecken, da wir nach dem Hereinlaufen in die Ecke  b  insgesamt eine

ungerade Zahl von Kanten der Ecke verbraucht haben, also noch mindestens

eine Kante übrig ist. 

Mit einem derartigen Lauf haben wir i. A. aber noch keinen Euler-Zug gefun-

den. Jedoch besitzt der aus allen noch unbesuchten Kanten gebildete Teilgraph

wieder die Eigenschaft, dass alle Ecken geraden Grad haben. Wir wiederholen

also unseren Lauf so oft, bis alle Kanten besucht worden sind. Am Ende erhalten

wir einen Euler-Zug durch eine Überlagerung von geschlossenen Kantenzügen. 

Der Zusammenhang des Graphen wird gebraucht, damit wir die Kantenzüge

geeignet ineinander einhängen können. 

Wir geben einen Algorithmus, der dieser Beweisskizze entspricht, konkret an. 

Gegeben sei ein eulerscher Graph  G  mit Eckenmenge  E =  { 1 , . . . , n}  und positi-

ven Graden der Ecken. Wir konstruieren eine Folge von einfachen geschlossenen

Kantenzügen  Z 0 , Z 1 , . . . , Zm  nach dem folgenden Verfahren von Carl Hierholzer

aus dem Jahre 1873. 

 Algorithmus von Hierholzer : Zunächst sei  Z 0 = 1. Ist  Zi  konstruiert, aber

noch kein Euler-Zug, so sei  a  die erste Ecke auf  Zi, von der eine noch unbe-

suchte Kante wegführt. Wir konstruieren nun einen einfachen geschlossenen in

 a  beginnenden Kantenzug  Wi, indem wir immer die kleinste Ecke wählen, zu

der eine bislang unbesuchte Kante hinführt. Finden wir keine solche Ecke mehr, 

so ist  Wi  konstruiert und wir sind notwendig wieder bei der Ecke  a  angelangt. 

Wir fügen nun  Wi  in  Zi  an der ersten Stelle des Besuchs der Ecke  a  ein und

erhalten so den Kantenzug  Zi+1. Das Verfahren wird so lange iteriert, bis alle

Kanten besucht wurden. 

Wir führen den Algorithmus zur Illustration für den untenstehenden euler-

schen Graphen durch. Er verläuft wie folgt:

 Z 0 = 1, nächste Startecke: 1,  W 0 = 1 ,  2 ,  3 ,  5 ,  2 ,  4 ,  1

 Z 1 =  W 0, nächste Startecke: 4,  W 1 = 4 ,  6 ,  7 ,  8 ,  4

 Z 2 = 1 ,  2 ,  3 ,  5 ,  2 ,  4 ,  6 ,  7 ,  8 ,  4 ,  1, nächste Startecke: 5,  W 2 = 5 ,  8 ,  10 ,  5

 Z 3 = 1 ,  2 ,  3 ,  5 ,  8 ,  10 ,  5 ,  2 ,  4 ,  6 ,  7 ,  8 ,  4 ,  1, nächste Startecke: 7,  W 3 = 7 ,  9 ,  10 ,  7

 Z 4 = 1 ,  2 ,  3 ,  5 ,  8 ,  10 ,  5 ,  2 ,  4 ,  6 ,  7 ,  9 ,  10 ,  7 ,  8 ,  4 ,  1. 

Mit  Z 4 ist ein Euler-Zug in  G  konstruiert. 

Wir können auch Mehrfachverbin-

1

2

3

dungen zwischen zwei Ecken zulas-

sen. Zusätzlich können wir gerich-

tete Graphen betrachten, bei denen

4

5

die Kanten nur in einer Richtung

durchlaufen werden. Die für Euler-

Züge gute Bedingung lautet dann, 

6

7

8

dass in jede Ecke genauso viele Kan-

ten hinein- wie herausführen. Obige

¨

9

10

Uberlegungen zeigen dann insbeson-
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dere: Jeder zusammenhängende einfache ungerichtete Graph besitzt einen ge-

schlossenen Kantenzug, der jede Kante genau zweimal durchläuft, und zwar je

einmal in jeder Richtung. 

4.4

Hamilton-Kreise und das P  = NP-Problem

Analog zur Existenz von Euler-Zügen kann man fragen, ob ein Graph einen

Kreis besitzt, der alle Ecken genau einmal besucht. Ein derartiger Kreis heißt

ein  Hamilton-Kreis,  und ein Graph heißt  hamiltonsch,  falls er einen Hamilton-

Kreis besitzt. (William Hamilton stellte 1857 ein Spiel vor, bei dem gezeigt

werden sollte, dass der Graph des Dodekaeders einen Hamilton-Kreis besitzt.)

Im Gegensatz zu den eulerschen Graphen ist kein einfaches Kriterium dafür

bekannt, ob ein Graph hamiltonsch ist oder nicht. Einige hinreichende Kriterien

sind gefunden worden. So gilt zum Beispiel folgender von Gabriel Dirac 1952

bewiesener Satz: Sei  G = ( E, K) ein Graph der Ordnung  n ≥  3, und es gelte

 d( a)  ≥ n/ 2 für alle Ecken  a; dann ist  G  hamiltonsch. Der Beweis des Satzes

liefert auch einen Algorithmus, der es erlaubt, einen Hamilton-Kreis für die

speziellen Graphen des Satzes zu konstruieren. 

Ein allgemeines effektives Verfahren, das korrekt entscheidet, ob ein gegebe-

ner Graph hamiltonsch ist oder nicht, existiert wahrscheinlich nicht. Um dieses

wahrscheinlich“ zu präzisieren, müssen wir weiter ausholen. 

” Viele Fragen der Graphentheorie und anderer mathematischer Gebiete führen

zu sogenannten  Entscheidungsproblemen.  Beispiele sind:

(a) Sind diese beiden Graphen isomorph? 

(b) Ist dieser Graph zusammenhängend? 

(c) Besitzt dieser Graph eine Brücke? 

(d) Ist diese Zahl eine Primzahl? 

Alle diese Fragen sind Ja-Nein-Fragen. Wie man dann z. B. im Falle der

Existenz einen Isomorphismus zwischen zwei Graphen findet, ist ein Konstruk-

tionsproblem, das auf einem anderen Blatt steht. 

Formaler können wir ein Entscheidungsproblem definieren als eine Menge

 I  von sog.  Inputs  zusammen mit einer Funktion  e:  I → { 0 ,  1 }, wobei 1 für

ja“ und 0 für

nein“ steht. Der Frage, ob zwei Graphen (mit Ecken in N)

” 

” 

isomorph sind, entspricht dann das Entscheidungsproblem  e:  I → { 0 ,  1 }  mit

der Input-Menge  I =  {( G 1 , G 2)  | G 1 , G 2 sind Graphen mit Ecken in N }  und

 e( G 1 , G 2) = 1 genau dann, wenn es einen Isomorphismus zwischen  G 1 und  G 2

gibt. 

Ist  e  ein Entscheidungsproblem, so stellt sich die Frage, ob sich die Funktion  e

berechnen lässt und welche Komplexität eine Berechnung von  e  besitzt. Bere-

chenbare Entscheidungsprobleme heißen auch  l¨

 osbar.  In der Komplexitätstheorie

sind viele interessante Klassen von Entscheidungsproblemen isoliert worden. Am
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wichtigsten sind hier die drei Klassen P, NP und co-NP, die wir informal wie

folgt beschreiben können: Die Klasse P besteht aus allen Entscheidungsproble-

men, die sich in polynomieller Laufzeit lösen lassen (gemessen an der Länge des

Inputs). Die Klasse NP besteht dagegen aus all denjenigen Entscheidungsproble-

men, für die man eine positive Lösung in polynomieller Zeit auf ihre Richtigkeit

hin überprüfen kann. Kurz: Geratene Lösungen lassen sich schnell verifizieren. 

Analog besteht die Klasse co-NP aus allen Problemen, für die man eine negati-

ve Lösung in polynomieller Zeit verifizieren kann. Die Abkürzung NP steht für

 non-deterministic polynomial  und verweist auf eine äquivalente Definition der

Klasse NP mit Hilfe nichtdeterministischer Berechnungen. 

Es ist nun eine offene Frage von fundamentaler Bedeutung, ob die Klassen

P und NP überhaupt verschieden sind. (Dieses sog. P  = NP-Problem gehört

zu den sieben Millenniums-Problemen, auf die jeweils 1 Million Dollar Preisgeld

ausgesetzt ist.) Ebenso offen ist, ob die Klassen NP und co-NP verschieden sind. 

Vermutet wird P  = NP und NP  = co-NP. 

Das Problem zu entscheiden, ob ein gegebener Graph hamiltonsch ist oder

nicht, gehört der Klasse NP an, denn von einer geratenen Lösung – ein Weg in  G

– können wir schnell überprüfen, ob diese Lösung tatsächlich ein Hamilton-Kreis

ist oder nicht. Diese Beobachtung ist aber noch keine Rechtfertigung für die

Aussage, dass das Hamilton-Problem wahrscheinlich“ nicht in P liegt. Hierzu

” 

brauchen wir eine weitere komplexitätstheoretische Unterscheidung:

Ein Entscheidungsproblem  e:  I → { 0 ,  1 }  in NP heißt NP -vollständig,  wenn

sich jedes Problem  e:  I  → { 0 ,  1 }  in NP in polynomieller Zeit auf das Problem

 e  reduzieren lässt, d. h., wir können in polynomieller Zeit jedem  I ∈ I   ein

 I ∈ I  zuordnen, so dass  e( I) =  e( I). Aus der Definition folgt: Kann man von

einem einzigen NP-vollständigen Problem zeigen, dass es in polynomieller Zeit

lösbar ist, so ist P = NP. Da man annimmt, dass P  = NP gilt, ist der Nachweis

der NP-Vollständigkeit das zurzeit beste Mittel, um zu begründen, warum ein

Problem

wahrscheinlich“ nicht in P liegt. Richard Karp hat 1972 bewiesen, 

” 

dass das Hamilton-Problem NP-vollständig ist. Damit ist dieses Problem nicht

polynomiell lösbar, es sei denn, es gilt wider Erwarten doch P = NP. 

Anders liegen die Dinge für die Frage, ob zwei gegebene Graphen isomorph

sind. Dieses Problem liegt erneut in NP, denn für zwei Graphen  G 1 und

 G 2 können wir eine Funktion  f :  E 1  → E 2 in polynomieller Zeit darauf-

hin überprüfen, ob sie ein Isomorphismus ist oder nicht. Im Gegensatz zum

Hamilton-Problem und den meisten anderen Problemen, die in NP liegen und

für die kein polynomieller Algorithmus gefunden werden konnte, ist es nicht

gelungen zu zeigen, dass das Isomorphie-Problem NP-vollständig ist. Weiter

hat die Annahme, dass das Isomorphie-Problem in P liegt, ungewöhnliche kom-

plexitätstheoretische Konsequenzen, und deswegen gilt es auch hier als wahr-

” 

scheinlich“, dass das Problem nicht in P liegt. Das Isomorphie-Problem gehört

damit anscheinend zu denjenigen Problemen in NP, die nicht in P liegen, aber

auch nicht NP-vollständig sind. 
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4.5

B¨

aume

Der Begriff eines Baumes taucht in der Mathematik in verschiedenen Kontexten

auf. Wir betrachten zunächst Bäume in der Graphentheorie. 

Ein Graph  G  heißt ein  Wald,  falls er keine Kreise besitzt. Ist  G  zudem zu-

sammenhängend, so heißt  G  ein  Baum.  Beispiele für Bäume sind:

5

6

7

8

2

3

4

2

3

4

9

1

5

1

8

7

6

Der linke Baum sieht in der Tat wie ein richtiger Baum aus, der rechte dagegen

wie ein Stern. Wir können aber jeden Baum-Graphen so zeichnen, dass er wie ein

richtiger Baum aussieht. Hierzu zeichnen wir eine beliebige Ecke als sog.  Wurzel

aus. Alle zur Wurzel benachbarten Ecken tragen wir eine Stufe oberhalb der

Wurzel ein und ziehen Verbindungslinien. Die zweite Stufe besteht dann aus

allen neuen Nachbarn der Ecken der ersten Stufe, samt den entsprechenden

Verbindungslinien, usw. So entsteht ein Gebilde, das sich ausgehend von seiner

Wurzel nach oben in einer baumartigen Weise verzweigt. 

Für Bäume gelten die beiden folgenden, nicht schwer einzusehenden Charak-

terisierungen:

 Wegkriterium: Ein Graph  G = ( E, K) ist genau dann ein Baum, wenn es für

alle  a, b ∈ E  genau einen Weg von  a  nach  b  gibt. 

 Kantenkriterium: Ein zusammenhängender Graph  G = ( E, K) ist genau dann

ein Baum, wenn seine Größe gleich der um eins verminderten Ordnung ist, d. h., 

es gilt  |K| =  |E| −  1. 

Bäume sind nicht nur für sich interessante Graphen, sie dienen auch dazu, an-

dere Graphen zu analysieren. Wichtig ist hier das Konzept eines aufspannenden

Baumes. Sei  G = ( E, K) ein zusammenhängender Graph und sei  G = ( E, K)

ein Baum mit  K ⊆ K. Wir sagen, dass der Baum  G  den Graphen  G auf-

 spannt,  falls es für alle  a, b ∈ E  einen Weg von  a  nach  b  in  G  gibt. Ist  G  ein

Netz mit Häusern (Ecken) und Straßen (Kanten), so beschreibt ein aufspannen-

der Baum eine geeignete und nicht weiter reduzierbare Stromversorgung: Legen

wir an allen Straßen des aufspannenden Baumes eine Stromleitung, so werden

alle Häuser mit Strom versorgt. 

Es gibt verschiedene effiziente Verfahren, die für einen beliebigen zusam-

menhängenden Graphen einen aufspannenden Baum liefern. Ein derartiges Ver-

fahren ist die sog.  Breitensuche  BFS (für engl. breadth first search). Gegeben
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ist ein zusammenhängender Graph  G = ( E, K) mit  E =  { 1 , . . . , n}. Wir kon-

struieren rekursiv Bäume  Gi = ( Ei, Ki) mit dem  BFS-Verfahren  wie folgt:

Zunächst sei  E 0 =  { 1 }  und  K 0 =  ∅. Sei nun  Gi  konstruiert für ein  i. Ist

 Ei =  E, so stoppen wir mit Ausgabe von  Gi. Andernfalls seien  e 1  < . . . < em

die Ecken von  E − Ei, die mit einer Ecke von  Ei  benachbart sind. Für jedes  ej

sei  kj  die Kante von  G, die  ej  mit einer kleinstmöglichen Ecke in  Ei  verbindet. 

Wir setzen dann  Ei+1 =  Ei ∪ {e 1 , . . . , em},  Ki+1 =  Ki ∪ {k 1 , . . . , km}  und

wiederholen das Verfahren. 

Verwandt ist die  Tiefensuche  oder das  DFS-Verfahren (depth first search). 

Hier wird der aufspannende Baum nicht stufen-, sondern astweise gebildet. 

Die Theorie der partiellen Ordnungen stellt einen Baumbegriff zur Verfügung, 

der viel allgemeiner ist als der der Graphentheorie: Eine partielle Ordnung  P

heißt ein  (Wurzel-)Baum,  falls  P  ein kleinstes Element besitzt (die  Wurzel )

und für alle  p ∈ P  die Menge  {q ∈ P | q < p}  wohlgeordnet ist. Ein  q ∈ P

heißt ein  direkter Nachfolger  eines  p ∈ P , falls  p < q  gilt, aber kein  r  existiert

mit  p < r < q. Die direkten Nachfolger von  p  beschreiben die Verzweigung des

Baumes an der Stelle  p. Besitzt  p  keinen direkten Nachfolger, so heißt  p  ein  Blatt

des Baumes. Die Blätter von  P  sind genau die maximalen Elemente von  P . 

Die Bäume der Graphentheorie lassen sich durch eine stufenweise Anordnung, 

gefolgt von einer von unten nach oben verlaufenden Transitivierung der Kan-

tenrelation, in ordnungstheoretische Bäume verwandeln. Umgekehrt können wir

jeden endlichen ordnungstheoretischen Baum als graphentheoretischen Baum

ansehen, indem wir, beginnend mit seiner Wurzel, stufenweise direkte Nachfol-

ger und entsprechende Verbindungslinien in ein Diagramm einzeichnen, dabei

aber die Transitivität der partiellen Ordnung unterdrücken. (Ist  q  ein direkter

Nachfolger von  p  und  s  ein solcher von  q, so zeichnen wir Kanten  pq  und  qs  ein, 

nicht aber  ps.)

Unendliche ordnungstheoretische Bäume spielen eine wichtige Rolle in der

Kombinatorik. Wir nennen ein  Z ⊆ P  einen  Zweig  eines Baumes  P , falls  Z

eine maximale linear geordnete Teilmenge von  P  ist. Es gilt nun der folgende

fundamentale Existenzsatz von Dénes König aus dem Jahre 1927:

Lemma von König:  Sei P ein unendlicher Baum derart, dass jedes

 p ∈ P nur endliche viele direkte Nachfolger besitzt. Dann besitzt P

 einen unendlichen Zweig. 

Dieses Lemma erlaubt es oft, kombinatorische Ergebnisse zwischen dem Un-

endlichen und dem Endlichen zu übersetzen (vgl. Abschnitt 4.6). 

4.6

F¨

arbungen und der Satz von Ramsey

Das Dirichletsche  Taubenschlag-  oder  Schubfachprinzip  besagt: Ist  n > r  und

verteilen wir  n  Tauben auf  r  Löcher, so gibt es ein Loch, das mit zwei Tauben
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besetzt ist. Eine andere Formulierung des Prinzips benutzt die Sprechweise der

Färbungen: Ist  n > r  und färben wir  n  Objekte mit  r  Farben, so gibt es zwei

Objekte, die die gleiche Farbe erhalten. 

Einige einfache Anwendungen und Varianten des Prinzips sind:

(a) Hat eine reelle Funktion  n + 1 Nullstellen im Intervall [0 ,  1], so gibt es

zwei Nullstellen, deren Abstand kleinergleich 1 /n  ist. 

(b) Sind 6 Zahlen gegeben, so haben zwei der Zahlen denselben Rest bei

der Division durch 5. Analog haben von 13 Personen immer zwei im

selben Monat Geburtstag. 

(c) Ist  M  eine Menge mit mehr als  |n 1 | +  . . . +  |nr|  Elementen und sind

 M 1 , . . . , Mr  Mengen mit  M ⊆ M 1  ∪ . . . ∪ Mr, so existiert ein  i  mit

 |Mi| > ni. 

(d) Ist  n > ( m −  1) r  und färben wir  n  Objekte mit  r  Farben, so gibt es

mindestens  m  Objekte, die dieselbe Farbe erhalten. 

Zur Formulierung einer starken Verallgemeinerung des Dirichletschen Prinzips

brauchen wir einige Vorbereitungen. Für jede natürliche Zahl  r ≥  1 und jede

Menge  M  nennen wir eine Funktion  f :  M → { 1 , . . . , r}  auch eine  Färbung  der

Menge  M  mit  r Farben.  Für jedes  x ∈ M  heißt  f ( x) die  Farbe von x  unter der

Färbung  f . Eine Teilmenge  N  von  M  heißt  homogen,  falls jedes  x ∈ N  dieselbe

Farbe unter  f  besitzt, d. h.,  f |N  ist eine konstante Funktion. 

Wir führen weiter noch eine Notation ein, mit deren Hilfe wir Ergebnisse über

gewisse Färbungen einfach formulieren können. Für natürliche Zahlen n und m

schreiben wir  n → ( m)22, falls für jede Färbung  f: [ { 1 , . . . , n}]2  → { 1 ,  2 }  ein

 M ⊆ { 1 , . . . , n}  mit  |M | =  m  existiert derart, dass [ M ]2 homogen gefärbt ist. 

Hierbei ist wieder [ M ]2 die Menge der zweielementigen Teilmengen von  M . 

Die Pfeilnotation hat offenbar folgende Eigenschaft:  n → ( m)22 bleibt richtig, 

wenn  n  erhöht oder  m  erniedrigt wird. 

Eine Färbung  f : [ { 1 , . . . , n}]2  → { 1 ,  2 }  können wir graphentheoretisch sehr

anschaulich visualisieren. Wir betrachten den vollständigen Graphen mit der



Eckenmenge  { 1 , . . . , n}  und färben jede seiner  n  Kanten entweder rot“ oder

2

” 

grün“. Gilt  n → ( m)2

” 

2, so existieren Ecken  e 1  < . . . < em  derart, dass alle Kan-

ten zwischen diesen Ecken dieselbe Farbe besitzen, d. h., der durch  e 1 , . . . , em

gegebene Untergraph ist entweder komplett rot oder komplett grün gefärbt. Wir

können nun folgenden von Frank Ramsey 1930 bewiesenen Satz formulieren:

Satz von Ramsey:  F¨

 ur alle m existiert ein n mit n → ( m)22 . 

Die kleinste für  m  geeignete Zahl  n  wie im Satz wird mit  R( m) bezeichnet. 

Nur wenige Werte  R( m) konnten genau bestimmt werden. Es gilt zum Beispiel

 R(1) = 1,  R(2) = 2,  R(3) = 6 und  R(4) = 18. Mit diesen Werten erhalten wir

folgende Illustrationen des Satzes von Ramsey: Sitzen sechs Personen an einem

Tisch, so gibt es drei Personen, die sich paarweise mögen, oder drei Personen, 

die sich paarweise nicht mögen. In jeder Gesellschaft von 18 Personen gibt es
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vier Personen, die sich paarweise bereits kennen, oder vier Personen, die sich

paarweise noch nicht kennen. 

Der Satz von Ramsey ist ein prominentes Beispiel für folgenden Typ von

mathematischen Sätzen: Gewisse mathematische Strukturen besitzen große Teil-

strukturen mit einer höheren Organisation und Ordnung. Der Satz von Bolzano-

Weierstraß aus der Analysis besagt, dass jede beschränkte Folge reeller Zahlen

eine konvergente Teilfolge besitzt, und er gehört damit zu diesem Typ. Kombi-

natorische Beispiele für derartige Sätze können wir aus dem Satz von Ramsey

erhalten: Sei  n =  R( m) für ein  m, und es sei  a 1 , . . . , an  eine beliebige Folge

von natürlichen Zahlen. Dann existiert eine monotone steigende oder monoton

fallende Teilfolge der Länge  m. Zum Beweis färben wir für alle 1  ≤ i < j ≤ n

das Paar  {i, j}  rot“, falls  a

blau“, falls  a

” 

 i < aj , und ” 

 j ≤ ai. Eine homoge-

ne Menge der Mächtigkeit  m  liefert dann die Indizes einer monoton steigenden

oder monoton fallenden Teilfolge von  a 1 , . . . , an. Dieses Resultat kann noch ver-

bessert werden: Nach einem Satz von Erd˝

os und Szekeres besitzt jede Folge

natürlicher Zahlen der Länge  n 2 + 1 eine monotone steigende oder monoton fal-

lende Teilfolge der Länge  n + 1. Für diese Verbesserung sind problemspezifische

Untersuchungen notwendig, der Satz von Ramsey liefert dagegen eine Fülle von

derartigen Ergebnissen, wenn auch nicht immer mit den optimalen Werten. 

Für natürliche Zahlen  n, m, k, r  schreiben wir  n → ( m) kr, falls für jede

Färbung  f : [ { 1 , . . . , n}] k → { 1 , . . . , r}  ein  M ⊆ { 1 , . . . , n}  mit  |M | =  m  existiert derart, dass [ M ] k  homogen gefärbt ist. Es gilt nun:

Satz von Ramsey, allgemeine Version:  F¨

 ur alle m, k, r existiert ein n

 mit n → ( m) kr. 

Obige Formulierung (4) des Schubfachprinzips lautet in Pfeilnotation: Es gilt

 n → ( m)1 r  für alle  m, r  und alle  n > ( m− 1) r. Damit ist der Satz von Ramsey eine

Verallgemeierung des Schubfachprinzips in der Variante (4), wobei die optimalen

 n-Werte für  k ≥  2 nicht mehr einfach berechnet werden können. Schließlich gilt

folgende unendliche Version:

Satz von Ramsey, unendliche Version:  F¨

 ur alle m, k, r und alle f :

[N] k → { 1 , . . . , r} existiert ein unendliches A ⊆  N  derart, dass [ A] k

 homogen gef¨

 arbt ist. 

Man kann diese unendliche Version beweisen und dann mit Hilfe des Lemmas

von König über unendliche Zweige in Bäumen die endliche Version ableiten. 

4.7

Bipartite Graphen

Wir nannten einen Graphen bipartit, wenn es eine Zerlegung seiner Ecken in

zwei Mengen  E 1 und  E 2 gibt derart, dass die Nachbarn aller Ecken in  E 1 der
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Menge  E 2 angehören und umgekehrt. Der Graph unten ist z. B. bipartit unter

der Zerlegung  E 1 =  { 1 ,  2 ,  3 ,  4 ,  5 ,  6 }  und  E 2 =  {a, b, c, d, e}. 

6

e

1

2

3

5

d

4

5

4

c

6

7

8

3

b

9

10

2

a

1

Jeder Kreis in einem bipartiten Graphen muss eine gerade Länge haben, da

er zwischen den Mengen  E 1 und  E 2 hin- und herpendelt. Im Graphen rechts ist

zum Beispiel 3 , d,  1 , b,  3 ein Kreis der Länge 4. Nicht schwer einzusehen ist, dass

auch die Umkehrung gilt:

 Kreiskriterium: Ein Graph  G = ( E, K) ist genau dann bipartit, wenn jeder

Kreis in  G  eine gerade Länge hat. 

Eine klassische Motivation für die Beschäftigung mit den auf den ersten Blick

recht speziellen bipartiten Graphen ist das Jobzuordnungsprobem: Gegeben sind

Mitarbeiter einer Firma (die Menge  E 1) und zudem Aufgaben, die zu erledigen

sind (die Menge  E 2). Wir verbinden nun jeden Mitarbeiter mit all denjenigen

Jobs durch eine Kante, die er ausführen kann. Dadurch entsteht ein bipartiter

Graph. Die Frage ist nun, wie wir die Jobs auf die Mitarbeiter so verteilen, 

dass möglichst viele Mitarbeiter mit einem Job versorgt werden. Wir suchen ein

größtmögliches sog. Matching. Eine analoge Fragestellung ist das Heiratspro-

blem: Eine Menge  E 1 von Frauen und eine Menge  E 2 von Männern liefern einen

bipartiten Graphen, indem man alle gegengeschlechtlichen Sympathien als Kan-

ten einträgt. Der verkuppelnde Mathematiker soll nun ein größtmögliches Mat-

ching aus diesem Graphen extrahieren, also möglichst viele Frauen und Männer

so verheiraten, dass nur friedliche Ehen entstehen. 

Im Graphen oben ist zum Beispiel 1c, 2b, 3d, 5e ein Matching, und es kann

kein Matching mit fünf Paaren geben, da die Ecken a und c nur mit der 1

verbunden sind und deswegen a oder c unversorgt bleiben muss. Derartige kom-

binatorische Begründungen sind nur in übersichtlichen Einzelfällen möglich. Wir

fragen deswegen nach Sätzen, die die Größe eines maximalen Matchings beleuch-

ten, und weiter nach einem effektiven Algorithmus, der es erlaubt, ein maximales

Matching zu konstruieren. Hierzu präzisieren wir zunächst unsere Begriffe. 

Ein  Matching  in einem bipartiten Graphen ist eine Menge von Kanten derart, 

dass je zwei Kanten der Menge keine Ecke gemeinsam haben. Die  Matching-Zahl

 m( G) von  G  ist definiert als max( {|M | | M  ist ein Matching von  G}). 
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Ein Phänomen der Graphentheorie sind sog. Min-Max-Sätze, die ein gewisses

Minimum als ein gewisses Maximum charakterisieren. Der über ein Maximum

definierten Matching-Zahl entspricht zum Beispiel ein natürliches Minimum:

 Matching-Zahl und Tr¨

 ager-Zahl : Für jeden bipartiten Graphen  G = ( E, K)

gilt:

 m( G) = min( {|T | | T  ist ein Träger von  G}) , 

wobei ein  T ⊆ E  ein  Träger  von  G  heißt, falls jede Kante von  G  eine Ecke

besitzt, die zu  T  gehört. 

Dieser Satz geht auf Dénes König zurück (1931). Er ist äquivalent zum fol-

genden sog.  Heiratssatz  von Philip Hall aus dem Jahre 1935: Sei  G = ( E, K)

bipartit durch die Zerlegung  E 1 , E 2. Dann sind äquivalent:

(a)  m( G) =  |E 1 |. 

(b) Jede Teilmenge  A  von  E 1 hat mindestens  |A|  Nachbarn. 

Hall hat genauer die folgende kombinatorische Auswahlaussage bewiesen: Sind

 S 1 , . . . , Sn  Teilmengen einer endlichen Menge  S, so gibt es genau dann paarweise

verschiedene  x 1  ∈ S 1, . . . ,  xn ∈ Sn, wenn die Vereinigung von je  k-vielen

Mengen  Si  mindestens  k  Elemente besitzt. Dieser Satz ist, wie man leicht sieht, 

eine Formulierung des Heiratssatzes in der Sprache der Mengen. 

Wir skizzieren nun noch die Grundstruktur eines Verfahrens, mit dem wir ein

maximales Matching effektiv konstruieren können. Ist  M  ein Matching in einem

bipartiten Graphen, so heißt ein Weg  a 0 , . . . , an  in  G M -alternierend,  wenn die

Ecken  a 0 und  an  zu keiner Kante von  M  gehören und zudem genau jede zweite

besuchte Kante des Weges in  M  liegt:

a0

a2

…

an− 1

∉ M

∈ M

∉ M

∈ M

∈ M

∉ M

a1

a3

an− 2

an

Aus einem  M -alternierenden Weg  a 0 , . . . , an  lässt sich ein Matching  M   ab-

lesen, das eine Kante mehr besitzt als  M , nämlich

 M  =  {a 0 a 1 , a 2 a 3 , . . . , an− 1 an} ∪ ( M − {a 1 a 2 , . . . , an− 2 an− 1 }) . 

 M   besteht also aus den  /

 ∈ M“-Kanten des obigen Diagramms und allen Kanten

” 

des Matchings  M , die an dem alternierenden Weg gar nicht beteiligt sind. Da die

Ecken  a 0 und  an  keiner Kante von  M  angehören, ist  M  wieder ein Matching. Es

gilt  |M | =  |M |+1. Da wir diese Prozedur iterieren können, ist die Konstruktion

eines maximalen Matchings auf die Konstruktion von  M -alternierenden Wegen

zurückgeführt. 
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4.8

Matroide

Bei unserer Untersuchung von Bäumen haben wir gesehen, wie wir einen auf-

spannenden Baum in einem zusammenhängenden Graphen konstruieren können. 

Wir betrachten nun noch das allgemeinere Problem, wie wir einen aufspannen-

den Baum in einem gewichteten Graphen konstruieren können, der ein minima-

les Gewicht unter allen aufspannenden Bäumen besitzt. 

Sei also  G = ( E, K) ein zusammenhängender Graph, und sei  g:  K →  R eine



Gewichtsfunktion. Für jedes  K ⊆ K  heißt  g( K) =

 k∈K g( k) das  Gewicht

von  K. Gesucht ist ein  G  aufspannender Baum ( E, K) mit minimalem Gewicht

 g( K). Die Konstruktion solcher Bäume ist einfacher als man denken würde, 

denn es zeigt sich, dass der folgende Ad-Hoc-Algorithmus geeignet ist:

 Greedy-Algorithmus:  Sei  k 0 , . . . , kn  eine Aufzählung aller Kanten von  G  mit

 g( k 0)  ≤ . . . ≤ g( kn). Wir konstruieren rekursiv Wälder  Ki  in  G. Zunächst sei

 K 0 =  {k 0 }. Ist  Ki  konstruiert, so sei, im Falle der Existenz,  k  die erste Kante

der Aufzählung, die nicht in  Ki  liegt und für welche  Ki ∪ {k}  immer noch ein

Wald ist. Wir setzen dann  Ki+1 =  Ki ∪ {k}  und wiederholen das Verfahren. 

Existiert  k  nicht, so geben wir  Ki  als Ergebnis aus. 

Das englische Wort

greedy“ bedeutet

gierig“, und in der Tat ist der Al-

” 

” 

gorithmus so gestrickt, dass er in jedem Schritt einfach die erstbeste Kante

verschlingt, die seinem Grundziel nicht widerstreitet, in unserem Fall der Kon-

struktion eines kreisfreien Graphen. 

Für

den

gewichteten

Gra-

3

10

a

b

c

phen rechts sammelt der Greedy-

1

5

3

2

Algorithmus

folgende

Kanten:

 ad, ej, ec, eh, ab, be, gi, f g, ij. 

Dabei

d

e

werden die Kanten  dh  und  hj  und

7

4

2

die Kante  bd  ignoriert, da sie einen

5

f

g

h

1

Kreis erzeugen würden. Die aufge-

4

9

4

sammelten Kanten bilden einen auf-

5

spannenden Baum mit dem Gewicht

i

j

1 + 1 + 2 + 2 + 3 + 3 + 4 + 5 + 5 = 26. 

Beim Beweis der Korrektheit des Greedy-Algorithmus entdeckt man, dass nur

gewisse allgemeine Struktureigenschaften der Wälder eines Graphen benötigt

werden. Diese Struktureigenschaften fasst der von Hassler Whitney 1935 ein-

geführte Begriff eines Matroids zusammen, der eine wichtige Rolle in der mo-

dernen Kombinatorik einnimmt. Sei hierzu  M  eine beliebige endliche Menge, 

und sei  U  ein nichtleeres System von Teilmengen von  M. Dann heißt  U  ein

 Matroid  auf  M , falls gilt:

(a) Ist  A ∈ U  und  B ⊆ A, so ist  B ∈ U .  (Teilmengeneigenschaft)

(b) Sind  A, B ∈ U  und hat  A  genau ein Element mehr als  B, so gibt es

ein  a ∈ A − B  mit  B ∪ a ∈ U .  (Austauscheigenschaft)
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Die Elemente von  U  nennt man auch  unabhängige  Mengen. Ein  B ∈ U  heißt

eine  Basis,  falls  B  maximal in  U  ist. Beispiele für Matroide sind:

(1) Sei  M  eine endliche Teilmenge eines Vektorraums  V . Dann ist das Sys-

tem  U  der in  V  linear unabhängigen Teilmengen von  M  ein Matroid

auf  M . Denn Teilmengen von linear unabhängigen Mengen sind linear

unabhängig, und die Austauscheigenschaft gilt nach dem Steinitzschen

Austauschsatz. Dieses Beispiel motiviert auch viele Bezeichnungen der

Matroid-Theorie. 

(2) Ist  M  eine Menge und  k ≤ |M |, so ist  U =  {A ⊆ M | |A| ≤ k}  ein

Matroid auf M. 

(3) Seien  F, K  Körper mit  F ⊆ K, und sei  M ⊆ K  endlich. Dann ist das

System  U =  {X ⊆ M | X  ist algebraisch unabhängig über  F }  ein

Matroid auf  M . 

(4) Ist  G = ( E, K) ein Graph, so ist  U =  {L ⊆ K | ( E, L) ist ein Wald }

ein Matroid auf  K. Ist  G  zusammenhängend, so sind die Basen dieses

Matroids genau die aufspannenden Bäume in  G. 

(5) Ist  G = ( E, K) bipartit durch  E 1 und  E 2, so ist  U =  {{a ∈ E 1  |

 a  ist Ecke einer Kante in  M } | M  ist Matching von  G}  ein Matroid

auf  E 1. 

Wir können nun unser ursprüngliches Optimierungsproblem verallgemeinern. 

Gegeben ist ein Matroid  U  auf  M  und eine Gewichtsfunktion  g:  M →  R. 



Gesucht ist eine Basis  B  mit minimalem Gewicht  g( B) =

 g( x). Diese

 x∈B

Aufgabe erledigt erneut ein gieriges“ Verfahren:

” 

 Greedy-Algorithmus f¨

 ur Matroide:  Sei  x 0 , . . . , xn  eine Aufzählung von  M  mit

 g( x 0)  ≤ . . . ≤ g( xn). Wir konstruieren rekursiv  Ai ∈ U . Zunächst sei  A 0 =  ∅. Ist

 Ai  konstruiert, so sei, im Falle der Existenz,  x  das erste Element der Aufzählung

mit  x /

 ∈ Ai  und  Ai∪{x} ∈ U . Wir setzen dann  Ai+1 =  Ai∪{x}  und wiederholen

das Verfahren. Existiert  x  nicht, so geben wir  Ai  als Ergebnis aus. 

Alle gewichteten Optimierungsprobleme, die sich durch ein Matroid beschrei-

ben lassen, können also mit dem Greedy-Algorithmus gelöst werden. Man kann

den Greedy-Algorithmus zum Beispiel dazu verwenden, Matchings in bipartiten

Graphen zu konstruieren, die eine sog. Eignungsfunktion respektieren. Hier ist

auf der bipartiten Zerlegungsmenge  E 1 zusätzlich eine Funktion gegeben, die

angibt, als wie wichtig“ es erachtet wird, dass ein  a ∈ E  am Matching beteiligt

” 

wird (z. B. 

allgemeine Erfahrung“ oder

bisherige Leistungen“ eines Mitar-

” 

” 

beiters einer Firma). Gesucht ist dann ein Matching mit einem größtmöglichen

Gewicht der beteiligten Ecken in  E 1. 
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4.9

Netzwerke und Fl¨

usse

Ein  Netzwerk  ist eine Struktur  N = ( E, K, q, s, c) mit den folgenden Eigenschaf-

ten: (1) ( E, K) ist ein gerichteter Graph, (2)  q  und  s  sind verschiedene Ecken des

Graphen, (3)  c:  K →  N. Die Ecke  q  heißt die  Quelle  und die Ecke  s  die  Senke

des Netzwerks. Die Funktion  c:  K →  N heißt die  Kapazitätsfunktion  von  N. 

Im folgenden Netzwerk sind die Kapazitäten an den Kanten eingetragen:

2

a

d

5

1

3

3

2

2

q
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e
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1

1

3

3

c

f

Ein Netzwerk kann man sich als ein verzweigtes System von gerichteten Roh-

ren – die Kanten des Netzwerks – vorstellen, die eine Quelle mit einer Senke

verbinden. Jedes Rohr hat dabei einen bestimmten Durchmesser – seine Ka-

pazität. Anwendungen dieser Netzwerke sind die Modellierung, Analyse und

Verbesserung von Verkehrsflüssen, Produktionsprozessen, usw. Die Frage, die

sich hier stellt, ist, welche Menge an Einheiten, Gütern, usw. wir kontinuierlich

von der Quelle in die Senke transportieren können. Hierzu definieren wir:

Ein  Fluss  in einem Netzwerk  N  ist eine Funktion  f :  K →  N mit:

(a)  f ( k)  ≤ c( k) für alle  k ∈ K, 





(b)

 f ( k) =

 f ( k) für alle  a ∈ E,  a =  q, s, wobei

 k∈K,k+= a

 k∈K,k−= a

 k+ die End- und  k−  die Anfangsecke einer gerichteten Kante  k  ist. 

Ein Fluss in einem Netzwerk kann also durch jedes Rohr“ nicht mehr trans-

” 

portieren als es die Kapazität des Rohrs erlaubt. Zudem gilt, dass in jede von

der Quelle und Senke verschiedene Ecke genauso viel hinein- wie herausfließt. 

Ist  f  ein Fluss in einem Netzwerk, so ist der  Wert w( f ) von  f  definiert als

der Netto-Fluss in die Senke des Netzwerks, d. h., wir setzen





 w( f ) =

 f ( k)  −

 f ( k) . 

 k∈K,k+= s

 k∈K,k−= s

Da in unseren Flüssen nichts verloren geht, ist der Wert eines Flusses gleich

dem Netto-Ausfluss der Quelle, d. h., es gilt:





 w( f ) =

 f ( k)  −

 f ( k) . 

 k∈K,k−= q

 k∈K,k+= q

Einen Fluss können wir in der Form  f ( k) /c( k) in ein Diagramm eintragen. 

Obiges Netzwerk erlaubt zum Beispiel folgenden Fluss mit Wert 6:
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2/2

a

d

3/5

1/1

2/3

2/3

2/2

2/2

q

b

e

s

1/1

1/1

2/3

2/3

c

f

Für diesen Spezialfall ist leicht zu sehen, dass der Wert 6 nicht mehr verbessert

werden kann. Lester Ford und Delbert Fulkerson haben einen effektiven Algo-

rithmus entwickelt, der einen maximalen Fluss in einem beliebigen Netzwerk

konstruiert. Wir wollen hier nur noch diskutieren, dass diesem Maximierungs-

Problem wieder ein Minimierungs-Problem entspricht. Hierzu definieren wir:

Ein  Schnitt  in einem Netzwerk ist eine Zerlegung der Kantenmenge  K  in zwei

Mengen  Q  und  S  mit  q ∈ Q  und  s ∈ S. Die  Kapazität  eines Schnittes ( Q, S)

wird dann definiert durch



 c( Q, S) =

 c( k) . 

 k∈K,k−∈Q,k+ ∈S

Der Wert  c( Q, S) ist also der gesamte Vorwärtsfluss von der Menge  Q  in die

Menge  S. Es gilt nun der folgende starke  Min-Max-Satz von Ford-Fulkerson  aus

dem Jahre 1956:

 F¨

 ur jedes Netzwerk N = ( E, K, q, s, c)  gilt  max { w( f )  | w ist Fluss

 in N } = min { c( Q, S)  | ( Q, S)  ist Schnitt in N }. 

Für obiges Netzwerk ist zum Beispiel  Q =  {q, a, b},  S =  {c, d, e, f, s}  ein

Schnitt mit der minimalen Kapazität  c( q, c) +  c( b, e) +  c( a, e) +  c( a, d) = 6. 

Aus dem Satz von Ford-Fulkerson lässt sich der Min-Max-Satz über bipartite

Graphen gewinnen. Ist  G = ( E, K) bipartit durch  E 1 und  E 2, so führen wir

neue Ecken  q  und  s  ein und definieren ein Netzwerk  N = ( E, K, q, s, c) durch

 E =  E ∪ {q, s}, 

 K =  {ab | a ∈ E 1 , b ∈ E 2 , {a, b} ∈ K} ∪ {qa | a ∈ E 1 } ∪ {bs | b ∈ E 2 }, 

 c( ab) = 1 für alle  ab ∈ K. 

Die maximalen Flüsse in  N  entsprechen nun, wie man leicht einsehen kann, 

genau den maximalen Matchings in  G. Ebenso entsprechen die Schnitte in  N  mit

minimaler Kapazität genau den minimalen Trägern in  G. Damit ergibt sich der

Min-Max-Satz über bipartite Graphen aus dem Min-Max-Satz über Netzwerke. 
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4.10

K¨

urzeste Wege

Für jeden Graphen  G = ( E, K) können wir eine Abstandsfunktion  d  definieren. 

Ist eine Ecke  a  erreichbar von einer Ecke  b, so sei  d( a, b) die Länge eines kürzesten

Weges von  a  nach  b. Andernfalls sei  d( a, b) =  ∞. Die Funktion  d  hat mit den

üblichen Rechenregeln für den Wert  ∞  die Eigenschaften einer Metrik. 

Die Breitensuche, die wir zur Konstruktion aufspannender Bäume verwen-

det haben, liefert eine Möglichkeit, die Werte  d( a, b) zu berechnen und einen

kürzesten Weg von  a  nach  b  zu finden: Wir starten bei der Ecke  a  und konstru-

ieren mit der Methode der Breitensuche so lange Bäume  Bi  mit Wurzel  a, bis

wir keine neuen Ecken mehr finden. Wird hierbei die Ecke  b  im  i-ten Schritt ge-

funden, so ist  d( a, b) =  i, und ein kürzester Weg lässt sich aus dem konstruierten

Baum ablesen. Wird dagegen die Ecke  b  nicht gefunden, so ist  d( a, b) =  ∞. 

Interessanter und für Anwendungen von großer Bedeutung ist die Berechnung

von Abständen in Graphen  G, die mit einer Gewichtsfunktion  g  von den Kanten

in die positiven reellen Zahlen ausgestattet sind. Für jede Kante  ab  beschreibt

 g( ab) die

Länge“, 

Zeitdauer“ oder die

Kosten“ zwischen den Ecken  a  und

” 

” 

” 

 b. Für ein U-Bahn-Netz kann beispielsweise  g( ab) die Dauer sein, die eine U-

Bahn regulär braucht, um von der Station  a  zur Station  b  zu gelangen. Für

ein Straßennetz kann  g( ab) die Gesamtkosten angeben, die entstehen, wenn ein

Lastwagen von  a  nach  b  fährt. 

Ist  G = ( E, K) ein Graph mit positiven Kantengewichten, so definieren wir die



 L¨

 ange  eines Kantenzuges  a 0 , a 1 , . . . , an  als

 g( a

0 ≤i<n

 iai+1). Dann kann wie

oben eine Abstandsfunktion  d  mit metrischen Eigenschaften definiert werden. 

Gegeben sei ein Graph  G = ( E, K) mit  E =  { 1 , . . . , n}  und Gewichtsfunkti-

on  g. Weiter sei  a ∈ E  eine festgewählte Startecke. Ein effizienter Algorithmus

zur Berechnung von  d( a, b) für alle  b  und zur Bestimmung von zugehörigen

kürzesten Wegen ist der Algorithmus von Dijkstra aus dem Jahre 1959. Die

Grundidee ist, die Abstände  d( a, b) für alle Ecken  b  des Graphen durch Appro-

ximationen immer weiter zu verbessern, bis der Abstand  d( a, b) gefunden ist. 

Wir konstruieren hierzu rekursiv Funktionen  d 0 , . . . , dn− 1 auf  E  und besuchte

Ecken  a =  e 1 , . . . , en− 1 (es gibt kein  e 0) wie folgt:

 Algorithmus von Dijkstra:  Zunächst sei  d 0( a) = 0 und  d 0( b) =  ∞  für alle

 b =  a. Sei nun  di  konstruiert für ein  i < n. Ist  i =  n −  1, so stoppen wir mit

Ausgabe von  dn− 1. Andernfalls sei  ei+1 = die kleinste noch nicht besuchte

” 

Ecke  e  mit  di( e) = min( {di( b)  | b  ist noch nicht besucht })“. Für alle bereits

besuchten  b  sei  di+1( b) =  di( b), und ebenso sei  di+1( b) =  di( b) für alle  b  mit ei+1 b /

 ∈ K. Für alle anderen Ecken  b  setzen wir

 di+1( b) = das Minimum von  d

” 

 i( b) und  di( ei+1) +  g( ei+1 b)“. 

Nun wiederholen wir das Verfahren. 

Die Funktion  di  wird also lediglich in der Nachbarschaft der gerade besuchten

Ecke  ei+1 verbessert. Der Algorithmus von Dijkstra ermittelt in der Tat den
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gewichteten Abstand: Es gilt, wie man zeigen kann,  d( a, b) =  dn− 1( b) für alle

Startecken  a  und alle Ecken  b. 

Wir führen das Verfahren am Bei-

2

spiel des rechts stehenden Graphen

2

5

vor. Dabei geben die Zahlen an den

3

Kanten  ab  das Gewicht  g( ab) an. 

1

6

2

1

Die Startecke sei 1. Die folgende Ta-

10

belle gibt den Verlauf der Berech-

3

nung wieder. In der Zeile

BE“ ist

3

6

” 

9

die aktuell besuchte Ecke notiert. 

Ein

 −“ gibt an, dass der gefunde-

3

5

1

” 

ne Wert durch den weiteren Verlauf

nicht mehr verändert wird, da die

1

4

7

Ecke der Zeile gerade besucht wird

oder bereits besucht wurde. 

d0

d1

d2

d3

d4

d5

d6

Ausgabe


BE

1


2

5

6

3

7

1

0

-

-

-

-

-

-

0

2

∞

3

-

-

-

-

-

3

3

∞

10

9

7

7

-

-

7

4

∞

9

9

9

9

9

8

8

5

∞

∞

5

-

-

-

-

5

6

∞

∞

∞

6

-

-

-

6

7

∞

∞

∞

∞

7

7

-

7

Damit ist  d(1 ,  1) = 0,  d(1 ,  2) = 3,  d(1 ,  3) = 7,  d(1 ,  4) = 8, usw. Aus der

Tabelle können wir auch kürzeste Wege von der Startecke 1 zu einer anderen

Ecke  b  gewinnen. Für  b = 4 gilt z. B.  d(1 ,  4) =  d 6(4). Der Eintrag  d 6(4) gehört

zur besuchten Ecke 7. Der Eintrag  d(1 ,  7) =  d 4(7) gehört zur besuchten Ecke

6. Der Eintrag  d(1 ,  6) =  d 3(6) gehört zur besuchten Ecke 5, usw. Durch diese

Rückverfolgung finden wir 4, 7, 6, 5, 2, 1 als einen kürzesten Weg von 4 nach 1, 

und damit ist 1, 2, 5, 6, 7, 4 ein kürzester Weg von 1 nach 4. 
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4.11

Transitivierung von Relationen

Sei  K  eine beliebige zweistellige Relation auf  E =  { 1 , . . . , n}. Wir fragen: Wie

können wir effektiv die  transitive H¨

 ulle K+ von  K  berechnen, d. h. die kleinste

transitive Relation auf  E, die  K  erweitert? 

Graphentheoretisch betrachtet ist ( E, K) ein gerichteter Graph mit möglichen

Schlingen  n  der Form  aa. Ist  K  symmetrisch und irreflexiv, so können wir

( E, K) als einen üblichen ungerichteten Graphen auffassen. In jedem Falle ist

die transitive Hülle  K+ von  K  graphentheoretisch von hohem Interesse, da sie

die Erreichbarkeit in  G = ( E, K) beschreibt: Für alle  a, b ∈ E  gilt  a K+  b  genau

dann, wenn es einen Kantenzug positiver Länge von  a  nach  b  in  G  gibt. 

Zur Analyse der transitiven Hülle von  K  verwenden wir die Verknüpfung von

Relationen (vgl. 1.7). Für Relationen  R, S  auf  { 1 , . . . , n}  setzen wir:

 R ◦ S =  {( a, c)  |  es gibt ein  b ∈ E  mit ( a, b)  ∈ R  und ( b, c)  ∈ S}. 

Damit können wir  K 1 =  K  und  Km+1 =  Km ◦ K  für alle  m >  1 definieren. 

Eine einfache Induktion nach  m ≥  1 zeigt: Für alle  a, b ∈ E  gilt  a Km b

genau dann, wenn es einen Kantenzug  a =  x 0 , . . . , xm =  b  im Graphen ( E, K)



gibt. Insbesondere gilt also  K+ =

 Km. Da wir Umwege von  c  nach  c

 m≥ 1

aus Kantenzügen von  a  nach  b  herausschneiden können, folgt die verbesserte

Darstellung



 K+ =

 Km. 

1 ≤m≤n

Die Relation  Kn  kann hier durchaus noch neue Information enthalten. Exis-



tiert ein  ab ∈ Kn −

 Km, so ist aber notwendig  a =  b  und ( G, K) ist

1 ≤m<n

hamiltonsch. 

Zur Berechnung von  K+ ist es nützlich, mit 0-1-Matrizen zu operieren. Für

jede Relation  R  auf  { 1 , . . . , n}  sei  AR = ( aij)1 ≤i,j≤n  die zugehörige darstellende

Matrix, d. h., es gilt

1 ,  falls ( i,j)  ∈ R, 

 aij =

0 , 

falls ( i, j)  /

 ∈ R. 

Die Verknüpfung von Relationen lässt sich nun durch eine Variante der Matri-

zenmultiplikation rechnerisch beherrschen: Sind  A  und  B ( n × n)-Matrizen mit

0-1-Einträgen, so ist ihr  logisches Produkt A · B  die 0-1-Matrix  C = ( cij)1 ≤i,j≤n

mit



 cij =

 aikbkj =  ai 1  · b 1 j +  . . . +  ain · bnj  für alle 1  ≤ i, j ≤ n, 

1 ≤k≤n

wobei hier nun + und  ·  die Wahrheitswert-Operationen und“ und oder“ auf

” 

” 

 { 0 ,  1 }  sind, d. h., die Multiplikation ist wie üblich definiert und die Addition ist

gegeben durch  i +  j = max( i, j) für alle  i, j ∈ { 0 ,  1 }. Es gilt also

1  ·  1 = 1 ,  0  ·  0 = 0  ·  1 = 1  ·  0 = 0 , 
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0 + 0 = 0 ,  0 + 1 = 1 + 0 = 1 + 1 = 1 . 

Die logische Matrizenmultiplikation ist assoziativ, wie man leicht nachrechnet. 

Weiter gilt folgender Satz, der den Zusammenhang mit der Verknüpfung von

Relationen herstellt: Seien  R  und  S  Relationen auf  E =  { 1 , . . . , n}. Dann gilt

 AR◦S =  AR · AS. Insbesondere gilt  AKm = ( AK) m  für alle  m ≥  1. 

Damit können wir die transitive Hülle  K+ von  K  berechnen, indem wir der

Reihe nach die Matrizen  A =  AK,  A 2, . . . ,  An  bestimmen. Ist  K  reflexiv, so ist

 An  die darstellende Matrix von  K+. Allgemein ist  AK+ die punktweise logische

Addition der Matrizen  A 1 , . . . , An. 

Diese Berechnung der darstellenden Matrix von  K+ benötigt unnötig viele

Rechenschritte. Für ein effizienteres Verfahren definieren wir für alle 0  ≤ m ≤ n:

 K( m) =  {( a, b)  |  es gibt einen gerichteten Kantenzug in  G = ( E, K) von  a

nach  b  mit Ecken in  {a, b,  1 , . . . , m}}. Dann gilt  K =  K(0)  ⊆ K(1)  ⊆ . . . ⊆

 K( n), und  K( n) ist die transitive Hülle  K+ von  K. Es zeigt sich, dass wir die

darstellenden Matrizen der Relationen  K( m) sehr effektiv berechnen können. 

Hierzu verwenden wir die punktweise logische Summe zweier Zeilen einer 0-1-

Matrix  A. Sind etwa (0 ,  1 ,  1 ,  0 ,  0 ,  1) und (1 ,  1 ,  0 ,  0 ,  1 ,  1) zwei solche Zeilen, so ist (1 ,  1 ,  1 ,  0 ,  1 ,  1) die Summe dieser Zeilen. Für eine Matrix  A = ( aij) ij  sei weiter A( i, j) =  aij. Damit können wir nun den Algorithmus von Stephen Warshall aus

dem Jahre 1962 formulieren. Er berechnet rekursiv 0-1-Matrizen  AK =  A(0), 

 A(1), . . . ,  A( n) und gibt  A( n) als Ergebnis der Berechnung aus. 

 Algorithmus von Warshall:  Sei  A( m) konstruiert für ein  m < n. Für alle

1  ≤ i ≤ n  mit  A( m)( i, m + 1) = 1 sei die  i-te Zeile von  A( m+1) die Summe der  i-

ten und ( m+1)-ten Zeile von  A( m). Die anderen Zeilen von  A( m+1) übernehmen

wir unverändert aus der Matrix  A( m). 

Ist die Matrix  A( m) berechnet, so ist die ( m + 1)-te Spalte die aktive“ Spalte

” 

und die ( m + 1)-te Zeile die aktive“ Zeile. Die Einsen der aktiven Spalte mar-

” 

kieren genau diejenigen Zeilen, auf die wir die aktive Zeile addieren. Die aktive

Spalte und Zeile bleibt dabei unverändert. 

Der Warshall-Algorithmus leistet in der Tat das Gewünschte: Für alle  m ≤ n

ist  A( m) die darstellende Matrix der Relation  K( m). Speziell ist also die Ausgabe

 A( n) die darstellende Matrix der transitiven Hülle  K+ von  K. 

Wir beobachten noch, dass wir uns die Matrizen  A( m) während der Berech-

nung nicht merken müssen. Es genügt also ein Speicher für eine ( n × n)-Matrix

mit 0-1-Einträgen. 
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Zeichnen wir einen Graphen, indem wir seine Ecken als Punkte und seine Kanten

als Verbindungslinien auf ein Papier malen, so sind manchmal Überschneidungen

der Verbindungslinien nicht zu vermeiden. Die vollständigen Graphen  K 2,  K 3
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und  K 4 lassen sich ohne Überschneidungen zeichnen, nicht aber der Graph  K 5. 

Ebenso lässt sich der vollständig bipartite Graph  K 3 ,  2 ohne Überschneidungen

zeichnen, nicht aber der  K 3 ,  3. 

1

4

1

5

2

2

5

4

3

3

6

Die Darstellungen oben sind im Hinblick auf das Vermeiden von Überschnei-

dungen nicht optimal. Der Leser wird sich leicht davon überzeugen, dass sich

sowohl der  K 5 als auch der  K 3 ,  3 mit nur einer Kantenüberschneidung zeichnen

lassen. 

Ein Graph heißt  planar,  falls er sich in der Ebene so darstellen lässt, dass sich

seine Kanten nicht überschneiden und nur in den Ecken berühren. Die Ecken

werden dabei als Punkte dargestellt und die Kanten dürfen aus beliebig vielen

endlichen Geradenstücken zusammengesetzt sein. 

Für einen planar dargestellten Graphen sei  e  die Anzahl der Ecken,  k  die

Anzahl der Kanten und  f  die Anzahl der Flächen, wobei die äußere umgebende

Fläche mitzählt. So hat z. B. ein kreisfreier Graph eine, ein Kreis zwei und

ein Graph in der Form einer Acht drei Flächen. Für jeden planar dargestellten

Graphen gilt nun die  Eulersche Polyederformel (graphentheoretische Version):

 e − k +  f = 2 . 

Ein Beweis lässt sich elementar durch Induktion über die Anzahl der Flächen

führen. Die Formel gilt in der Tat auch für dreidimensionale Polyeder, denn diese

können wir plätten“, indem wir eine Fläche des Polyeders wählen und sie zur

” 

umgebenden äußeren unendlichen Fläche eines planaren Graphen aufziehen“. 

” 

So wird zum Beispiel aus einem Kubus der untenstehende Graph. 

Mit Hilfe der Eulerschen Polyeder-

formel kann man einen schönen Be-

4

3

weis dafür geben, dass es nur fünf re-

gelmäßige konvexe (d. h. nach außen

8

7

gekrümmte) Polyeder gibt, nämlich

ein Tetraeder mit 4, einen Kubus mit

5

6

6, ein Oktaeder mit 8, ein Dodeka-

1

2

eder mit 12 und ein Ikosaeder mit

20 Flächen. Zum Beweis seien wieder
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 e,  k,  f  die Anzahl der Ecken, Kanten und Flächen eines regelmäßigen Polyeders, 

 n  die Zahl der Kanten seiner Flächen und  d  der Grad seiner Ecken. Dann gilt

 nf = 2 k  und  de = 2 k. Mit der Polyederformel erhalten wir

1 /n + 1 /d = 1 / 2 + 1 /k. 

(#)

Diese Beziehung kann für natürliche Zahlen  n, d, k  aber nur gelten, wenn  n ≥  3

und  d ≥  3 ist. Hiermit folgert man nun relativ leicht, dass

( n, d, k) = (3 ,  3 ,  6) , (3 ,  4 ,  12) , (3 ,  5 ,  30) , (4 ,  3 ,  12) , (5 ,  3 ,  30) alle möglichen Lösungen von (#) in den natürlichen Zahlen sind. Jede dieser

Lösungen legt ein regelmäßiges konvexes Polyeder eindeutig fest, und damit

kann es nur fünf derartige Polyeder geben. 

Ein anderer klassischer Gegenstand der Theorie der planaren Graphen ist das

folgende Mitte des 19. Jahrhunderts formulierte  Vierfarbenproblem: Lässt sich

jede Landkarte so mit vier Farben einfärben, dass Länder mit einer gemeinsamen

Grenze immer unterschiedlich gefärbt sind? 

Wir können das Vierfärben graphentheoretisch formulieren, indem wir die

Länder der Karte als die Ecken eines Graphen ansehen und zwei Ecken genau

dann mit einer Kante verbinden, wenn die entsprechenden Länder benachbart

sind. Die graphentheoretische Frage lautet dann, ob man die Ecken eines plana-

ren Graphen immer so mit vier Farben einfärben kann, dass benachbarte Ecken

immer verschieden gefärbt sind. Das Problem erwies sich als überraschend kom-

plex. Percy Heawood bewies 1890, dass fünf Farben genügen. Aufbauend auf

Arbeiten von Heinrich Heesch konnten Kenneth Appel und Wolfgang Haken

1976 die ursprüngliche Frage schließlich positiv beantworten: Vier Farben rei-

chen aus. Bis heute müssen Computer eingesetzt werden, um eine große Zahl

von Einzelfällen auf ihre 4-Färbbarkeit zu überprüfen. 

Bei der unabhängig vom Vierfarbenproblem durchgeführten strukturellen Un-

tersuchung der planaren Graphen spielten die einfachen Graphen  K 5 und  K 3 ,  3

eine überraschend zentrale Rolle, da sie in allen nichtplanaren Graphen

auf-

” 

tauchen“. Zur Präzisierung führen wir den Begriff eines Unterteilungsgraphen

ein. 

Ein Graph  G  heißt ein  Unterteilungsgraph  eines Graphen  G, falls  G  isomorph

zu einem Graphen ist, der aus  G  gewonnen werden kann, indem wir wiederholt

eine Kante  ab  durch zwei Kanten  ac  und  cb  ersetzen, wobei  c  eine neue Ecke ist. 

Anschaulich platzieren wir also auf den Kanten von  G  endlich viele neue Ecken

und erhalten so  G. So ist zum Beispiel jeder Kreis  Cn  ein Unterteilungsgraph

des Dreiecks  C 3. 

Kuratowski hat nun 1930 den folgenden Satz bewiesen, der nichtplanare Gra-

phen durch Unterteilungsgraphen charakterisiert: Ein Graph  G  ist genau dann

nichtplanar, wenn er einen Unterteilungsgraphen des  K 5 oder des  K 3 ,  3 als Teil-

graphen enthält. 
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Eine weitere Charakterisierung der nichtplanaren Graphen beruht auf dem

folgenden Kontraktionsbegriff: Ein Graph  G  heißt ein  Minor  eines Graphen

 G, falls  G  isomorph zu einem Graphen ist, der aus  G  gewonnen werden kann, 

indem wir, startend mit einem Teilgraphen von  G, wiederholt die beiden Ecken

einer Kante zu einer einzigen Ecke verschmelzen. Bei einer derartigen Kontrak-

tion wird also aus einer Kante  ab  eine neue Ecke  c, und die Nachbarn von  c

sind die Nachbarn von  a  zusammen mit den Nachbarn von  b. Statt mit ei-

nem Teilgraphen von  G  kann man auch direkt mit  G  starten und zusätzlich

zur Kantenkontraktion auch das Entfernen von Kanten und das Entfernen von

Ecken ohne Nachbarn als Reduktionsoperationen zulassen. Man erhält so einen

äquivalenten Begriff eines Minors. 

Ist  G  ein Unterteilungsgraph von  G, so ist  G  ein Minor von  G. Die Um-

kehrung gilt im Allgemeinen nicht: Ein Graph  G, der nur aus zwei Ecken und

einer Kante besteht, ist ein Minor des Kreises  C 3. Aber der Kreis  C 3 ist kein

Unterteilungsgraph von  G. 

Eine auf Klaus Wagner und das Jahr 1937 zurückgehende Formulierung des

Satzes von Kuratowski mit Hilfe von Minoren lautet: Ein Graph  G  ist genau

dann nicht planar, wenn der Graph  K 5 oder der Graph  K 3 ,  3 ein Minor von  G

ist. 

Minoren sind ein prominenter Gegenstand der modernen Graphentheorie. Neil

Robertson und Paul Seymour haben mit einer mehrere hundert Seiten umfas-

senden Beweisführung im Jahre 2004 den folgenden Satz bewiesen:

 Ist G 0 , G 1 , . . . , Gn, . . . eine Folge von Graphen, so existieren i < j

 derart, dass Gi ein Minor von Gj ist. 

Aus dem Satz folgt: Ist eine Klasse von Graphen abgeschlossen unter der

Bildung von Minoren, so gibt es eine endliche Menge  V ∗  von Graphen derart, 

dass ein beliebiger Graph  G  genau dann der Klasse angehört, wenn er keinen

Minor enthält, der zu  V ∗  gehört. Für die Klasse der planaren Graphen ist zum

Beispiel  G∗ =  {K 5 , K 3 ,  3 }  eine derartige Menge von sog.  verbotenen Minoren. 

5 Lineare Algebra

Im Vorwort seines Buches

Linear Algebra“ beschreibt Peter Lax die lineare

” 

Algebra als ein von Emmy Noether und Emil Artin geschaffenes Paradies. Die

Grundelemente dieser schönen Strukturtheorie, zu deren Schöpfern sicherlich

auch noch Hermann Graßmann zählt, werden in den folgenden zwölf Abschnit-

ten vorgestellt. 

Die ersten beiden Abschnitte über Vektorräume (Abschnitt 5.1), lineare Un-

abhängigkeit und Basen (Abschnitt 5.2) sollen die Pforte zu diesem Paradies

ein kleines Stück weit öffnen. Ausgehend von der konkreten Anschauung des

uns umgebenden dreidimensionalen Raumes wird der abstrakte Begriff eines

Vektorraums über einem beliebigen Skalarenkörper K entwickelt und bis zur

Isomorphie von Räumen K-wertiger Funktionen mit endlichem Träger geführt. 

Der folgende Abschnitt 5.3 behandelt dann lineare Abbildungen und Matrizen. 

Wir besprechen hier die Strukturen, die die linearen Abbildungen zu einem

Vektorraum und die invertierbaren Abbildungen zu einer Gruppe machen. 

Die beiden nächsten Abschnitte beschäftigen sich mit linearen Gleichungssys-

temen (Abschnitt 5.4) und Determinanten (Abschnitt 5.5). Wir diskutieren die

Lösungstheorie linearer Gleichungssysteme und widmen uns der Gaußschen Eli-

mination sowohl als Umformung in Zeilenstufenform als auch als LR-Zerlegung. 

Die Determinanten quadratischer Matrizen werden Emil Artin folgend aus den

Eigenschaften eines vorzeichenbehafteten Flächeninhalts entwickelt. 

Die nächsten drei Abschnitte über euklidische und unitäre Vektorräume (Ab-

schnitt 5.6), über normierte Vektorräume (Abschnitt 5.7) und über Orthogo-

nalität (Abschnitt 5.8) fügen weitere Strukturelemente hinzu. Es wird mit dem

inneren Produkt über reellen oder komplexen Vektorräumen das vertraute Kon-

zept eines Winkels abstrahiert sowie mit dem Begriff der Norm das Konzept der

Längenmessung. Anhand von Orthonormalbasen, orthogonalen und unitären

Matrizen sowie orthogonalen Projektionen wird Orthogonalität ein wenig wei-

ter ausgeführt. 

Abschnitt 5.9 definiert den Dualraum. Hier wird im Endlich-Dimensionalen

der Rieszsche Darstellungssatz vorgestellt sowie der Zusammenhang von adjun-

gierter Abbildung und transponierter Matrix besprochen. 

Die letzten drei Abschnitte behandeln die Grundelemente der Eigenwert-

theorie. Es werden Eigenwerte und Eigenvektoren motiviert und definiert (Ab-

schnitt 5.10), bevor die Diagonalisierbarkeit von quadratischen Matrizen be-

sprochen wird (Abschnitt 5.11). Die Singulärwertzerlegung beliebiger rechtecki-

ger Matrizen und die Jordansche Normalform beliebiger quadratischer Matrizen

(Abschnitt 5.12) beenden unseren Streifzug durch die lineare Algebra. 
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5 Lineare Algebra

5.1

Vektorr¨

aume

Für alle reellen Zahlen  x, y, z  können wir uns das Tripel ( x, y, z)  ∈  R3 als Punkt

eines dreimensionalen räumlichen Kontinuums vorstellen. Daneben ist aber viel-

fach die Anschauung von ( x, y, z) als gerichteter Größe nützlich: ( x, y, z) ist ein

Pfeil“, der vom Nullpunkt 0 = (0 ,  0 ,  0) zum Punkt mit den Koordinaten  x, 

” 

 y  und  z  zeigt, und allgemeiner dann jeder weitere Pfeil im dreidimensionalen

Raum, der die gleiche Richtung und Länge wie dieser Pfeil besitzt. Diese Inter-

pretation motiviert die folgenden Sprechweisen und Operationen. 

Wir nennen ein Tripel ( x, y, z) reeller Zahlen einen  Vektor. Wir addieren zwei

Vektoren und multiplizieren einen Vektor mit einer reellen Zahl  α ∈  R wie folgt:

( x 1 , y 1 , z 1) + ( x 2 , y 2 , z 2) = ( x 1 +  x 2 , y 1 +  y 2 , z 1 +  z 2) α( x, y, z) = ( αx, αy, αz)

( Vektoraddition  bzw.  Skalarmultiplikation  im R3). Geometrisch bedeutet die

Vektoraddition das Aneinanderfügen zweier Pfeile und die Skalarmultiplikati-

on die Streckung ( Skalierung“) eines Pfeiles um den Faktor  α ( Skalar“). Die

” 

” 

Physik trägt weitere Interpretationen bei: Wir können einen Vektor als Kraft

lesen, die in einem bestimmten Punkt angreift. Die Richtung des Vektors gibt

die Richtung der Kraft an und die Länge des Vektors ihre Stärke. Die Addi-

tion beschreibt dann die Gesamtkraft zweier Einzelkräfte, die in einem Punkt

angreifen, und die Skalarmultiplikation die Vervielfachung einer Kraft um einen

Faktor. 

Die beiden Operationen lassen sich analog für beliebige  n-Tupel ( x 1 , . . . , xn)

reeller Zahlen  x 1 , . . . , xn  durchführen. Wir definieren also für jede natürliche

Zahl  n ≥  1 den  Vektorraum  R n  als die Menge aller  n-Tupel ( x 1 , . . . , xn) reeller

Zahlen, die mit den beiden folgenden Operationen ausgestattet wird ( Vektorad-

 dition  bzw.  Skalarmultiplikation  im R n):

( x 1 , . . . , xn) + ( y 1 , . . . , yn) = ( x 1 +  y 1 , . . . , xn +  yn) , 

 α( x 1 , . . . , xn) = ( αx 1 , . . . , αxn) . 

Im Umgang mit Vektoren überwiegen wie so oft in der Mathematik bald nur

noch gewisse algebraische Struktureigenschaften wie etwa die Kommutativität

der Vektoraddition, und bei den Skalaren dominieren die Eigenschaften eines

Körpers (siehe Abschnitt 6.3). Diese Strukturen fasst man zum allgemeinen

Begriff eines Vektorraumes zusammen, und die Räume R n  sind dann nur noch

spezielle, wenn auch besonders wichtige Beispiele des allgemeinen Begriffs. Wir

definieren also: Seien  V  eine Menge und K ein Körper, für die zwei Abbildungen

 V × V → V, ( x, y)  → x +  y, 

K  × V → V, ( α, x)  → αx
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erklärt sind. Zudem sei 0  ∈ V  ein spezielles Element von  V . Dann heißt  V

ein  Vektorraum  mit  Skalarenk¨

 orper  K und  Nullvektor  0 oder auch kurz ein K-

 Vektorraum, falls für alle  v, v 1 , v 2 , v 3  ∈ V  und alle  α, β ∈  K die folgenden

Eigenschaften gelten:

(i)  v 1 + ( v 2 +  v 3) = ( v 1 +  v 2) +  v 3, 

(ii)  v + 0 =  v, es gibt ein  w  mit  v +  w = 0, 

(iii)  v 1 +  v 2 =  v 2 +  v 1, 

(iv) 1 v =  v,  α( βv) = ( αβ) v, ( α +  β) v =  αv +  βv,  α( v 1 +  v 2) =  αv 1 +  αv 2. 

Den eindeutig bestimmten Vektor  w  in (ii) bezeichnen wir mit  −v, und wir

definieren eine Subtraktion auf  V  durch  v 1  − v 2 =  v 1 + ( −v 2) für alle  v 1 , v 2  ∈ V . 

Die wichtigsten Beispiele sind die  reellen  Vektorräume (K = R) und die  kom-

 plexen  Vektorräume (K = C). Zuweilen ist auch K = Q von Interesse, und

auch endliche Skalarenkörper wie K =  { 0 ,  1 }  sind möglich. Ein sehr allgemeines

Beispiel ist das folgende. Seien  M  eine beliebige Menge und K ein beliebiger

Körper. Wir definieren

K M =  {f | f:  M →  K }. 

Unsere Vektoren sind hier also Funktionen von  M  in den Skalarenkörper K. 

Die Addition und die Skalarmultiplikation erklären wir punktweise, d. h., wir

definieren für alle  f, g ∈  K M  und alle  α ∈  K die Vektoren  f +  g  und  αf  durch

( f +  g)( x) =  f ( x) +  g( x) und ( αf )( x) =  αf ( x) für alle  x ∈ M . Es ist leicht zu sehen, dass K M  unter diesen Operationen zu einem K-Vektorraum wird, mit

der Nullfunktion als Nullvektor. 

Eine Teilmenge  U ⊆ V  eines Vektorraums  V  heißt ein  Unterraum  von  V , 

wenn  U  mit der ererbten Addition und Skalarmultiplikation ein Vektorraum

ist. Dies ist genau dann der Fall, wenn  U  abgeschlossen unter Addition und

Skalarmultiplikation ist, d. h., für alle Vektoren  u 1 , u 2  ∈ U  und alle Skalare

 α ∈  K gilt  u 1 +  u 2  ∈ U  und  αu 1  ∈ U . So bildet beispielsweise  {( x, y,  0)  ∈  R3  |

 x, y ∈  R }  einen Unterraum des R3,  {( x, y,  1)  ∈  R3  | x, y ∈  R }  hingegen nicht, 

da der Nullvektor (0 ,  0 ,  0) nicht dazugehört. Ein wichtiger Unterraum des K M

ist

K M

fin =  {f ∈  K M |  supp( f ) ist endlich }, 

wobei supp( f ) =  {x ∈ M | f ( x)  = 0 }  den  Träger ( support“) der Funktion  f  be-

” 

zeichnet. Natürlich ist K M  nur f

fin

ür unendliche Mengen  M  ein echter Unterraum

des K M . 

Für zwei Unterräume  U 1 , U 2  ⊆ V  eines Vektorraums  V  ist die  Summe

 U 1 +  U 2 =  {u 1 +  u 2  | u 1  ∈ U 1 , u 2  ∈ U 2 }

der kleinste Unterraum von  V , der die beiden Unterräume enthält. Haben  U 1

und  U 2 nur den Nullvektor gemeinsam, gilt also  U 1  ∩ U 2 =  { 0 }, so hat jeder

Vektor  v ∈ U 1 +  U 2 eine eindeutige Darstellung als  v =  u 1 +  u 2 mit  u 1  ∈ U 2, 

 u 2  ∈ U 2. Man nennt in diesem Fall die Summe der Unterräume  direkt  und

bezeichnet sie mit  U 1  ⊕ U 2. 
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5.2

Lineare Unabh¨

angigkeit und Dimension

Für den reellen Vektorraum R3 gelten für

typische“ Vektoren  v

” 

1 , v 2 , v 3 die

folgenden Aussagen:

 {α 1 v 1  | α 1  ∈  R }  ist eine Gerade, 

 {α 1 v 1 +  α 2 v 2  | α 1 , α 2  ∈  R }  ist eine Ebene, 

 {α 1 v 1 +  α 2 v 2 +  α 3 v 3  | α 1 , α 2 , α 3  ∈  R }  ist der ganze Raum R3. 

Diese Aussagen treffen nur dann nicht zu, wenn  v 1 der Nullvektor ist, wenn  v 1

und  v 2 auf einer gemeinsamen Geraden liegen oder wenn  v 1,  v 2 und  v 3 in einer

gemeinsamen Ebene liegen. Ist nun aber  {α 1 v 1 +  α 2 v 2 +  α 3 v 3  | α 1 , α 2 , α 3  ∈  R }

der ganze R3, so ist leicht einzusehen, dass sich jeder Vektor  v ∈  R3 sogar in ein-

deutiger Weise schreiben lässt als  v =  α 1 v 1 + α 2 v 2 + α 3 v 3. Die Skalare  α 1 , α 2 , α 3

sind dann die Koordinaten“ von  v  bezüglich der Basisvektoren“  v

” 

” 

1 , v 2 , v 3. Die-

se Beobachtungen wollen wir im Folgenden präzisieren und in einem beliebigen

K-Vektorraum  V  untersuchen. Alle betrachteten Vektoren und Skalare sollen  V

beziehungsweise K angehören. 

Ein Vektor  w  heißt eine  Linearkombination  der Vektoren  v 1 , . . . , vn, falls es

Skalare  α 1 , . . . , αn  gibt mit  w =  α 1 v 1 +  · · · +  αnvn. Für jedes  A ⊂ V  definieren wir nun span( A) als die Menge der Linearkombinationen von Vektoren in  A:

span( A) =  {α 1 v 1 +  · · · +  αnvn | n ∈  N , α 1 , . . . , αn ∈  K , v 1 , . . . , vn ∈ A}. 

Hierbei lassen wir den Fall  n = 0 als Länge der Linearkombination zu und

definieren die leere Summe“ als den Nullvektor. Damit gilt dann span( ∅) =  { 0 }. 

” 

Man überprüft leicht, dass die Menge span( A) ein Unterraum von  V  ist, den

man den von  A aufgespannten Unterraum  oder die  lineare H¨

 ulle  von  A  nennt. 

Eine Menge  A ⊆ V  heißt  linear unabhängig, wenn kein  v ∈ A  eine Linearkom-

bination der anderen Vektoren von  A  ist, d. h., es gilt  v /

 ∈  span( A \ {v}) für alle

 v ∈ A. Leicht einzusehen ist, dass eine Menge  A  genau dann linear unabhängig

ist, wenn sich der Nullvektor nur trivial mit Vektoren in  A  darstellen lässt, d. h., 

falls für alle  α 1 , . . . , αn ∈  K und alle  v 1 , . . . , vn ∈ A  gilt:

 α 1 v 1 +  · · · +  αnvn = 0 impliziert  α 1 =  · · · =  αn = 0 . 

Eine Menge  A ⊆ V  heißt  erzeugend, falls span( A) =  V  gilt. Mit diesen Begrif-

fen können wir nun eines der Schlüsselkonzepte der Theorie der Vektorräume

definieren: Eine Menge  B ⊆ V  heißt eine  Basis  von  V , falls  B  linear unabhängig

und erzeugend ist. Gleichwertig ist:  B  ist eine maximale linear unabhängige

Menge, d. h.,  B  ist linear unabhängig und jede echte Obermenge von  B  ist

linear abhängig. Gleichwertig ist ebenfalls: Jeder Vektor  v = 0 besitzt eine ein-

deutige Darstellung der Form  v =  α 1 v 1 + · · ·+ αnvn  mit Vektoren  v 1 , . . . , vn ∈ B

und von 0 verschiedenen Skalaren  α 1 , . . . , αn. 
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Mit Hilfe des Auswahlaxioms (Abschnitt 12.5 und 12.6) kann man beweisen, 

dass jeder Vektorraum eine Basis besitzt, und stärker, dass sich jede linear un-

abhängige Teilmenge zu einer Basis erweitern lässt ( Basiserg¨

 anzungssatz). Dies

ist für RR =  {f | f : R  →  R }  oder den Vektorraum R über dem Skalarenkörper Q

alles andere als selbstverständlich, und die Basen dieser Vektorräume bleiben

abstrakt. In vielen Fällen lassen sich dagegen Basen leicht konkret angeben. So

sind zum Beispiel (1 ,  0 ,  0), (0 ,  1 ,  0), (0 ,  0 ,  1) oder auch (0 ,  0 ,  1), (0 ,  1 ,  1), (1 ,  1 ,  1) jeweils Basen des R3. Für alle  n ≥  1 und alle Körper K bilden die Vektoren

 e 1 = (1 ,  0 ,  0 , . . . ,  0) , e 2 = (0 ,  1 ,  0 , . . . ,  0) , . . . , en = (0 , . . . ,  0 ,  1) eine Basis des K n. Man nennt  e 1 , . . . , en  die  kanonischen Basisvektoren  oder

auch die  Standardbasisvektoren  des K n. Weiter bilden für alle Mengen  M  die

charakteristischen Funktionen  χ{y}:  M →  K, die durch  χ{y}( y) = 1 und

 χ{y}( x) = 0 für alle  x =  y  definiert sind, eine Basis  {χ{y} ∈  K M | y ∈ M}

fin

des Vektorraums K M . 

fin

Zur Charakterisierung von Vektorräumen kann man folgende wichtige Eigen-

schaft zeigen: Hat ein Vektorraum  V  eine endliche Basis  B, so hat jede Basis

von  V  die gleiche Anzahl von Elementen wie  B. Man nennt diese Anzahl die

 Dimension  von  V , in Zeichen dim( V ), und bezeichnet  V  als einen  endlich-

 dimensionalen  Vektorraum. Insbesondere gilt dim( { 0 }) = 0. Auch in unendlich-

dimensionalen Vektorräumen besitzen je zwei Basen dieselbe Mächtigkeit (siehe

Abschnitt 12.1). Damit sind alle Basen eines Vektorraums stets gleich groß. 

Der Basis- und Dimensionsbegriff führen nun zu einer überraschend einfachen

Charakterisierung von Vektorräumen. Sei  V  zunächst endlich-dimensional, und

sei  {v 1 , . . . , vn}  eine Basis von  V . Wir können dann jeden Vektor  v  eindeutig

schreiben als  v =  α 1 v 1 +  · · · +  αnvn, wobei hier bei der Summation über die

volle Basis einzelne Skalare 0 sein dürfen. Das Tupel ( α 1 , . . . , αn)  ∈  K n  heißt

der  Koordinatenvektor  von  v  bzgl. der ( v 1 , . . . , vn), wobei die Anordnung der

Basisvektoren wichtig ist. Man sieht leicht, dass

 T ( v) = der Koordinatenvektor von  v  bzgl. ( v

” 

1 , . . . , vn)“

eine bijektive Abbildung  T :  V →  K n  definiert, die im folgenden Sinn die Vek-

torraumstruktur erhält: Es gilt  T ( v +  w) =  T ( v) +  T ( w) und  T ( αv) =  αT ( v) für alle  v, w ∈ V  und  α ∈  K. Man nennt solch eine bijektive Abbildung einen

 Isomorphismus  und die beiden Vektorräume  V  und K n isomorph (siehe auch

Abschnitt 1.12 und 5.3). Unsere elementaren Beispiele  { 0 },  K1 ,  K2 , . . .  sind also

die“ Beispiele endlich-dimensionaler Vektorräume. 

” Diese Überlegung greift auch für beliebige Vektorräume  V . Ist  B  eine Basis

von  V , so definiert die Abbildung auf die Skalare der darstellenden Linearkombi-

nationen einen Isomorphismus zwischen  V  und K B . Damit ist jeder Vektorraum

fin

isomorph zu einem Vektorraum K M , sofern die Menge  M  zu  B  gleichm

fin

ächtig

ist. Hat also  V  eine abzählbar unendliche Basis, so ist  V  isomorph zu KN , dem

fin

Raum aller Folgen mit endlichem Träger. 
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Eine Abbildung  T :  V → W  zwischen zwei K-Vektorräumen  V  und  W  heißt  line-

 ar, wenn sie im folgenden Sinn die Vektorraumstruktur erhält: Für alle Vektoren

 v, w ∈ V  und alle Skalare  α ∈  K gilt

 T ( v +  w) =  T ( v) +  T ( w) , 

 T ( αv) =  αT ( v) . 

Die einfachsten linearen Abbildungen sind die Multiplikationen  Tα:  V → V , 

 v → αv, mit einem vorgebenen Skalar  α ∈  K. Wichtige Beispiele sind die im

vorherigen Abschnitt diskutierten Isomorphismen  TV :  V →  K B , die auf die

fin

Koordinatenvektoren bezüglich einer Basis  B  von  V  abbilden. Für den reellen

Vektorraum  P[ − 1 ,  1] der Polynomfunktionen  p: [ − 1 ,  1]  →  R,  x → p( x), sind die Multiplikation mit einem Polynom (zum Beispiel  q( x) =  x) und die Ableitung

 p → pq, 

 p → p

lineare Abbildungen von  P[ − 1 ,  1] nach  P[ − 1 ,  1]. Lineare Abbildungen haben

viele schöne Eigenschaften. Einige davon sind: Linearkombinationen werden zu

Linearkombinationen der Bildvektoren. Der Nullvektor des Ausgangsraums  V

wird auf den Nullvektor des Zielraums  W  abgebildet. Lineare Abbildungen, die

auf einer Basis des Ausgangsraums  V übereinstimmen, sind gleich. Außerdem

bilden Isomorphismen Basen des Ausgangsraums auf Basen des Zielraums ab, 

weswegen isomorphe Vektorräume dieselbe Dimension haben. 

Seien  S  und  T  lineare Abbildungen von  V  nach  W  und  α ∈  K ein Skalar. 

Definieren wir die Summe  S +  T  und das Produkt  αT  durch

( S +  T )( x) =  S( x) +  T ( x) , 

( αT )( x) =  αT ( x)

für alle  x, y ∈ V , so wird die Menge der linearen Abbildungen mit einer Vek-

toraddition und einer skalaren Multiplikation versehen. Wir bezeichnen diesen

Vektorraum mit  L( V, W ). Sind  S:  U → V  und  T :  V → W  lineare Abbildungen

zwischen Vektorräumen  U, V  und  W , so definiert die  Verkn¨

 upfung

 T ◦ S:  U → W, 

 u → T ( S( u))

ebenfalls eine lineare Abbildung. Die Verknüpfung ist assoziativ und distributiv

bezüglich +, jedoch nicht kommutativ. Ein Beispiel hierfür ist, dass die Mul-

tiplikation mit  x  und die Ableitung auf dem Vektorraum der Polynome nicht

vertauschen. 

Ist  T :  V → W  ein Isomorphismus, so gibt es für jedes  w ∈ W  genau ein  v ∈ V

mit  T ( v) =  w. Man bezeichnet den Vektor  v  mit  T − 1( w) und definiert die zu

 T inverse  Abbildung  T − 1:  W → V ,  w → T − 1( w). Die inverse Abbildung ist

ebenfalls ein Isomorphismus, und es gilt

 T − 1  ◦ T = Id V , 

 T ◦ T − 1 = Id W , 
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wobei Id V  und Id W  die Identitätsabbildungen auf  V  beziehungsweise  W  sind. 

Die Isomorphismen von  V  nach  V  bilden bezüglich der Verknüpfung sogar eine

Gruppe (siehe Abschnitt 6.1). 

Man kann sich leicht davon überzeugen, dass das Bild und der Kern einer

linearen Abbildung  T :  V → W

rng( T ) =  {T ( x)  | x ∈ V }, 

ker( T ) =  {x ∈ V | T ( x) = 0 }

Unterräume von  W  beziehungsweise  V  sind. Ebenso leicht zeigt man, dass ein

lineares  T  genau dann injektiv ist, wenn ker( T ) =  { 0 }  gilt, und die Surjek-

tivität ist definitionsgemäß äquivalent zu rng( T ) =  W . Wir interessieren uns

im Folgenden für endlich-dimensionale Vektorräume und nehmen dim( V ) =  n, 

dim( W ) =  m  mit  n, m ∈  N an. Eine geeignete Basiskonstruktion liefert die

 Dimensionsformel  für das Bild und den Kern einer linearen Abbildung, 

dim rng( T ) + dim ker( T ) =  n. 

Im Fall  n =  m  treten deswegen die Injektivität, Surjektivität und Bijektivität

automatisch zusammen auf. 

Seien  {v 1 , . . . , vn}  eine Basis von  V  und  {w 1 , . . . , wm}  eine Basis von  W . 

Dann gibt es  m · n  eindeutig bestimmte Skalare  aij ∈  K, so dass  T vj =

 a 1 jw 1 +  · · · +  amjwm  für alle  j  erfüllt ist. Arrangieren wir die Skalare in ei-

nem Rechtecksschema mit  m  Zeilen und  n  Spalten, so nennt man die  m × n

Matrix

⎛

⎞

 a

⎜ 11  · · · a 1 n

. 

. 

⎟

 A = ⎜

⎝ . 

⎟

. 

.. ⎠

 am 1  · · · amn

die  darstellende Matrix  von  T  bezüglich ( v 1 , . . . , vn) und ( w 1 , . . . , wm). Bei-

spielsweise hat die im Fall  n =  m  durch ( T ( v 1) , . . . , T ( vn)) = ( w 1 , . . . , wm)

festgelegte lineare Abbildung  T  als darstellende Matrix die Einheitsmatrix

Id  ∈  K n×n, die durch Id ii = 1 und Id ij = 0 für  i =  j  definiert ist. 

Die  m×n-Matrizen bilden mit der komponentenweisen Addition und skalaren

Multiplikation

( A +  B) ij =  aij +  bij, 

( αA) ij =  αaij

einen Vektorraum, den wir mit K m×n  bezeichnen. Die Abbildung von  L( V, W )

nach K m×n, welche einem  T  seine darstellende Matrix  A  bezüglich ( v 1 , . . . , vn)

und ( w 1 , . . . , wm) zuordnet, ist ein Isomorphismus. Die Matrizen sind also die“

” 

Beispiele linearer Abbildungen zwischen endlich-dimensionalen Vektorräumen. 

Seien  U  ein weiterer Vektorraum mit Basis  {u 1 , . . . , ul}  und  S:  U → V  eine

lineare Abbildung mit darstellender Matrix  B ∈  K n×l  bezüglich ( u 1 , . . . , ul)

und ( v 1 , . . . , vn). Dann hat die Verknüpfung  T ◦ S:  U → W  eine darstellende

Matrix  C ∈  K m×l  bezüglich ( u 1 , . . . , ul) und ( w 1 , . . . , wm) mit den Einträgen

 cij =  ai 1 b 1 j +  · · · +  ainbnj. 
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Die Matrix  C  heißt das  Matrixprodukt  von  A  und  B. Man schreibt  C =  AB. 

Wie die Verknüpfung linearer Abbildungen ist die so definierte Matrizenmulti-

plikation assoziativ und distributiv bezüglich +, jedoch nicht kommutativ. Zum

Beispiel ist



 














 




0 1

0 0

1 0

0 0

0 0

0 1

=

 =

=

 . 

0 0

1 0

0 0

0 1

1 0

0 0

Gibt es für eine quadratische Matrix  A ∈  K n×n  ein  B ∈  K n×n  mit  AB =

Id =  BA, so heißt  A invertierbar. Die Matrix  B  ist eindeutig bestimmt und wird

die zu  A inverse Matrix A− 1 genannt. Die invertierbaren Matrizen des K n×n

bilden bezüglich der Matrizenmultiplikation eine Gruppe. 

Sei  A ∈  K m×n. Schreibt man einen Vektor  x ∈  K n  als Spaltenvektor, das

heißt als Matrix mit  n  Zeilen und einer Spalte, so erhält man als Spezialfall der

Matrizenmultipikation das  Matrix-Vektor-Produkt Ax ∈  K m  mit Komponenten

( Ax) i =  ai 1 x 1 +  · · · +  ainxn. 

Man kann nun eine lineare Abbildung  T :  V → W  folgendermaßen mit ei-

nem Matrix-Vektor-Produkt darstellen: Sei  A  die darstellende Matrix von  T

bezüglich ( v 1 , . . . , vn) und ( w 1 , . . . , wm), und seien  TV :  V →  K n  und  TW :

 W →  K m  die Isomorphismen, die auf die zugehörigen Koordinatenvektoren ab-

bilden. Dann gilt  T ( v) =  T − 1( AT


W

 V ( v)) für alle  v ∈ V . Oft ist es hilfreich, eine

 m × n-Matrix als  n-Tupel ihrer Spaltenvektoren zu notieren,  A = ( a 1 , . . . , an), 

und dementsprechend den Vektor  Ax  als eine Linearkombination der Spalten-

vektoren von  A  zu lesen, 

 Ax =  x 1 a 1 +  · · · +  xnan. 

Im Fall des  j-ten kanonischen Einheitsvektors  ej ∈  K n  ergibt sich dann ins-

besondere  Aej  als die  j-te Spalte von  A  und  aij  als die  i-te Komponente des

Vektors  Aej, das heißt  Aej =  aj  und ( Aej) i =  aij. 

Tauschen bei einer Matrix Zeilen und Spalten ihre Rolle, so definiert die

entsprechende Abbildung K m×n →  K n×m, ( aij)  → ( aji), einen Isomorphismus, 

den man die  Transposition  nennt. Die Matrix, die durch Transposition von  A

entsteht, heißt die zu  A transponierte Matrix  und wird mit  AT  bezeichnet. Es

gilt also  AT

 ij =  aji  für alle  i  und  j. Für das Bild von  A  sind die Spaltenvektoren

von  A  erzeugend, während das Bild von  AT  von den Zeilenvektoren von  A

erzeugt wird. Es kann jedoch gezeigt werden, dass

dim rng( A) = dim rng( AT )

gilt. Eine Matrix besitzt also die gleiche Anzahl linear unabhängiger Spalten-

und Zeilenvektoren. Man bezeichnet dim rng( A) als den  Rang  der Matrix  A. Eine

Matrix und ihre Transponierte haben demnach denselben Rang, und dieser ist

kleiner gleich min( m, n). 

5.4
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Lineare Gleichungssysteme

Lineare Gleichungssysteme gibt es seit mehr als 2000 Jahren. Man hat Lehm-

tafeln aus dem antiken Babylon gefunden, auf denen über lineare Gleichungs-

systeme die Größe von Getreidefeldern mit ihrem Ertrag pro Flächeneinheit in

Beziehung gesetzt wird. Viele Fragen auch des modernen Alltags lassen sich in

lineare Gleichungssysteme übersetzen. Ein geometrisch motiviertes Beispiel ist

die Suche nach dem Schnittpunkt zweier Geraden in der Ebene. Beschreiben

wir die Geraden durch die Gleichungen  ax +  by =  e  und  cx +  dy =  f , so ergibt

sich ein lineares System mit zwei Gleichungen und zwei Unbekannten, 



 
 



 a b

 x

 e

=

 . 

 c d

 y

 f

Die geometrische Anschauung lässt entweder keinen, genau einen oder unendlich

viele Lösungen ( x, y) zu, je nachdem ob die Geraden parallel liegen, sich in genau

einem Punkt schneiden oder zusammenfallen. Das Trio 0 ,  1 , ∞“ findet sich auch

” 

in der allgemeinen Lösungstheorie linearer Gleichungssysteme wieder, die wir im

Folgenden für die Skalarenkörper K = R oder C diskutieren. 

Seien  A ∈  K m×n  und  b ∈  K m. Wir nehmen an, dass es einen Vektor  x∗ ∈  K n

mit  Ax∗ =  b  gibt. Die Lösungsmenge für das lineare Gleichungssystem  Ax =  b

lässt sich dann als

 {x ∈  K n | Ax =  b} =  {x∗ +  x | x ∈  ker( A) }

schreiben, wobei ker( A) =  {x ∈  K n | Ax = 0 }  die Vektoren enthält, welche das

 homogene  lineare Gleichungssystem  Ax = 0 lösen. Da der Kern einer Matrix ein

Unterraum des R n  ist, ist die Lösungsmenge ein um den Vektor  x∗  verschobener

Unterraum, ein sogenannter  affiner Unterraum. Sie ist entweder einelementig, 

und zwar genau dann, wenn ker( A) =  { 0 }  gilt, oder sie enthält unendlich viele

Vektoren. Ist  {b 1 , . . . , bl}  eine Basis von ker( A), so kann man die Lösungsmenge

auch als

 {x ∈  K n | Ax =  b} =  {x∗ +  α 1 b 1 +  · · · +  αlbl | α 1 , . . . , αl ∈  K }

darstellen. Die Annahme, dass es ein  x∗ ∈  K n  mit  Ax∗ =  b  gibt, lässt sich

äquivalent als  b ∈  rng( A) formulieren, und es ergibt sich als Kriterium für die

Lösbarkeit, dass der Rang von  A  mit dem Rang der  erweiterten Systemmatrix

( A, b)  ∈  K m×( n+1) übereinstimmt. 

Die eindeutige Lösbarkeit ist also äquivalent dazu, dass  b ∈  rng( A) und

ker( A) =  { 0 }  gilt. Für Gleichungssysteme mit  n  Gleichungen und  n  Unbe-

kannten ist dieser Fall jedoch bereits durch die Bedingung ker( A) =  { 0 }  cha-

rakterisiert, da dann automatisch rng( A) = K n  gilt. Die Matrix  A ∈  K n×n  ist

dann invertierbar, und die eindeutige Lösung des linearen Gleichungssystems ist

durch  x =  A− 1 b  gegeben. 
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In konkreten Fällen mit überschaubarer Zahl von Gleichungen und Unbekann-

ten kann mit Papier und Bleistift über das  Gaußsche Eliminationsverfahren  die

Lösungsmenge bestimmt werden. Die grundlegende Idee hierfür ist, die lineare

Gleichung  Ax =  b  so zu verändern, dass ein neues lineares Gleichungssystem

mit gleicher Lösungsmenge entsteht, das aber einfacher lösbar ist. Die Matrix

des Zielsystems soll  Zeilenstufenform  haben, was Folgendes bedeutet: Zeilen, die

gleich dem Nullvektor sind, stehen unterhalb von Zeilen mit nicht verschwin-

denden Einträgen. Der erste nicht verschwindende Eintrag der  j-ten Zeile steht

rechts vom ersten nicht verschwindenden Eintrag der Vorgängerzeile. Markieren

wir nicht verschwindende Komponenten mit einem  ×, so ist

⎛

⎞

 × × × ×

⎜

⎟

 A = ⎜

⎝ 0  × × × ⎟

⎠

0 0 0  ×

ein schematisches Beispiel für eine 3  ×  4-Matrix in Zeilenstufenform. Hier hat

das lineare Gleichungssystem  Ax =  b  für jede rechte Seite  b ∈  K3 unendlich viele

Lösungen: Die vierte Komponente eines jeden Lösungsvektors  x  ist eindeutig als

 x 4 =  b 3 /a 34 festgelegt, während für die zweite und dritte Komponente beliebige

Lösungen der skalaren Gleichung  a 22 x 2 +  a 23 x 3 =  b 2  − a 24 x 4 möglich sind. 

Die möglichen Schritte einer Gaußschen Elimination sind die  elementaren

 Zeilenoperationen, von denen es drei verschiedene Typen gibt. Der erste Typ

vertauscht zwei Zeilen des Gleichungssystems. Der zweite Typ multipliziert eine

Zeile mit einem Skalar ungleich Null. Der dritte Typ ersetzt eine Zeile durch

die Summe der Zeile mit einer Vorgängerzeile. Matrizen, die durch elementa-

re Zeilenoperationen ineinander überführbar sind, nennt man  zeilen¨

 aquivalent. 

Zeilenäquivalenz ist eine Äquivalenzrelation (siehe auch Abschnitt 1.9). Man

überzeugt sich leicht davon, dass lineare Gleichungssysteme mit zeilenäquiva-

lenten erweiterten Systemmatrizen die gleiche Lösungsmenge haben. 

Eine alternative Formulierung der Gaußschen Elimination verwendet die so-

genannten  Elementarmatrizen. Die Linksmultiplikation des Gleichungssystems

mit einer Elementarmatrix  E ∈  K m×m  entspricht einer elementaren Zeilenope-

ration. Der erste Typ, welcher die  k-te mit der  l-ten Zeile vertauscht, hat die

Einträge  ekl =  elk = 1,  ejj = 1 für  j ∈ {k, l}  und  eij = 0 sonst. Der zweite Typ, 

der die  k-te Zeile mit  α  multipliziert, ist von der Form  ekk =  α,  ejj = 1 für

 j =  k  und  eij = 0 sonst. Der dritte Typ schließlich, der die  k-te zur  l-ten Zeile

addiert, ist durch  elk = 1,  ejj = 1 für alle  j  und  eij = 0 sonst definiert. Ein

Gaußscher Eliminationsprozess kann dann durch eine endliche Folge von Ele-

mentarmatrizen  E 1 , . . . , El  kodiert werden, die auf das einfachere Zielsystem

 El · · · E 1 Ax =  El · · · E 1 b

führen. Diese Darstellung ist die Grundlage für eine Faktorisierung der Matrix  A, 

die unter dem Namen  LR-Zerlegung  den Rahmen für die numerische Fehlerana-

lyse des Gaußschen Eliminationsverfahrens vorgibt (siehe Abschnitt 10.4). 

5.5
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Wir betrachten ein Parallelogramm, das von zwei Vektoren  a, b ∈  R2 auf-

gespannt wird, und berechnen seinen Flächeninhalt  F  mit Hilfe des Kosi-

nussatzes. Für den zwischen den Vektoren  a  und  b  liegenden Winkel  ϑ  gilt

 &a& · &b& ·  cos  ϑ =  a, b, wobei  a, b =  a 1 b 1 +  a 2 b 2 ist. Wir erhalten F =

 &a&  2  · &b&  2  − a, b 2 =  |a 1 b 2  − a 2 b 1 |. 

Die Funktion  D: R2  ×  R2  →  R, ( a, b)  → a 1 b 2  − a 2 b 1, besitzt die Eigenschaften

eines vorzeichenbehafteten Flächeninhalts:

(a) Für festes  a  ist  b → D( a, b) eine lineare Abbildung. Bei festem  b  gilt

das Gleiche für  a → D( a, b). 

(b) Für alle  a, b  gilt  D( a, b) =  −D( b, a). 

(c) Für die Einheitsvektoren  e 1 , e 2  ∈  R2 gilt  D( e 1 , e 2) = 1. 

Man stellt sich zur  n-dimensionalen Verallgemeinerung im K-Vektoraum K n  die

Frage, ob es eine Funktion  D: K n ×· · ·× K n →  K, ( a 1 , . . . , an)  → D( a 1 , . . . , an), gibt, welche Folgendes erfüllt:

(a)  D  ist multilinear: Werden alle Vektoren bis auf einen festgehalten, so

ist die resultierende Abbildung von K n  nach K linear. 

(b)  D  ist alternierend: Werden zwei Vektoren miteinander vertauscht, so

wechselt der Funktionswert das Vorzeichen. 

(c)  D  ist normiert: Es gilt  D( e 1 , . . . , en) = 1. 

Die Frage nach der Existenz eines solchen  D  kann mit

ja“ beantwortet und

” 

sogar durch eine Eindeutigkeitsaussage verstärkt werden. 

Fasst man die Vektoren  a 1 , . . . , an ∈  K n  als die Spalten einer  n × n-Matrix

 A ∈  K n×n  auf, so definiert das eindeutige  D über die Festlegung

det( A) =  D( a 1 , . . . , an)

die  Determinante  der Matrix  A. Um zu einer expliziten Formel für die Deter-



minante zu gelangen, schreibt man  a

 n

1 =

 a

 j=1

1 j ej  als Linearkombination der



Einheitsvektoren und erhält det( A) =

 n

 a

 j=1

1 j D( ej , a 2 , . . . , an). Wiederholt

man dies auch für die anderen Spalten, so ergibt sich eine Summe mit  nn  Sum-

manden, von denen aber nur  n! viele nicht verschwinden:



det( A) =

 a 1 ,p(1)  · · · an,p( n) D( ep(1) , . . . , ep( n)) . 

 p∈Sn

Hierbei ist  Sn  die Menge aller  Permutationen  von  n  Elementen, das heißt die

Menge aller bijektiven Abbildungen  p:  { 1 , . . . , n} → { 1 , . . . , n}. Je nachdem, ob

für eine Permutation  p  die Anzahl der Paare ( i, j) mit  i < j  und  p( i)  > p( j)

gerade oder ungerade ist, setzt man das  Signum  zu  σ( p) = 1 oder  σ( p) =  − 1. 

Mit dem Signum vereinfacht sich die obige Gleichung zur  Leibnizschen Formel



det( A) =

 σ( p) a

 · · ·

1 ,p(1)

 an,p( n) . 

 p∈Sn
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Mit der Leibnizschen Formel kann man zum Beispiel leicht beweisen, dass die

Transposition einer quadratischen Matrix ihre Determinante nicht verändert:

det( A) = det( AT ) . 

Die Determinante kann alternativ als Summe von Determinanten geringerer

Dimension geschrieben werden. Bezeichnen wir mit  Aij ∈  K( n− 1) ×( n− 1) die

Matrix, die durch die Streichen der  i-ten Zeile und  j-ten Spalte von  A ∈  K n×n

entsteht, so gilt

 n



 n



det( A) =

( − 1) i+ jaij  det( Aij) =

( − 1) i+ jaij  det( Aij)

 i=1

 j=1

für alle  i, j ∈ { 1 , . . . , n}. Diese Entwicklung der Determinante nach einer belie-

bigen Zeile oder Spalte trägt den Namen  Laplacescher Entwicklungssatz.  Ent-

wickelt man beispielsweise die Determinante einer Matrix  A ∈  K3 × 3 nach der

ersten Zeile, so ergibt sich













 a 22  a 23

 a 21  a 23

 a 21  a 22

det( A) =  a 11  ·  det

 − a 12  ·  det

+  a 13  ·  det

 . 

 a 32  a 33

 a 31  a 33

 a 31  a 32

Die Determinante des Produkts zweier Matrizen  A, B ∈  K n×n  erweist sich

als das Produkt der Determinanten, 

det( AB) = det( A) det( B) . 

Aus dieser Produktregel folgt für invertierbare Matrizen det( A− 1) = det( A) − 1, 

und dass eine Matrix  A  genau dann invertierbar ist, wenn det( A)  = 0 gilt. Daher

haben genau die von linear abhängigen Vektoren aufgespannten Parallelepipe-

de verschwindenden Flächeninhalt. Sind  A, B ∈  K n×n ähnlich, das heißt  A =

 T BT − 1 für eine invertierbare Matrix  T ∈  K n×n, dann gilt det( A) = det( B). 

Oder anders formuliert: Von ähnlichen Matrizen aufgespannte Parallelepipede

haben den gleichen Flächeninhalt. 

Für ein lineares Gleichungssystem  Ax =  b  mit einer invertierbaren Matrix  A

erlaubt die Determinantentheorie eine geschlossene Darstellung des Lösungsvek-

tors  x, die  Cramersche Regel  heißt. Wir ersetzen in der Matrix  A  die  k-te Spalte

durch den Vektor  b  und nennen diese Matrix  Ak. Es gilt

det( Ak) =  D( a 1 , . . . , ak− 1 , b, ak+1 , . . . , an)

 n



=

 xjD( a 1 , . . . , ak− 1 , aj, ak+1 , . . . , an) =  xk  det( A) , 

 j=1

und damit ist  xk = det( Ak) /  det( A) für alle  k = 1 , . . . , n  bestimmt. 
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Nach dem Satz des Pythagoras gelten in rechtwinkligen Dreiecken die folgen-

den Längenbeziehungen: Die Fläche des Quadrats über der Hypotenuse ist die

Summe der Flächen der Quadrate über den beiden Katheten. Einem Vektor

 x = ( x 1 , x 2)  ∈  R2 kann man ein rechtwinkliges Dreieck zuordnen, dessen Hy-

potenuse der Vektor  x  ist und dessen Katheten die Länge  |x 1 |  und  |x 2 |  haben. 

Bezeichnen wir die Länge des Vektors mit  &x& , so sagt also der Satz des Pytha-

goras, dass



 &x& =

 x 2 +  x 2

1

2

gilt.  &x&  wird auch die  Norm  des Vektors  x  genannt. Wir verallgemeinern nun

auf ein beliebiges Dreieck, welches von zwei Vektoren  x, y ∈  R2 aufgespannt

wird. Ist  ϑ  der Winkel zwischen  x  und  y, so gilt nach dem Kosinussatz

 &x&  2 +  &y&  2 =  &x − y&  2 + 2  · &x& · &y& ·  cos  ϑ. 

Rechnet man die Normquadrate aus, so lässt sich diese Gleichung zu  x 1 y 1 +

 x 2 y 2 =  &x&·&y&· cos  ϑ  umschreiben. Man nennt die hier auftauchende reelle Zahl

 x, y =  x 1 y 1+ x 2 y 2 das  innere Produkt  oder  Skalarprodukt  der Vektoren  x  und  y und verallgemeinert diesen Begriff entlang seiner grundlegenden Eigenschaften

auf beliebige reelle Vektorräume. 

Sei  V  ein reeller Vektorraum. Eine Abbildung   . , . :  V ×V →  R heißt  inneres

 Produkt, falls Folgendes gilt. Die Abbildung ist  bilinear : Für festes  x ∈ V  ist

 y → x, y  linear, und für festes  y ∈ V  ist  x → x, y  linear. Die Abbildung ist

 symmetrisch:  x, y =  y, x  für alle  x, y ∈ V . Die Abbildung ist  positiv definit:

 x, x ≥  0 für alle  x ∈ V  und  x, x = 0 nur für  x = 0. Reelle Vektorräume mit

innerem Produkt heißen  euklidisch. 

Ein wichtiger euklidischer Vektorraum ist der R n  mit dem inneren Produkt

 x, y =  x 1 y 1 +  · · · +  xnyn

( x, y ∈  R n) . 

Dies lässt sich als das Produkt des Zeilenvektors  xT  mit dem Spaltenvektor  y

lesen,  x, y =  xT y. Wir verwenden nun, dass die Transponierte eines Matrix-

produktes das Produkt der Transponierten in umgekehrter Reihenfolge ist, und

erhalten für  A ∈  R n×n

 Ax, y = ( Ax) T y = ( xT AT ) y =  xT ( AT y) =  x, AT y. 

In Worten lässt sich das so formulieren: Eine Matrix wechselt durch Transposi-

tion die Seite im inneren Produkt. 

Für den komplexen Vektorraum C2 ist die Abbildung ( x, y)  → x 1 y 1 +  x 2 y 2

nicht definit, da beispielsweise der Vektor  x = (1 , i) wegen  x 21 +  x 22 = 1  −  1 = 0

auf die Null geschickt wird. 
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Man nimmt für komplexe Vektorräume  V  deshalb eine geringfügige Anpas-

sung vor, die die Möglichkeit der komplexen Konjugation berücksichtigt. Eine

Abbildung   . , . :  V ×V →  C heißt  inneres Produkt, falls Folgendes gilt. Die Ab-

bildung ist  sesquilinear : Es gilt  x+ y, z =  x, z+ y, z,  x, y+ z =  x, y+ x, z

und  αx, y =  αx, y =  x, ¯

 αy  für alle  x, y, z ∈ V  und alle  α ∈  C. Die Abbil-

dung ist  hermitesch:  x, y =  y, x  für alle  x, y ∈ V . Die Abbildung ist  positiv

 definit :  x, x ≥  0 für alle  x ∈ V  und  x, x = 0 nur für  x = 0. Komplexe

Vektorräume mit innerem Produkt nennt man  unit¨

 ar. 

Beispiele für unitäre Vektorräume sind der C n  mit dem inneren Produkt

 x, y =  x 1 y 1 +  · · · +  xnyn

( x, y ∈  C n)

oder der Raum  C[0 ,  1] der stetigen komplexwertigen Funktionen  f : [ − 1 ,  1]  →  C

mit dem inneren Produkt 1

 f, g =

 f ( x) g( x) dx

( f, g ∈ C[ − 1 ,  1])  . 

 − 1

In beiden Fällen, für euklidische und unitäre Vektorräume  V , definiert das



innere Produkt über  V → [0 , ∞),  x → &x& =

 x, x, eine Norm (siehe auch

die Abschnitte 5.7 und 8.1). Diese Norm erfüllt die  Cauchy-Schwarz-Ungleichung

 |x, y| ≤ &x& · &y& 

und liefert so eine obere Schranke für den Betrag des inneren Produkts. Die

Cauchy-Schwarz-Ungleichung wird genau dann zu einer Gleichung, wenn die

Vektoren  x  und  y  linear abhängig sind. Sie garantiert, dass der Quotient

Re x, y/( &x& · &y& ) für  x, y = 0 im Intervall [ − 1 ,  1] liegt, und man definiert

in Analogie zur Situation im R2 den Winkel  ϑ ∈ [ − π , π ] zwischen zwei Vekto-

2

2

ren  x, y ∈ V \ { 0 } über

Re x, y

cos  ϑ =  &x& · &y&. 

Da cos( ± π ) = 0 gilt, erklärt diese Definition, weshalb man Vektoren  x, y ∈ V

2

mit  x, y = 0 als  orthogonal  oder  aufeinander senkrecht stehend  bezeich-

net. Beispielsweise stehen die kanonischen Einheitsvektoren  e 1 , . . . , en  im R n

bezüglich des üblichen Skalarprodukts paarweise aufeinander senkrecht. Ein

weiteres Beispiel sind die monischen  Legendre-Polynome, die man über die

Dreiterm-Rekursion

 Pn+1( x) =  xPn( x)  − Pn− 1( x)  , 


P

4  − n− 2

0( x) = 1 , 

 P 1( x) =  x

definieren kann. Das  n-te monische Legendre-Polynom  Pn  ist ein Polynom vom

Grad  n  mit führendem Koeffizienten gleich Eins. Als Polynome sind die  Pn  ste-

tige Funktionen und stehen bezüglich des obigen inneren Produkts im  C[ − 1 ,  1]

aufeinander senkrecht. Die Orthogonalität der Legendre-Polynome spielt insbe-

sondere für die Konstruktion der Gauß-Legendre-Quadraturformel eine wichtige

Rolle, siehe Abschnitt 10.10. 

5.7
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Auf einem euklidischen oder unitären Vektorraum  V  kann man über das innere



Produkt eine Norm  V → [0 , ∞),  x →

 x, x, als Abbildung zur Längen-

messung definieren. Man leitet aus der Cauchy-Schwarz-Ungleichung  |x, y| ≤

 &x& · &y&  ab, dass dann auch die  Dreiecksungleichung

 &x +  y& ≤ &x& +  &y& 

für alle  x, y ∈ V  gilt. Die Dreiecksungleichung lässt im R2 zwei offensichtliche

geometrische Interpretationen zu, je nachdem, ob man sich auf die von  x, x +  y

oder  y, x +  y  aufgespannten Dreiecke oder auf das von  x, y  aufgespannte Par-

allelogramm bezieht. Für die Dreiecke besagt die Ungleichung, dass keine Seite

länger als die Summe der anderen beiden Seitenlängen ist. Für das Paralle-

logramm erhält man, dass keine Diagonale länger als die Summe der beiden

Seitenlängen ist. 

Man isoliert nun neben der Dreiecksungleichung zwei weitere wichtige Ei-

genschaften der Längenmessung und nennt auf einem reellen oder komplexen

Vektorraum  V  eine Abbildung  V → [0 , ∞),  x → &x& ,  Norm, wenn sie Folgendes

erfüllt:

(a) Homogenität:  &αx& =  |α| · &x&  für alle  x ∈ V  und alle Skalare  α. 

(b) Definitheit:  &x& = 0 genau dann, wenn  x = 0. 

(c) Dreiecksungleichung:  &x +  y& ≤ &x& +  &y&  für alle  x, y ∈ V . 

Einen reellen oder komplexen Vektorraum mit einer Norm nennt man einen

 normierten  Vektorraum (siehe auch Abschnitt 8.1). Normen müssen nicht von

einem inneren Produkt stammen. Auf dem R n  oder C n  definieren

 &x&  1 =  |x 1 | +  · · · +  |xn|  oder  &x&∞ = max {|x 1 |, . . . , |xn|}

die  Summennorm  beziehungsweise die  Supremumsnorm. Die

Einheitskreise“

” 

der Ebene

 {x ∈  R2  | &x&  1  ≤  1 }, 

 {x ∈  R2  | &x&∞ ≤  1 }

haben die Form eines auf der Spitze stehenden bzw. eines achsenparallelen Qua-

drats. Ein anderes Beispiel ist der Raum der stetigen Funktionen  C[ − 1 ,  1], den

man durch

 1

 &f&  1 =

 |f( x) | dx  oder  &f&∞ = sup {|f( x) | | x ∈ [ − 1 ,  1] }

 − 1

normieren kann. Diese Spielarten einer Summen- und einer Supremumsnorm

bauen darauf auf, dass stetige Funktionen auf einem kompakten Intervall inte-

grierbar und beschränkt sind. 
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Dass die obigen Beispiele tatsächlich alles Normen sind, die nicht von einem

inneren Produkt abhängen, lässt sich mit Hilfe der folgenden Charakterisierung

begründen. Nach einem Satz von Pascual Jordan und John von Neumann (1935)

stammt eine Norm  & · &  nämlich genau dann von einem inneren Produkt, wenn

sie die  Parallelogrammgleichung

 &x +  y&  2 +  &x − y&  2 = 2 &x&  2 + 2 &y&  2

für alle  x, y ∈ V  erfüllt. Die Übersetzung der Parallelogrammgleichung in die

ebene Geometrie besagt, dass die Quadratsumme der Längen der vier Seiten

eines Parallelogramms gleich der Quadratsumme der Längen der beiden Diago-

nalen ist. 

Seien  V  und  W  normierte Vektorräume, deren Normen wir der notationellen

Einfachheit halber beide mit  & · &  bezeichnen. Die von den beiden Vektorraum-

Normen  induzierte Norm &T &  einer linearen Abbildung  T :  V → W  definiert

man als die kleineste Zahl  C ≥  0, für die  &T x& ≤ C&x&  für alle  x ∈ V  erfüllt ist. 

Man überzeugt sich leicht davon, dass  L( V, W )  → [0 , ∞),  T → &T & , tatsächlich

eine Norm ist, und leitet folgende oft recht hilfreiche Umformulierungen her:

 & 

 &T x& 

 T & = sup

 &T x&. 

 x=0  &x& 

= sup

 
x
=1

Als Spezialfall einer induzierten Norm ergibt sich die  induzierte Ma-

 trixnorm &A&  einer Matrix  A ∈  R m×n, indem  A  als lineare Abbildung von

R n  nach R m  interpretiert wird. Da in jedem endlich-dimensionalen Raum die

Einheitssphäre“  {x | &x& = 1 }  kompakt und die Normfunktion  x → &x&  ste-

” 

tig ist, sind die obigen Suprema Maxima. Wählen wir als Vektorraum-Normen

jeweils die Summennorm, so gilt

 &A&  1 := max  &Ax&  1 = max {&aj&  1  | aj  ist die  j-te Spalte von  A}, 

 
x
 1=1

weswegen  &A&  1 auch als die  Spaltensummennorm  von  A  bezeichnet wird. Ist die

zugrundeliegende Vektorraum-Norm jeweils die Supremumsnorm, so ergibt sich

die  Zeilensummennorm  von  A, 

 &A&∞ := max  &Ax&∞ = max {&zi&  1  | zi  ist die  i-te Zeile von  A}. 

 
x
∞=1

Im Endlich-Dimensionalen sind alle Normen in folgendem Sinne  ¨

 aquivalent:

Sei  V  ein Vektorraum mit dim( V )  < ∞, auf dem zwei Normen  & · &a  und  & · &b

definiert sind. Dann gibt es Konstanten  c, C >  0, so dass

 c&x&a ≤ &x&b ≤ C&x&a

für alle  x ∈ V  gilt. Beispielsweise gilt  &x&∞ ≤ &x&  1  ≤ n&x&∞  für alle  x ∈  R n. 

Konvergiert also eine Folge ( xk) in  V  gegen  x ∈ V  bezüglich  & · &a, das heißt

lim k→∞ &xk − x&a = 0, so gilt automatisch lim k→∞ &xk − x&b = 0. 

5.8

Orthogonalität
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Wir betrachten die kanonische Basis  {e 1 , . . . , en}  des C n  durch die Brille des

inneren Produkts  x, y =  x 1 y 1 +  · · · +  xnyn  und seiner zugehörigen Norm

 &x& = ( |x 1 | 2 +  · · · +  |xn| 2)1 / 2. Es fällt auf, dass alle Basisvektoren aufeinander

senkrecht stehen und normiert sind: Es gilt

 ej, ek = 0 für alle  j =  k, &ej& = 1 für alle  j. 

Treffen die beiden Eigenschaften des Aufeinander-senkrecht-Stehens und des

Normiertseins auf eine beliebige Basis  B  eines endlich-dimensionalen euklidi-

schen oder unitären Vektorraums  V  zu, so nennt man  B  eine  Orthonormalbasis. 

Die kanonische Basis des C n  ist also eine Orthonormalbasis. Ebenso besitzt jede

hermitesche  n × n-Matrix normierte Eigenvektoren, die eine Orthonormalbasis

des C n  bilden (siehe Abschnitt 5.11). 

Ist  {q 1 , . . . , qn}  eine Orthonormalbasis eines euklidischen oder unitären Vek-

torraums  V , so lassen sich die für jeden Vektor  x ∈ V  eindeutig festgeleg-

ten Skalare der Basisentwicklung über das innere Produkt schreiben: Es gilt

 x =  x, q 1 q 1 +  · · · +  x, qnqn. Verwenden wir diese Darstellung zur Berechnung

von  &x& , so ergibt sich die  Parsevalsche Gleichung

 &x&  2 =  |x, q 1 | 2 +  · · · +  |x, qn| 2 , 

die im Zweidimensionalen auf den Satz des Pythagoras zurückfällt. 

Jede Basis  {a 1 , . . . , an}  eines euklidischen oder unitären Vektorraums  V  lässt

sich über das  Gram-Schmidtsche Orthogonalisierungsverfahren  in eine Ortho-

normalbasis verwandeln. Im ersten Schritt wird der erste Vektor normiert, 

 q 1 =  q 1 /&q 1 & . Dann wird mit ˜

 q 2 =  a 2  − a 2 , q 1 q 1 ein zu  q 1 orthogonaler Vek-

tor definiert und über  q 2 = ˜

 q 2 /& ˜

 q 2 &  ebenfalls normiert. Der  k-te Schritt des

Verfahrens setzt

˜

 qk =  ak − ak, qk− 1 qk− 1  − · · · − ak, q 1 q 1 , 

 qk = ˜

 qk/& ˜

 qk&. 

Nach  n  Schritten erhält man  n  aufeinander senkrecht stehende, normierte Vek-

toren  q 1 , . . . , qn, die eine Orthonormalbasis von  V  bilden. 

Eine Matrix  Q ∈  R n×n, deren Spaltenvektoren eine Orthonormalbasis des R n

bezüglich des inneren Produkts  x, y =  x 1 y 1 +  · · · +  xnyn  sind, nennt man eine

 orthogonale Matrix. Äquivalent lässt sich die Orthogonalität einer Matrix auch

als

 QQT =  QT Q = Id

ausdrücken. Eine Matrix ist also genau dann orthogonal, wenn die Inverse die

Transponierte ist. Aus dieser Charakterisierung ergibt sich det( Q) =  ± 1 sowie

 Qx, Qy =  x, QT Qy =  x, y, 

 &Qx& =  &x& 
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für alle  x, y ∈  R n. Die letzten beiden Eigenschaften nennt man  Winkel-  bezie-

hungsweise  L¨

 angentreue. Man kann zeigen, dass alle längentreuen Abbildungen

 f : R n →  R n  mit  f (0) = 0 automatisch winkeltreu und linear sind und der

Multiplikation mit einer orthogonalen Matrix entsprechen. 

Wir wechseln zurück in den C n  und statten ihn wieder mit dem üblichen

inneren Produkt  x, y =  x 1 y 1 +  · · · +  xnyn  aus. Eine Matrix  U ∈  C n×n, deren

Spalten eine Orthonormalbasis des C n  bilden, heißt eine  unitäre Matrix. Die

hierzu äquivalente Bedingung lautet

 U U ∗ =  U ∗U = Id , 

wobei wir mit  U ∗ ∈  C n×n  die  adjungierte Matrix  bezeichnen, die nach kom-

ponentenweisem komplex Konjugieren und Transponieren entsteht, das heißt

( U ∗) ij =  Uji  für alle  i, j. Ähnlich wie für orthogonale Matrizen ergibt sich

 | det( U) | = 1 sowie

 Ux, Uy =  x, U∗Uy =  x, y, 

 &Ux& =  &x& 

für alle  x, y ∈  C n. 

Sei  W ⊆ V  ein Unterraum eines euklidischen oder unitären Vektorraums  V . 

Man sammelt im  orthogonalen Komplement  von  W  die Vektoren, welche auf

allen Elementen des Unterraums  W  senkrecht stehen:

 W ⊥ =  {x ∈ V | x, y = 0 für alle  y ∈ W } . 

Das orthogonale Komplement  W ⊥  ist ein Unterraum von  V , der mit  W  nur den

Nullvektor gemeinsam hat. Sei im Folgenden  V  endlich-dimensional. Dann gilt

 V =  W ⊕ W ⊥, und es gibt für jeden Vektor  x ∈ V  genau ein Paar von Vektoren

 xW ∈ W  und  xW ⊥ ∈ W ⊥, so dass  x =  xW +  xW ⊥  gilt. Die Abbildung

 PW :  V → W, 

 x → xW

ist linear und erfüllt  P  2 =  P


W

 W  sowie  PW x, y =  x, PW y  für alle  x, y ∈ V . 

Man nennt sie die  orthogonale Projektion  auf den Unterraum  W . Für Vektoren

 x ∈ V  und  y ∈ W  können wir die Differenz als  x−y =  PW x−y + xW ⊥  schreiben

und erhalten nach dem Satz des Pythagoras

 &x − y&  2 =  &PW x − y&  2 +  &xW⊥&  2 . 

Von dieser Gleichung lesen wir ab, dass es genau ein Element des Unterraums  W

gibt, nämlich  y =  PW x, für das die Länge von  x − y  minimal ausfällt. Oder

anders formuliert:  PW x  ist der eindeutig bestimmte Vektor in  W , der zu  x  den

kleinsten Abstand hat. Man nennt  PW x  deshalb auch die  Bestapproximation

von  x  in  W . 

5.9

Dualität
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Unter den linearen Abbildungen nehmen die Abbildungen  :  V →  K, welche von

einem K-Vektorraum in seinen Skalarenkörper führen, eine besondere Stellung

ein. Man nennt sie  lineare Funktionale  und den K-Vektorraum

 L( V,  K) =  { | :  V →  K ist linear } =:  V 

den  Dualraum  von  V . 

Eine lineare Abbildung  T :  V → W  zwischen zwei K-Vektorräumen  V  und

 W  definiert durch die Hintereinanderausführung mit einem Funktional   ∈ W 

eine lineare Abbildung   ◦ T :  V →  K, also ein Element von  V . Man nennt die

entsprechende Abbildung zwischen den beiden Dualräumen

 T :  W  → V ,  →  ◦ T

die zu  T adjungierte Abbildung. Sie erfüllt ( T )( x) =  ( T x) für alle   ∈ W   und

alle  x ∈ V . Wir wollen diese Konzepte im Folgenden für endlich-dimensionale

Vektorräume mit dim( V ) =  n  und dim( W ) =  m  etwas genauer beleuchten. 

Sei  x 1 , . . . , xn  eine Basis von  V . Dann gibt es für jeden Vektor  x ∈ V  eindeutig

bestimmte Skalare  k 1( x) , . . . , kn( x)  ∈  K, so dass  x =  k 1( x) x 1+ · · ·+ kn( x) xn  gilt. 

Man kann sich nun leicht davon überzeugen, dass die Koeffizienten-Abbildungen

 kj:  V →  K , x → kj( x)

( j = 1 , . . . , n)

linear sind und somit  kj ∈ V   für alle  j  gilt. Mehr noch: Die Funktionale

 k 1 , . . . , kn  bilden eine Basis von  V , und daher gilt insbesondere

dim( V ) = dim( V ) =  n. 

Ist  V  ein euklidischer Vektorraum mit einem inneren Produkt   . , . , so be-

sitzt  V  eine Orthonormalbasis  x 1 , . . . , xn (siehe Abschnitt 5.8). Die zugehörigen

Koeffizienten-Funktionale lassen sich mit dem inneren Produkt als

 kj:  V →  R , x → x, xj

schreiben. Da die Funktionale  k 1 , . . . , kn  eine Basis von  V   sind, gibt es für jedes

  ∈ V   eindeutig bestimmte Skalare  α 1 , . . . , αn ∈  R mit   =  α 1 k 1 +  · · · +  αnkn. 

Das bedeutet für alle  x ∈ V

 ( x) =  α 1 x, x 1  +  · · · +  αnx, xn =  x, α 1 x 1 +  · · · +  αnxn =:  x, d	, und wir haben einen eindeutig bestimmten Vektor  d	 ∈ V  gefunden, der

 ( x) =  x, d	  für alle  x ∈ V  erfüllt. Oder anders formuliert: Jedes lineare

Funktional   ∈ V   lässt sich über das innere Produkt mit einem eindeutig be-

stimmten Vektor  d	 ∈ V  darstellen. Dies ist eine endlich-dimensionale Version

des  Rieszschen Darstellungssatzes  von 1907/1909, welcher lineare Funktionale

auf Funktionenräumen über Integrale darstellt. 
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Wir verwenden die Rieszsche Darstellung, um für euklidische Vektorräume

( V,  . , . V ) und ( W,  . , . W ) die zu  T :  V → W  adjungierte Abbildung  T   ge-

nauer zu beschreiben. Seien  d	 ∈ W  und  dT 	 ∈ V  die darstellenden Vektoren

der Funktionale   ∈ W   beziehungsweise  T  ∈ V . Hiermit schreiben wir die

Gleichung ( T )( x) =  ( T x), die für alle  x ∈ V  gilt, als





 x, dT	V =  T x, d	W

 x ∈ V,  ∈ W  . 

Das heißt, dass mit der adjungierten Abbildung im inneren Produkt ein Seiten-

wechsel vollzogen wird. 

Seien   ∈ W   und  d	 ∈ W  der darstellende Vektor. Es gilt   ∈  ker( T ) ge-

nau dann, wenn  ( T x) = 0 für alle  x ∈ V  erfüllt ist, was gleichbedeutend zu

 T x, d	 = 0 für alle  x ∈ V  ist. Wir können also über den Rieszschen Dar-

stellungssatz den Kern von  T   mit dem orthogonalen Komplement von rng( T )

identifizieren und erhalten insbesondere

dim ker( T ) = dim rng( T ) ⊥. 

Wegen  W = rng( T )  ⊕  rng( T ) ⊥  gilt  m = dim rng( T ) + dim rng( T ) ⊥. Mit der

Dimensionsformel erhalten wir  m = dim rng( T ) + dim ker( T ). Das Bild von  T

und das Bild von  T   haben also die gleiche Dimension:

dim rng( T ) = dim rng( T ) . 

Wir spezialisieren uns auf den Fall  V = R n  und  W = R m  und betrachten

anstelle der linearen Abbildung  T  ihre darstellende Matrix  A = ( Aij)  ∈  R m×n

bezüglich der Standardbasen. Unsere Überlegungen zu adjungierten Abbildun-

gen garantieren, dass es für jedes  y ∈  R m  genau einen Vektor  z ∈  R n  gibt, der

 x, z R n =  Ax, y R m  für alle  x ∈  R n  erfüllt. Den Vektor  z  erhält man durch

Multiplikation von  y  mit der zu  A transponierten Matrix





 AT =  AT

 ij

= ( Aji)  ∈  R n×m. 

Die Dualitätsbeziehung schreibt sich dann als  x, AT y R n =  Ax, y R m  für alle

 x ∈  R n  und  y ∈  R m, und obige Überlegung beweist, dass der Zeilen- und

Spaltenrang einer beliebigen Matrix  A ∈  R m×n  gleich sind. 

Für unitäre Vektorräume greifen die gleichen Argumente wie im Euklidischen, 

nur dass bei der Definition des darstellenden Vektors eine komplexe Konjugation

skalarer Koeffizienten berücksichtigt werden muss. Die darstellende Matrix der

adjungierten Abbildung ist dann die zu  A ∈  C m×n adjungierte Matrix









 A∗ =  A∗

 ij

=  Aji ∈  C n×m, 

die aus  A  durch Transposition und komplexe Konjugation entsteht. Es gilt ins-

besondere  x, A∗y C n =  Ax, y C m  für alle  x ∈  C n  und  y ∈  C m. 

5.10
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Die einfachste lineare Abbildung auf dem C n  ist die Multiplikation  x → λ∗x  mit

einem vorgegebenen Skalar  λ∗ ∈  C. Die Multiplikation  x → Ax  mit einer belie-

bigen quadratischen Matrix  A ∈  C n×n  ist zwar wesentlich komplizierter, aber

es stellt sich doch die Frage, ob man einen Skalar  λ ∈  C und einen Unterraum

 { 0 } =  U ⊂  C n  finden kann, so dass

 Ax =  λx

für alle  x ∈ U  gilt. Diese Frage wird für den komplexen Vektorraum C n  for-

muliert, da man im reellen Vektorraum R n  zu oft mit einer negativen Antwort

rechnen muss. Eines der zahlreichen Beispiele hierfür ist die Rotationsmatrix





cos  ϑ −  sin  ϑ

 A =

 , 

sin  ϑ

cos  ϑ

welche die Vektoren der Ebene gegen den Uhrzeigersinn um den Winkel  ϑ ∈

(0 , π) dreht. Für diese Matrix  A  gibt es keinen reellen Skalar  λ ∈  R und keinen

Vektor  x ∈  R2  \ { 0 }  mit  Ax =  λx. Die eingangs gewählte Formulierung im

komplexen Vektorraum hingegen erlaubt eine reiche mathematische Theorie, 

deren Anwendungen bis in die Quantenmechanik reichen. 

Angenommen, es gibt einen Skalar  λ  und einen Vektor  x  mit  Ax =  λx. Dann

gilt  x ∈  ker( λ Id  − A) =  {x ∈  C n | λx − Ax = 0 }, und  U = ker( λ Id  − A)

ist tatsächlich ein Unterraum mit den gewünschten Eigenschaften. Man schließt

nun den trivialen Fall  x = 0 aus und bezeichnet einen Skalar  λ ∈  C und einen

Vektor  x ∈  C n \ { 0 }  mit  Ax =  λx  als einen  Eigenwert  und einen  Eigenvektor

der Matrix  A. Den Unterraum ker( λ Id  − A), in dem die zu  λ  gehörigen Eigen-

vektoren liegen, nennt man den zu  λ  gehörigen  Eigenraum  von  A. Die Menge

aller Eigenwerte heißt das  Spektrum  von  A  und wird mit  σ( A) bezeichnet. 

Eigenvektoren zu unterschiedlichen Eigenwerten  λ 1 , . . . , λm  sind linear un-

abhängig. Aus diesem Grund kann eine Matrix  A ∈  C n×n  maximal  n  verschie-

dene Eigenwerte haben. Die Dimension des Eigenraums ker( λ Id  − A) heißt die

 geometrische Vielfachheit  des Eigenwerts  λ, und die Summe der geometrischen

Vielfachheiten der verschiedenen Eigenwerte einer Matrix ergibt maximal  n. 

Ist  λ  ein Eigenwert einer Matrix  A, so gilt ker( λ Id  − A)  =  { 0 }. Dies ist

gleichbedeutend dazu, dass die Matrix  λ Id  − A  nicht invertierbar ist, und dies

ist äquivalent zu det( λ Id  − A)  = 0. Die Eigenwerte einer Matrix  A  sind also die

Nullstellen der Funktion

 pA: C  →  C , 

 λ →  det( λ Id  − A) . 

Die Funktion  pA  ist ein Polynom  n-ten Grades und heißt das  charakteristische

 Polynom  der Matrix  A. Der führende Koeffizient des Polynoms ist 1. Nach dem
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Fundamentalsatz der Algebra hat das charakteristische Polynom  k  verschiede-

ne Nullstellen  λ 1 , . . . , λk  mit Vielfachheiten  n 1 , . . . , nk, wobei die Summe der

Vielfachheiten genau  n  ergibt. Es gilt also

 pA( λ) = ( λ − λ 1) n 1  · · · ( λ − λk) nk . 

Neben dem führenden sind noch zwei weitere Koeffizienten des charakteristi-

schen Polynoms einfach anzugeben. Es gilt

 pA( λ) =  λn −  spur( A) λn− 1 +  · · · + ( − 1) n  det( A) , 

wobei spur( A) =  a 11 +  · · · +  ann  die  Spur  der Matrix  A  ist. Ein Abgleich der

beiden Darstellungen des charakteristischen Polynoms liefert

spur( A) =  n 1 λ 1 +  · · · +  nkλk, 

det( A) =  λn 1  · · · λnk . 

1

 k

Die Vielfachheit, mit der ein Eigenwert Nullstelle des charakteristischen Po-

lynoms ist, heißt die  algebraische Vielfachheit  des Eigenwerts, und die Summe

der algebraischen Vielfachheiten der verschiedenen Eigenwerte einer Matrix ist

genau  n. Man kann zeigen, dass die geometrische Vielfachheit eines Eigenwertes

immer kleiner gleich seiner algebraischen ist. Ein einfaches Beispiel dafür, dass

die geometrische Vielfachheit echt kleiner als die algebraische ausfallen kann, 

liefert die Matrix





3

2

 A =

 . 

 − 2  − 1

Ihr charakteristisches Polynom  pA( λ) =  λ 2  −  2 λ + 1 = ( λ −  1)2 hat  λ = 1 als

doppelte Nullstelle, während für den Eigenraum ker(Id  − A) = span(( − 1 ,  1) T )

gilt. 

Sei  A ∈  C n×n  eine Matrix mit Eigenwert  λ  und Eigenvektor  x. Ist  A  inver-

tierbar, so gilt  λ = 0, und man folgert aus  Ax =  λx  durch Multiplikation mit

der inversen Matrix, dass  A− 1 x =  λ− 1 x  gilt. Die inverse Matrix hat also die

inversen Eigenwerte und die gleichen Eigenvektoren. Sei  A ∈  C n×n  beliebig. 

Aus der Eigenwertgleichung ergibt sich  A 2 x =  A( λx) =  λ( Ax) =  λ 2 x, und  x  ist

auch Eigenvektor von  A 2 zum Eigenwert  λ 2. Diese Beobachtung verallgemeinert

sich dazu, dass  λk  Eigenwert von  Ak  für alle natürlichen Zahlen  k ≥  0 ist, und

liefert den folgenden  spektralen Abbildungssatz : Für jedes Polynom  p: C  →  C

gilt

 σ( p( A)) =  {p( λ)  | λ ∈ σ( A) }. 

Für das charakteristische Polynom  pA  ergibt der spektrale Abbildungssatz, dass

alle Eigenwerte der Matrix  pA( A) Null sind. Diese Aussage lässt sich jedoch noch

zum  Satz von Cayley-Hamilton  verstärken, wonach sogar

 pA( A) =  An −  spur( A) An− 1 +  · · · + ( − 1) n  det( A)Id = 0

gilt. 
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Sei  A ∈  C n×n  eine Matrix und seien  λ 1 , . . . , λn ∈  C ihre Eigenwerte, wobei

die Eigenwerte entsprechend ihrer algebraischen Vielfachheit mehrfach genannt

werden. Wir wählen  n  zugehörige Eigenvektoren  x 1 , . . . , xn ∈  C n \ { 0 }  und

schreiben

 Axj =  λj xj

( j = 1 , . . . , n) . 

In Matrixschreibweise liest sich dies als  AX =  XΛ für die Diagonalmatrix

Λ = diag( λ 1 , . . . , λn) und die Matrix  X = ( x 1 , . . . , xn), deren Spalten die vorge-

gebenen Eigenvektoren sind. Argumentieren wir rückwärts und betrachten für

die Matrix  A  eine Matrix  X, deren Spalten alle nicht der Nullvektor sind und die

zudem  AX =  X diag( λ 1 , . . . , λn) erfüllt, so sind die Diagonaleinträge  λ 1 , . . . , λn

Eigenwerte von  A  und die Spalten von  X  zugehörige Eigenvektoren. 

Diese Beobachtung motiviert den Begriff der Diagonalisierbarkeit: Eine Ma-

trix  A ∈  C n×n  heißt  diagonalisierbar, falls es ein invertierbares  X ∈  C n×n  und

eine Diagonalmatrix Λ  ∈  C n×n  gibt mit

 A =  XΛ X− 1 . 

Diagonalisierbare Matrizen sind also ähnlich zu Diagonalmatrizen (siehe Ab-

schnitt 5.5). Man kann sich leicht davon überzeugen, dass die Diagonalisier-

barkeit einer Matrix gleichbedeutend dazu ist, dass es eine Basis des C n  gibt, 

die aus Eigenvektoren der Matrix besteht. Ebenso gilt: Eine Matrix ist genau

dann diagonalisierbar, wenn für jeden ihrer Eigenwerte die algebraische und die

geometrische Vielfachheit jeweils übereinstimmen. 

Mit diagonalisierbaren Matrizen lässt sich besonders gut rechnen. Das Qua-

drat einer diagonalisierbaren Matrix  A  ist

 A 2 = ( XΛ X− 1)( XΛ X− 1) =  XΛ2 X− 1 =  X diag( λ 21 , . . . , λ 2 n) X− 1

und wird somit wesentlich über die Quadrate der Eigenwerte bestimmt. Ebenso

gilt  Am =  X diag( λm

1  , . . . , λm

 n ) X − 1 für alle  m ∈  N und deshalb auch

 p( A) =  X diag( p( λ 1) , . . . , p( λn)) X− 1

für alle Polynome  p: C  →  C,  z → amzm +  · · · +  a 1 z +  a 0. Dass die Musik“ vor

” 

allem auf der Diagonalen spielt, gilt auch für gewöhnliche Differentialgleichun-

gen  y( t) =  Ay( t),  y(0) =  y 0, deren rechte Seite von einer diagonalisierbaren

Matrix  A  stammt: Die vom Satz von Picard-Lindelöf (siehe Abschnitt 8.4) ga-

rantierte, eindeutig bestimmte Lösung  y( t) =  eAty 0 erfüllt

 y( t) =  X diag(exp( λ 1 t) , . . . ,  exp( λnt))  X− 1 y 0 , 

und ist somit von skalaren Exponentialfunktionen, die entsprechend den Eigen-

werten wachsen, bestimmt. 
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Seien  A  diagonalisierbar und  X = ( x 1 , . . . , xn) wie oben. Jeder Vektor  y ∈

C n  besitzt dann eine eindeutige Darstellung  y =  k 1( y) x 1 +  · · · +  kn( y) xn  mit Skalaren  k 1( y) , . . . , kn( y)  ∈  C. Die linearen Abbildungen

 Pj: C n →  C n, 

 y → kj( y) xj

( j = 1 , . . . , n)

bilden in die lineare Hülle des Eigenvektors  xj  ab und erfüllen Id =  P 1 + · · ·+ Pn. 

Es gilt die Projektionseigenschaft  P  2

 j

=  Pj  für alle  j  sowie  Pj Pk = 0 für alle

 j =  k. Man sagt deshalb, dass die Eigenprojektoren  P 1 , . . . , Pn  eine  Zerlegung

 der Eins  definieren. Die Diagonalisierung schreibt man entsprechend als

 A =  λ 1 P 1 +  · · · +  λnPn

und nennt sie die  spektrale Zerlegung  der Matrix  A. 

Ist die Basis bezüglich des inneren Produkts  v, w =  v 1 w 1 +  · · · +  vnwn  eine

Orthonormalbasis, so ist die Transformationsmatrix  X  nicht nur invertierbar, 

sondern auch unitär:  XX∗ =  X∗X = Id. In diesem Fall gilt

 A =  XΛ X∗, 

und man spricht von der  unit¨

 aren Diagonalisierbarkeit  der Matrix  A. Die ad-

jungierte Matrix  A∗  ist dann ebenfalls unitär diagonalisierbar, und es gilt

 A∗ =  XΛ ∗X∗ =  X diag(¯

 λ 1 , . . . , ¯

 λn) X∗. Hiervon liest man ab, dass die Eigen-

werte von  A∗  die komplex konjugierten Eigenwerte von  A  sind und dass die

Eigenvektoren von  A∗  und  A übereinstimmen:  A∗xj = ¯

 λjxj  für alle  j. Hieraus

ergibt sich  AA∗xj =  |λj| 2 xj =  A∗Axj  für alle  j. Das bedeutet, dass  A  und  A∗

miteinander vertauschen, oder auch dass

 AA∗ =  A∗A

gilt. Matrizen, die mit ihrer Adjungierten vertauschen, heißen  normal. Man be-

weist zur vorigen Überlegung auch die Rückrichtung und erhält, dass die unitär

diagonalisierbaren Matrizen genau die normalen Matrizen sind. Für unitär dia-

gonalisierbare Matrizen kann man die Eigenprojektoren explizit als

 Pj: C n →  C n, 

 y → y, xjxj

( j = 1 , . . . , n)

schreiben und überprüft, dass sie Orthogonalprojektionen sind. Das liefert den

 Spektralsatz  der linearen Algebra: Normale Matrizen sind Linearkombinationen

von Orthogonalprojektoren. 

Die hermiteschen Matrizen  A ∈  C n×n  erfüllen  A =  A∗  und sind besondere

Beispiele für normale Matrizen. Nach den obigen Überlegungen besitzen die-

se Matrizen nur reelle Eigenwerte und sind zudem unitär diagonalisierbar. Für

die reell symmetrischen Matrizen  A ∈  R n×n  gilt  A =  AT . Sie sind spezielle

hermitesche Matrizen und haben deshalb nur reelle Eigenwerte. Die Symmetrie

erzwingt eine  orthogonale Diagonalisierung A =  XΛ XT  mit einer orthogona-

len Matrix  X ∈  R n×n, die  XXT =  XT X = Id erfüllt. Für reell symmetrische

Matrizen kann die Diagonalisierung also ausschließlich mit reellen Größen for-

muliert werden. 
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Eine quadratische Matrix  A ∈  C n×n  ist genau dann diagonalisierbar, wenn es

eine Basis des C n  aus Eigenvektoren gibt. Von der Restriktivität dieser Eigen-

schaft überzeugt man sich leicht, indem man die Familie von Matrizen  A ∈  C2 × 2

mit det( A) = 1 und spur( A) = 2 betrachtet. Diese haben alle 1 als alleinigen

Eigenwert, und die Einheitsmatrix ist die einzige unter ihnen, die diagonali-

sierbar ist. Im Folgenden werden deshalb zwei Konzepte zur Matrixzerlegung

vorgestellt, die auch jenseits der Diagonalisierbarkeit greifen. 

Der jüngere der beiden Ansätze, die  Singul¨

 arwertzerlegung, hat seine Wur-

zeln in voneinander unabhängigen Arbeiten über Bilinearformen der italieni-

schen und französischen Mathematiker Eugenio Beltrami (1873) und Camil-

le Jordan (1874). Er zielt auf beliebige rechteckige Matrizen  A ∈  C m×n  und

verwendet anstelle einer Basis zwei Basen zur Transformation auf Diagonal-

gestalt. Zu seiner Herleitung kann man sich auf die Beobachtung stützen, 

dass die Matrix  B =  A∗A ∈  C n×n  hermitesch ist und deshalb der C n  ei-

ne Orthonormalbasis  v 1 , . . . , vn  aus Eigenvektoren von  B  besitzt. Wir be-

zeichnen mit  λ 1( B) , . . . , λn( B) die zugehörigen Eigenwerte, wobei wir entspre-

chend ihrer algebraischen Vielfachheit Eigenwerte auch mehrfach nennen. Es

gilt  λj( B) =  Bvj, vj =  Avj, Avj ≥  0, und wir definieren über



 σj =

 λj( B)  ≥  0

( j = 1 , . . . , n)

die  Singul¨

 arwerte  der Matrix  A. Wir nummerieren die Singulärwerte in ab-

steigender Reihenfolge, so dass  σ 1 , . . . , σr >  0 und  σr+1 , . . . , σn = 0 für ein

 r ≤  min( m, n) gilt. Man überzeugt sich leicht davon, dass die Vektoren

 uj =  σ− 1 Av

 j

 j ∈  C m

( j = 1 , . . . , r)

normiert sind und paarweise aufeinander senkrecht stehen. Ist  r < m, so

ergänzen wir durch Vektoren  ur+1 , . . . , um  zu einer Orthonormalbasis des C m. 

Wir erhalten mit den unitären Matrizen  U = ( u 1 , . . . , um)  ∈  C m×m  und

 V = ( v 1 , . . . , vn)  ∈  C n×n  die  Singulärwertzerlegung  der Matrix  A:

 A =  U  diag( σ 1 , . . . , σn) V ∗. 

Aus der Singulärwertzerlegung lassen sich viele Eigenschaften einer Ma-

trix ablesen. Es gilt beispielsweise rng( A) = span( u 1 , . . . , ur) und ker( A) =

span( vr+1 , . . . , vn). Demzufolge ist auch der Rang einer Matrix gleich der An-

zahl ihrer positiven Singulärwerte, und der Betrag der Determinante ist das

Produkt der Singulärwerte:

 | det( A) | =  | det( U)) | ·  det(diag( σ 1 , . . . , σn))  · | det( V ∗) | =  σ 1  · · · σn. 

136

5 Lineare Algebra

Die zweite Matrixzerlegung ist ebenfalls in zwei voneinander unabhängigen

Arbeiten entwickelt worden (Karl Weierstraß, 1868; Camille Jordan, 1870) und

wird heute als die  Jordansche Normalform  bezeichnet. Wir stellen sie für qua-

dratische Matrizen  A ∈  C n×n  vor. Man erweitert hier die auf der Existenz einer

Eigenvektorbasis fußende Diagonalisierung zu einer auf einer verallgemeinerten

Eigenvektorbasis aufsetzenden Blockdiagonalisierung. Sei  λ ∈  C ein Eigenwert

der Matrix  A, dessen algebraische und geometrische Vielfachheit wir mit  aλ

beziehungsweise  gλ  bezeichnen. Wir nennen einen Vektor  x ∈  C n \ { 0 }  einen

zu  λ  gehörigen  Hauptvektor, wenn es eine natürliche Zahl  m ≥  1 gibt, so dass

( A − λ Id) mx = 0 gilt. Ein Eigenvektor ist demnach ein Spezialfall eines Haupt-

vektors. Die iterierten Kerne  Nm( λ) := ker( A − λ Id) m  sind aufsteigend ineinan-

der geschachtelte Unterräume des C n, zwischen denen die Abbildung  A−λ Id den

einstufigen Abstieg  Nm( λ)  → Nm− 1( λ) vermittelt. Da wir im Endlichdimensio-

nalen arbeiten, gibt es eine natürliche Zahl  iλ ≥  1, den  Index  des Eigenwerts  λ, 

ab dem die aufsteigende Kette stagniert:

 N 1( λ)  ⊂ N 2( λ)  ⊂ . . . ⊂ Ni ( λ) =  N

 λ

 iλ+1( λ) =  . . . 

Man nennt den Unterraum  H( λ) :=  Ni ( λ) den  Hauptraum  des Eigenwerts  λ

 λ

und zeigt dim  H( λ) =  aλ. Sind  λ 1 , . . . , λk ∈  C die verschiedenen Eigenwerte

von  A, so ist der C n  die direkte Summe der zugehörigen Haupträume:

 k

%

C n =

 H( λj) . 

 j=1

Dies bedeutet, dass für jede quadratische Matrix der C n  eine Basis aus Haupt-

vektoren  x 1 , . . . , xn  besitzt. Eine solche Basis kann derart gewählt werden, dass

sie  A  auf eine Blockdiagonalgestalt  XAX − 1 transformiert, die aus  gλ + · · ·+ g

1

 λk

quadratischen Bidiagonalmatrizen  Ji( λj) besteht, die auf ihrer Diagonale den

zugehörigen Eigenwert  λj  und auf der Superdiagonale nur Einsen tragen:

⎛

⎞

 λ

⎜  j  1

⎜

⎟

. 

. 

⎜

. 

⎟

. 

. . 

⎟

 Ji( λj ) = ⎜

⎜

⎟  . 

⎝

⎟

 λj  1 ⎠

 λj

Diese Bidiagonalmatrizen heißen die  Jordan-Bl¨

 ocke  und die transformierte Ma-

trix  XAX− 1 die  Jordansche Normalform  von  A. Jedem Eigenwert  λ  werden  gλ

Jordan-Blöcke zugeordnet, wobei die Größe der einzelnen zu  λ  gehörigen Blöcke

zwischen 1 und  iλ  liegt und sich insgesamt zu  aλ  aufsummiert. Ein Jordan-

Block der Größe  L + 1 gehört zu  L + 1 Basisvektoren  xl, . . . , xl+ L, die man eine

 Jordan-Kette  nennt. Sie entstehen durch wiederholte Anwendung von  A − λ Id, 

bis man zu einem Eigenvektor hin abgestiegen ist:

 Axj =  λxj +  xj+1

( j =  l, . . . , l +  L −  1) , 

 Axl+ L =  λxl+ L. 
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Algebra ist neben der Analysis und Geometrie eines der ganz großen Gebie-

te der Mathematik. Ursprünglich hauptsächlich mit dem Lösen polynomialer

Gleichungen beschäftigt, hat sie sich unter dem maßgeblichen Einfluss von Em-

my Noether zu einer Theorie entwickelt, die wichtige Strukturen wie Gruppen, 

Ringe, Ideale und Körper bereitstellt und untersucht. Die dabei gewonnenen, 

oft sehr tiefliegenden Einsichten lassen sich dann erfolgreich nicht nur bei der

Behandlung von Gleichungen einsetzen; algebraische Methoden und Hilfsmittel

nutzt jedes Teilgebiet der Mathematik. 

Dieses Kapitel will den Leser in den ersten drei Abschnitten mit den algebrai-

schen Grundstrukturen Gruppe, Ring und Körper ein wenig vertraut machen

und anschließend die einzelnen Theorien ein kleines Stück weiter entwickeln. 

Dies beginnt in Abschnitt 4 für Gruppen mit der Diskussion über Normalteiler

und Faktorgruppen. Diese erlauben, Gruppen in kleinere Bausteine zu zerlegen, 

die man zuerst studieren kann, bevor man sich der ganzen Gruppe widmet. 

Eine ähnliche Rolle spielen die Ideale in Ringen. Sie haben aber eine weitaus

wichtigere Funktion als ideale Zahlen“, die in der Teilbarkeitstheorie eine große

” 

Rolle spielen. Darauf geht Abschnitt 5 ein. In Abschnitt 6 werden die endlich er-

zeugten abelschen Gruppen klassifiziert, ein Ergebnis, das in vielen Disziplinen

verwendet wird. In Abschnitt 7 wird eine dem Übergang von Z zu Q entsprechen-

de Konstruktion für gewisse Ringe, sogenannte Integritätsbereiche, vorgestellt. 

Es geht dabei darum, den Ring in einen möglichst kleinen Körper einzubetten. 

Eigenschaften des Rings aller Polynome mit Koeffizienten in einem gegebenen

Körper kommen im darauf folgenden Abschnitt zur Sprache. Die Theorie der

Körpererweiterungen ist ein ganz wichtiger Teil der Algebra. In Abschnitt 9

werden die wesentlichen Grundbegriffe erläutert, und Abschnitt 10 zeigt, dass

man damit Fragen, ob gewisse Konstruktionen mit Zirkel und Lineal machbar

sind, beantworten kann. Abschnitt 11 führt in die Galoistheorie ein. Sie bezieht

die Symmetrien von Körpererweiterungen in die Betrachtung mit ein, und man

gewinnt damit einen Überblick über ganze Familien von Körpererweiterungen. 

Die Struktur dieser Symmetriegruppen spielt eine entscheidende Rolle bei der

Beantwortung der Frage, welche Polynomgleichungen eine Lösung durch Radi-

kale besitzen. Mit diesem ganz phantastischen Ergebnis des jungen Galois aus

dem Jahr 1832 schließt das Kapitel. 

O. Deiser et al.,  12 x 12 Schlüsselkonzepte zur Mathematik, 
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6.1

Gruppen

Gruppen treten oft als Gruppen von Symmetrien geometrischer oder algebrai-

scher Objekte auf, und Symmetrien spielen in Mathematik und Physik eine

wichtige Rolle. 

Als einfaches Beispiel betrachten wir ein Dreieck Δ der euklidischen Ebene. 

Eine Symmetrie von Δ ist eine abstandserhaltende Selbstabbildung der Ebene, 

die Δ in sich abbildet. Eine abstandserhaltende Selbstabbildung der Ebene ist

entweder eine Drehung um einen Punkt der Ebene, eine Spiegelung an einer

Geraden oder eine Translation, d. h. eine Parallelverschiebung der Ebene. Da

solche Abbildungen Winkel erhalten, hat Δ außer der Identität höchstens dann

eine weitere Symmetrie, wenn mindestens zwei Winkel gleich sind, das Dreieck

also gleichschenklig ist. Ist es gleichschenklig, aber nicht gleichseitig, so gibt es

genau eine von der Identität verschiedene Symmetrie, nämlich die Spiegelung an

der Mittelsenkrechten der von den Schenkeln verschiedenen Seite. Ist Δ gleich-

seitig, so sind alle Spiegelungen an Mittelsenkrechten und die Drehungen um

die Winkel 0 ,  2 π/ 3 und 4 π/ 3 um den Mittelpunkt von Δ Symmetrien, und das

sind alle. 

Mathematisch gesehen sind Symmetrien bijektive Abbildungen einer Menge

 M  in sich, die je nach Gegebenheit gewisse Größen oder Eigenschaften inva-

riant halten. Im geometrischen Kontext kann man wie in unserem Beispiel an

abstandserhaltende Abbildungen denken oder solche, die Geraden in Geraden

überführen, oder solche, die Winkel erhalten. In der Algebra oder anderen ma-

thematischen Disziplinen kann man an strukturerhaltende Abbildungen denken, 

wie z. B. in der linearen Algebra an lineare Abbildungen. In der Theorie der

Körpererweiterungen spielt die Menge aller Isomorphismen des großen Körpers, 

der die Elemente des kleineren Körpers festhält (das ist die Galoisgruppe der

Erweiterung, siehe Abschnitt 6.9), eine entscheidende Rolle. 

Nun gibt es auf der Menge aller Symmetrien eines Objekts eine naheliegende

Verknüpfung: Die Komposition (Hintereinanderausführung)  g ◦f  der Symmetri-

en  f  und  g  ist nämlich wieder eine Symmetrie. Bezeichnen wir die Menge aller

Symmetrien eines uns interessierenden Objekts mit  G, so gelten für  G  und  ◦

folgende Aussagen:

(i) (Assoziativität) Für alle  g, h, k ∈ G  gilt ( g ◦ h)  ◦ k =  g ◦ ( h ◦ k) . 

(ii) (Einselement) Es gibt  e ∈ G, so dass für alle  g ∈ G  die Gleichungen

 e ◦ g =  g ◦ e =  g  gelten. Ein solches  e  heißt Einselement. 

(iii) (Inverses) Zu jedem Einselement  e  und  g ∈ G  gibt es ein  g ∈ G  mit

 g ◦ g =  g ◦ g =  e. Wir nennen  g  ein Inverses von  g (bezüglich  e). 

Löst man sich von den Symmetrien einer Menge und betrachtet einfach eine

Menge  G  mit einer Verknüpfung  ◦, so dass die Bedingungen (i)–(iii) gelten, so

nennen wir das Paar ( G, ◦) eine  Gruppe. Meistens schreiben wir nur  G, nennen
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die Verknüpfung Multiplikation und schreiben anstelle von  f ◦ g  dann  f · g  oder

kürzer  f g. 

Man kommt übrigens mit schwächeren Forderungen an eine Gruppe aus. In

(ii) genügt es, von  e  nur  eg =  g  für alle  g ∈ G  zu fordern ( e  heißt dann Linkseins)

und in (iii) nur  gg =  e  zu verlangen ( g  heißt dann Linksinverses von  g). Jedes

Linksinverse ist auch Rechtsinverses. Denn ist  g  ein Linksinverses von  g, so

gilt (wegen (i) können wir auf Klammern verzichten)

 gg =  egg =  gggg =  geg =  gg =  e. 

Ebenso ist jede Linkseins eine Rechtseins, wie  ge =  ggg =  eg =  g  zeigt. 

Sind weiter  e  und ¯

 e  Einselemente, so gilt ¯

 e = ¯

 ee =  e. Also gibt es genau

ein Einselement, und wir schreiben dafür ab jetzt 1 G  oder nur 1, falls klar

ist, zu welcher Gruppe die Eins gehört. Sind  g  und  g−  Inverse von  g, so gilt

 g− =  g−gg =  eg =  g, so dass es zu jedem  g ∈ G  genau ein Inverses gibt. Wir

schreiben dafür ab jetzt  g− 1. 

Mit der Addition als Verknüpfung sind Z, Q und R uns wohlvertraute Grup-

pen, ebenso wie die von Null verschiedenen Elemente von Q und R mit der Mul-

tiplikation als Verknüpfung. Bei all diesen Beispielen gilt für die Verknüpfung

zusätzlich:

(iv) (Kommutativität) Für alle  g, h ∈ G  gilt  gh =  hg. 

Eine Gruppe, in der (iv) gilt, heißt kommutative oder  abelsche Gruppe. In abel-

schen Gruppen wird die Verknüpfung meistens mit + bezeichnet und heißt dann

Addition. 

Die Gruppe aller Symmetrien eines gleichseitigen Dreiecks ist nicht abelsch. 

Denn beim Komponieren von Spiegelungen und Drehungen kommt es im All-

gemeinen auf die Reihenfolge an: Spiegelt man die Ebene an einer durch den

Punkt  p  gehenden Geraden  g  und dreht dann um den Punkt  p  mit dem Winkel

 α, so erhalten wir eine Spiegelung an der um den Winkel  α/ 2 gedrehten Gerade; 

dreht man erst mit Winkel  α  um  p  und spiegelt dann an  g, so erhalten wir eine

Spiegelung an der um  −α/ 2 gedrehten Geraden. Wir erhalten also verschiedene

Ergebnisse für 0  < α < π. 

Es folgen weitere Beispiele nicht-abelscher Gruppen. 

(1) Die Menge aller bijektiven Selbstabbildungen einer Menge  M  mit min-

destens drei Elementen mit der Komposition als Verknüpfung. Die bijektiven

Abbildungen von  M  nennt man auch Permutationen von  M , und die Gruppe al-

ler Permutationen von  { 1 ,  2 , . . . , n}  heißt  symmetrische Gruppe auf n Elementen

und wird oft mit  Sn  bezeichnet. In der linearen Algebra treten die symmetri-

schen Gruppen beim Bearbeiten von Determinanten auf, und man lernt, dass

jede Permutation ein Produkt von  Transpositionen  ist. Das sind Permutatio-

nen, die alle Elemente von  { 1 ,  2 , . . . , n}  bis auf zwei festhalten und diese beiden

vertauschen. 
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(2) Die Menge  GLn(R) aller reellen  n × n-Matrizen mit von Null verschie-

dener Determinante (vgl. Abschnitt 5.5) ist mit der Matrizenmultiplikation als

Verknüpfung eine Gruppe. Ist  n >  1, dann ist diese Gruppe nicht abelsch. Die

“

” 

letzte Aussage folgt aus der Tatsache, dass das Produkt der Matrizen

1 1

0 1

“

” 

und

1 0

von der Reihenfolge der Faktoren abhängt. Allgemeiner kann man

1 1

R durch einen beliebigen Körper  K  ersetzen (vgl. Abschnitt 6.3). Noch ein

wenig allgemeiner ist die Menge aller Automorphismen eines mindestens zwei-

dimensionalen Vektorraums in sich mit der Komposition als Verknüpfung eine

nicht-abelsche Gruppe. 

(3) Für  n ≥  3 sei  Pn  ein  n-seitiges regelmäßiges Polygon in der Ebene. 

Die  Symmetriegruppe des Polygons Pn, d. h. die Menge aller Abbildungen, die

das Polygon kongruent auf sich selbst abbilden, mit der Komposition als Ver-

knüpfung, heißt  Diedergruppe der Ordnung  2 n  und wird mit  Dn, manchmal aber

auch mit  D 2 n  bezeichnet. Sie ist eine nicht-abelsche Gruppe mit 2 n  Elementen:

Es gibt die  n  Drehungen um den Mittelpunkt von  Pn  um Vielfache des Winkels

2 π/n  und  n  Spiegelungen an Achsen durch den Mittelpunkt von  Pn, die das

Polygon in Eckpunkten oder Seitenmittelpunkten treffen. Die  n  Drehungen bil-

den schon selbst eine Gruppe, die Menge der Spiegelungen aber nicht, und zwar

aus zwei Gründen. Zum einen fehlt ein Einselement. Außerdem ist das Produkt

zweier Spiegelungen eine Drehung (um den Winkel 0, wenn die Spiegelungen

gleich sind). 

Übrigens ist das Bild auf unserem Umschlag eine farbliche Umsetzung der

 Gruppentafel  der Diedergruppe der Ordnung 12. Eine Gruppentafel einer Grup-

pe  G  der Ordnung  n  ist eine  n × n-Matrix ( gij) mit  gij ∈ G, die wie folgt

entsteht: Nach Durchnummerieren der Gruppenelemente ( g 1 = 1 , g 2 , . . . , gn) ist

 gij =  gigj. Insbesondere ist  g 1 i =  gi 1 =  gi, und in jeder Zeile und jeder Spalte

kommt jedes Gruppenelement genau einmal vor. In unserem Bild entspricht je-

de Farbe einem Gruppenelement. Wir überlassen es dem Leser, herauszufinden, 

welche Farben die Spiegelungen haben. Jedenfalls sieht man sofort, dass das

Produkt zweier Spiegelungen eine Drehung ist. Die einfarbigen Diagonalen, die

zyklisch gedacht die einzelnen Quadranten ausfüllen, geben einen Hinweis auf

die einfache Struktur der Gruppe. 

Es sollte klar sein, was eine  Untergruppe  einer gegebenen Gruppe  G  ist, 

nämlich eine Teilmenge  H ⊆ G, so dass die Verknüpfung zweier Elemente aus

 H  wieder ein Element aus  H  ist und  H  mit dieser Verknüpfung wieder eine

Gruppe ist. Man muss dazu nicht alle drei Gruppenaxiome überprüfen. Denn

ist  H  nicht leer und ist für alle  h, k ∈ H  das Element  hk− 1 in  H, so ist  H

eine Untergruppe. Im Beispiel (3) bilden die  n  Drehungen eine Untergruppe der

Symmetriegruppe von  Pn. 

Ist  H  eine Untergruppe von  G, so nennen wir die Mengen  gH :=  {gh | h ∈ H}, 

 g ∈ G, Linksnebenklassen von H. Analog heißen die Mengen  Hg Rechtsneben-

 klassen von H. Jede Nebenklasse hat die Mächtigkeit von  H, und sowohl die
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Links- als auch die Rechtsnebenklassen von  H  zerlegen  G. Denn zwei Links-

nebenklassen sind identisch, wenn ihr Durchschnitt nicht leer ist. Dasselbe gilt

natürlich auch für Rechtsnebenklassen. Die Menge der Linksnebenklassen be-

zeichnen wir mit  G/H, die der Rechtsnebenklassen mit  H\G. 

Die Anzahl der Elemente von  G, d. h. die Mächtigkeit von  G, nennen wir die

 Ordnung von G  und bezeichnen sie mit  |G|. Ist  H ⊆ G  eine Untergruppe, so

nennen wir die Anzahl der Links- bzw. Rechtsnebenklassen von  H  den  Index von

 H in G  und bezeichnen ihn mit  |G/H|  bzw.  |H\G|. Mit diesen Bezeichnungen

erhalten wir:

(Satz von Lagrange)

 Ist G endlich und H eine Untergruppe von G, so teilt die Ord-

 nung von H die Ordnung von G, und es gilt |G| =  |H| · |G/H| =

 |H|·|H\G|. Insbesondere besitzt eine Gruppe G von Primzahlordnung

 keine nichttrivialen, d. h. von { 1 G} und G verschiedenen Untergrup-

 pen. 

Ist  g  Element der Gruppe  G, so verstehen wir, wie gewohnt, unter  gn  das

Produkt  gg · · · g  mit  n  Faktoren für  n >  0,  g 0 ist das Einselement, und für

 n <  0 ist  gn = ( g− 1) −n. Mit diesen Bezeichnungen ist die Menge  {gn| n ∈  Z }

eine Untergruppe von  G, die entweder endlich oder abzählbar unendlich ist. Die

Anzahl der Elemente dieser Gruppe nennen wir die  Ordnung von g. Nach dem

Satz von Lagrange teilt die Ordnung von  g  die Ordnung von  G, und ist  G  von

Primzahlordnung, so gilt für jedes  g = 1 G  die Gleichung  G =  {gn | n ∈  Z }. Gilt

die letzte Gleichung für ein  g ∈ G, so heißt  G zyklische Gruppe. 

Die strukturerhaltenden Abbildungen zwischen Gruppen heißen  Homomor-

 phismen.  Das sind Abbildungen  f :  G → H  mit  f ( gg) =  f ( g) f ( g) .  Dabei ist natürlich  gg  das Produkt von  g  und  g  in der Gruppe  G  und  f ( g) f ( g)

das Produkt von  f ( g) und  f ( g) in der Gruppe  H. Homomorphismen bilden

Einselemente auf Einselemente und Inverse auf Inverse ab. Ist  f :  G → H  ein

Homomorphismus zwischen Gruppen, so ist das Bild  f ( G) von  f  und der Kern

ker( f ) :=  f − 1(1 H ) von  f  eine Untergruppe. 

Ist  f :  G → H  ein bijektiver Homomorphismus, so ist auch  f− 1:  H → G  ein

Homomorphismus. Ein bijektiver Homomorphismus heißt deshalb  Isomorphis-

 mus. Isomorphismen von  G  in sich selbst heißen  Automorphismen. Gruppen, 

zwischen denen es einen Isomorphismus gibt, nennt man isomorph. Sind z. B. 

die Mengen  M  und  N  gleichmächtig, so sind die Gruppen der Permutationen

von  M  und  N  isomorph. Ist  k:  M → N  eine Bijektion, so definiert die Zuord-

nung  α → k ◦ α ◦ k− 1 , α  Permutation von  M,  einen Isomorphismus zwischen

beiden Gruppen. 

Benennt man die Ecken eines gleichseitigen Dreiecks mit 1 ,  2 und 3, so definiert

jede kongruente Selbstabbildung des Dreiecks in sich selbst eine Permutation

der Ecken, also ein Element von  S 3. Diese Zuordnung ist ein Isomorphismus

zwischen der Symmetriegruppe des Dreiecks und  S 3. 
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6.2

Ringe

Ringe haben zwei Verknüpfungen und erinnern stark an die uns vertraute Si-

tuation bei den ganzen Zahlen. Viele Fragestellungen über ganze Zahlen, ins-

besondere die Teilbarkeitstheorie, werden auch bei den allgemeineren Ringen

untersucht, und diese Ergebnisse führen oft zu überraschenden Einsichten über

ganze Zahlen. 

Die beiden Verknüpfungen bei Ringen werden in Anlehnung an die ganzen

Zahlen üblicherweise mit + und  ·  bezeichnet und heißen Addition bzw. Multi-

plikation. An diese werden relativ wenige Forderungen gestellt. 

Eine Menge  R  mit zwei Verknüpfungen + und  ·  heißt  Ring, wenn Folgendes

gilt:

(i)  R  mit der Verknüpfung + ist eine abelsche Gruppe. 

(ii) Die Verknüpfung  ·  ist assoziativ. 

(iii) Es gelten die Distributivgesetze ( a+ b) ·c = ( a·c)+( b·c) und  c·( a+ b) =

( c · a) + ( c · b) für  a, b, c ∈ R. 

Ist die Verknüpfung  ·  zusätzlich kommutativ, so sprechen wir von einem  kom-

 mutativen Ring. Besitzt  ·  außerdem ein Einselement, so sprechen wir von einem

 Ring mit  1. 

Streng genommen ist der Ring  { 0 }, der nur aus dem Nullelement besteht, ein

Ring mit 1. Im Folgenden wollen wir aber immer fordern, dass ein Ring mit 1

mindestens zwei Elemente besitzt. Dann gilt natürlich auch 1  = 0. 

Wie schon bei Gruppen schreiben wir anstelle von  r · s  kürzer  rs. 

Das Standardbeispiel eines Rings sind die ganzen Zahlen Z mit der üblichen

Addition und Multiplikation. Z ist ein kommutativer Ring mit 1. Natürlich

sind auch Q, R und C mit der üblichen Addition und Multiplikation kom-

mutative Ringe mit 1. Ein nichtkommutativer Ring mit 1 ist für  n >  1 die

Menge  M ( n × n; R) aller reellen  n × n-Matrizen mit der Matrizenaddition und

-multiplikation als Verknüpfungen. Etwas allgemeiner können wir anstelle von

R einen beliebigen Ring  R  nehmen. Besitzt  R  keine 1, so besitzt natürlich auch

 M ( n × n;  R) keine 1. 

In der elementaren Zahlentheorie spielen die Restklassenringe Z /m Z eine

wichtige Rolle (siehe Abschnitt 3.3). Hier sind die Elemente die Restklassen

modulo  m, wobei  m  eine positive ganze Zahl ist. Das heißt, dass wir zwei ganze

Zahlen in Z /m Z als gleich ansehen, wenn sich bei Division mit Rest durch  m

für beide Zahlen derselbe Rest ergibt. Das ist gleichbedeutend damit, dass die

Differenz der Zahlen durch  m  teilbar ist. Die Menge der Zahlen mit demselben

Rest  k  wird oft mit ¯

 k,  k = 0 ,  1 , . . . , m −  1 ,  bezeichnet. Zwei Restklassen ¯ a  und

¯

 b  werden addiert und multipliziert, indem man irgendwelche Elemente aus ¯

 a

und ¯

 b  hernimmt, diese wie in Z addiert bzw. multipliziert und vom Resultat

den Rest modulo  m  bildet. Wir erhalten einen kommutativen Ring mit ¯

1 als

Einselement. 
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In der algebraischen Zahlentheorie untersucht man die Teilbarkeitstheorie der

 Ringe der ganzen Zahlen von Zahlk¨

 orpern (siehe die Abschnitte 3.12 und 6.5). 

In der Analysis interessiert man sich für Unterringe des Rings aller Abbildungen

einer Menge  U  in die rellen oder komplexen Zahlen. Addition und Multiplika-

tion werden hier punktweise getätigt: ( f +  g)( x) :=  f ( x) +  g( x),  x ∈ U . Ist  U

eine offene Teilmenge des R n, so interessiert man sich z. B. für den Unterring

aller stetigen, aller  r-mal stetig differenzierbaren oder aller beliebig oft differen-

zierbaren Abbildungen. Ein weiteres wichtiges Beispiel ist der Ring R[ X] aller

Polynome einer Variablen  X  mit reellen Koeffizienten, über die wir im Abschnitt

6.8 mehr erfahren. Wieder kann man allgemeiner anstelle von R einen beliebigen

Körper  K  betrachten. Der entsprechende Ring wird dann mit  K[ X] bezeichnet. 

Analog zum Begriff der Untergruppe einer Gruppe ist ein Unterring eines

Ringes  R  eine Teilmenge  U ⊆ R, so dass die Summe und das Produkt zweier

Elemente von  U  wieder in  U  liegen und  U  mit der dadurch definierten Addition

und Multiplikation ein Ring ist. 

Die strukturerhaltenden Abbildungen, also Abbildungen  f :  R → S  zwischen

Ringen, für die  f ( r +  r) =  f ( r) +  f ( r) und  f ( rr) =  f ( r) f ( r) für alle r, r ∈ R  gelten, heißen  Ringhomomorphismen. Zum Beispiel ist die Abbildung

¯: Z  →  Z /m Z, die jeder ganzen Zahl  a  ihre Restklasse ¯ a  modulo  m  zuordnet, 

ein Ringhomomorphismus. Ein weiteres Beispiel ist die Auswertungsabbildung

 ea:  K[ X]  → K, die einem Polynom  f ∈ K[ X] seinen Wert  f ( a) an der Stelle

 a ∈ K  zuordnet. 

6.3

K¨

orper

Ein  K¨

 orper  ist ein kommutativer Ring mit 1, in dem jedes von 0 verschiedene

Element ein multiplikatives Inverses besitzt. In einem Körper können wir also bis

auf die Division durch 0 alle vier Grundrechenarten unbeschränkt durchführen. 

Die Standardbeispiele sind die uns wohlvertrauten Körper Q, R und C. Aber es

gibt auch andere für Mathematik und Anwendungen wichtige Körper. 

In einem Körper ist das Produkt zweier von Null verschiedener Elemente

stets ungleich Null. Denn ist  a = 0 und  ab = 0, so ist  b =  a− 1 ab =  a− 1  ·  0 = 0. 

In Ringen kommt es durchaus vor, dass  ab = 0 ist, obwohl  a  und  b  von Null

verschieden sind. Eine weitere Besonderheit bei Körpern ist die Tatsache, dass

die strukturerhaltenden Abbildungen entweder alles auf 0 abbilden oder injektiv

sind. Denn ist  f :  K → L  eine solche Abbildung und  a = 0 ein Element mit

 f ( a) = 0, so gilt  f ( b) =  f ( aa− 1 b) =  f ( a) f ( a− 1 b) = 0  · f ( a− 1 b) = 0 für jedes Element  b ∈ K. 

Es sei  K  ein Körper und 1 K  sein Einselement. Für jede nichtnegative ganze

Zahl  n  sei  n 1 K = 1 K +  · · · + 1 K, wobei  n  die Anzahl der Summanden ist. Für

 n <  0 sei  n 1 K =  −( −n)1 K. Für  n, m ∈  Z gilt ( nm)1 K = ( n 1 K)( m 1 K). Also
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definiert  n → n 1 K  einen Ringhomomorphismus  c: Z  → K. Ist diese Abbildung

injektiv, so besitzt jedes  n 1 K  mit  n = 0 ein Inverses in  K, und die Elemente

der Form  m 1 K( n 1 K ) − 1 mit  m, n ∈  Z und  n >  0 bilden einen zu Q isomorphen

Unterkörper von  K. Es ist der kleinste Unterkörper, den  K  enthält, da jeder

Unterkörper das Null- und Einselement von  K  enthält. Wir sagen in diesem

Fall, dass  K Charakteristik  0 hat, in Zeichen char  K = 0. 

Ist  c: Z  → K  nicht injektiv, so sei  p  die kleinste positive ganze Zahl mit

 p 1 K = 0. Wäre  p =  mn  mit  m, n >  1, so wären  m 1 K  und  n 1 K  ungleich 0, 

aber ihr Produkt wäre 0. Also muss  p  eine Primzahl sein. Wir sagen dann, dass

die Charakteristik char  K  von  K  gleich  p  ist. Der Kern von  c  ist das Ideal  p Z

von Z. Das Bild von  c  ist also isomorph zu Z /p Z, und dieser Restklassenring

ist ein Körper, da  p  eine Primzahl ist. Denn jede ganze Zahl  a ≡  0 mod  p  ist

zu  p  relativ prim. Es gibt daher ganze Zahlen  s, t  mit 1 =  sp +  ta, so dass

 ta ≡  1 mod  p (siehe Abschnitt 3.1), und die Restklasse ¯ t  ist ein Inverses der

Restklasse ¯

 a. Hat also  K  Charakteristik  p >  0, so ist der kleinste Unterkörper

von  K  isomorph zu Z /p Z, einem Körper mit  p  Elementen. 

Der kleinste Unterkörper eines Körpers  K  heißt  Primk¨

 orper von K. 

Ist  K  ein Unterkörper des Körpers  L, so ist  L  mit seiner eigenen Addition

und der Einschränkung der Multiplikation auf  K × L  als Skalarmultiplikation

ein  K-Vektorraum. Ein endlicher Körper ist somit ein endlich-dimensionaler

Vektorraum über seinem Primkörper. Ist char  K =  p  und hat  K  Dimension  n

über seinem Primkörper, so hat  K  genau  pn  Elemente. Umgekehrt kann man

zeigen, dass es zu jeder Primzahl  p  und positiver natürlicher Zahl  n  bis auf

Isomorphie genau einen Körper mit  pn  Elementen gibt. Er wird oft mit  GF ( pn)

bezeichnet. ( GF  steht für Galois field, field ist das englische Wort für Körper). 

6.4
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Ist  f :  G → H  ein Homomorphismus zwischen den Gruppen  G  und  H, so ha-

ben wir in Abschnitt 6.1 gesehen, dass  f ( G) und  K := ker( f ) Untergruppen

von  H  bzw.  G  sind. Zwei Elemente  g  und  g  von  G  liegen in derselben Links-

bzw. Rechtsnebenklasse von  K, wenn  g− 1 g  bzw.  gg− 1 in  K  liegt. Also bildet

 f  jede Nebenklasse auf ein einziges Element von  f ( G)  ⊆ H  ab. Ist umgekehrt

 h ∈ f ( G) und sind  g, g ∈ f− 1( h), so sind  g− 1 g  und  gg− 1 in  K. Also ist  f − 1( g) eine Links- und Rechtsnebenklasse von  K. Insbesondere ist jede Linksnebenklasse von  K  eine Rechtsnebenklasse und umgekehrt. Es sei ¯

 f :  G/K → f ( G)

definiert durch ¯

 f ( gK) =  f ( g) .  Da diese Abbildung bijektiv ist, können wir die

Gruppenstruktur von  f ( G) mit Hilfe von ¯

 f − 1 auf  G/K übertragen. 

Wir erhalten damit eine Verknüpfung auf der Menge der Linksnebenklassen

von  K, die  G/K  zu einer Gruppe macht. Diese Gruppenstruktur lässt sich direkt

angeben. Ganz allgemein erhalten wir durch  A · B :=  {ab ∈ G | a ∈ A,  b ∈ B}
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eine Verknüpfung auf der Potenzmenge von  G. Für einelementige Mengen  {g}

schreiben wir anstelle von  {g} · A  und  A · {g}  kürzer  gA  und  Ag. Sind dann

 A =  gK  und  B =  gK  Restklassen von  K, so ist wegen

 A · B =  gK · gK =  g( Kg)  · K =  g( gK)  · K = ( gg) K · K = ( gg) K

die Menge  A · B  selbst eine Nebenklasse, und für jeden Repräsentanten  g  von  A

und  g  von  B  ist  gg  ein Repräsentant von  A · B. Wegen  f ( A) =  f ( g),  f ( B) =

 f ( g) und  f ( A · B) =  f ( gg) =  f ( g) f ( g) ist ( A, B)  → A · B  die gesuchte Verknüpfung, die  G/K  zu einer zu  f ( G) isomorphen Gruppe macht. 

Man könnte nun versucht sein, für jede Untergruppe  L  von  G  die Links-

bzw. Rechtsnebenklassen von  L  nach obigem Muster zu verknüpfen. Das klappt

aber nur für bestimmte Untergruppen. Das Problem liegt darin, dass  A · B  für

Linksnebenklassen  A, B  von  L  im Allgemeinen keine Linksnebenklasse von  L

ist. Ist z. B.  A = 1 GL =  L  und  B =  gL, so liegt das Element  g = 1 Gg 1 G  in

 A · B. Ist  A · B  eine Linksnebenklasse, so muss diese die Klasse  gL =  B  sein. 

Andererseits liegt für alle  a ∈ L  und alle  g ∈ B  das Element  ag  in  A·B. Also gilt

 Lg ⊆ gL. Damit  L · ( gL) für alle  g ∈ G  eine Linksnebenklasse ist, muss daher

für alle  g ∈ G  die Relation  Lg ⊆ gL  gelten. Da aus  Lg− 1  ⊆ g− 1 L  die Relation

 gL ⊆ Lg  folgt, gilt daher für alle  g ∈ G  die Gleichung  gL =  Lg. Wir haben

oben schon gesehen, dass dann die Verknüpfung ( A, B)  → A · B  die Menge

der Nebenklassen (Rechts- und Linksnebenklassen sind gleich) zu einer Gruppe

macht. 

Nicht für jede Untergruppe einer Gruppe ist jede Linksnebenklasse auch ei-

ne Rechtsnebenklasse. Zwar gilt das offensichtlich für abelsche Gruppen. Aber

schon in der kleinsten nicht-abelschen Gruppe, der Gruppe der Symmetrien

des gleichseitigen Dreiecks, besitzt jede Untergruppe der Ordnung 2 – davon

gibt es drei – Linksnebenklassen, die keine Rechtsnebenklassen sind. Eine sol-

che Untergruppe hat die Form  { id , f }, wobei  f  eine Spiegelung ist. Ist dann  g

eine Drehung um den Winkel 2 π/ 3, so ist  {g, g ◦ f }  eine Linksnebenklasse, und

 {g, f ◦ g}  ist die Rechtsnebenklasse, die  g  enthält. Wäre dies eine Linksneben-

klasse, so wäre  f ◦ g =  g ◦ f , aber wir haben gesehen, dass dies nicht zutrifft. 

Untergruppen, für die Links- und Rechtsnebenklassen gleich sind, sind also et-

was Besonderes: Eine Untergruppe  N  der Gruppe  G  heißt  Normalteiler von G, 

falls jede Linksnebenklasse von  N  eine Rechtsnebenklasse ist und umgekehrt. 

Das ist gleichbedeutend damit, dass für alle  g ∈ G  die Gleichung  gN g− 1 =  N

gilt. 

Ist  N ⊆ G  ein Normalteiler, so heißt  G/N  mit der oben beschriebenen Ver-

knüpfung  Faktorgruppe  oder  Quotientengruppe  von  G  und  N , manchmal auch

 G  mod  N , weil eine Gleichung  gN =  gN  gilt, wenn sich  g  und  g  nur um

einen Faktor aus  N  unterscheiden:  g− 1 g ∈ N . Die kanonische Abbildung  p:

 G → G/N , die jedem Element  g ∈ G  seine Nebenklasse  gN  zuordnet, ist ein

surjektiver Homomorphismus mit Kern  N . Wir sehen also, dass Normalteiler
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genau die Kerne von Gruppenhomorphismen sind. Dass für einen Homomor-

phismus  f :  G → H  die Zuordnung  g(ker( f ))  → f ( g) ein Isomorphismus von

 G/ ker( f ) auf  f ( G) ist, ist die Aussage des  Homomorphiesatzes. 

Mit Hilfe einer Farbrepräsentation der Gruppentafel einer Gruppe  G  wie

auf unserem Umschlagbild (siehe Abschnitt 6.1) lässt sich farblich entscheiden, 

ob eine Untergruppe  U  Normalteiler ist. Dazu nummeriere man die Elemen-

te ( u 1 = 1 , u 2 , . . . , us) von  U  und wähle Repräsentanten ( e 1 = 1 , . . . , er) der

Linksnebenklassen von  U . Dann gibt es zu jedem  g ∈ G  genau ein  ei  und

 uj  mit  g =  eiuj . Ordne die Elemente von  G  lexikographisch nach ( ij) und

gib jeder Linksnebenklasse eine Farbe. Die Gruppentafel besteht dann aus  r 2

quadratischen  s × s-Blöcken, wobei jedes Element der Tafel die Farbe seiner

Nebenklasse trägt. Die Untergruppe  U  ist genau dann Normalteiler, wenn jeder

Block einfarbig ist. In diesem Falle ist die Tafel der Blöcke die Gruppentafel der

Faktorgruppe. Auf unserem Umschlagbild haben wir anstelle einer Farbe Farb-

gruppen (gelb-braun und blau-grün) für die Nebenklassen der Drehuntergruppe

gewählt. Übrigens ist auch die Untergruppe, die außer der 1 noch die Drehung

um den Winkel  π  enthält, ein Normalteiler, sogar ein besonderer. Er ist die

Untergruppe aller Elemente, die mit jedem Element der Gruppe vertauschen. 

Diese Untergruppe heißt das  Zentrum  der Gruppe. 

Die Faktorgruppen von (Z , +), d. h. Z mit der Addition als Verknüpfung, sind

uns als Restklassengruppen schon mehrmals begegnet. Da Z abelsch ist, sind

alle Untergruppen Normalteiler. Die von  { 0 }  verschiedenen Untergruppen von

Z entsprechen eineindeutig den positiven ganzen Zahlen: Ist  U ⊆  Z eine von

 { 0 }  verschiedene Untergruppe und ist  m  die kleinste in  U  enthaltene positive

Zahl, so ist  U =  m Z :=  {n ∈  Z  | ∃k ∈  Z  n =  km},  und Z /m Z ist die  Gruppe

 der Restklassen modulo m. Zwei ganze Zahlen aus Z gehören genau dann zur

selben Nebenklasse von  m Z, wenn nach Division durch  m  mit Rest beide Zahlen

denselben Rest haben. Daher kommt der Name  Restklasse. 

Normalteiler und deren Faktorgruppen erlauben es, Gruppen in Faktoren zu

zerlegen und zunächst diese kleineren Gruppen zu studieren. Anschließend muss

man sich zu gegebenem Normalteiler  N  und Faktorgruppe  Q  einen Überblick

über alle Gruppen  G  verschaffen, die  N  als Normalteiler besitzen, so dass  G/N

zu  Q  isomorph ist. Das Einselement und die ganze Gruppe bilden immer einen

Normalteiler. Gruppen, die keine weiteren Normalteiler besitzen, sind nicht

mehr in Faktoren zerlegbar. Sie sind, wie die Primzahlen bei den ganzen Zah-

len, die Bausteine der Gruppen und heißen  einfache Gruppen. Es ist eine der

großen Leistungen des ausgehenden letzten Jahrhunderts, alle endlichen einfa-

chen Gruppen klassifiziert zu haben. Es gibt mehrere unendliche Familien und

26 sogenannte sporadische einfache Gruppen, die in keine Familie passen. Da

die Ordnung einer Untergruppe stets die Gruppenordnung teilt, sind Gruppen

von Primzahlordnung offensichtlich einfache Gruppen. Hat  G  die Ordnung  p

mit  p  prim, so ist  G  isomorph zur Gruppe Z /p Z der Restklassen modulo  p. 

Die  alternierenden Gruppen An  aller geraden Permutationen von  { 1 , . . . , n}, 
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 n ≥  5 ,  bilden eine weitere unendliche Familie einfacher Gruppen. Diese sind alle

nicht-abelsch. Zur Erinnerung: Eine Permutation heißt gerade, wenn sie Pro-

dukt einer geraden Anzahl von Transpositionen ist (vgl. Abschnitt 5.5).  An  ist

eine Untergruppe vom Index 2 der symmetrischen Gruppe  Sn  und ist wie jede

Untergruppe vom Index 2 einer beliebigen Gruppe ein Normalteiler. Aber  An

selbst hat für  n ≥  5 keine nichttrivialen Normalteiler. 

6.5

Ideale und Teilbarkeit in Ringen

Etwas wichtiger als Unterringe sind die  Ideale  eines Rings. Für nichtkommuta-

tive Ringe unterscheidet man dabei Links-, Rechts- und beidseitige Ideale. Dies

sind Unterringe  J  von  R, so dass für alle  r ∈ R  und  u ∈ J  das Element  ru

(Linksideale) bzw.  ur (Rechtsideale) bzw. die Elemente  ru  und  ur (beidseitige

Ideale) in  J  liegt bzw. liegen. 

Ist  J  ein zweiseitiges Ideal des Rings  R, so induzieren die Verknüpfungen

von  R  Verknüpfungen auf der Menge  R/J  der Nebenklassen  r +  J  von  J (hier

ist  r ∈ R), die  R/J  wieder zu einem Ring machen. Addiert und multipliziert

werden  r +  J  und  r +  J , indem man irgendwelche Repräsentanten  r +  u  und

 r +  u, u, u ∈ J, nimmt, diese addiert bzw. multipliziert und anschließend zur

Nebenklasse übergeht. Damit dies für die Addition wohldefiniert ist, d. h. nicht

von der Wahl der Repräsentanten abhängt, reicht es, dass  J  eine Untergruppe

der abelschen Gruppe ( R, +) ist. Die Idealeigenschaft macht die Multiplikation

wohldefiniert, da ( r +  u)( r +  u) =  rr +  ru +  ur +  uu  unabhängig von  u  und u  in der Restklasse ( rr) +  J  liegt, wenn  J  ein zweiseitiges Ideal ist. Die Abbildung  p:  R → R/J, die jedem Ringelement  r  seine Restklasse  r +  J  zuordnet, 

ist ein Ringhomomorphismus mit Kern  J , und umgekehrt ist der Kern jedes

Ringhomomorphismus ein zweiseitiges Ideal. 

Im Rest dieses Abschnitts beschäftigen wir uns mit der Teilbarkeitstheorie in

kommutativen Ringen mit 1. Dort fallen alle drei Begriffe zusammen. 

Ideale spielen in der Teilbarkeitstheorie eine wichtige Rolle und traten als

gedachte ideale“ Zahlen bei E. E. Kummers Untersuchungen zur Fermatschen

” 

Vermutung zum ersten Mal in Erscheinung (vgl. Abschnitt 3.12). In kommuta-

tiven Ringen  R  mit 1 ist für jedes  r ∈ R  die Menge  rR :=  {ru | u ∈ R}  ein

Ideal. Ein solches Ideal heißt  Hauptideal. Nach Definition ist für  r, s ∈ R  das

Element  r  ein Teiler von  s, wenn es ein  t ∈ R  gibt mit  s =  rt. Insbesondere liegt

dann  s  in  rR, so dass  sR ⊆ rR  ist. Deswegen sagt man für zwei Ideale  J  und

 K  von  R, dass  J  ein Teiler von  K  ist, wenn  K ⊆ J  gilt. 

Im Ring Z der ganzen Zahlen ist jedes Ideal ein Hauptideal, denn jede Unter-

gruppe von (Z , +) hat die Form  m ·  Z für ein geeignetes nichtnegatives  m ∈  Z. 

Bis auf einen Faktor  ± 1 entsprechen die Ideale den ganzen Zahlen. Ein kom-

mutativer Ring mit 1 heißt  Hauptidealring, wenn jedes Ideal Hauptideal ist und
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es keine  Nullteiler  gibt. Das ist ein von 0 verschiedenes Element  n, zu dem es

ein  m = 0 mit  nm = 0 gibt. Sind zum Beispiel  n, m ∈  Z beide größer als 1, 

so sind ¯

 n  und ¯

 m  Nullteiler im Restklassenring Z /( nm)Z. In Hauptidealringen

entsprechen die Ideale bis auf Multiplikation mit  Einheiten  den Ringelementen. 

Dabei ist eine Einheit einfach ein Teiler von 1. Ist  e  eine Einheit und  f  ein

Element mit  ef = 1, so gilt für jedes  r ∈ R, dass  r  ein Teiler von  re  und  re  ein

Teiler von  ref =  r  ist. Also ist  rR = ( re) R. 

Ein kommutativer nullteilerfreier Ring mit 1 heißt  Integrit¨

 atsbereich. In sol-

chen kann man kürzen. Das heißt, dass aus  ab =  ac  mit  a = 0 folgt, dass  b =  c

ist. Denn es gilt  a( b − c) = 0, und  a  wäre im Fall  b =  c  ein Nullteiler. In einem

Integritätsbereich heißt ein Element  r = 0  unzerlegbar  oder  irreduzibel, wenn es

keine Einheit ist und in jeder Faktorisierung  r =  ab  einer der beiden Faktoren

eine Einheit ist. In Z ist ein unzerlegbares Element bis auf das Vorzeichen eine

Primzahl. In Integritätsbereichen unterscheidet man Primelemente von unzer-

legbaren Elementen. Dort heißt ein Element  p prim, falls Folgendes gilt: Teilt  p

das Produkt  ab, so teilt  p  mindestens einen der Faktoren. Weiterhin wird ver-

langt, dass  p = 0 und keine Einheit ist. In Z sind die positiven und negativen

Primzahlen genau die Primelemente. Ein Primelement eines Integritätsbereichs

ist immer unzerlegbar, aber die Umkehrung gilt im Allgemeinen nicht. Zum

 √

Beispiel ist  {a +  b  5 i | a, b ∈  Z }  ein Unterring der komplexen Zahlen, in dem 2

 √

 √

unzerlegbar ist. Nun teilt 2 das Produkt (1+

5 i)(1 −  5 i) = 6, teilt aber keinen

der beiden Faktoren. In  ZPE-Ringen, das sind Integritätsbereiche, in denen je-

des von 0 verschiedene Element eine bis auf Reihenfolge und Multiplikation mit

Einheiten eindeutige Faktorisierungen in unzerlegbare Elemente besitzt, sind

allerdings alle unzerlegbaren Elemente prim. Dies gilt insbesondere in Haupt-

idealringen. Integritätsbereiche, die einen dem Euklidischen Algorithmus in Z

(siehe Abschnitt 3.1) analogen Teilbarkeitsalgorithmus zulassen, heißen  euklidi-

 sche Ringe. Euklidische Ringe sind Hauptidealringe, also auch ZPE-Ringe. 

Bevor wir definieren, was ein Primideal ist, wollen wir festlegen, wie Ideale

zu multiplizieren sind. Das Produkt  IJ  der Ideale  I  und  J  ist die Menge aller

 r ∈ R, die sich als endliche Summe von Elementen der Form  ab  mit  a ∈ I  und

 b ∈ J  darstellen lassen. Dies ist ein in dem Ideal  I ∩ J  enthaltenes Ideal. Für

Hauptideale  aR  und  bR  gilt ( aR)( bR) = ( ab) R, so dass die Idealmultiplikation

die Multiplikation in  R  verallgemeinert. Die Multiplikation von Idealen ist asso-

ziativ und kommutativ mit  R  als Einselement. In Analogie zur Definition eines

Primelementes ist nun ein  Primideal  ein von  R  und  { 0 }  verschiedenes Ideal  P, 

für das gilt: Teilt  P  das Ideal  IJ, so teilt es mindestens eines von  I  und  J. 

Nach Definition folgt also aus  IJ ⊆ P, dass  I ⊆ P  oder  J ⊆ P  gilt. 

Der Vorteil, Elemente von  R  durch Ideale zu ersetzen, liegt darin, dass in

für das Lösen diophantischer algebraischer Gleichungen (vgl. Abschnitt 3.10)

wichtigen Ringen sich jedes Ideal bis auf Reihenfolge eindeutig in ein Produkt

von Primidealen zerlegen lässt, während sich Elemente oft nicht eindeutig in

ein Produkt von unzerlegbaren Elementen zerlegen lassen. Oben haben wir ein

6.6

Endlich erzeugte abelsche Gruppen

149

Beispiel gesehen. Allgemeiner lassen sich Ideale in den Ringen ganzer Zahlen in

Zahlkörpern eindeutig in ein Produkt von Primidealen zerlegen. Ein Zahlkörper

ist eine endliche Erweiterung von Q in C, d. h. ein Unterkörper  K  von C, der

als Vektorraum über seinem Primkörper Q endlich-dimensional ist. Ein Element

aus  K  heißt ganz, wenn es Nullstelle eines Polynoms der Form  Xn+ an− 1 Xn− 1+

 · · · +  a 1 X +  a 0 ist, wobei alle  ai  in Z sind. Die ganzen Elemente von  K  bilden

einen Unterring von  K, den  Ring der ganzen Zahlen in K. (Zu algebraischen

Zahlkörpern siehe auch den Abschnitt 3.12.)

Noch allgemeiner lassen sich Ideale in  Dedekind-Ringen  eindeutig in Primidea-

le zerlegen. Dabei ist ein Dedekind-Ring ein Integritätsbereich, in dem jede echt

aufsteigende Folge von Idealen endlich ist (ein solcher Ring heißt  Noethersch)

und das einzige Ideal, das ein Primideal echt enthält, der ganze Ring ist (man

sagt dafür auch, dass alle Primideale maximal sind). 

6.6

Endlich erzeugte abelsche Gruppen

Ist  E  Teilmenge einer Gruppe  G, so heißt die kleinste Untergruppe von  G, die

 E  enthält, die  von E erzeugte Untergruppe. Die Elemente dieser Untergruppe

sind genau die Elemente von  G, die sich als endliches Produkt von Elementen

aus  E  und deren Inversen schreiben lassen. (Wir vereinbaren, dass die von  ∅

erzeugte Untergruppe  { 1 }  ist.) Ist die von  E  erzeugte Untergruppe ganz  G, so

heißt  E  ein  Erzeugendensystem  von  G, und  G  heißt  endlich erzeugt, wenn  G

ein endliches Erzeugendensystem besitzt. Seit Mitte des letzten Jahrhunderts

weiß man, dass es nicht möglich ist, endlich erzeugte Gruppen (sogar endlich

präsentierbare Gruppen, eine echte Unterklasse der endlich erzeugten Gruppen)

zu klassifizieren. Verlangt man aber zusätzlich, dass die Gruppen abelsch sind, 

so lassen sie sich bis auf Isomorphie einfach beschreiben. 

Eine Gruppe  G, die von einem Element erzeugt wird, heißt  zyklische Gruppe. 

Ist  e  ein Erzeugendes, so hat jedes Element von  G  die Form  en, n ∈  Z (vgl. 

Abschnitt 6.1). Ist  en = 1 G  für alle  n >  0, so ist  G  isomorph zu Z. Anderenfalls

ist  G  isomorph zu Z /m Z, wobei  m  die kleinste positive ganze Zahl  n  ist, für die

 en = 1 G  ist. In jedem Fall ist eine zyklische Gruppe abelsch. 

Üblicherweise nennt man die Verknüpfung in abelschen Gruppen Addition“

” 

und benutzt das Pluszeichen als Verknüpfungssymbol. Dem schließen wir uns

an, so dass wir anstelle von  gn  jetzt  n·g  oder  ng  schreiben, wenn  g  Element einer

abelschen Gruppe und  n ∈  Z ist. Wie in Vektorräumen gibt es also in abelschen

Gruppen eine Skalarmultiplikation, wobei die Skalare hierbei aus dem Ring der

ganzen Zahlen stammen. 

Zum Verständnis der Struktur der endlich erzeugten abelschen Gruppen ist

der Begriff der  direkten Summe  abelscher Gruppen von zentraler Bedeutung. 
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Es gibt ein analoges Konzept bei beliebigen Gruppen – es heißt dann direktes

Produkt –, wir bleiben aber bei den abelschen Gruppen. 

Als Menge ist die direkte Summe der abelschen Gruppen  A 1 , . . . , An  das kar-

tesische Produkt  A 1  × · · · × An. Die Addition geschieht komponentenweise wie

z. B. im R n: ( a 1 , . . . , an) + ( b 1 , . . . , bn) = ( a 1 +  b 1 , . . . , an +  bn) .  Mit dieser Addition wird das kartesische Produkt zu einer abelschen Gruppe. Sie heißt

& 

die  direkte Summe von A

 n

1 , . . . , An  und wird mit


A

 i=1

 i  oder  A 1  ⊕ · · · ⊕ An

bezeichnet. Sind alle  Ai =  A, so schreibt man für die direkte Summe inkonse-

quenterweise nicht  n · A, sondern  An. Unter  n · A  oder einfacher  nA  versteht

man die Unterguppe von  A, deren Elemente  n-fache von Elementen aus  A  sind. 

Als Beispiel kennen wir schon  n Z. 

Es sei  ei ∈  Z n  das Element, dessen  i-te Komponente 1 und dessen ande-

re Komponenten alle 0 sind. Sind nun  a 1 , . . . , an  irgendwelche Elemente einer

abelschen Gruppe  A, so gibt es genau einen Homomorphismus  f : Z n → A  mit

 f ( ei) =  ai, i = 1 , . . . , n.  Das liegt daran, dass sich jedes Element von Z n  eindeu-

tig als ganzzahlige Linearkombination der  ei,  i = 1 , . . . , n, schreiben lässt. Ganz

allgemein heißt ein Erzeugendensystem  {b 1 , . . . , bn}  einer abelschen Gruppe  A

 frei-abelsches Erzeugendensystem  oder in Anlehnung an die Begriffsbildung in

Vektorräumen einfach (und kürzer)  Basis  von  A, wenn sich jedes Element von

 A  eindeutig als ganzzahlige Linearkombination der  bi  schreiben lässt. Besitzt  A

eine Basis, so heißt  A  frei-abelsche Gruppe, und besteht die Basis aus  n  Elemen-

ten, so ist  A  zu Z n  isomorph. Für Menschen, die mit Vektorräumen vertrauter

sind als mit Gruppen, lohnt es, sich Z n  als die Vektoren des Q n  vorzustellen, 

deren Koordinaten ganze Zahlen sind. Wir sehen dann, dass jede Basis von Z n

auch eine Basis des Vektorraums Q n  ist und somit aus  n  Elementen besteht. Wei-

ter ist jede Basis der abelschen Gruppe Z n  Bild der Standardbasis  {e 1 , . . . , en}

unter einer linearen Selbstabbildung von Q n, deren Matrix ganzzahlige Einträge

und Determinante  ± 1 hat. 

Ist  {a 1 , . . . , an}  ein Erzeugendensystem der abelschen Gruppe  A, so ist der

eindeutige Homomorphismus  f : Z n → A  mit  f ( ei) =  ai, i = 1 , . . . , n,  surjektiv, 

so dass  A  zur Faktorgruppe Z n/f− 1(0 A) isomorph ist. Jede Untergruppe einer

abelschen Gruppe ist Normalteiler, ist also Kern eines Homomorphismus. Es

lohnt deshalb, sich einen Überblick über die Untergruppen von Z n  zu verschaf-

fen. 

 Ist F eine Untergruppe von  Z n, dann gibt es eine Basis {b 1 , . . . , bn}

 von  Z n, eine nichtnegative ganze Zahl k ≤ n und positive ganze

 Zahlen τ 1 , . . . , τk, so dass für  1  ≤ i < k die Zahl τi ein Teiler von

 τi+1  ist und {τ 1 b 1 , . . . , τkbk} eine Basis von U ist. Insbesondere ist U

 eine frei-abelsche Gruppe. (Nach ¨

 Ubereinkunft ist die triviale Gruppe

 { 0 } frei-abelsch mit ∅ als Basis.)

Die Aussage erinnert an die Tatsache, dass es für einen Unterraum  U  eines

endlich-dimensionalen Vektorraums  V  eine Basis von  V  gibt, deren erste Ele-
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mente eine Basis von  U  ergeben. Bei abelschen Gruppen müssen wir nur beim

Beweis vorsichtiger operieren, da der Quotient zweier ganzer Zahlen  r  und  s  nur

dann eine ganze Zahl ergibt, wenn  s  ein Teiler von  r  ist. 

Da es zu je zwei Basen einer frei-abelschen Gruppe einen Isomorphismus gibt, 

der die eine Basis auf die andere abbildet, können wir den Satz wie folgt um-

formulieren:

 Ist A eine von n Elementen erzeugte abelsche Gruppe, dann gibt es

 einen surjektiven Homomorphismus f : Z n → A, dessen Kern F das

 k-Tupel ( τ 1 e 1 , . . . , τkek)  als Basis hat. Dabei ist  0  ≤ k ≤ n, und für

1  ≤ i < k ist τi ein Teiler von τi+1 . 

Damit ist  A  isomorph zu Z n/F . Da die kanonische Abbildung Z n = Z k ⊕

Z n−k →  Z /τ 1Z  ⊕ · · · ⊕  Z /τk Z  ⊕  Z n−k, die  ei  für 1  ≤ i ≤ k  auf die Restklasse 1

des  i-ten Summanden und Z n−k  identisch abbildet, auch Kern  F  hat, haben

wir folgendes Ergebnis. 

 Jede endlich erzeugte abelsche Gruppe ist isomorph zu einer Gruppe

 der Form

Z f ⊕  Z /τ 1Z  ⊕ · · · ⊕  Z /τk Z . 

 Dabei sind f und k ganze nichtnegative Zahlen, und die τi sind po-

 sitive ganze Zahlen, bei denen jede die darauf folgende teilt. Mit f

 wird der Rang der Gruppe bezeichnet, die τi heißen Torsionskoeffizi-

 enten. Zwei isomorphe abelsche Gruppen haben denselben Rang und

 dieselben Torsionskoeffizienten. 

Die letzte Aussage lässt sich aus der Betrachtung der von den Elementen end-

licher Ordnung erzeugten Untergruppe  E  und der Untergruppen von  E, die von

Elementen einer gegebenen Ordnung erzeugt werden, gewinnen. Zum Beispiel

ist  τk  die maximale Ordnung, die ein Element endlicher Ordnung haben kann, 

und sind  τl+1 , . . . , τk  alle zu  τk  gleichen Torsionskoeffizienten, so hat die von

allen Elementen der Ordnung  τk  erzeugte Untergruppe die Ordnung  τk( k − l). 

Der Sinn der Teilbarkeitsbedingungen der Torsionskoeffizienten wird klar, 

wenn man an den kanonischen Homomorphismus

Z /( m 1 m 2  · · · mk)Z  →  Z /m 1Z  ⊕ · · · ⊕  Z /mk

denkt, der im Fall paarweise teilerfremder  mi  ein Isomorphismus ist (Chinesi-

scher Restsatz, siehe Abschnitt 3.3). 

Viele Autoren schreiben anstelle von Z /m Z kürzer Z m. Da aber Z m  je nach

Kontext stark unterschiedliche Bedeutung haben kann, sollte man sich immer

vergewissern, was mit dem Symbol Z m  wirklich gemeint ist. 
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orper

Anlass, den Zahlbereich Z auf Q zu erweitern, ist der Wunsch, Gleichungen der

Form  ax =  b  für  a = 0 lösen zu können. In dem erweiterten Zahlbereich sollen

dann wieder alle Gleichungen der Form  x +  a =  b  und  cx =  b  für beliebige  a, b

und  c = 0 eindeutig lösbar sein. Sollen in dem erweiterten Zahlbereich Addition

und Multiplikation assoziativ und kommutativ sein und das Distributionsgesetz

gelten, so läuft unser Problem darauf hinaus, den Ring Z in einen (möglichst

kleinen) Körper einzubetten. Die rationalen Zahlen lassen sich in der Form  m/n

mit  m, n ∈  Z und  n = 0 darstellen, also als geordnete Paare ( m, n) mit  m, n ∈  Z, 

 n = 0. Die Darstellung ist erst nach Kürzen des Bruchs und Festlegen des

Vorzeichens von  n  eindeutig. 

Wollen wir allgemeiner einen kommutativen Ring  R  mit 1 in einen Körper

einbetten, so können wir versuchen, analog vorzugehen. Zunächst müssen wir

natürlich voraussetzen, dass  R  nullteilerfrei, also ein Integritätsbereich ist. Wei-

ter ergibt Kürzen nur Sinn in Ringen, in denen die eindeutige Faktorisierung

in unzerlegbare Elemente gilt, und größer und kleiner als 0 ist in den wenigs-

ten Ringen definiert. Allerdings wurden diese Konzepte bei der Konstruktion

der rationalen Zahlen aus den ganzen nicht wirklich benötigt. Denn die Brüche

 m/n  und  a/b  sind genau dann gleich, wenn  mb =  na  ist. Dies legt folgende

Konstruktion nahe. 

Es sei  R  ein Integritätsbereich. Auf der Menge  M :=  {( a, b)  ∈ R × R | b = 0 }

führen wir die Relation

( a, b)  ∼ ( c, d) genau dann, wenn  ad =  bc  ist“ ein. 

” 

Dies ist eine Äquivalenzrelation. Reflexivität und Symmetrie sind klar. Gelten

( a, b)  ∼ ( c, d) und ( c, d)  ∼ ( e, f ), so folgt aus den Gleichungen  ad =  bc  und  cf =

 de  die Gleichung  af cd =  becd. Ist  cd = 0, so folgt  af =  be, da  R  nullteilerfrei

ist. Ist  cd = 0, so ist  c = 0, also wegen  d = 0 auch  a = 0 =  e. Daher gilt auch in

diesem Fall  af =  eb, so dass in jedem Fall ( a, b)  ∼ ( e, f ) gilt. 

Auf  M  definieren wir eine Addition durch ( a, b) + ( c, d) = ( ad +  cb, bd) und

eine Multiplikation durch ( a, b)( c, d) = ( ac, bd). Da  R  nullteilerfrei ist, ist  bd =

0, so dass die Definitionen sinnvoll sind. Man sieht leicht, dass Addition und

Multiplikation mit der Äquivalenzrelation verträglich sind. Ist z. B. ( a, b)  ∼

( a, b), also  ab =  ba, so gilt ( ad +  cb)( bd) = ( bd)( ad +  cb), also ( a, b) + ( c, d)  ∼

( a, b) + ( c, d). 

Addition und Multiplikation auf  M  induzieren daher eine Addition und Mul-

tiplikation auf der Menge  K  der Äquivalenzklassen, die  K  zu einem kommutati-

ven Ring mit Einselement (1 ,  1) macht. Die Abbildung  j:  R → K,  j( r) = ( r,  1)

ist ein injektiver Ringhomomorphismus, und ist  a = 0, so ist ( b, a) das Inverse

von ( a, b), da ( ba, ab)  ∼ (1 ,  1). Also ist  K  ein Körper, der (ein isomorphes Bild

von)  R  enthält. Hat  r ∈ R  in  R  ein Inverses  s, so ist ( s,  1)  ∼ (1 , r), so dass wir

nur dann für  r ∈ R  ein neues“ Inverses in  K  konstruieren, wenn  r  in  R  nicht

” 
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invertierbar ist. Ist insbesondere  R  schon ein Körper, so ist ( a, b)  ∼ ( ab− 1 ,  1), 

so dass  j:  R → K  ein Isomorphismus ist. 

Wir nennen  K  den  Quotientenk¨

 orper von R.  K  hat folgende Eigenschaft: Ist  i:

 R → L  eine Einbettung von  R  in einen Körper  L, so gibt es einen Körperhomo-

morphismus  f :  K → L  mit  i =  f ◦ j. Da nichttriviale Körperhomomorphismen

stets injektiv sind (siehe Abschnitt 6.3), ist  K  bis auf Isomorphie der kleinste

Körper, in den sich  R  einbetten lässt. 

Die Elemente des Quotientenkörpers eines Rings  R  schreibt man in Anlehnung

an die rationalen Zahlen in der Form  a/b  und meint damit die Äquivalenzklasse

des Paares ( a, b). 

Ein in der Algebra häufiger auftauchender Quotientenkörper ist  K( X), der

Körper der rationalen Funktionen in einer Variablen über dem Körper  K. Es

ist der Quotientenkörper des Polynomrings  K[ X], mit dem wir uns im nächsten

Abschnitt näher beschäftigen. 

6.8

Polynome

Im Folgenden sei  K  ein Körper. Ein  Polynom (in einer Variablen  X) über  K  ist

ein Ausdruck  P  der Form

 anXn +  an− 1 Xn− 1 +  · · · +  a 1 X +  a 0 , 

 ai ∈ K, i = 0 ,  1 , . . . , n. 

Die  ai  nennt man die  Koeffizienten  von  P . Der  Grad  von  P  ist das größte  j

mit  aj = 0. Sind alle  ai = 0, so bekommt  P  den Grad  −∞. Für ein Polynom

 P  wie oben setzen wir  ai = 0 für  i > n. Somit hat jedes Polynom unendlich

viele Koeffizienten, von denen aber höchstens endlich viele von 0 verschieden

sind. Der von 0 verschiedene Koeffizient mit höchstem Index heißt höchster

Koeffizient des Polynoms. Die Menge aller Polynome über  K  bezeichnen wir

mit  K[ X]. Die Polynome vom Grad 0 und  −∞  heißen konstant. 

Nach Definition sind zwei Polynome über  K  genau dann gleich, wenn alle

Koeffizienten übereinstimmen. Da (nach unserer Vereinbarung über Ringe mit 1)

jeder Körper mindestens zwei Elemente besitzt, ist  K[ X] immer unendlich. Es

ist deshalb Vorsicht geboten, will man, wie wir das aus der Analysis gewohnt

sind, ein Polynom  P  als Abbildung von  K  nach  K  auffassen, die das Element

 x ∈ K  auf  P ( x) =  anxn+ · · ·+ a 0  ∈ K  abbildet. Denn ist  K  ein endlicher Körper, 

so ist die Menge aller Abbildungen von  K  nach  K  endlich. Ist z. B.  K = Z / 2Z, 

so ist jede durch ein Polynom aus (Z / 2Z)[ X] definierte Abbildung Z / 2Z  →

Z / 2Z gleich einer der vier Abbildungen, die durch Polynome aus (Z / 2Z)[ X]

vom Grad höchstens 1 beschrieben werden. Wir werden allerdings am Ende des

Abschnitts sehen, dass die Abbildung, die einem Polynom aus  K[ X] die durch

das Polynom definierte Abbildung von  K  in  K  zuordnet, für unendliche Körper

injektiv ist, wir also für Körper wie Q, R oder C durchaus die Polynome mit
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ihren induzierten Abbildungen identifizieren dürfen. Für ein Polynom  P über

 K  bezeichnen wir die zugehörige Abbildung von  K  in sich mit ˆ

 P . 

Man addiert zwei Polynome, indem man ihre Koeffizienten addiert. Das Pro-

dukt der Polynome  P =  anXn +  · · · +  a 0 und  Q =  bmXm +  · · · +  b 0 ist das



Polynom  R =  c

 k

 n+ mX n+ m +  · · · +  c 0 mit  ck =

 a

 i=0

 ibk−i,  k = 0 , . . . , n +  m. 

Das Produkt von  P  und  Q  entsteht also durch distributives Ausmultiplizieren

von ( anXn +  · · · +  a 0)( bmXm +  · · · +  b 0) und anschließendes Zusammenfas-

sen der Terme mit demselben  X-Exponenten, wobei für  a, b ∈ K  die Gleichung

( aXi)( bXj ) = ( ab) Xi+ j  gilt. Mit dieser Addition und Multiplikation wird  K[ X]

zu einem kommutativen Ring mit dem konstanten Polynom 1 als Einselement, 

und die Zuordnung  P → ˆ

 P  ist ein Ringhomomorphismus. 

Für den Grad von Summe und Produkt gilt: Grad( P +  Q)  ≤  max { Grad  P, 

Grad  Q}, Gleichheit gilt, wenn die Grade von  P  und  Q  verschieden sind; 

Grad( P Q) = Grad  P + Grad  Q. 

Das  X  in der Schreibweise für ein Polynom ist eigentlich überflüssig; es kommt

nur auf die Koeffizienten an. Formal ist ein Polynom eine Folge ( ai) i≥ 0 mit

höchstens endlich vielen von 0 verschiedenen Gliedern, und Folgen werden ad-

diert wie gewohnt, nur ist die Multiplikation anders. Unsere Schreibweise sug-

geriert, dass wir in das  X  Elemente  r  eines  K  enthaltenden Ringes  R  einsetzen

können und ein neues Element  P ( r)  ∈ R  erhalten. Ob man die Variable (sie

wird oft auch  Unbestimmte  genannt)  X  oder irgendetwas anderes nennt, spielt

keine Rolle. Die Ringe  K[ X] und  K[ T ] sind für uns identisch, die Schreibweise

gibt nur vor, wie die Variable bezeichnet wird. Wir werden allerdings  X  mit

dem Polynom 1 X ∈ K[ X] identifizieren. Dann ist  K[ X] ein  K-Vektorraum mit

Basis  {Xn | n ≥  0 }, wobei wie üblich  X 0 = 1 gesetzt wird.  K[ X] ist der kleinste

Unterring von  K[ X], der die Konstanten und  X  enthält. 

Die wichtigste Eigenschaft von  K[ X] ist, dass dort eine Division mit Rest

wie bei den ganzen Zahlen existiert,  K[ X] also ein euklidischer Ring ist (siehe

Abschnitt 6.5). Es gilt nämlich Folgendes:

 Es seien P, S ∈ K[ X]  mit S = 0 . Dann existieren eindeutig bestimm-

 te Q, R ∈ K[ X]  mit P =  QS +  R und  Grad  R <  Grad  S. 

 Q  ist der Quotient“ und  R  der Rest. 

” 

Ist  m := Grad  S >  Grad  P =:  n, so ist  Q = 0 und  R =  P . Ist  m ≤ n, 

so ist  Q  ein Polynom vom Grad  n − m, und seine Koeffizienten  cn−m, . . . , c 0

ergeben sich rekursiv durch Koeffizientenvergleich von  P  und  QS: Das Polynom

 Q  wird so bestimmt, dass die Koeffizienten  dn, dn− 1 , . . . , dm  von  QS  mit den

entsprechenden Koeffizienten von  P übereinstimmen. Zum Beispiel ist  cn−m =

 an/bm  und  cn−m− 1 =  an− 1 /bm −anbm− 1 /b 2 m, wenn  ai  bzw.  bj  die Koeffizienten

von  P  bzw.  S  sind. Hat man alle Koeffizienten von  Q  bestimmt, so ist  R =

 P − QS. 

Aus der Division mit Rest folgt unmittelbar, dass  K[ X], wie jeder euklidische

Ring, ein Hauptidealring ist. Denn sei  J ⊆ K[ X] ein von  { 0 }  verschiedenes

6.8
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Ideal. Dann gibt es in  J  genau ein von 0 verschiedenes Polynom  S  kleinsten

Grades mit höchstem Koeffizienten 1. Ist nun  P ∈ J  ein von 0 verschiedenes

Polynom, so gibt es  Q  und  R  mit  P =  QS +  R  und Grad  R <  Grad  S. Da mit

 P, Q ∈ J  auch  R ∈ J  ist, ist  R = 0, also  P ∈ K[ X]  · S. Somit ist  J =  K[ X]  · S

ein Hauptideal. 

Es folgt, dass in  K[ X] jedes nichtkonstante Polynom eindeutig bis auf Rei-

henfolge und Multiplikation mit Konstanten (also den Elementen aus  K) in ein

Produkt von unzerlegbaren Polynomen zerlegt werden kann und jedes unzer-

legbare Polynom ein Primelement ist. Üblicherweise heißen die unzerlegbaren

Polynome  irreduzibel. Weiter gilt, dass  K[ X]  · P  für jedes irreduzible  P  ein ma-

ximales Ideal ist, d. h. maximal unter den von  K[ X] verschiedenen Idealen von

 K[ X] ist. Denn ist  P ∈ K[ X]  · S =  K[ X], so existiert  Q  mit  P =  QS, und Grad  S >  0. Da  P  prim ist, teilt  P  entweder  Q  oder  S. Also hat eines von  Q

und  S  mindestens den Grad von  P . Dann muss  Q  konstant sein, und damit sind

die von  P  und  S  erzeugten Hauptideale gleich. 

Wir folgern, dass für jedes irreduzible Polynom  P ∈ K[ X] der Quotientenring

 K[ X] /( K[ X]  · P ) ein Körper ist. Denn ganz allgemein gilt:  Ist J ein maximales

 Ideal in dem kommutativen Ring R mit  1 , dann ist R/J ein K¨

 orper. 

Im Allgemeinen ist es schwierig zu entscheiden, ob ein Polynom irreduzibel

ist. Für ganzzahlige Polynome gibt es das  Eisensteinkriterium:

 P =  anXn + · · ·+ a 0  sei ein Polynom mit ganzzahligen Koeffizienten. 

 Gibt es eine Primzahl p, so dass ai ≡  0 mod  p für i =  n, an ≡  0

mod  p und a 0  ≡  0 mod  p 2 , dann ist P irreduzibel über  Q . 

Dies kann man benutzen, um zu zeigen, dass für primes  p  das  p-te Kreistei-

lungspolynom  P ( X) =  Xp− 1 +  Xp− 2 +  · · · +  X + 1 über Q irreduzibel ist: Man

ersetze  X  durch  Y + 1. Auf das resultierende Polynom  Q  in  Y  lässt sich das

Eisensteinkriterium anwenden. Damit ist  P  unzerlegbar, da anderenfalls auch

 Q  zerlegbar wäre. 

Eine  Nullstelle  des Polynoms  P ∈ K[ X] ist ein Element  a ∈ K  mit ˆ

 P ( a) = 0. 

Ist  a  Nullstelle von  P , so gibt es ein Polynom  Q, so dass  P ( X) =  Q( X)( X − a). 

Dies folgt aus der Division von  P  durch  X − a. Der Rest  R, der höchstens Grad

0 haben kann, ist gleich 0, weil ˆ

 P ( a) = ˆ

 Q( a)( a − a) = 0 ist. Es folgt, dass ein

Polynom vom Grad  n ≥  0 höchstens  n  Nullstellen hat. Sind  P  und  Q  Polynome

vom Grad höchstens  n, so dass ˆ

 P  und ˆ

 Q  für  n + 1 verschiedene Elemente von  K

denselben Wert annehmen, so hat  P − Q  höchstens den Grad  n  und mindestens

 n + 1 Nullstellen. Also ist  P − Q = 0, d. h.  P =  Q. Damit ist für unendliche

Körper  K  die Abbildung  P → ˆ

 P  eine injektive Abbildung von  K[ X] in den

Ring aller Selbstabbildungen von  K. 
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6.9

K¨

orpererweiterungen

Eine Körpererweiterung des Körpers  K  ist ein Körper  L, der  K  als Unterkörper

enthält. Wir schreiben dafür  L :  K. Die Einschränkung der Multiplikation von  L

auf  K ×L  macht  L  zu einem  K-Vektorraum. Die Dimension von  L über  K  heißt

der Grad [ L :  K] von  L :  K. Die Erweiterung heißt  endlich, wenn ihr Grad end-

lich ist, sonst heißt sie unendlich. Der Körper  K( X) der rationalen Funktionen

über  K (siehe Abschnitt 6.7) ist ein Beispiel einer unendlichen Erweiterung von

 K. Ein Element von  L  heißt  algebraisch (¨

 uber K), falls es Nullstelle eines von

0 verschiedenen Polynoms mit Koeffizienten in  K  ist.  L :  K  heißt  algebraisch, 

wenn jedes Element von  L über  K  algebraisch ist. 

Jede endliche Erweiterung  L :  K  ist algebraisch. Denn ist  a ∈ L, so gibt es

ein  n ∈  N, so dass 1 , a, a 2 , . . . , an  linear abhängig sind; also gibt es  ai ∈ K  mit

 anan +  · · · +  a 1 a +  a 0 = 0. Ist  L :  K  eine Erweiterung und sind  a 1 , . . . , ak ∈ L, so bezeichnen wir mit  K( a 1 , . . . , ak) den kleinsten Unterkörper von  L, der  K

und  a 1 , . . . , ak  enthält. Ist  L :  K  endlich, so gibt es immer  a 1 , . . . , ak ∈ L

mit  L =  K( a 1 , . . . , ak). In Abschnitt 2.8 haben wir die unendliche Erweiterung

Q : Q aller algebraischen komplexen Zahlen über Q kennengelernt. Diese Er-

weiterung ist maximal unter den algebraischen Erweiterungen von Q und heißt

der  algebraische Abschluss  von Q. Ganz allgemein besitzt jeder Körper einen

algebraischen Abschluss. 

Für jedes algebraische  a ∈ L  gibt es genau ein Polynom  P  kleinsten Grades

über  K  mit  P ( a) = 0 und höchstem Koeffizienten 1. Es ist irreduzibel und

heißt  Minimalpolynom  von  a. Ist  f :  K[ X]  → K( a) der durch  X → a  definierte

Ringhomomorphismus, so ist der Kern von  f  das Ideal  K[ X]  · P  und der von  f

induzierte Ringhomomorphismus  K[ X] /( K[ X]  · P )  → K( a) ein Isomorphismus

von Körpern. 

Sei umgekehrt  P ∈ K[ X] ein irreduzibles Polynom vom Grad größer als 1. 

Dann gibt es einen Oberkörper  L =  K( a) von  K, so dass  a  eine Nullstelle von  P

ist, nämlich  L =  K[ X] /( K[ X]  · P ). Die Nebenklasse  a :=  X +  K[ X]  · P  ist eine Nullstelle von  P . Man sagt dann, dass  K( a) durch Adjungieren der Nullstelle  a

von  P  aus  K  entstanden ist. 

Ist  a ∈ L  nicht algebraisch (über  K), so heißt  a transzendent (über  K). Ist

 a ∈ L  transzendent, so ist der durch  X → a  definierte Ringhomomorphismus  f :

 K[ X]  → K( a) injektiv und induziert einen Isomorphismus ¯

 f :  K( X)  → K( a). 

Man nennt dann  K( a) :  K  eine  einfache transzendente Erweiterung. 

Zwei Körpererweiterungen  L :  K  und  M :  K  heißen isomorph, wenn es einen

Isomorphismus von  L  auf  M  gibt, der jedes Element von  K  auf sich selbst

abbildet. Da nach dem Fundamentalsatz der Algebra (Abschnitt 2.4) jedes Po-

lynom mit komplexen Koeffizienten über C in Linearfaktoren zerfällt, ist jede

algebraische, insbesondere jede endliche Erweiterung eines Unterkörpers von C

isomorph zu einem Unterkörper von C. Das hilft unserer Vorstellung. 

6.10
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Im übernächsten Abschnitt werden wir uns etwas intensiver mit endlichen

Körpererweiterungen beschäftigen und einige Beispiele kennenlernen. 

6.10

Konstruktionen mit Zirkel und Lineal

Gegeben sei ein Kreis der euklidischen Ebene. Lässt sich allein mit Hilfe von Zir-

kel und Lineal ein flächengleiches Quadrat konstruieren? Dies ist das berühmte, 

schon von den Griechen gestellte Problem der  Quadratur des Kreises. Zwei wei-

tere Probleme haben den Griechen Kopfschmerzen bereitet: die Dreiteilung von

Winkeln und die Volumenverdopplung eines Würfels, jeweils mit Zirkel und Li-

neal. Zur Präzisierung des Problems müssen wir uns darüber einigen, was mit

” 

Hilfe von Zirkel und Lineal konstruieren“ bedeutet. 

Zunächst: Die Eingabedaten der Probleme sind Punktmengen der Ebene. Ein

Kreis ist gegeben durch zwei Punkte; der eine davon ist der Mittelpunkt, der

zweite bestimmt durch seinen Abstand zum ersten den Radius. Ändert man

die Reihenfolge der Punkte, so erhält man einen flächengleichen Kreis. Ebenso

bestimmen zwei Punkte die Länge der Kante eines Würfels, und drei Punkte

bestimmen den Kosinus eines Winkels, wenn wir festlegen, welcher Punkt der

Scheitelpunkt ist. 

Es sei  M  eine Teilmenge der euklidischen Ebene. Eine Gerade von  M  ist ei-

ne Gerade durch zwei verschiedene Punkte von  M . Ein Kreis von  M  ist ein

Kreis mit Mittelpunkt in  M , dessen Radius der Abstand zweier (nicht not-

wendig verschiedener) Punkte von  M  ist. Wir sagen, dass ein Punkt  P  der

Ebene in einem Schritt mit Hilfe von Zirkel und Lineal aus  M  entsteht, wenn

 P  Schnittpunkt zweier verschiedener Geraden, zweier verschiedener Kreise oder

eines Kreises und einer Geraden von  M  ist. Ein Punkt  P  der Ebene entsteht

aus einer Menge  M  mit Hilfe von Zirkel und Lineal, wenn es eine endliche Folge

 P 1 , . . . , Pk =  P  gibt, so dass für  i = 1 , . . . , k  der Punkt  Pi  in einem Schritt

aus  M ∪ {P 1 , . . . , Pi− 1 }  mit Hilfe von Zirkel und Lineal entsteht. Wir nehmen

immer an, dass  M  mindestens zwei Punkte enthält, da aus einer einpunktigen

Menge durch Zirkel und Lineal nur der Punkt selbst reproduziert wird. 

Durch das Einführen von kartesischen Koordinaten werden unsere geometri-

schen Probleme algebraischen Argumenten zugänglich: Ist  M  eine Teilmenge, 

so sei  KM  der kleinste Unterkörper von R, der die Koordinaten aller Punk-

te aus  M  enthält. Dabei richten wir das Koordinatensystem so ein, dass (0 ,  0)

und (1 ,  0) Punkte von  M  sind. Kreise in  M  erfüllen Gleichungen der Form

( x − x 0)2 + ( y − y 0)2 = ( x 2  − x 1)2 + ( y 2  − y 1)2 mit ( xi, yi)  ∈ M ,  i = 0 ,  1 ,  2, und Geraden in  M  lineare Gleichungen mit Koeffizienten in  KM . Die Koordinaten

eines Schnittpunkts zweier Kreise, eines Kreises mit einer Geraden oder zweier

Geraden von  M  sind also Nullstellen eines Polynoms vom Grad 2 oder 1 mit

Koeffizienten in  KM . Es folgt: Entsteht  P = ( a, b) aus  M  in einem Schritt mit
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Hilfe von Zirkel und Lineal, so sind die Grade [ KM ( a) :  KM ] und [ KM ( b) :  KM ]

2 oder 1. Mittels vollständiger Induktion erhalten wir:  Entsteht ( a, b)  aus M mit

 Hilfe von Zirkel und Lineal, so ist [ KM ( a, b) :  KM ]  eine Potenz von  2 .  Denn

sind  L :  K  und  Q :  L  endliche Erweiterungen, so gilt [ Q :  K] = [ Q :  L]  · [ L :  K]. 

Damit lässt sich nun einfach zeigen, dass die zu Beginn des Abschnitts ange-

sprochenen Probleme nicht lösbar sind. 

Die Verdopplung des Würfels läuft darauf hinaus, mit Hilfe von Zirkel und

 √

Lineal aus  M =  {(0 ,  0) , (1 ,  0) }  zwei Punkte mit Abstand 3 2 zu konstruieren. 

 √

Dann lässt sich natürlich auch ( 3 2 ,  0) konstruieren. Können wir das, dann ist

 √

 √

der Grad von Q( 3 2) eine Potenz von 2. Aber 3 2 ist Nullstelle von  X 3  −  2. 

Das Eisensteinkriterium aus Abschnitt 6.8 zeigt, dass dieses Polynom irredu-

 √

 √

 √

zibel über Q ist. Daher ist  { 1 ,  3 2 , ( 3 2)2 }  eine Basis von Q( 3 2) über Q, und

 √

[Q( 3 2) :  K] ist 3 und keine Potenz von 2. 

Den Winkel  π/ 3 kann man leicht aus  {(0 ,  0) , (1 ,  0) }  konstruieren, da

cos( π/ 3) = 1 / 2 ist. Lässt sich  π/ 3 dreiteilen, dann können wir (cos( π/ 9) ,  0), 

also auch ( a,  0) mit  a = 2 cos( π/ 9) konstruieren. Geht das, so ist [Q( a) : Q]

eine Potenz von 2. Zweimaliges Anwenden des Additionstheorems cos( α +  β) =

cos( α) cos( β)  −  sin( α) sin( β) auf cos( π/ 9 +  π/ 9 +  π/ 9) zeigt, dass  a  Nullstelle von  P =  X 3  −  3 X −  1 ist. Da  Q( Y ) :=  P ( Y + 1) =  Y  3 + 3 Y  2  −  3 wegen des Eisensteinkriteriums irreduzibel ist, ist  P  irreduzibel. Wir erhalten also wieder

[ K( a) :  K] = 3. 

Schließlich lässt sich ein zum Einheitskreis flächengleiches Quadrat konstru-

 √

ieren, wenn wir aus  {(0 ,  0) , (1 ,  0) }  den Punkt (  π,  0) konstruieren können. Da-

 √

mit wäre

 π  algebraisch über Q, also auch  π  algebraisch über Q. Nach einem

berühmten Satz von Lindemann ist aber  π  nicht algebraisch, sondern wie die

Eulersche Zahl  e  transzendent (vgl. Abschnitt 2.9). 

6.11

Galoistheorie

Im vorigen Abschnitt haben wir nur die Tatsache, dass ein Oberkörper von  K  ein

 K-Vektorraum ist, genutzt, um zu zeigen, dass gewisse geometrische Probleme

mit Zirkel und Lineal nicht lösbar sind. Die wesentliche neue Idee von É. Galois

war, bei der Untersuchung von Körpererweiterungen deren Symmetriegruppen

miteinzubeziehen. Zu Galois’ Lebzeiten war das Konzept der Gruppe noch nicht

geklärt. Umso erstaunlicher sind daher seine Ergebnisse, die ein lange offenes

zentrales Problem vollständig klärten, nämlich die Frage, wann eine polynomiale

Gleichung durch Radikale gelöst werden kann. Die Antwort liegt in der Struk-

tur der Symmetriegruppe einer dem Polynom zugeordneten Körpererweiterung. 

Über dieses phantastische Ergebnis, eilig aufgeschrieben 1832 in der Nacht vor

einem für Galois tödlichen Duell, berichten wir im nächsten Abschnitt. Hier be-

handeln wir die zugrundeliegende Theorie, die auf einer bestechend einfachen

6.11
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Idee beruht. Sie hat neben der erwähnten Anwendung auf Radikallösungen von

Polynomen viele weitere Anwendungen, was auch Galois bewusst war, und zählt

zum Rüstzeug jedes Algebraikers. 

Im Folgenden seien alle Erweiterungen endlich. 

Ist  L :  K  eine Erweiterung, so ist die Menge aller Automorphismen von  L, 

die  K  elementweise festhalten, eine Untergruppe der Gruppe aller Automor-

phismen von  L. Wir bezeichnen diese Gruppe mit  GL: K  und nennen sie die

 Galoisgruppe der Erweiterung L :  K. Einen Körper  M  mit  K ⊆ M ⊆ L  nennen

wir  Zwischenk¨

 orper von L :  K. Ist  M  Zwischenkörper von  L :  K, so ist  GL: M

Untergruppe von  GL: K. Ist umgekehrt  U  eine Untergruppe von  GL: K, so ist

die Menge aller Elemente von  L, die von allen Automorphismen  g ∈ U  auf sich

abgebildet, also festgehalten werden, ein Zwischenkörper von  L :  K. Wir nennen

ihn den  Fixk¨

 orper  von  U  und bezeichnen ihn mit Fix( U ). Bezeichnen wir die

Menge der Zwischenkörper von  L :  K  mit  Z  und die Menge aller Untergruppen

von  GL: K  mit  U , so erhalten wir damit zwei Abbildungen

 GL: −:  Z → U , 

 M → GL: M , 

Fix:  U → Z , 

 U →  Fix( U ) . 

Das Hauptergebnis der Galoistheorie besagt, dass für gewisse Erweiterungen

 L :  K  diese Abbildungen bijektiv und zueinander invers sind. 

Nach Definition von  GL: K  gilt  K ⊆  Fix( GL: K). Damit  K  als Fixkörper einer

Untergruppe von  GL: K  auftritt, muss also Fix( GL: K) =  K  gelten. Eine solche

Erweiterung nennen wir  galoissch, denn es gilt:

(Fundamentalsatz der Galoistheorie)

 Es sei L :  K eine endliche galoissche Erweiterung, Z die Menge

 der Zwischenk¨

 orper von L :  K und U die Menge der Untergruppen

 von GL: K. Dann gilt:

(i)  Die Abbildungen GL: −:  Z → U und  Fix:  U → Z sind

 zueinander inverse Bijektionen. 

(ii)  F¨

 ur M ∈ Z gilt [ M :  K] = [ GL: K :  GL: M ] , d. h., der Grad

 von M ¨

 uber K ist gleich dem Index von GL: M in GL: K. 

(iii)  M :  K ist genau dann galoissch, wenn GL: M ein Nor-

 malteiler von GL: K ist, und dann ist GM: K isomorph zur

 Quotientengruppe GL: K/GL: M . 

Für jedes  U ∈ U  gilt  U ⊆ GL:Fix( U), da nach Definition von Fix( U) jedes

Element von  U  den Zwischenkörper Fix( U ) elementweise festhält. Ebenso gilt

für jeden Zwischenkörper  M , dass  M ⊆  Fix( GL: M ) ist. Gleichheit in der letzten

Inklusion ist nach Definition gleichbedeutend damit, dass  L :  M  galoissch ist. 

Deswegen ist es nützlich zu erkennen, welche Erweiterungen galoissch sind. 
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 √

Dass nicht alle Erweiterungen galoissch sind, zeigt das Beispiel Q( 3 2) : Q, 

 √

wobei mit 3 2 die reelle dritte Wurzel von 2 gemeint ist. Jeder Automorphismus

 √

 √

von Q( 3 2) muss 3 2 auf eine dritte Wurzel von 2 abbilden. Es gibt aber nur eine

 √

in Q( 3 2). Da jeder Körperautomorphismus den Primkörper festhält, besteht

 √

 G Q 3 √

3

 √

2)  = Q ist. 

(

2):Q nur aus der Identität, so dass Fix( G Q( 2):Q) = Q( 3

Ist  L =  K( a) und  f  das Minimalpolynom von  a, so muss jedes Element

von  GL: K  das Element  a  wieder auf eine Nullstelle von  f  abbilden. Denn die

Elemente von  GL: K  halten die Koeffizienten von  f  fest, und  a  ist Nullstelle

von  f . Da jedes Element von  K( a) Linearkombination von Potenzen von  a  ist, 

ist ein Element  α ∈ GL: K  durch  α( a) festgelegt, und eine solche Festlegung

definiert auch ein Element von  GL: K. Die Anzahl der Elemente in  GL: K  ist also

gleich der Anzahl der Nullstellen von  f  in  L. Nun gilt folgender Satz:

 Es sei G eine n-elementige Gruppe von Automorphismen des

 K¨

 orpers M . Dann gilt [ M : Fix( G)] =  n. 

Der Beweis des Satzes nutzt nur Standardkenntnisse über das Lösen linearer

Gleichungssysteme (siehe Abschnitt 5.4) und die Tatsache, dass jede Menge von

Automorphismen von  L  linear unabhängig ist im  L-Vektorraum aller Abbildun-

gen von  L  nach  L  mit punktweiser Addition und Skalarmultiplikation. 

Nun ist [ K( a) :  K] = Grad  f . Also ist  K( a) :  K  genau dann galoissch, wenn  f

genau Grad  f  viele verschiedene Nullstellen in  K( a) hat, also genau dann, wenn

 f  in  K( a) in Linearfaktoren zerfällt, von denen keine zwei gleich sind. 

Dies legt folgende Begriffe nahe. Die Erweiterung  L :  K  heißt  normal, wenn

jedes irreduzible Polynom  f  aus  K[ X] mit einer Nullstelle in  L über  L  schon

ganz in Linearfaktoren zerfällt, also wenn das Minimalpolynom  fa ∈ K[ X] jedes

Elements  a ∈ L über  L  in Linearfaktoren zerfällt. Die normale Erweiterung

 L :  K  heißt  separabel, wenn für alle  a ∈ L  diese Linearfaktoren paarweise

verschieden sind. 

Separabilität lässt sich für beliebige algebraische Erweiterungen definieren, 

aber wir benötigen dies nicht. Hat  K  die Charakteristik 0, so ist jede algebraische

Erweiterung von  K  separabel. 

Folgendes Ergebnis ist dann nicht überraschend:

 Eine endliche Erweiterung L :  K ist genau dann galoissch, wenn sie

 normal und separabel ist. 

Mit dieser Aussage und obigem Satz ist der Beweis des Fundamentalsatzes

nicht mehr schwer. Wir haben z. B. gesehen, dass für einen Zwischenkörper  M

die Gleichung Fix  ◦ GL: −( M) =  M  gilt, wenn  L :  M  galoissch ist. Sei also  a ∈ L. 

Da  L :  K  nach Annahme galoissch, also normal und separabel ist, zerfällt das

Minimalpolynom von  a über  K  in  L  in lauter verschiedene Linearfaktoren. Das

Minimalpolynom  g  von  a über  M  ist ein Teiler von  f , aufgefasst als Polynom

über  M , und zerfällt deshalb in  L  auch in lauter verschiedene Linearfaktoren. 

Also ist  L :  M  galoissch, und wir erhalten die Gleichung Fix  ◦ GL: − = id Z . 
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Die Beziehung  U ⊆ GL:Fix( U) folgt, wie schon oben bemerkt, aus der Defi-

nition von Fix( U ). Aus der Tatsache, dass für jeden Zwischenkörper  M , also

auch für Fix( U ), die Erweiterung galoissch ist, folgt mit Hilfe obigen Satzes die

Gleichung  |U | =  |G

 |

 L:Fix( U ) und damit die Gleichheit von  U  und  GL:Fix( U ). Das

bedeutet, dass  GL: − ◦  Fix = id U  gilt, und Aussage (i) ist bewiesen. 

Die Beweise von (ii) und (iii) sind von ähnlichem Schwierigkeitsgrad. 

 √

Als Beispiel besprechen wir kurz die Erweiterung Q( ζ,  3 2) : Q, wobei

2 πi

 √

 ζ =  e  3 = 1 ( − 1 +

3 i) eine der beiden von 1 verschiedenen dritten Einheits-

2

wurzeln ist. Wir werden sehen, dass  D 3, die 6-elementige Symmetriegruppe des

gleichseitigen Dreiecks, die Galoisgruppe dieser Erweiterung ist. Wer als Galois-

gruppe die 12-elementige Diedergruppe  D 6 bevorzugt, deren Gruppentafel unse-

 √

ren Umschlag ziert, kann sich mit Q( ζ,  6 2) : Q auseinandersetzen. Die Gruppe

 D 6 hat allerdings schon recht viele Untergruppen, daher unsere Beschränkung

auf  D 3. 

 √

Wir wissen schon, dass Q( 3 2) über Q Grad 3 hat und in R enthalten ist. Also

 √

liegt  ζ  nicht in Q( 3 2). Da  ζ  Nullstelle des quadratischen Polynoms  X 2 +  X + 1

 √

 √

ist, ist der Grad von Q( ζ,  3 2) : Q( 3 2) gleich 2, insgesamt also der Grad von

 √

 √

Q( ζ,  3 2) : Q gleich 6. Jeder Automorphismus von Q( ζ,  3 2) ist schon durch seine

 √

Wirkung auf  ζ  und 3 2 festgelegt. Dabei muss  ζ  auf eine der beiden Nullstellen

 √

 √

 √

 ζ  und  ζ 2 =  ζ  von  X 2 +  X + 1 und 3 2 auf eine der Nullstellen 3 2,  ζ  3 2 und

 √

 ζ 2 3 2 von  X 3  −  2 abgebildet werden. Das ergibt 6 mögliche Automorphismen, 

und tatsächlich können alle realisiert werden. Denn  X 2 +  X + 1 ist irreduzibel

 √

über Q( 3 2), und  X 3  −  2 ist irreduzibel über Q( ζ). 

 √

 √

Der durch  σ( ζ) =  ζ 2,  σ( 3 2) = 3 2 definierte Automorphismus  σ  hat Ord-

 √

 √

nung 2, der durch  ρ( ζ) =  ζ,  ρ( 3 2) =  ζ  3 2 definierte Automorphismus  ρ  hat

Ordnung 3, und  σρ =  ρ 2 σ. Wir sehen, dass die Galoisgruppe der Erweiterung

zu  D 3 isomorph ist, wobei  σ  einer Spiegelung und  ρ  der Drehung des Dreiecks

um den Mittelpunkt um den Winkel 2 π/ 3 entspricht. 

Insgesamt gibt es außer der ganzen Gruppe und  { id }  vier weitere Untergrup-

pen: die Untergruppe  ρ  der Drehungen und die von den einzelnen Spiegelungen

erzeugten Untergruppen  σ,  σρ  und  σρ 2   der Ordnung 2. 

 √

6

Q( ζ,  3 2)

 { id }
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Obiges Diagramm beschreibt den Sachverhalt. In der ersten Spalte stehen die

Erweiterungsgrade der Zwischenkörper bzw. der Index der Unterguppen, die

zweite listet die Zwischenkörper, die dritte die zugehörigen Untergruppen auf. 
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Jede Linie bedeutet eine Inklusion, bei den Körpern von unten nach oben, bei

den Gruppen von oben nach unten. 

6.12

L¨

osbarkeit polynomialer Gleichungen durch Radikale

Im Abschnitt 2.4 haben wir explizite Ausdrücke gesehen, die alle Lösungen ei-

nes Polynoms vom Grad höchstens 3 beschreiben. Solche Ausdrücke gibt es auch

für Polynome 4-ten Grades. In diese Ausdrücke gehen außer den vier Grundre-

chenarten nur noch zweite, dritte oder vierte Wurzeln ein. In diesem Abschnitt

werden wir sehen, dass es im Allgemeinen für Polynome vom Grad größer 4

solche Formeln nicht geben kann. Genauer werden wir ein notwendiges und hin-

reichendes Kriterium angeben, wann ein gegebenes Polynom über dem Körper

 K  sich durch Radikale lösen lässt. Wir beschränken uns dabei auf Körper der

Charakteristik 0. 

Zunächst präzisieren wir, was durch Radikale lösbar“ heißen soll. 

” 

Eine  Radikalerweiterung des K¨

 orpers K  ist eine Erweiterung  R :  K  mit  R =

 K( a 1 , . . . , an), so dass für jedes  i = 1 , . . . , n  eine natürliche Zahl  pi  existiert

mit  api ∈ K( a

 i

1 , . . . , ai− 1). Anders ausgedrückt erhalten wir  R  aus  K  durch

sukzessives Adjungieren von Wurzeln (Radikalen).  Ein Polynom f ∈ K[ X]  lässt

 sich durch Radikale l¨

 osen, wenn es eine Radikalerweiterung  R :  K  gibt, über

der  f  in Linearfaktoren zerfällt. Das heißt, dass alle Nullstellen von  f  in einer

Radikalerweiterung liegen. 

Zerfällt  f ∈ K[ X] in  R  in Linearfaktoren und sind  a 1 , . . . , ak  die Nullstel-

len von  f  in  R, so ist  K( a 1 , . . . , ak) der kleinste Unterkörper von  R, über

dem  f  in Linearfaktoren zerfällt. Dieser Körper heißt der  Zerf¨

 allungsk¨

 orper von

 f . Ist  L  ein weiterer Zerfällungskörper von  f , so gibt es einen Isomorphismus

 α:  K( a 1 , . . . , ak)  → L, der  K  elementweise festhält. Wir dürfen also von  dem

Zerfällungskörper  Zf  von  f  sprechen. 

Ist  L :  K  normal, so enthält  L  den Zerfällungskörper aller Minimalpolynome

von Elementen von  L. Ist  L :  K  endlich, so ist  L =  K( a 1 , . . . , ak) für geeignete

 ai ∈ L. Also ist  L  der Zerfällungskörper des Produkts der Minimalpolynome

von  a 1 , . . . , ak. Es gilt aber auch die Umkehrung:

 Eine endliche Erweiterung L :  K ist genau dann normal, wenn L

 der Zerf¨

 allungsk¨

 orper Zf eines Polynoms f ∈ K[ X]  ist. 

Da in Charakteristik 0 alle Erweiterungen separabel sind, ist  L :  K  genau dann

galoissch, wenn  L  Zerfällungskörper eines Polynoms über  K  ist. Galois’ phan-

tastische Entdeckung war, dass die Lösbarkeit eines Polynoms  f ∈ K[ X] durch

Radikale unmittelbar mit der Struktur der Galoisgruppe von  Zf :  K  zusam-

menhängt. Dazu brauchen wir einen neuen Begriff. 

Eine Gruppe  G  heißt  aufl¨

 osbar, wenn es eine endliche Folge  { 1 } ⊆ G 1  ⊆ . . . ⊆

 Gn =  G  von Untergruppen gibt, in der jede Gruppe in der darauf folgenden ein
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Normalteiler mit abelscher Quotientengruppe ist. Insbesondere ist jede abelsche

Gruppe auflösbar, aber auch die symmetrische Gruppe  S 4 (siehe Abschnitt 6.1)

ist auflösbar. Betrachte dazu  { 1 } ⊆ G 1  ⊆ A 4  ⊆ S 4, wobei  A 4 die Untergruppe

der geraden Permutationen und  G 1 die Untergruppe aller geraden Permutatio-

nen der Ordnung 2 oder 1 ist. Andererseits haben wir in Abschnitt 6.4 erwähnt, 

dass  An  für  n >  4 eine einfache Gruppe ist, also nur triviale Normalteiler besitzt. 

Da sie obendrein nicht abelsch ist, ist sie nicht auflösbar. 

Galois’ Ergebnis ist folgender Satz:

 Es sei K ein K¨

 orper der Charakteristik  0 . Genau dann ist f ∈ K[ X]

 durch Radikale l¨

 osbar, wenn die Galoisgruppe von Zf :  K aufl¨

 osbar

 ist. 

Hier sehen wir, warum bis zum Grad 4 die Gleichungen lösbar sind. Denn

die Galoisgruppe von  Zf :  K  permutiert die Nullstellen von  f , und jedes Ele-

ment wird durch seine Wirkung auf die Nullstellen von  f  festgelegt. Also ist

 GZf: K  eine Untergruppe der symmetrischen Gruppe  Sn, wenn Grad  f =  n  ist, 

und  GZf: K  ist auflösbar, wenn Grad  f ≤  4 ist. Denn Untergruppen auflösbarer

Gruppen sind auflösbar. Weiter gilt: Ist  N  Normalteiler von  G  und sind zwei der

Gruppen  N ,  G  und  G/N  auflösbar, so auch die dritte. Wir werden dies gleich

nutzen. 

Die Beziehung zwischen auflösbar (Gruppe) und lösbar (Gleichung) wollen

wir kurz andeuten. Mit Hilfe des Fundamentalsatzes der Galoistheorie, insbe-

sondere der Aussage (iii), folgt eine Richtung des Satzes, wenn wir zeigen, dass

die Galoisgruppe jeder normalen Radikalerweiterung  K( a 1 , . . . , ar) :  K  auf-

lösbar ist. Wir nehmen an, dass die Exponenten  ni  mit  ani ∈ K( a

 i

1 , . . . , ai− 1)

Primzahlen sind (das ist keine Einschränkung) und dass die  n 1-ten Einheits-

wurzeln in  K  sind. Dann ist  K( a 1) :  K  normal. Induktiv nehmen wir an, dass

 GK( a 1 ,...,ar): K( a 1) auflösbar ist. Ein Element von  g ∈ GK( a 1): K  ist durch  g( a 1) festgelegt. Dies ist eine Nullstelle von  Xn 1  − an 1. Diese haben alle die Form

1

 a 1  · ξi, wenn  ξ  eine primitive  n 1-te Einheitswurzel ist. Sind  g, h  Elemente der

Galoisgruppe mit  g( a 1) =  a 1  · ξi  und  h( a 1) =  a 1  · ξj, so bilden  g ◦ h  und  h ◦ g beide  a 1 auf  a 1  · ξi+ j  ab. Also ist  GK( a 1): K  abelsch und somit  GK( a 1 ,...,ar): K

auflösbar. 

Folgende Aussage hilft bei der Suche nach Polynomen, die keine Lösungen

durch Radikale haben. 

 Es sei f ein irreduzibles Polynom ¨

 uber  Q  mit primem Grad p. Hat

 f genau  2  nichtreelle Nullstellen in  C , so ist die Galoisgruppe von

 Zf : Q  die symmetrische Gruppe Sp. 

Als Folgerung sehen wir, dass jedes  f =  X 5  − apX +  p  mit  p  prim und ganzer

Zahl  a ≥  2 nicht durch Radikale lösbar ist. Mit etwas Kurvendiskussion kann

man nämlich sehen, dass  f  genau 3 reelle Nullstellen hat, und das Eisenstein-

kriterium aus Abschnitt 6.8 stellt sicher, dass  f  irreduzibel ist. 
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Convergence is our business“ verkündete die Deutsche Telekom vor ein paar

” 

Jahren in einer Anzeige. Nein, möchten wir einwenden, Konvergenz von Folgen

und Reihen ist das Kerngeschäft der mathematischen Analysis, und dieser Be-

griff zieht sich wie ein roter Faden durch alle Gebiete der Mathematik, die der

Analysis nahestehen. 

Dieses Kapitel lässt, ausgehend vom Konvergenzbegriff, die Analysis der

Funktionen einer reellen Veränderlichen Revue passieren. Dabei legen wir die

Rigorosität zugrunde, die von den Mathematikern des 19. Jahrhunderts entwi-

ckelt wurde, blicken aber auch weiter zurück, um einige Probleme aufzuzeigen, 

die entstanden, als man diese bisweilen

Epsilontik“ genannte Methodologie

” 

noch nicht zur Verfügung hatte. Sie gestattet uns heute einen glasklaren Blick

auf die Analysis. Auch wenn sie für Novizen gewöhnungsbedürftig ist, ist diese

Vorgehensweise doch eine Bestätigung für Wittgensteins Diktum:

Alles, was

” 

überhaupt gedacht werden kann, kann klar gedacht werden. Alles, was sich aus-

sprechen lässt, lässt sich klar aussprechen.“

Im Einzelnen behandeln wir in den ersten neun Abschnitten einige grund-

legende Themen der eindimensionalen Analysis: Konvergenz von Folgen und

Reihen, stetige und differenzierbare Funktionen, insbesondere die trigonome-

trischen Funktionen, die Exponentialfunktion und den Logarithmus, ferner das

Riemannsche Integral und den Hauptsatz der Differential- und Integralrechnung

sowie das Problem der Vertauschung von Grenzprozessen und den Satz von

Taylor. In den Abschnitten 10 und 11 geht es um Fourierreihen und die Fou-

riertransformation; diese Themen gehören nicht immer zum Pflichtprogramm. 

Schließlich werfen wir im letzten Abschnitt über stetige Kurven einen ersten

Blick ins Mehrdimensionale. 

Der Vorsatz elementar“ im Titel dieses Kapitels soll andeuten, dass die vorge-

” 

stellten Ideen und Resultate die Grundbausteine für fortgeschrittenere Theorien

liefern; elementar“ sollte nicht mit trivial“ verwechselt werden. 

” 

” 

O. Deiser et al.,  12 x 12 Schlüsselkonzepte zur Mathematik, 

DOI 10.1007/978-3-8274-2298-9_7, © Spektrum Akademischer Verlag Heidelberg 2011
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7.1

Folgen und Grenzwerte

Die Idee, dass sich die Glieder einer Folge mehr und mehr einem Grenzwert“

” 

annähern, drückt man folgendermaßen in der Sprache der Mathematik aus. 

 Eine Folge ( an)  reeller Zahlen heißt konvergent zum Grenzwert a, 

 falls es zu jedem ε >  0  einen Index N ∈  N  gibt, so dass |an − a| ≤ ε

 f¨

 ur alle n ≥ N gilt. 

Kompakter kann man diese Bedingung mittels Quantoren wiedergeben:

 ∀ε >  0  ∃N ∈  N  ∀n ≥ N |an − a| ≤ ε. 

(7.1)

Diese Definition formalisiert tatsächlich das sich immer besser Annähern“ der

” 

Folgenglieder an den Grenzwert: Wie klein man auch die Genauigkeitsschranke

 ε >  0 vorgibt, wenn man nur lange genug wartet (nämlich bis zum Index  N ), 

unterscheiden sich ab da die Folgenglieder  an  vom Grenzwert  a  um höchstens  ε. 

Natürlich wird man  N  in der Regel um so größer wählen müssen, je kleiner man

 ε  vorgibt. 

Übrigens kann man die Grenzwertdefinition genauso gut mit  < ε“ statt  ≤ ε“

” 

” 

ausdrücken; die Lehrbuchliteratur ist hier nicht einheitlich. Manchmal ist die

eine Variante vorteilhafter anzuwenden und manchmal die andere; inhaltlich

sind beide Versionen äquivalent. 

Mathematische Anfänger sehen in (7.1) bisweilen ein zufälliges Kauderwelsch

von Quantoren. Natürlich ist es das ganz und gar nicht; im Gegenteil ist es

die kanonische Übersetzung der ungenauen Idee

( a

”  n) strebt gegen  a“. Wer

spaßeshalber mit den Quantoren in (7.1) jonglieren möchte, kann z. B. 

 ∃N ∈  N  ∀ε >  0  ∀n ≥ N |an − a| ≤ ε

studieren (damit werden genau die schließlich konstanten Folgen beschrieben). 

Das einfachste Beispiel einer konvergenten Folge (außer den konstanten Fol-

gen) ist gewiss (1 /n) mit dem Grenzwert 0; für  N  kann man in (7.1) jede

natürliche Zahl, die  ≥  1 /ε  ist, wählen. (Wenn man tiefer in die Struktur der

reellen Zahlen einsteigt, stellt man fest, dass es das archimedische Axiom aus Ab-

schnitt 2.3 ist, das die Existenz solcher natürlicher Zahlen garantiert.) Übrigens

verlangt (7.1) nicht die kleinstmögliche Wahl von  N . Betrachtet man etwa

 an = 1 /( n 3 +  n), so gilt wegen  n 3 +  n ≥  2 n  die Abschätzung  |an| ≤  1 / 2 n; also folgt (7.1) (mit  a = 0) garantiert für jedes  N ≥  1 / 2 ε. Für  ε = 10 − 3 z. B. funktioniert daher  N = 500, wie unser einfaches Argument zeigt; das kleinstmögliche

 N  ist in diesem Beispiel aber  N = 10. 

Konvergiert die Folge ( an) gegen  a, schreibt man  an → a  oder lim n→∞ an =

 a; die letztere Schreibweise ist allerdings erst dadurch gerechtfertigt, dass der

Grenzwert eindeutig bestimmt ist. Den (wenn auch einfachen) Nachweis dieser

Tatsache sollte man nicht als Spitzfindigkeit abtun, im Gegenteil ist er für den

systematischen Aufbau der Analysis unumgänglich. 
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Direkt aus der Definition kann man einige einfache Grenzwertsätze schließen, 

z. B.: Aus  an → a  und  bn → b  folgt  an +  bn → a +  b, kurz

lim ( an +  bn) = lim  an + lim  bn. 

 n→∞

 n→∞

 n→∞

Eine analoge Formel gilt für Differenzen, Produkte und Quotienten; so erhält

man dann Beziehungen wie

3 n 3 + 2 n 2  − n + 7

3

lim

=

 n→∞

2 n 3  −  2 n + 9

2

(der Trick, um die Grenzwertsätze anzuwenden, ist in diesem Beispiel, durch  n 3

zu kürzen). 

Tieferliegende Aussagen basieren letztendlich auf der Vollständigkeit von R. 

Ein Problem bei der Anwendung der Grenzwertdefinition (7.1) ist, dass man

den Grenzwert der Folge bereits kennen (bzw. erraten haben) muss, um (7.1)

verifizieren zu können. Wenn man das Beispiel  an = (1+1 /n) n  ansieht, mag man

erahnen, dass diese Folge konvergiert, aber ein expliziter Grenzwert drängt sich

nicht auf. (Eigentlich erahnt man die Konvergenz nur, wenn man einige Werte

 . 

 . 

 . 

mit einem Computer berechnet:  a 10 = 2 .  5937,  a 100 = 2 .  7048,  a 1000 = 2 .  7169, 

 . 

 . 

 a 10000 = 2 .  7181,  a 100000 = 2 .  7182.) Hier hilft der Begriff der  Cauchy-Folge

weiter. 

 Eine Folge ( an)  reeller Zahlen heißt Cauchy-Folge, falls es zu jedem

 ε >  0  einen Index N ∈  N  gibt, so dass |an − am| ≤ ε für alle

 m, n ≥ N gilt. 

In Quantorenschreibweise:

 ∀ε >  0  ∃N ∈  N  ∀m, n ≥ N |an − am| ≤ ε. 

Damit wird ausgedrückt, dass die Folgenglieder einander immer näher kommen. 

Es ist einfach zu zeigen, dass jede konvergente Folge eine Cauchy-Folge ist. 

Die Umkehrung ist jedoch tief in den Eigenschaften der Menge R verwurzelt

(vgl. Abschnitt 2.3):

R  ist (metrisch) vollständig, d. h., jede Cauchy-Folge reeller Zahlen

 konvergiert. 

Diese Aussage gestattet es, Konvergenzaussagen zu treffen, ohne explizit einen

Grenzwert angeben zu müssen. Ein Beispiel ist das Kriterium, wonach eine

monotone und beschränkte Folge konvergiert. Da diese Voraussetzung auf die

Folge ((1 + 1 /n) n) zutrifft, ist sie konvergent; die Eulersche Zahl  e  ist  definiert

als ihr Grenzwert:





1  n

 e := lim

1 +

= 2 .  71828  . . . . 

 n→∞

 n

Beschränkte, nicht monotone Folgen brauchen natürlich nicht zu konvergieren

(Beispiel:  an = ( − 1) n). Es gilt jedoch der wichtige  Satz von Bolzano-Weierstraß, 

der ebenfalls auf der Vollständigkeit von R beruht:
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 Jede beschr¨

 ankte Folge reeller Zahlen hat eine konvergente Teilfolge. 

Der Begriff der Konvergenz überträgt sich wörtlich auf Folgen komplexer Zah-

len, hier ist mit  | . |  der Betrag in C gemeint. Auch der Übergang von R zum

euklidischen Raum R d  ist kanonisch; man muss nur den Betrag durch die eukli-

dische Norm ersetzen. Wenn man sich jetzt noch klarmacht, dass  |an − a|  bzw. 

 &an −a&  den Abstand von  an  und  a  wiedergibt, erhält man sofort die Definition

der Konvergenz in einem metrischen Raum ( M, d)

 ∀ε >  0  ∃N ∈  N  ∀n ≥ N d( an, a)  ≤ ε

bzw. analog die der Cauchy-Eigenschaft. Während C und R d  vollständig sind, 

braucht das für einen abstrakten metrischen Raum nicht zu gelten; Näheres

dazu ist im Abschnitt 8.1 über metrische und normierte Räume zu finden. 

7.2

Unendliche Reihen und Produkte

Der Begriff der unendlichen Reihe präzisiert die Idee, eine Summe mit unendlich



vielen Summanden zu bilden. Euler versuchte im 18. Jahrhundert, 

 ∞ ( − 1) k

 k=0



zu summieren; da die Partialsummen

 n

( − 1) k  abwechselnd 1 und 0 sind, 

 k=0

schloss er, dass die Wahrheit wohl in der Mitte liegt, und ordnete der Reihe den

Wert 1 / 2 zu, mit widersprüchlichen Konsequenzen. Mit dem heutigen präzisen

Grenzwertbegriff ist jedoch klar, dass diese Reihe schlicht nicht konvergiert. 

Man nennt eine unendliche Reihe reeller Zahlen  ak konvergent  zum Grenzwert





 A  und schreibt

 ∞

 a

 n

 a

 k=0

 k =  A, wenn die Folge der Partialsummen  sn =

 k=0

 k



gegen  A  konvergiert. Andernfalls nennt man

 ∞

 a

 k=0

 k divergent. 



Ein Beispiel einer konvergenten Reihe ist die  geometrische Reihe

 ∞

 qk  für

 k=0

 |q| <  1; dies ist elementar festzustellen, und man erhält als Grenzwert 1 / 1 −q. 



Auch

 ∞

1 /k 2 ist eine konvergente Reihe, ihr Grenzwert ist aber nicht elemen-

 k=1

tar zu ermitteln; er lautet übrigens  π 2 / 6. Das Standardbeispiel einer divergenten



Reihe ist die  harmonische Reihe

 ∞

1 /k. 

 k=1




F

 ∞

ür die Konvergenz von

 a

 k=0

 k  ist die Bedingung  ak →  0 notwendig; wie

aber die harmonische Reihe zeigt, ist dieses Kriterium nicht hinreichend. Es



zeigt jedoch sofort die Divergenz von

 ∞ ( − 1) k. 

 k=0

Mit wenig Übertreibung lässt sich sagen, dass die geometrische Reihe die ein-

zige Reihe ist, deren Grenzwert man ohne Mühen ermitteln kann. Andererseits

ist es häufig einfach festzustellen, dass eine Reihe überhaupt konvergiert, ohne

ihren Grenzwert zu bestimmen. Dazu gibt es verschiedene Konvergenzkriterien, 

die alle auf der Vollständigkeit von R beruhen. Zunächst wäre das  Majoranten-

 kriterium  zu nennen:





 Ist

 ∞

 b

 ∞

 a

 k=0  k konvergent und stets |ak| ≤ bk, so ist auch

 k=0

 k

 konvergent. 
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Die Idee, die gegebene Reihe mit einer geometrischen Reihe zu vergleichen, führt

zum  Quotientenkriterium  bzw.  Wurzelkriterium:

 Ist f¨

 ur ein q <  1  bis auf endlich viele Ausnahmen stets |ak+1 /ak| ≤ q





 bzw. stets k |a

 ∞

 k | ≤ q, so ist

 a

 k=0

 k konvergent. 

Ein anderes Vergleichskriterium ist das  Integralvergleichskriterium:

 Ist f : [0 , ∞)  →  R  monoton fallend und (uneigentlich Riemann-)



 integrierbar, so konvergiert

 ∞

 f ( k) . 

 k=0

Mit dem Integralvergleichskriterium erhält man sofort die Konvergenz von

 ∞  1 /k 2, Quotienten- und Wurzelkriterium sind dafür zu schwach. 

 k=1

Diesen Kriterien ist gemein, dass sie bei erfolgreicher Anwendung nicht nur





die Konvergenz von

 ∞

 a

 ∞

 |a

 k=0

 k  liefern, sondern sogar die von

 k=0

 k|; man



spricht dann von  absoluter Konvergenz  der Reihe

 ∞

 a

 k=0

 k . Etwas anders liegt

der Fall beim  Leibniz-Kriterium, das von den Oszillationen der Folgenglieder

lebt:

 Ist ( ak)  eine monoton fallende Nullfolge, so konvergiert die alternie-



 rende Reihe a

 ∞

0  − a 1 +  a 2  ± · · · =

( − 1) ka

 k=0

 k. 



Dies ist zum Beispiel f

 ∞

ür die alternierende harmonische Reihe

( − 1) k+1 /k

 k=1

der Fall; aber den Wert dieser Reihe zu ermitteln (er lautet log 2) steht auf

einem anderen Blatt. 

Nicht absolut konvergente Reihen halten einige Überraschungen bereit. So





braucht

 ∞

 a 3 nicht zu konvergieren, wenn

 ∞

 a

 k=0

 k

 k=0

 k  konvergiert, obwohl doch

bei gleichem Vorzeichen die  a 3

viel kleiner“ als die  a

 k ” 

 k  sind. Das mag man als

Marginalie auffassen; mathematisch schwerwiegender ist, dass für nicht absolut

konvergente Reihen das unendliche Kommutativgesetz“ nicht gilt; dies ist der

” 

Inhalt der folgenden, auf Dirichlet und Riemann zurückgehenden Dichotomie. 



Ist  π: N  →  N eine Bijektion, so heißt die Reihe

 ∞

 a

 k=0

 π( k) aus naheliegenden





Gr

 ∞

 ∞

ünden eine  Umordnung  der Reihe

 a

 a

 k=0

 k. Dann gilt: (1) Ist

 k=0

 k  abso-

lut konvergent, so konvergiert jede Umordnung, und zwar zum gleichen Grenz-



wert. (2) Ist hingegen

 ∞

 a

 k=0

 k  eine konvergente, aber nicht absolut konvergente

Reihe, so existiert einerseits eine divergente Umordnung und andererseits zu je-



der Zahl  B ∈  R eine konvergente Umordnung mit

 ∞

 a

 k=0

 π( k) =  B. Das unter

(1) beschriebene Phänomen wird auch  unbedingte Konvergenz  genannt. 

Ein explizites Beispiel ist die Umordnung 1  −  1  −  1 + 1  −  1  −  1 + 1  −  1  −  1  ±

2

4

3

6

8

5

10

12

 · · ·  der alternierenden harmonischen Reihe, die nicht gegen log 2 konvergiert, 

sondern gegen 1 log 2. 

2

Eng verwandt mit den unendlichen Reihen sind die  unendlichen Produkte, 

' 

kurz geschrieben als

 ∞

 a

 k=0

 k =  a 0  · a 1  · a 2  · · · · . Man nennt ein solches Produkt

' 

konvergent, wenn die Folge der Partialprodukte ( p

 n

 n) = (

 a

 k=0

 k) konvergiert, 

mit der Zusatzforderung, dass lim  pn = 0, falls alle  ak = 0. Der Grund hierfür ist, 
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dass man Nullteilerfreiheit auch für unendliche Produkte garantieren möchte; 

' 

das Produkt

 ∞

1 /k  wird also nicht als konvergent angesehen. 

 k=1

Unendliche Produkte werden insbesondere in der Funktionentheorie studiert, 

wo man z. B. die Produktdarstellung

 ∞





sin( πx) =  πx

1  − x 2

 k 2

 k=1

der Sinusfunktion beweist. 

7.3

Stetige Funktionen

Kleine Ursache – kleine Wirkung! Das ist die Grundidee der Stetigkeit. Wie

üblich in der Mathematik gewinnt dieser Begriff seine Kraft erst nach einer

Übersetzung in die präzise mathematische Sprache. Zwei äquivalente Varianten

stehen zur Verfügung, diese Idee auszudrücken, einmal die Folgenstetigkeit und

einmal die  ε- δ-Definition der Stetigkeit:

(a)  Eine Funktion f :  M →  R  auf einer Teilmenge M ⊆  R  ist stetig

 bei x 0  ∈ M , wenn aus xn ∈ M , xn → x 0  stets f ( xn)  → f ( x 0)  folgt. 

(b)  Eine Funktion f :  M →  R  auf einer Teilmenge M ⊆  R  ist stetig

 bei x 0  ∈ M , wenn es zu jedem ε >  0  ein δ >  0  gibt, so dass aus

 x ∈ M , |x − x 0 | ≤ δ stets |f ( x)  − f ( x 0) | ≤ ε folgt. 

 F¨

 ur diesen Sachverhalt schreibt man auch  lim  f ( x) =  f ( x 0) . 

 x→x 0

Wieder macht es nichts aus, ob man

 ≤“ oder  < “ schreibt. Die Implikati-

” 

” 

on (b)  ⇒ (a) ist recht einfach; für (a)  ⇒ (b) argumentiert man mit einem

Widerspruchsbeweis. Man beachte, dass (a) bzw. (b) in der Tat die intuitive

Vorstellung wenn  x ≈ x

” 

0, dann  f ( x)  ≈ f ( x 0)“ wiedergeben. 

Stetigkeit ist ein lokaler Begriff: Um die Stetigkeit an der Stelle  x 0 zu un-

tersuchen, muss man die Funktion nur in einer Umgebung von  x 0 kennen. Ein

globaler Begriff entsteht, wenn man Stetigkeit an jeder Stelle von  M  fordert; 

dann nennt man  f  stetig auf  M . 

Alle klassischen Funktionen der Analysis (Polynome, trigonometrische Funk-

tionen, Exponentialfunktion, Logarithmus etc.) sowie ihre Summen, Produkte, 

Kompositionen etc. sind stetig. Unstetige Funktionen muss man also konstru-

” 

ieren“. Außer einfachen Sprüngen wie bei  f ( x) = 0 für  x <  0,  f ( x) = 1 für

 x ≥  0 können auch raffiniertere Unstetigkeiten wie bei  f ( x) = sin 1 /x  für  x = 0, 

 f (0) = 0 auftreten. 
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f(x)

1

x

−1

1

−1

Hätte man übrigens vergessen,  f (0) = 0 separat zu definieren, und also  f ( x) =

sin 1 /x  auf R  \ { 0 }  betrachtet, wäre die Frage der Stetigkeit bei 0 sinnlos (genauso

sinnlos wie die Frage, ob  f ( x) = 1 /x  bei 0 stetig ist); denn eine Funktion kann

nur dort stetig sein, wo sie definiert ist! Wenn sie an einem nicht isolierten Punkt

nicht definiert ist, kann man allerdings fragen, ob sie dort stetig ergänzbar ist. 

(Unsere Funktion ist es nicht.)

Aus den entsprechenden Grenzwertsätzen für Folgen ergibt sich, dass Sum-

men, Produkte, Kompositionen etc. stetiger Funktionen wieder stetig sind; ins-

besondere bildet die Menge aller stetigen Funktionen von  M  nach R einen Vek-

torraum, der mit  C( M ) bezeichnet wird. 

Für stetige Funktionen auf Intervallen sind zwei Sätze besonders bedeutsam:

(Zwischenwertsatz)

 Eine stetige Funktion auf einem Intervall nimmt mit zwei Werten

 A und B auch s¨

 amtliche Werte zwischen A und B an. 

(Satz vom Maximum)

 Eine stetige Funktion auf einem kompakten Intervall [ a, b]  ist be-

 schr¨

 ankt und nimmt ihr Supremum an: Es existiert eine Stelle x 0

 mit f ( x 0) = sup

 f ( x) . Analog wird das Infimum angenommen. 

 a≤x≤b

So einleuchtend diese Sätze auch erscheinen mögen, ihre Beweise sind doch

nicht ganz auf der Hand liegend; sie benötigen nämlich die Vollständigkeit von

R bzw. daraus abgeleitete Aussagen. [Zum Beweis des Satzes vom Maximum

wählen wir eine Folge ( xn) in [ a, b] mit  f ( xn)  → K := sup  f ( x), wobei a priori

 x

 K =  ∞  nicht ausgeschlossen ist. Nun kann man nach dem Satz von Bolzano-

Weierstraß zu einer konvergenten Teilfolge  xn → x

 k

0 übergehen, und man zeigt

 f ( x 0) =  K  und damit en passant  K < ∞.] Dass die Aussagen nicht ganz

selbstverständlich sind, erkennt man auch daran, dass sie falsch werden, wenn

man sie mit den Augen eines Siebtklässlers betrachtet, der nur rationale Zahlen

kennt: Z. B. nimmt  f ( x) =  x 2 die Werte  f (0) = 0 und  f (2) = 4 an, in Q wird

 √

aber der Wert 2 nicht angenommen, da

2 irrational ist. 

Mutatis mutandis überträgt sich die Definiton der Stetigkeit auf Funktionen

auf dem R d  bzw. auf Abbildungen zwischen metrischen Räumen (siehe Ab-

schnitt 8.1). 
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Eine Verschärfung des Stetigkeitsbegriffs ist die gleichmäßige Stetigkeit. Sei  f :

 M →  R eine stetige Funktion. Schreibt man die  ε- δ-Bedingung mit Quantoren, 

so bedeutet das

 ∀x 0  ∈ M ∀ε >  0  ∃δ >  0  ∀x ∈ M |x − x 0 | ≤ δ ⇒ |f( x)  − f( x 0) | ≤ ε. 

Es ist also damit zu rechnen, dass  δ  nicht nur von  ε  abhängt, sondern auch von

der betrachteten Stelle  x 0. Wenn man  δ  jedoch unabhängig von  x 0 wählen kann, 

nennt man die Funktion  gleichm¨

 aßig stetig:

 ∀ε >  0  ∃δ >  0  ∀x, x 0  ∈ M |x − x 0 | ≤ δ ⇒ |f( x)  − f( x 0) | ≤ ε. 

Es ist zu beachten, dass dieser Begriff globaler Natur ist. 

Eine wichtige Klasse von gleichmäßig stetigen Funktionen sind die  Lipschitz-

 stetigen  Funktionen, die definitionsgemäß eine Abschätzung der Form

 |f( x)  − f( x) | ≤ L|x − x|

 √

auf ihrem Definitionsbereich erfüllen. Die Wurzelfunktion  x 
→

 x  auf [0 , ∞) ist

gleichmäßig stetig, ohne Lipschitz-stetig zu sein. Hingegen ist die durch  f ( x) =

1 /x  definierte Funktion auf (0 , ∞) nicht gleichmäßig stetig. 

Eine in der höheren Analysis wichtige Tatsache ist, dass stetige Funktionen

auf kompakten Mengen automatisch gleichmäßig stetig sind. In der elementa-

ren Analysis macht man nur an einer Stelle Gebrauch davon: beim Beweis der

Riemann-Integrierbarkeit stetiger Funktionen. 

7.4

Exponentialfunktion, Logarithmus und trigonometrische

Funktionen

Diese Funktionen zählen seit den Anfängen der Differential- und Integralrech-

nung zu den wichtigsten Funktionen der Mathematik. Vom Standpunkt der

heutigen Analysis ist jedoch zuerst die Frage zu klären, wie diese Funktionen

überhaupt definiert sind und wie man ihre grundlegenden Eigenschaften beweist. 

Der heute übliche Zugang ist vollkommen ahistorisch, und das Pferd wird da-

bei gewissermaßen von hinten aufgezäumt. Betrachten wir naiv die  e-Funktion“

” 

 x 
→ ex, wobei  e = lim n(1 + 1 /n) n. Naiv ist an dieser Betrachtung, dass nicht

 √

 √

ganz klar ist, was z. B.  e  2 (in Worten:  e = 2 .  7182  . . .  hoch

2 = 1 .  4142  . . . )

überhaupt ist. Setzt man sich über diesen (nicht ganz unerheblichen) Einwand

hinweg und akzeptiert man die Überlegungen der Mathematiker des 17. und

18. Jahrhunderts, so ist die Ableitung der  e-Funktion wieder die  e-Funktion

und deshalb die zweite, dritte etc. Ableitung auch. Daraus ergibt sich (vgl. Ab-

schnitt 7.9) eine Taylorentwicklung

 ∞

  xk

 ex“ =

 . 

” 

 k! 

 k=0
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Die rechte Seite dieser Gleichung stellt nun für die moderne Analysis kein Pro-

blem dar, da man mit dem Quotientenkriterium zeigen kann, dass diese Reihe

für jedes  x ∈  R konvergiert. Heutzutage  definiert  man also die Exponentialfunk-

tion exp: R  →  R durch

 ∞

  xk

exp( x) =

 . 

(7.2)

 k! 

 k=0

Man beweist dann die an die Potenzgesetze erinnernde Funktionalgleichung

exp( x +  y) = exp( x) exp( y) sowie exp(1) =  e. Daraus ergibt sich für rationale

 √

 x =  p/q, dass wirklich exp( x) =  ex =  q ep. 

Ferner beweist man, dass exp die reelle Achse streng monoton und stetig auf

(0 , ∞) abbildet; die Umkehrfunktion ist der (natürliche) Logarithmus, der in der

Mathematik meistens mit log und von Physikern und Ingenieuren gern mit ln

abgekürzt wird. Jetzt ist es nur noch ein kleiner Schritt zur allgemeinen Potenz

 ax  für  a >  0, die durch  ax := exp( x  log  a) definiert wird. 

Die Winkelfunktionen Sinus und Cosinus wurden ursprünglich durch Sei-

tenverhältnisse am rechtwinkligen Dreieck erklärt. Misst man den Winkel im

Dreieck richtig (nämlich im Bogenmaß) und vertraut man den Mathematikern

früherer Jahrhunderte, erhält man differenzierbare Funktionen, die eine gewisse

Taylorreihenentwicklung gestatten. Euler hat den Zusammenhang dieser Rei-

hen mit der Exponentialreihe erkannt, wobei er die Chuzpe hatte, in (7.2) auch

komplexe Zahlen zuzulassen. 

Moderne Darstellungen gehen wieder rückwärts vor. Zuerst definiert man für

komplexe Zahlen  z  die Exponentialreihe

 ∞

  zk

exp( z) =

; 

 k! 

 k=0

wieder ist das eine auf ganz C konvergente Reihe. Dann betrachtet man speziell

rein imaginäre Zahlen der Form  z =  ix  mit  x ∈  R und setzt

cos  x := Re exp( ix) , 

sin  x := Im exp( ix) . 

Dieser Definition ist nun die berühmte  Eulersche Formel

cos  x +  i  sin  x =  eix

in die Wiege gelegt, durch die die enge Verwandtschaft der trigonometrischen

Funktionen mit der Exponentialfunktion offensichtlich wird. Alle Eigenschaf-

ten von cos und sin (Stetigkeit, Additionstheoreme, Periodizität etc.) können

nun durch Rückgriff auf die Exponentialfunktion und ihre Funktionalgleichung

bewiesen werden. 

In diesem Zusammenhang erscheint  π  als das Doppelte der kleinsten positi-

ven Nullstelle der Cosinusfunktion, deren Existenz mit dem Zwischenwertsatz

gezeigt wird. Als Periode von Sinus und Cosinus ergibt sich dann 2 π, d. h. 

sin( x + 2 π) = sin  x, und weiter die Formel

 eiπ + 1 = 0 , 

(7.3)
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die die fünf fundamentalen mathematischen Größen 0, 1,  e,  π  und  i  miteinander

verknüpft. A posteriori zeigt man auch, dass der Umfang des Einheitskreises 2 π

ist, in Übereinstimmung mit der Schulmathematik. 

Die Formel (7.3) wurde im Jahr 1990 übrigens von den Lesern der Zeit-

schrift  The Mathematical Intelligencer  zur schönsten mathematischen Aussa-

” 

ge“ gewählt. Zur Auswahl standen 24 mathematische Sätze; Platz 2 belegte die

Eulersche Polyederformel (Abschnitt 4.12) und Platz 3 Euklids Satz, dass es

unendlich viele Primzahlen gibt (Abschnitt 3.2). 

7.5

Differenzierbare Funktionen

Die Ableitung einer Funktion gibt ihre Änderungsrate an. Kennt man für eine

Funktion  f  den Wert  f ( x), weiß man, wie groß  f  bei  x  ist; kennt man  f ( x), weiß

man, wie sich  f  in der Nähe von  x ändert. Geometrisch ist  f ( x) die Tangenten-

steigung an den Graphen von  f  bei  x, physikalisch ist  f ( x) die Geschwindigkeit

im Zeitpunkt  x, wenn  f  das Weg-Zeit-Gesetz einer Bewegung beschreibt. Die-

se geometrische bzw. physikalische Motivation waren es, die die Urväter der

Differentialrechnung, Leibniz bzw. Newton, leiteten. 

Die moderne rigorose Definition der Ableitung beruht auf dem Grenzwertbe-

griff. Man nennt eine Funktion  f :  I →  R auf einem Intervall  differenzierbar bei

 x 0  ∈ I  mit Ableitung  f ( x 0), wenn

 f ( x

lim

0 +  h)  − f ( x 0) =:  f( x 0)

(7.4)

 h→ 0

 h

existiert. Wie bei der Stetigkeit handelt es sich hierbei um einen lokalen Begriff:

Um die Differenzierbarkeit bei  x 0 zu entscheiden, muss man  f  nur in einer

Umgebung von  x 0 kennen. Ist  f  an jeder Stelle differenzierbar, nennt man  f

eine  differenzierbare Funktion. 

Eine Umformulierung von (7.4) ist erhellend. Setzt man für eine bei  x 0 diffe-

renzierbare Funktion  f  als Abweichung zur Linearisierung  ϕ( h) =  f ( x 0 +  h)  −

 f ( x 0)  − hf ( x 0), so gilt definitionsgemäß für alle  h

 f ( x 0 +  h) =  f ( x 0) +  hf ( x 0) +  ϕ( h); 

(7.5)

die Grenzwertaussage (7.4) übersetzt sich nun zu

 ϕ( h)

lim

= 0

(7.6)

 h→ 0

 h

oder in Anlehnung an die groß-O“-Notation aus Abschnitt 1.11 kurz  ϕ( h) =

” 

 o( h) für  h →  0. In der Nähe“ von  x

kleine“  |h|, lässt sich  f ( x

” 

0, also für ” 

0 +  h)

durch eine affin-lineare Funktion  h 
→ f ( x 0) +  hf ( x 0) approximieren, wobei der

Fehler  ϕ( h) gemäß (7.6) von kleinerer als linearer Ordnung ist. Umgekehrt ist

eine Funktion mit

 f ( x 0 +  h) =  f ( x 0) +  hl +  ϕ( h) mit  ϕ( h) =  o( h)

(7.7)
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für eine reelle Zahl  l  differenzierbar bei  x 0 mit Ableitung  f( x 0) =  l. Auf diese

Weise erscheinen die differenzierbaren Funktionen als die einfachsten Funktio-

nen nach den affin-linearen Funktionen der Form  x 
→ b+ lx, denn sie sind durch

solche Funktionen lokal gut approximierbar. Diese Sichtweise wird es insbeson-

dere erlauben, Differenzierbarkeit für Funktionen auf dem R d  zu erklären. 

Die bekannten Regeln über die Ableitung von Summen, Produkten und Quo-

tienten differenzierbarer Funktionen

 

 f 

 f g − f g

( f +  g)  =  f  +  g, 

( f g)  =  f g +  f g, 

=

 g

 g 2

beweist man ohne große Mühe; insbesondere kann man in der Sprache der linea-

ren Algebra festhalten, dass die differenzierbaren Funktionen einen Vektorraum

bilden, auf dem die Abbildungen  f 
→ f   bzw.  f 
→ f( x 0) linear sind. Für die

Komposition  f ◦ g  gilt die  Kettenregel ( f ◦ g)  = ( f  ◦ g)  · g, die man am besten

mittels (7.5) und (7.6) zeigt. (Das Problem bei (7.4) liegt darin, dass man im

kanonischen Ansatz den Differenzenquotienten von  f ◦ g  mit  g( x 0 +  h)  − g( x 0)

erweitert, was aber 0 sein kann.)

Die Ableitung einer differenzierbaren Funktion braucht nicht stetig zu sein, 

sie kann sogar auf kompakten Intervallen unbeschränkt sein (Beispiel:  f ( x) =

 |x| 3 / 2 sin 1 /x  für  x = 0 und  f(0) = 0). Allerdings erfüllt jede Ableitung die

Aussage des Zwischenwertsatzes ( Satz von Darboux ), was zeigt, dass die Un-

stetigkeiten keine einfachen Sprünge sein können. Außerdem liefert der Satz

von Baire aus Abschnitt 8.12, dass  f   an den meisten“ Stellen stetig ist. 

” 

Der zentrale Satz über differenzierbare Funktionen ist der  Mittelwertsatz :

 Ist f : [ a, b]  →  R  stetig und auf ( a, b)  differenzierbar, so existiert eine

 Stelle ξ ∈ ( a, b)  mit

 f ( b)  − f ( a)

 f ( ξ) =

 . 

(7.8)

 b − a

f(x)

f(b) − f(a)

b − a

x

a

ξ

b

Dieser Satz ist anschaulich und aus der Alltagserfahrung absolut plausibel. 

Stellt man sich etwa unter  f ( x) den Weg vor, den ein Fahrzeug bis zum Zeit-

punkt  x  zurückgelegt hat, so gibt die rechte Seite von (7.8) die Durchschnittsge-

schwindigkeit zwischen den Zeitpunkten  a  und  b  wieder, und der Mittelwertsatz
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macht die Aussage, dass das Fahrzeug in mindestens einem Moment wirklich

diese Geschwindigkeit hatte, was unmittelbar einleuchtet. Das ist freilich kein

rigoroser Beweis. Dieser führt den Mittelwertsatz auf den als  Satz von Rolle

bekannten Spezialfall  f ( a) =  f ( b) zurück, und den Satz von Rolle beweist man

mit dem Satz vom Maximum und der Definition der Differenzierbarkeit: Hat  f

bei  ξ ∈ ( a, b) eine Maximal- oder Minimalstelle, so zeigt (7.4)  f( ξ) = 0. 

Als Konsequenz von (7.8) kann man zahlreiche Ungleichungen über klassische

Funktionen beweisen. Ist nämlich  f   beschränkt, etwa  |f ( x) | ≤ K  für alle  x, so

erhält man aus (7.8) die Ungleichung

 |f( x 1)  − f( x 2) | ≤ K|x 1  − x 2 |, 

(7.9)

die z. B.  | sin  x 1  −  sin  x 2 | ≤ |x 1  − x 2 |  als Spezialfall enthält. Insbesondere ist  f

Lipschitz-stetig. 

7.6

Das Riemannsche Integral

Der Ausgangspunkt bei der Entwicklung der Integralrechnung war das Pro-

blem, den Flächeninhalt krummlinig begrenzter Figuren zu bestimmen, z. B. 

den Flächeninhalt unter einer Kurve“. 

” 

f(x)

9

8

7

6

5

4

3

2

1

0

x

0

1

2

3

4

5

Man betrachte eine beschränkte Funktion  f  auf einem kompakten Inter-

vall [ a, b]. Wenn man sich zum Ziel setzt, den (einstweilen naiv aufgefass-

ten) Flächeninhalt unter der Kurve“ zu studieren, liegt es nahe, diesen durch

” 

Rechtecksinhalte anzunähern, denn Rechtecke sind die einzigen Figuren, deren

Flächeninhalt a priori definiert ist. Zur rigorosen Definition des Integrals geht

man so vor. Sei durch  a =  x 0  < x 1  < . . . < xn =  b  eine Zerlegung  Z  des Inter-

valls in  n  Teilintervalle gegeben. Dazu assoziieren wir Unter- und Obersummen

gemäß

 n



 n



 S( f, Z) =

 mk( xk − xk− 1) , 

 S( f, Z) =

 Mk( xk − xk− 1) , 

 k=1

 k=1

wobei  mk = inf {f ( x)  | xk− 1  ≤ x ≤ xk}  und  Mk = sup {f( x)  | xk− 1  ≤ x ≤ xk}. 

(Es ist  −∞ < mk  und  Mk < ∞, da  f  beschränkt ist.) Unter- und Obersummen

kann man leicht als Summen von Rechtecksflächen visualisieren:
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f(x)

f(x)
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8

8

6
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0
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0
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2
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Sei  Z  die Menge aller Zerlegungen von [ a, b]. Da stets  S( f, Z)  ≤ S( f, Z) gilt, 

erhält man

 S( f ) := sup  S( f, Z)  ≤  inf  S( f, Z) =:  S( f ) . 

 Z∈Z

 Z∈Z

Die Funktion  f  heißt  Riemann-integrierbar, wenn hier Gleichheit gilt, und man

setzt dann

  b

 f ( x)  dx =  S( f ) =  S( f ) . 

 a

Die dieser Definition zugrundeliegende Intuition ist, dass man immer feinere“

” 

Zerlegungen betrachtet, für die die durch  S( f, Z) und  S( f, Z) gegebenen Recht-

eckssummen gegen einen gemeinsamen Wert streben sollten, den man dann für

 f ≥  0 als Flächeninhalt unter der Kurve“ ansehen kann. 

” 

Obwohl die obige Skizze suggeriert, dass dieses Vorgehen wirklich funktioniert, 

sind dem doch zumindest bei pathologischen Funktionen Grenzen gesetzt. Für

die  Dirichletsche Sprungfunktion, die rationale Zahlen auf 0 und irrationale Zah-

len auf 1 abbildet, ist nämlich  S( f ) = 0 und  S( f ) =  b−a; also ist diese Funktion

nicht Riemann-integrierbar. Andererseits kann man sehr wohl die Integrierbar-

keit aller stetigen Funktionen beweisen; dazu verwendet man deren gleichmäßige

Stetigkeit. Ein Satz der fortgeschrittenen Integrationstheorie besagt, dass man

mit dem Riemannschen Ansatz nicht viel weiter gehen kann: Genau dann ist ei-

ne beschränkte Funktion auf [ a, b] Riemann-integrierbar, wenn die Menge ihrer

Unstetigkeitsstellen eine Nullmenge (siehe Abschnitt 8.6), also klein“ ist. 

” 

In der auf Leibniz zurückgehenden Notation des Integrals sollte man in dem



Symbol

ein langgestrecktes S (für Summe) sehen, und das  dx  entsteht bei

Leibniz aus Δ x =  xk − xk− 1 durch einen mysteriösen Grenzübergang. Vom

heutigen Standpunkt ist in der elementaren Analysis  dx  ein Symbol, das zwar

eigentlich vollkommen überflüssig, in vielen Anwendungen aber recht praktisch





ist (z. B. hilft es, 

1  xt 2  dx  von 1  xt 2  dt  zu unterscheiden) und aus historischen

0

0

Gründen mitgeschleppt wird. Erst höheren Semestern ist es vorbehalten, in  dx

eine Differentialform zu erkennen; vgl. auch Abschnitt 2.10. 

Die Menge  R[ a, b] aller auf [ a, b] Riemann-integrierbaren Funktionen bildet

einen Vektorraum, und Integration ist eine lineare Operation:







 b

 b

 b

( αf +  βg)( x)  dx =  α

 f ( x)  dx +  β

 g( x)  dx. 

 a

 a

 a
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Der Nachweis dafür ist leider etwas mühselig, und noch mühseliger wäre es, wenn

man mit Hilfe der Definition ein Integral konkret ausrechnen müsste. Effektive

Techniken dafür basieren auf dem Hauptsatz der Differential- und Integralrech-

nung, der im nächsten Abschnitt besprochen wird. 

Bislang war immer die stillschweigende Voraussetzung der Beschränktheit der

Funktion und der Kompaktheit des Definitionsintervalls gemacht worden. Diese

kann man jedoch bisweilen aufgeben, was zu den sogenannten  uneigentlichen

 Integralen  führt. Pars pro toto betrachten wir eine Funktion  f : [ a, ∞)  →  R. 

  b

Falls  f  auf [ a, b] stets integrierbar ist und lim b→∞

 f ( x)  dx  existiert, nennt

 a

man  f  uneigentlich Riemann-integrierbar und bezeichnet diesen Grenzwert mit

  ∞

  ∞

  ∞

 √

 f ( x)  dx. Zum Beispiel ist

1 /x 2  dx = 1 und

 e−x 2  dx =

 π/ 2; während

 a

1

0

das erste Beispiel trivial ist, sobald man 1 /x 2 integrieren kann, ist der Beweis

  ∞

 √

des zweiten trickreich. Die Aussage

 e−x 2  dx =

 π/ 2 ist fundamental für die

0

Wahrscheinlichkeitsrechnung (Dichte der Normalverteilung). 

7.7

Der Hauptsatz der Differential- und Integralrechnung

Dieser Satz stellt eine Verbindung von Differentiation und Integration her und

trägt den Namen Hauptsatz“ mit vollem Recht. Um ihn zu auszusprechen, ist

” 

der Begriff einer Stammfunktion praktisch: Eine Funktion  F  heißt  Stammfunk-

 tion  von  f , wenn  F  =  f  gilt. 

Nun können wir den Hauptsatz bequem formulieren. 

 Sei f : [ a, b]  →  R  eine Riemann-integrierbare Funktion. Wir setzen




F

x


0( x) =

 f ( t)  dt f¨

 ur x ∈ [ a, b] . Dann gilt:

 a

(a)  Wenn f bei x 0  stetig ist, ist F 0  bei x 0  differenzierbar mit

 F  0( x 0) =  f( x 0) . Insbesondere ist F 0  eine Stammfunktion von f, 

 wenn f stetig ist. 

(b)  Ist F irgendeine Stammfunktion der stetigen Funktion f , so gilt

  b

 f ( t)  dt =  F ( b)  − F ( a) . 

 a

Diese Aussage stellt einen auf den ersten Blick verblüffenden Zusammenhang

zwischen zwei a priori unzusammenhängenden mathematischen Konzepten her, 

denn die Integration stellt sich hier als Umkehrung der Differentiation heraus. 

So überraschend und fundamental der Satz auch ist, ist sein Beweis doch nicht

einmal sehr schwierig, da man in (a) ziemlich unmittelbar die Definition (7.4)

verifizieren kann. Für (b) braucht man die wichtige Beobachtung, dass sich die

Stammfunktionen  F  und  F 0 nur durch eine Konstante unterscheiden, was man

aus dem Mittelwertsatz herleitet (speziell aus (7.6) mit  M = 0). An dieser Stelle

sei explizit auf den Unterschied der folgenden Aussagen hingewiesen: (1) Wenn

7.7
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 F  eine Stammfunktion von  f  und  F − G = const .  ist, ist auch  G  eine Stamm-

funktion von  f . (2) Wenn  F  und  G  Stammfunktionen von  f  auf einem Intervall

sind, ist  F −G = const .  Hierbei ist (1) trivial, die Umkehrung (2), die wir gerade

verwandt haben, ist es aber nicht. 

Eine Variante ist noch:

(c)  Ist g: [ a, b]  →  R  eine differenzierbare Funktion mit Riemann-

 integrierbarer Ableitung, so gilt

  b

 g( t)  dt =  g( b)  − g( a) . 

 a

Gerade diese Variante ist intuitiv leicht einzusehen, wenn man sie diskreti-

siert, was dem Hauptsatz etwas von der Aura des Überraschenden nimmt. Jeder

Sparer kennt sie nämlich: In einem Sparbuch gibt es doch eine Spalte für den

Kontostand zum Zeitpunkt  x (das entspricht  g( x)) und eine für die Einzahlungen

bzw. Abhebungen (das entspricht der Änderungsrate von  g  und deshalb  g( x)). 

Die Summe aller Einzahlungen bzw. Abhebungen zwischen zwei Zeitpunkten  a



und  b (das entspricht

 b g( t)  dt) ist aber nichts anderes als  g( b)  − g( a). 

 a

Die rechentechnische Ausbeute des Hauptsatzes ist, dass man Integrale kon-

kret bestimmen kann, wenn man eine Stammfunktion des Integranden kennt, 

und im Zweifelsfall kann man versuchen, eine zu erraten. So erhält man sofort

 2 1 /x 2  dx = 1 / 2, da  x → − 1 /x  eine Stammfunktion von  x →  1 /x 2 auf [1 ,  2] ist. 

1

Das Raten kann man systematisieren, indem man einen Grundkatalog von Ab-

leitungsbeispielen und die Differentiationsregeln rückwärts liest. So wird aus der

Produktregel die Regel von der  partiellen Integration





 b

 b

 f ( x) g( x)  dx = ( f ( b) g( b)  − f ( a) g( a))  −

 f ( x) g( x)  dx

 a

 a

und aus der Kettenregel die  Substitutionsregel





 b

 g( b)

 f ( g( x)) g( x)  dx =

 f ( u)  du. 

 a

 g( a)

Bei der Substitutionsregel ist die Leibnizsche Differentialsymbolik eine willkom-

mene Eselsbrücke. Man substituiert nämlich  u =  g( x) und erhält in der Leib-

nizschen Schreibweise  du/dx =  g( x) und daher (sic!)  g( x)  dx =  du. 





So kann man komplizierte Integrale wie

 b  log  x dx  oder  b  1  dx  explizit

 a

 a  cos  x



berechnen, aber bei

 b e−x 2  dx  versagen alle Tricks. In der Tat kann man bewei-

 a

sen, dass  x → e−x 2 keine explizite“ Stammfunktion besitzt, womit man eine

” 

Funktion meint, die man durch Summe, Produkt, Komposition etc. aus den

klassischen Funktionen (Polynome, exp, log, sin, cos etc.) kombinieren“ kann

” 

(was natürlich zu präzisieren wäre). Computeralgebraprogramme wie Maple

oder Mathematica können die raffiniertesten Stammfunktionen in Sekunden-

schnelle bestimmen – oder entscheiden, dass eine explizite Lösung unmöglich

ist. 
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Da das Integrieren konkret auf die Bestimmung von Stammfunktionen hin-



ausläuft, hat sich die Bezeichnung

 f ( x)  dx, das sogenannte  unbestimmte Inte-

 gral, für eine Stammfunktion von  f  eingebürgert. Allerdings ist diese Notation



mit Vorsicht zu genießen:

 f ( x)  dx =  F ( x) sollte man wirklich nur als prak-

tische Schreibweise für  F  =  f  lesen, nicht aber als mathematische Gleichung; 





sonst würde man von

2 x dx =  x 2 und

2 x dx =  x 2 + 1 schnell zu 0 = 1

gelangen. . . 

7.8

Vertauschung von Grenzprozessen

Wie das Beispiel

1 = lim

lim (1  −  1 /m) n = lim

lim (1  −  1 /m) n = 0

 n→∞ m→∞

 m→∞ n→∞

zeigt, kommt es im Allgemeinen bei der Ausführung von mehreren Grenzpro-

zessen auf deren Reihenfolge an. Ein anderes Beispiel ist





1

1

1

= lim

 nxn(1  − xn)  dx =

lim  nxn(1  − xn)  dx = 0 . 

2

 n→∞

 n→∞

0

0

Auch hier geht es um die Vertauschung von Grenzprozessen, denn hinter dem

Integral verbirgt sich ja der Grenzwert von Ober- und Untersummen. 

Es ist eine entscheidende Idee der Analysis, 

komplizierte“ Funktionen als

” 

Grenzwerte von

einfachen“ Funktionen darzustellen; konkrete Beispiele wer-

” 

den wir mit den Taylor- und Fourierreihen der nächsten Abschnitte besprechen. 

Daher ist es wichtig zu wissen, welche Eigenschaften sich unter welchen Bedin-

gungen auf die Grenzfunktion einer konvergenten Funktionenfolge oder -reihe

übertragen. Jedenfalls überträgt sich die Stetigkeit nicht automatisch, denn setzt

man  fn( x) =  xn, so konvergiert die Folge ( fn( x)) n  für jedes  x ∈ [0 ,  1], aber die

Grenzfunktion, das ist  f : [0 ,  1]  →  R mit  f ( x) = 0 für  x <  1 und  f (1) = 1, ist

nicht stetig, obwohl alle  fn  stetig sind. (Das ist die Essenz des ersten Beispiels.)

Ebenso zeigt unser zweites Beispiel, dass man den Limes im Allgemeinen nicht

unters Integral“ ziehen darf. Dass man ähnliche Probleme beim Differenzieren

” 

hat, wird durch das Beispiel der differenzierbaren Funktionen  fn: [ − 1 ,  1]  →  R



mit  fn( x) =

 x 2 + 1 /n  belegt, wo wegen  fn( x)  → |x|  die Grenzfunktion nicht

differenzierbar ist. 

Positive Resultate in dieser Richtung kann man nur unter strengeren Annah-

men beweisen. Der entscheidende Begriff in diesem Zusammenhang ist der der

gleichmäßigen Konvergenz. Seien  fn, f :  X →  R Funktionen auf einer Menge  X. 

Schreibt man explizit aus, was die Aussage  f

”  n( x)  → f ( x) für alle  x ∈ X“ (also

die punktweise Konvergenz der Funktionenfolge) bedeutet, erhält man

 ∀x ∈ X ∀ε >  0  ∃N ∈  N  ∀n ≥ N |fn( x)  − f( x) | ≤ ε. 
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Es ist daher damit zu rechnen, dass  N  nicht nur von  ε, sondern auch von  x

abhängt. Ist dies nicht der Fall, nennt man die Funktionenfolge  gleichm¨

 aßig

 konvergent :

 ∀ε >  0  ∃N ∈  N  ∀n ≥ N ∀x ∈ X |fn( x)  − f( x) | ≤ ε. 

Man kann sich diese Bedingung so vorstellen, dass man um den Graphen von

 f  einen Schlauch der Dicke 2 ε  legt, und die Definition der gleichmäßigen Kon-

vergenz verlangt, dass von einem  N  ab die Graphen aller  fn  innerhalb dieses

Schlauchs verlaufen. 

f(x)

ε

ε

x

Wer mit dem Begriff der Metrik vertraut ist, kann die obige Definition zu-

mindest für beschränkte Funktionen auch wie folgt wiedergeben. Für zwei be-

schränkte Funktionen auf  X  setzen wir  d( f, g) = sup

 |f( x)  − g( x) |. Dann

 x∈X

konvergiert ( fn) genau dann gleichmäßig gegen  f , wenn

 ∀ε >  0  ∃N ∈  N  ∀n ≥ N d( fn, f)  ≤ ε

gilt, wenn also ( fn) gegen  f  bzgl. der Metrik  d  im Raum aller beschränkten

Funktionen konvergiert. 

Folgende Sätze können nun über die Vertauschung von Grenzprozessen gezeigt

werden:

 Seien fn, f : [ a, b]  →  R  mit fn( x)  → f ( x)  für alle x. 

(a)  Sind alle fn stetig und ist die Konvergenz gleichm¨

 aßig, so ist

 auch f stetig. 

(b)  Sind alle fn Riemann-integrierbar und ist die Konvergenz gleich-

 m¨

 aßig, so ist auch f Riemann-integrierbar, und es gilt





 b

 b

lim

 fn( x)  dx =

 f ( x)  dx. 

 n→∞

 a

 a

(c)  Sind alle fn differenzierbar und konvergiert die Folge der Ablei-

 tungen ( f n)  gleichm¨

 aßig gegen eine Grenzfunktion g, so ist f diffe-

 renzierbar, und es gilt f  =  g, d. h. (lim n fn)  = lim n f n. 

Man beachte, dass in (c) die gleichmäßige Konvergenz der Ableitungen voraus-

gesetzt wird; wenn ( f n) konvergiert – so die Aussage von (c) stark verkürzt –, 

dann gegen das Richtige. 
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Der Beweis von (a) benutzt ein sogenanntes  ε/ 3-Argument. Da Varianten die-

ses Arguments auch an anderen Stellen benutzt werden, sei es hier kurz skizziert. 

Um die Stetigkeit von  f  bei  x 0 zu zeigen, muss man  |f ( x)  − f ( x 0) | ≤ ε  für alle

 x  in der Nähe“ von  x

” 

0 beweisen. Dazu schiebt man  fn( x) bzw.  fn( x 0) in diese

Differenz ein und benutzt die Dreiecksungleichung:

 |f( x)  − f( x 0) | ≤ |f( x)  − fn( x) | +  |fn( x)  − fn( x 0) | +  |fn( x 0)  − f( x 0) |. 

Ist nun  n  groß genug, so sind der erste sowie der letzte Term wegen der

gleichmäßigen Konvergenz jeweils durch  ε/ 3 abzuschätzen, egal, was  x  und  x 0

sind. Für solch ein  n, das nun fixiert wird, benutzt man nun die Stetigkeit von

 fn, um auch den mittleren Term durch  ε/ 3 abzuschätzen, wenn nur  |x − x 0 | ≤ δ

ist ( δ =  δ( ε, x 0 , n) passend). Insgesamt folgt

 |f( x)  − f( x 0) | ≤ ε/ 3 +  ε/ 3 +  ε/ 3 =  ε

für  |x − x 0 | ≤ δ  und damit die Stetigkeit von  f  bei  x 0. 

Wir erwähnen noch den  Weierstraßschen Approximationssatz, wonach jede

stetige Funktion auf [ a, b] ein gleichmäßiger Grenzwert von Polynomfunktionen

ist. 

7.9

Taylorentwicklung und Potenzreihen

Die Quintessenz der Differenzierbarkeit ist die gute lokale Approximierbarkeit

durch affin-lineare Funktionen. Indem man Polynome höheren Grades heran-

zieht, sollte es möglich sein, die Approximationsgüte zu verbessern. 

Sei  f  eine hinreichend oft differenzierbare Funktion auf einem Intervall  I. Wir

suchen ein Polynom  Tn, das an der Stelle  a ∈ I  in seinen ersten  n  Ableitungen

mit denen von  f übereinstimmt. Es zeigt sich, dass  Tn  die Form

 n

  f( k)( a)

 Tn( x) =

( x − a) k

 k! 

 k=0

hat;  Tn  wird das  n-te  Taylorpolynom  genannt. Schreibt man  f ( x) =  Tn( x) +

 Rn+1( x), so macht der fundamentale  Satz von Taylor  folgende Aussage über

das Restglied  Rn+1. 

 Ist f :  I →  R  eine ( n + 1) -mal differenzierbare Funktion und a ∈ I, 

 so existiert f¨

 ur alle x ein ξ zwischen a und x mit

 f ( n+1)( ξ)

 f ( x) =  Tn( x) +

( x − a) n+1 . 

( n + 1)! 
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Für  n = 0 geht dieser Satz in den Mittelwertsatz über. Eine äquivalente

Umformulierung ist

 n

  f( k)( a)

 f ( n+1)( a +  ϑh)

 f ( a +  h) =

 hk +

 hn+1

 k! 

( n + 1)! 

 k=0

für ein  ϑ =  ϑ( a, h)  ∈ (0 ,  1). Ist  f ( n+1) sogar stetig, schließt man

 n+1

  f( k)( a)

 f ( a +  h) =

 hk +  o( hn+1)

 k! 

 k=0

und damit die lokale Approximierbarkeit durch das Taylorpolynom vom Grad

 ≤ n + 1 mit einem Fehlerterm, der von kleinerer Ordnung als  hn+1 ist. (Zur

Erinnerung:  o( hn+1) steht für einen Term  ϕ( h) mit  ϕ( h) /hn+1  →  0 für  h →  0.)

Ein Beispiel ist

sin  x =  x − x 3 +  o( x 3) . 

6

f(x)

2

1

x

−3

−2

−1

1

2

3

−1

−2

Man beachte, dass die Approximation von sin  x  durch  x −  1  x 3 nur in ei-

6

ner Umgebung von 0 gut ist; deshalb haben wir von lokaler Approximation

gesprochen. Um z. B. eine auf [ −π, π] gültige gute Approximation durch ein Po-

lynom zu erhalten, was nach dem in Abschnitt 7.8 erwähnten Weierstraßschen

Approximationssatz ja möglich ist, muss man Polynome viel höheren Grades

heranziehen. 

Mit dem Satz von Taylor lässt sich das Kriterium für das Vorliegen eines

lokalen Extremums aus der Schulmathematik begründen und erweitern. Für

eine in einer Umgebung von  a ( n + 1)-mal stetig differenzierbare Funktion gelte

 f ( a) =  f ( a) =  · · · =  f( n)( a) = 0, aber  f ( n+1)( a)  = 0, sagen wir  >  0. Für hinreichend kleine  h  ist dann der Term  c( h) :=  f ( n+1)( a +  ϑh) /( n + 1)! aus

der Taylorentwicklung positiv, und nun lautet diese einfach  f ( a +  h) =  f ( a) +

 c( h) hn+1. Ist  n  ungerade, folgt  c( h) hn+1  >  0 für  h = 0, und es liegt bei  a  ein striktes lokales Minimum vor. Ist jedoch  n  gerade, hat  c( h) hn+1 das Vorzeichen

von  h, und es liegt kein Extremum vor. 
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Ist  f  beliebig häufig differenzierbar, könnte man versuchen, in den obigen

Überlegungen den Grenzübergang  n → ∞  durchzuführen. Das führt zur  Tay-

 lorreihe

 ∞

  f( k)( a)

 T∞( x) =

( x − a) k

 k! 

 k=0

der Funktion  f  im Entwicklungspunkt  a. Es stellt sich natürlich sofort die Frage, 

ob diese Reihe konvergiert, und wenn ja, ob sie gegen  f ( x) konvergiert. Leider

sind beide Fragen im Allgemeinen zu verneinen; aber die Antwort lautet jeweils

ja“, wenn  R

” 

 n+1( x)  →  0 für  n → ∞  gilt. Letzteres trifft glücklicherweise auf

alle klassischen Funktionen zu, zumindest in einer Umgebung des Entwicklungs-

punkts. Hier sind einige Beispiele für Taylorentwicklungen:

 ∞

 1

 ex =

 xk

( x ∈  R)

 k! 

 k=0

 ∞

 ( − 1) k

sin  x =

 x 2 k+1

( x ∈  R)

(2 k + 1)! 

 k=0

 ∞

 ( − 1) k

cos  x =

 x 2 k

( x ∈  R)

(2 k)! 

 k=0

 ∞

 ( − 1) k+1

log(1 +  x) =

 xk

( − 1  < x ≤  1)

 k

 k=1

 ∞

 

 α

(1 +  x) α =

 xk

( − 1  < x <  1)

 k

 k=0

Bei den ersten drei Reihen erhält man die Reihen zurück, die in Abschnitt 7.4

zur Definition dienten. Im letzten Beispiel, der binomischen Reihe, ist für  α ∈  R

und  k ∈  N

 

 α

 α( α −  1)  · · · ( α − k + 1)

=

 . 

 k

 k! 



Eine Reihe der Form

 ∞

 c

 k=0  k( x − a) k  heißt  Potenzreihe (mit Entwick-

lungspunkt  a). Das Konvergenzverhalten solcher Reihen ist vergleichsweise

überschaubar. Durch Anwendung des Wurzelkriteriums für unendliche Reihen

erhält man nämlich ein  R ∈ [0 , ∞], so dass die Reihe für  |x − a| < R  konvergiert

und für  |x − a| > R  divergiert; für  |x − a| =  R  sind keine allgemeinen Aussagen



möglich. Man kann  R  explizit durch  R = 1 /  lim sup  n |cn|  berechnen;  R  heißt

der  Konvergenzradius  der Potenzreihe. Wo ein Radius ist, sollte ein Kreis sein; 

diesen sieht man, wenn man Potenzreihen im Komplexen betrachtet, für die die

obigen Aussagen genauso gelten, und dann definiert  {x ∈  C  | |x − a| < R}  einen

Kreis in der komplexen Ebene. Komplexe Potenzreihen führen in die Welt der

Funktionentheorie, über die in Abschnitt 8.9 ein wenig berichtet wird. 
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Eine Potenzreihe mit Konvergenzradius  R  definiert also eine Funktion  f :



( a − R, a +  R)  →  R,  f ( x) =

 ∞

 c

 k=0  k( x − a) k. Nicht nur konvergiert diese

Reihe auf  I = ( a − R, a +  R), sie konvergiert auf kompakten Teilintervallen von

 I  sogar gleichmäßig, wenn auch nicht notwendig auf  I  selbst. Da Stetigkeit ein

lokaler Begriff ist, kann man daraus folgern (vgl. (a) in Abschnitt 7.8), dass

 f  stetig ist. Genauso kann man das dortige Differenzierbarkeitskriterium (c)



anwenden, um  f ( x) =

 ∞

 c

 k=0  kk( x − a) k− 1 auf  I  zu erhalten. Durch Wieder-

holung dieses Schlusses gelangt man zu dem Ergebnis, dass  f  beliebig oft auf  I

differenzierbar ist mit  f ( n)( a) =  n!  cn. Damit ist die Taylorreihe von  f  die diese

Funktion definierende Potenzreihe, was oben für die Exponential-, Sinus- und

Cosinusfunktion schon beobachtet wurde. 

7.10

Fourierreihen

Im Jahre 1822 erschien Joseph Fouriers Buch  Th´

 eorie analytique de la cha-

 leur, in dem er systematisch die Idee, eine beliebige“ periodische Funktion als

” 

Reihe über Sinus- und Cosinusterme darzustellen, auf Differentialgleichungen

der mathematischen Physik und ihre Randwertprobleme anwandte. Allerdings

geschah das nicht mit der heutigen mathematischen Strenge, da keine Kon-

vergenzüberlegungen angestellt wurden und die unendlichen Reihen formal wie

endliche Reihen manipuliert wurden. Mehr noch, zu Fouriers Zeit existierte nicht

einmal der moderne Funktionsbegriff; für Fourier und seine Zeitgenossen war ei-

ne Funktion durch eine Formel, in der Regel eine Potenzreihe, gegeben. 

Vom heutigen Standpunkt aus stellt sich die Theorie so dar. Wir betrachten

eine 2 π-periodische Funktion  f ; es gilt also  f ( x+2 π) =  f ( x) auf R. (Die Periode

2 π  zu wählen ist eine Normierung, die schreibtechnische Vorteile hat.) Diese

wird eindeutig durch ihre Einschränkung auf das Intervall [ −π, π) festgelegt. 

Wir versuchen,  f  als  trigonometrische Reihe

 ∞

 a



0 +

( a

2

 k  cos  kx +  bk  sin  kx)

(7.10)

 k=1

zu schreiben.  Falls  diese Reihe auf [ −π, π] gleichmäßig gegen  f  konvergiert (not-

wendigerweise ist dann  f  stetig), erhält man nach Multiplikation der Reihe mit

cos  nx  bzw. sin  nx  und gliedweiser Integration, was wegen der gleichmäßigen

Konvergenz erlaubt ist, 





1

 π

1

 π

 an =

 f ( x) cos  nx dx, 

 bn =

 f ( x) sin  nx dx. 

(7.11)

 π

 −

 π

 π

 −π
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(Damit das auch für  n = 0 stimmt, hat man in (7.10) das absolute Glied als

 a 0 / 2 statt  a 0 angesetzt.) Hierzu benötigt man die Orthogonalitätsrelationen“

” 

des trigonometrischen Systems ( n, m ≥  1)







 π

 π

 π

cos  nx  cos  mx dx =

sin  nx  sin  mx dx =  δnm · π, 

cos  nx  sin  mx dx = 0

 −π

 −π

 −π

mit dem Kroneckersymbol  δnm = 1 für  n =  m  und  δnm = 0 für  n =  m. 

Unabhängig von der Qualität der Reihe (7.10)  definiert  man die  Fourierkoef-

 fizienten an  und  bn  einer auf [ −π, π] integrierbaren Funktion durch (7.11). Dann

erhebt sich die Frage, was die mit diesen Koeffizienten gebildete Reihe (7.10) mit

der Ausgangsfunktion zu tun hat. Die mit Fourierreihen zusammenhängenden

Konvergenzfragen gehören zu den delikatesten Problemen der klassischen Ana-

lysis. 

Der Erste, der rigorose Konvergenzsätze für Fourierreihen bewiesen hat, war

Dirichlet. Seine Resultate enthalten das folgende, einfach zu formulierende Er-

gebnis als Spezialfall: Ist  f  stückweise stetig differenzierbar, so konvergiert die

Reihe (7.10) gegen ( f ( x+) +  f ( x−)) / 2 und in einem Stetigkeitspunkt in der

Tat gegen  f ( x). Die Konvergenz ist gleichmäßig auf jedem kompakten Teilin-

tervall, auf dem  f  stetig differenzierbar ist. Hier stehen  f ( x+) bzw.  f ( x−) für

die einseitigen Grenzwerte

 f ( x+) = lim  f ( x +  h) , 

 f ( x−) = lim  f ( x − h) . 

 h→ 0

 h→ 0

 h>  0

 h>  0

Das Resultat ist insbesondere auf die durch  f ( x) =  π−x  auf (0 ,  2 π) sowie durch

2

 f (0) = 0 definierte und 2 π-periodisch fortgesetzte Sägezahnfunktion anwendbar

mit der Fourierentwicklung

 ∞

 1 sin kx =  f( x) . 

 k

 k=1

Die folgende Skizze zeigt die Approximation von  f  durch die ersten 8 Terme der

Fourierreihe. 

f(x)

1

x

−3 −2 −1

1

2

3

4

5

6

7

8

9

−1
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Weitere Konvergenzergebnisse stammen von Riemann, der in diesem Zu-

sammenhang den nach ihm benannten Integralbegriff schuf. Dass die bloße

Stetigkeit nicht hinreichend für die punktweise Konvergenz der Fourierreihe

ist, zeigte DuBois-Reymond 1876. Sein Gegenbeispiel wirft die Frage auf, ob

und wie eine stetige Funktion durch ihre Fourierreihe repräsentiert wird. 1896

gab der damals kaum zwanzigjährige Fejér die Antwort. Er betrachtete nicht

die Partialsummen  Sn  der Fourierreihe, sondern deren arithmetische Mittel

 Tn = ( S 0 +  · · · +  Sn− 1) /n, und er bewies, dass ( Tn) für jede 2 π-periodische

stetige Funktion  f  gleichmäßig gegen  f  konvergiert. Insbesondere sind steti-

ge Funktionen durch ihre Fourierkoeffizienten eindeutig bestimmt: Sind alle  an

und  bn = 0, so muss die Funktion die Nullfunktion gewesen sein. Anders als

bei Taylorreihen folgt jetzt, falls die Fourierreihe der stetigen Funktion  f  bei

 x überhaupt konvergiert, dass sie gegen  f ( x) konvergiert. Der tiefliegende Satz

von Carleson (1966) besagt, dass die Fourierreihe einer stetigen Funktion in der

Tat fast überall konvergiert in dem Sinn, dass die Divergenzpunkte eine Null-

menge bilden. (Dieser Satz kontrastiert mit einem Beispiel von Kolmogorov, 

der eine (Lebesgue-) integrierbare Funktion auf [ −π, π] mit überall divergenter

Fourierreihe konstruiert hatte.)

Die Theorie der Fourierreihen hat die Mathematik seit ihren Anfängen stark

befruchtet, insbesondere hat sie die Entwicklung des modernen Funktions- und

des Integralbegriffs vorangetrieben und später das Konzept des Hilbertraums

inspiriert, als nicht nur punktweise Konvergenz, sondern auch Konvergenz im

quadratischen Mittel untersucht wurde. Auch die Anfänge der Mengenlehre fin-

den sich hier. Cantor hatte nämlich bewiesen, dass für eine überall gegen 0

konvergente trigonometrische Reihe alle Koeffizienten verschwinden müssen. Er

fragte sich nun, ob man diese Schlussfolgerung auch erhält, wenn nicht an allen

Stellen Konvergenz gegen 0 vorliegt bzw. wie groß diese Ausnahmemengen sein

dürfen. Eins seiner Resultate ist, dass Konvergenz auf dem Komplement einer

konvergenten Folge ausreicht, z. B. auf [ −π, π]  \ { 1 ,  1 / 2 ,  1 / 3 , . . . }. 

7.11

Fouriertransformation

Wenn man die Eulersche Formel  eix = cos  x +  i  sin  x  heranzieht, kann man eine

Fourierreihe auch in komplexer Form

 ∞





1

 π

 ckeikx, 

 ck =

 f ( x) e−ikx dx

2 π

 −

 k= −∞

 π



schreiben; die Konvergenz der Reihe ist dabei als lim


N

 N →∞

 c

 k= −N

 k eikx  zu

verstehen. Geht man von einer Funktion der Periode  L  statt 2 π  aus, muss

man die komplexe Exponentialfunktion durch  eikx 2 π/L  ersetzen; durch den

Grenzübergang  L → ∞  kann man dann zu einem Analogon der Fourierreihen
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bei nichtperiodischen Funktionen gelangen. Dies ist die Fouriertransformierte

einer Funktion, die folgendermaßen erklärt ist. 

  ∞

Sei  f : R  →  R (oder  f : R  →  C) eine Funktion mit

 |

 −∞ f ( x) | dx < ∞; wir

schreiben dafür kurz  f ∈ L  1. (Am besten wäre es, an dieser Stelle das Lebesgue-

Integral zu benutzen, aber das uneigentliche Riemannsche tut’s für den Moment

auch.) Einer solchen Funktion wird eine weitere Funktion (

 f : R  →  C gemäß

  ∞

(

1

 f ( y) =  √

 f ( x) e−ixy dx

2 π

 −∞

zugeordnet; sie heißt die  Fouriertransformierte  von  f . Das definierende Integral

existiert, da ja  f ∈ L  1 ist. Die Definition von (

 f  ist in der Literatur nicht

 √

ganz einheitlich. Manche Autoren verwenden den Vorfaktor 1 / 2 π  statt 1 /  2 π, 

andere den Vorfaktor 1; wieder andere benutzen den Term  e− 2 πixy. Daraus

resultieren sechs verschiedene mögliche Varianten mit entsprechenden Varianten

aller Folgeformeln. 

Die Funktion (

 f  erweist sich immer als stetig mit lim

(

 |y|→∞ f ( y) = 0 (die-

se Aussage ist als  Riemann-Lebesgue-Lemma  bekannt), aber nicht immer ist

(

 f ∈ L  1. Wenn das doch der Fall ist, kann man auch die Fouriertransformierte

von (

 f  berechnen. Das Ergebnis lässt sich besonders einfach formulieren, wenn  f

(

stetig war: Dann ist nämlich (

 f ( x) =  f ( −x) überall auf R. Äquivalent dazu ist

die  Fourier-Umkehrformel : Sei  f ∈ L  1 stetig, und sei ebenfalls (

 f ∈ L  1; dann

gilt für alle  x ∈  R



1

 ∞

 f ( x) =  √

(

 f ( y) eixy dy. 

2 π

 −∞

Man sollte an dieser Stelle die Analogie zwischen der Definition von (

 f  und der

von  ck  oben sowie zwischen der Fourier-Umkehrformel und der Darstellung einer



periodischen Funktion durch ihre Fourierreihe  f ( x) =

 ∞

 k= −∞ ckeikx  sehen. 

Hier sind einige Beispiele von Fouriertransformierten. 



)

1 für  |x| ≤  1

2 sin  y

 f ( x) =

(

 f ( y) =

0 für  |x| >  1

 π

 y

) 2 1

 f ( x) =  e−|x|

(

 f ( y) =

 π  1 +  y 2

 f ( x) =  e−x 2 / 2

(

 f ( y) =  e−y 2 / 2

Den Übergang von  f  zu (

 f  bezeichnet man als  Fouriertransformation. Ihre

eigentliche Heimat ist die Funktionalanalysis, wo man auch nicht integrierba-

re Funktionen, Wahrscheinlichkeitsmaße und Distributionen transformiert. Die

Fouriertransformation eines Maßes führt zu den sogenannten charakteristischen

Funktionen der Wahrscheinlichkeitstheorie. 

Besonders interessant ist die Wechselwirkung der Fouriertransformation mit

Ableitungen. Hier gilt nämlich, die Integrierbarkeit aller beteiligten Funktionen

vorausgesetzt, 

 

( (

 f )( y) =  iy (

 f ( y) , 

(

 f

( y) =  −i(*

 xf )( y) , 
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wobei  xf  für die Funktion  x → xf ( x) steht. Ableitungen gehen unter der

Fouriertransformation in Multiplikationen und Multiplikationen in Ableitungen

über; in diesem Sinn überführt die Fouriertransformation analytische in alge-

braische Probleme. Diese Methode wird mit großem Erfolg in der Theorie der

linearen Differentialgleichungen angewandt. 

7.12

Kurven im R d

Unter einer  stetigen Kurve  im R d  versteht man eine Funktion  f :  I →  R d

auf einem Intervall, für die alle Koordinatenfunktionen  f 1 , . . . , fd  stetig sind. 

Wer mit der euklidischen Metrik vertraut ist, kann natürlich stattdessen ein-

fach sagen, dass  f  stetig ist. Es ist zu bemerken, dass definitionsgemäß ei-

ne Kurve eine Abbildung ist und nicht deren Bild, genannt  Spur  von  f , also

Sp( f ) =  { f ( t)  | t ∈ I }, wie man es eigentlich umgangssprachlich erwarten

würde; die Kurven

 f, g: [0 ,  1]  →  R2 , 

 f ( t) = (cos 2 πt,  sin 2 πt) , 

 g( t) = (cos 2 πt 2 ,  sin 2 πt 2)

haben beide als Bild den Einheitskreis, sind aber verschiedene Kurven. Man

sagt,  f  und  g  seien verschiedene Parametrisierungen des Einheitskreises. Ein

Beispiel einer Kurve im R3 ist die Schraubenlinie  t → (cos  t,  sin  t, t). 

z

y

x

Analog sind stetig differenzierbare Kurven erklärt. Diesen kann man auf

naheliegende Weise  Tangentialvektoren  zuordnen, nämlich durch  f ( t)

=

( f  1( t) , . . . , f ( t)). Die physikalische Interpretation ist die des Geschwindigkeits-

 d

vektors eines Teilchens zum Zeitpunkt  t, wenn  t → f ( t) das Weg-Zeit-Gesetz

beschreibt. 

Die  Bogenl¨

 ange  einer stetig differenzierbaren Kurve  f : [ a, b]  →  R d  definiert



man als Grenzwert der Polygonzuglängen

 n

 f( t

 k=1

 k )  − f ( tk− 1)   zu einer Zer-

legung  a =  t 0  < t 1  < · · · < tn =  b, wenn die Feinheit der Zerlegung gegen 0

strebt. (R d  trägt die euklidische Norm.) In der Tat existiert dieser Grenzwert für



solche  f , und man kann ihn durch das Integral  L =

 b f( t)  dt  berechnen. Es

 a

stellt sich die Frage, inwiefern  L  von der Parametrisierung der Kurve abhängt. 
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Dazu sei  ϕ: [ α, β]  → [ a, b] eine stetig differenzierbare Bijektion (eine Parameter-

transformation);  g =  f ◦ ϕ  ist dann eine Kurve mit demselben Bild wie  f . Die





Substitutionsregel der Integralrechnung liefert

 β g( u)  du =  b f( t)  dt; al-

 α

 a

so ist die Bogenlänge invariant gegenüber Parametertransformationen. 

Auch die Tangentialvektoren sind bis auf einen Faktor unabhängig von der

Parametrisierung; ist  ϕ  monoton wachsend, ist der Faktor positiv, und die Para-

metertransformation ist orientierungstreu; ist  ϕ  monoton fallend, ist der Faktor

negativ, und die Parametertransformation ist orientierungsumkehrend. 

Zu einer stetig differenzierbaren Kurve  f : [ a, b]  →  R d  können wir eine kanoni-

sche Umparametrisierung auf die Bogenlänge als Parameter vornehmen; dazu sei



 ϕ: [0 , L]  → [ a, b] die Umkehrfunktion zu  t → t f( s)  ds  und  g =  f ◦ ϕ. In die-a

ser Parametrisierung gilt stets  g( u)  = 1, die Kurve wird also mit konstanter

Geschwindigkeit durchlaufen. Die Änderungsrate des Tangentialvektors im Zeit-

punkt  t  können wir dann als Maß für die  Kr¨

 ummung  ansehen; bei zweimal stetig

differenzierbaren Kurven führt das auf die Größe  g( u)   für den Betrag der

Krümmung. Bei einer ebenen Kurve ( d = 2) können wir noch danach fragen, ob

die Kurve nach links oder nach rechts gekrümmt ist. Dazu dreht man den (nor-





mierten) Tangentialvektor  g( u) mittels der Drehmatrix  D =

0  − 1

um 90 ◦

1

0

und erhält den Normaleneinheitsvektor  Ng( u). Es stellt sich heraus, dass  g( u)

hierzu parallel ist, und man definiert die Krümmung als den entsprechenden

Proportionalitätsfaktor:  κg( u) =  	g( u) , Dg( u) 
. Bezüglich der ursprünglichen

Parametrisierung durch  f ( t) = ( x( t) , y( t)) erhält man

 x( t) y( t)  − x( t) y( t)

 κf ( t) =

 

 . 

 f ( t)  3

Linkskrümmung entspricht jetzt  κf ( t)  <  0 und Rechtskrümmung  κf ( t)  >  0; 

ein im Uhrzeigersinn durchlaufener Kreis vom Radius  r  hat die konstante

Krümmung 1 /r, in Übereinstimmung mit der Alltagserfahrung. 

8 H¨

ohere Analysis

Dieses Kapitel widmet sich Fragestellungen, die auf der eindimensionalen Ana-

lysis aufbauen. Zunächst diskutieren wir den Begriff des metrischen bzw. nor-

mierten Raums, der es insbesondere gestattet, Konvergenz und Stetigkeit im

euklidischen Raum R n  zu definieren. Um die Differenzierbarkeit zu übertragen, 

benötigt man den richtigen Blick auf die eindimensionale Situation; das wird

im zweiten Abschnitt erklärt und im dritten weitergeführt. Es folgen zwei Ab-

schnitte über gewöhnliche Differentialgleichungen; es ist klar, dass nur die aller-

wichtigsten Facetten dieses riesigen Gebietes beleuchtet werden können. 

Die nächsten Abschnitte behandeln die Lebesguesche Integrationstheorie. Es

gibt viele Möglichkeiten, das Lebesgue-Integral einzuführen; wie Lebesgue selbst

definieren wir zuerst das Lebesguesche Maß und leiten anschließend daraus das

Integral her. Einer der Vorzüge des Lebesgueschen Integrals ist, dass es sich auf

dem euklidischen Raum (oder noch allgemeineren Strukturen) mit der gleichen

Leichtigkeit erklären lässt wie auf Intervallen und daher das Integral der Wahl

für den R n  ist. Ein spezieller Aspekt der mehrdimensionalen Integration ist

der Gaußsche Integralsatz, das mehrdimensionale Analogon zum Hauptsatz der

Differential- und Integralrechnung; davon handelt der achte Abschnitt. 

Die folgenden beiden Abschnitte beschäftigen sich – wiederum sehr kurso-

risch – mit der Funktionentheorie, also der Theorie der differenzierbaren Funk-

tionen einer komplexen Veränderlichen. Wenngleich der Ausgangspunkt hier

dieselbe Differenzierbarkeitsdefinition wie im Reellen ist, unterscheiden sich die

Schlussfolgerungen doch drastisch. Schließlich widmen sich die letzten beiden

Abschnitte allgemeinen Existenzprinzipien, einmal Fixpunktsätzen und dann

dem Baireschen Kategoriensatz. Letzterer hat als erstaunliche Konsequenz, dass

die typische“ stetige Funktion auf R an keiner Stelle differenzierbar ist. 

” 
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8.1

Metrische und normierte R¨

aume

Viele Ideen der eindimensionalen Analysis beruhen darauf, den Abstand  |x − y|

zweier Zahlen zu kontrollieren; Konvergenz und Stetigkeit sind Beispiele dafür. 

Die abstrakte und allgemeine Version des Abstandsbegriffs ist der Begriff der

Metrik. 

Sei  M  eine Menge. Eine Abbildung  d:  M × M → [0 , ∞) heißt  Metrik, wenn

(a)  d( x, y) = 0 genau dann, wenn  x =  y; 

(b)  d( x, y) =  d( y, x) für alle  x, y ∈ M ; 

(c)  d( x, z)  ≤ d( x, y) +  d( y, z) für alle  x, y, z ∈ M . 

Diese drei Bedingungen geben in abstrakter Form wieder, was man vom Be-

griff des Abstands erwartet; man spricht vom  metrischen Raum ( M, d). Die

Bedingung (c) nennt man  Dreiecksungleichung, auf den zweidimensionalen ele-

mentargeometrischen Abstand bezogen besagt sie nämlich, dass in einem Drei-

eck jede Seite höchstens so lang ist wie die Summe der beiden übrigen. Hier sind

einige Beispiele für metrische Räume. 

(1) R (oder eine Teilmenge davon) mit  d( x, y) =  |x − y|. 

(2) C (oder eine Teilmenge davon) mit  d( x, y) =  |x − y|. 

(3) Eine beliebige Menge mit der  diskreten Metrik d( x, y) = 1 für  x =  y  und

 d( x, y) = 0 für  x =  y. 

(4) Die Menge aller  { 0 ,  1 }-wertigen Folgen mit

 ∞



 d(( xn) , ( yn)) =

2 −n|xn − yn|. 

 n=0

Weitere Beispiele lassen sich am einfachsten mit Hilfe des Begriffs der Norm

beschreiben, den wir schon im Abschnitt 5.7 kennengelernt haben. Sei  X  ein

R-Vektorraum. Eine  Norm  ist eine Abbildung   . :  X → [0 , ∞) mit

(a)  x = 0 genau dann, wenn  x = 0; 

(b)  λx =  |λ| x  für alle  λ ∈  R,  x ∈ X; 

(c)  x +  y ≤ x +  y  für alle  x, y ∈ X. 

Man interpretiert  x  als Länge des Vektors  x  und spricht von ( X,  . ) als

 normiertem Raum, und analog definiert man normierte C-Vektorräume. Wie-

der nennt man (c) die Dreiecksungleichung. Auf jedem normierten Raum wird

mittels  d( x, y) =  x − y  eine kanonisch abgeleitete Metrik eingeführt; die Drei-

ecksungleichung für die Norm impliziert dabei die Dreiecksungleichung für die

Metrik. (Nicht alle Metriken entstehen so; z. B. die aus (3) für  X = R nicht. 

Der Definitionsbereich einer Norm ist im Übrigen immer ein Vektorraum, bei

einer Metrik kann es eine beliebige Menge sein.) Einige Beispiele:

(5) Der Raum R d  mit der euklidischen Norm

+  d



,1 / 2

 x =

 |xk| 2

 k=1

8.1

Metrische und normierte Räume

193

für  x = ( x 1 , . . . , xd). Der Beweis der Dreiecksungleichung in diesem Beispiel

ist nicht ganz offensichtlich und benutzt die Cauchy-Schwarzsche Ungleichung

(Abschnitt 5.6). Im Folgenden werden wir stets die euklidische Norm auf R d

verwenden und in diesem Kontext das Symbol   .   dafür reservieren. 

(6) Der Raum  C[0 ,  1] der stetigen Funktionen auf [0 ,  1] mit der Supremums-

norm

 f∞ = sup  |f( x) |. 

 x∈[0 ,  1]

(7) Der Raum  C[0 ,  1] mit der Integralnorm

 1

 f 1 =

 |f( x) | dx. 

0

Wie in den Abschnitten 7.1 und 7.3 bereits ausgeführt, übertragen sich die

Begriffe Konvergenz und Stetigkeit fast von allein auf metrische Räume. Hier

folgen noch einmal die Definitionen. 

 Seien ( M, d)  und ( M , d)  metrische R¨

 aume. 

 Eine Folge ( xn)  in M konvergiert gegen x ∈ M , in Zeichen xn → x, 

 falls

 ∀ε >  0  ∃N ∈  N  ∀n ≥ N d( xn, x)  ≤ ε. 

 Eine Funktion f :  M → M  heißt stetig bei x ∈ M , falls aus xn → x

 stets f ( xn)  → f ( x)  folgt. Das ist äquivalent zu der ε-δ-Bedingung

 ∀ε >  0  ∃δ >  0  ∀y ∈ M d( x, y)  ≤ δ ⇒ d( f( x) , f( y))  ≤ ε. 

Im Beispiel (5) ist Konvergenz bezüglich der euklidischen Norm äquivalent zur

koordinatenweisen Konvergenz, und im Beispiel (6) ist Konvergenz bezüglich der

Supremumsnorm äquivalent zur gleichmäßigen Konvergenz. Dass die Normen

in (6) und (7) grundsätzlich verschieden sind, sieht man daran, dass die durch

 fn( x) =  xn  definierte Folge bezüglich der Integralnorm gegen 0 konvergiert, 

bezüglich der Supremumsnorm aber überhaupt nicht konvergent ist. 

Manche Aussagen über Konvergenz und Stetigkeit übertragen sich ohne

Mühen von der reellen Achse auf abstrakte metrische Räume, zum Beispiel, 

dass der Grenzwert einer konvergenten Folge eindeutig bestimmt ist. Ande-

re benötigen zusätzliche Annahmen. Eine wichtige solche Annahme ist die

Vollständigkeit. Eine  Cauchy-Folge  in einem metrischen Raum erfüllt defini-

tionsgemäß die Bedingung

 ∀ε >  0  ∃N ∈  N  ∀n, m ≥ N d( xn, xm)  ≤ ε. 

Ein metrischer Raum heißt  vollst¨

 andig, wenn jede Cauchy-Folge darin konver-

giert; und ein vollständiger normierter Raum wird  Banachraum  genannt. In den

obigen Beispielen ist nur (7) nicht vollständig. 
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Der Begriff der Metrik eröffnet die Möglichkeit einer geometrischen Sprache, 

die zu den Grundkonzepten der mengentheoretischen Topologie führt, über die

in Abschnitt 9.1 berichtet wird. In einem metrischen Raum ( M, d) nennen wir

 B( x, ε) =  { y ∈ M | d( x, y)  < ε },  ε >  0, die  ε-Kugel um  x. Eine Teilmenge

 O ⊆ M  heißt  offen, wenn  O  mit jedem Element  x ∈ O  auch eine  ε-Kugel

 B( x, ε) umfasst, in Quantoren

 ∀x ∈ O ∃ε >  0  B( x, ε)  ⊆ O. 

Eine Teilmenge  A ⊆ M  heißt  abgeschlossen, wenn ihr Komplement  M \ A  offen

ist. Äquivalent dazu ist eine Folgenbedingung:  A  ist genau dann abgeschlossen, 

wenn der Grenzwert jeder konvergenten Folge in  A  ebenfalls in  A  liegt. Natürlich

gibt es Mengen, die weder offen noch abgeschlossen sind (z. B. Q in R), und in

manchen metrischen Räumen auch Teilmengen außer  ∅  und  M , die beides sind

(z. B.  { ( xn)  | x 0 = 0  }  in Beispiel (4)). 

Die Stetigkeit einer Abbildung lässt sich sehr einfach in diesem Vokabular

wiedergeben. Wie auf Intervallen heißt eine Abbildung  f :  M → M   zwischen

metrischen Räumen stetig, wenn sie in jedem Punkt von  M  stetig ist. Das  ε- δ-

Kriterium zusammen mit der Tatsache, dass die offen aussehende Kugel  B( y, ε)

auch wirklich offen ist, gestattet folgende Umformulierung: Genau dann ist  f :

 M → M  stetig, wenn das Urbild  f − 1[ O] jeder offenen Menge  O  von  M   offen

in  M  ist. 

Ein zentraler Begriff der Theorie metrischer Räume wie der Analysis insge-

samt ist Kompaktheit, wofür im Detail auf Abschnitt 9.7 verwiesen sei. In der

Welt der metrischen Räume kann man Kompaktheit durch den hier äquivalenten

Begriff der Folgenkompaktheit erklären. Eine Teilmenge  K  eines metrischen

Raums heißt  kompakt, wenn jede Folge in  K  eine in  K  konvergente Teilfolge

besitzt. In Beispiel (4) ist  M  selbst kompakt, und im R d  sind genau die ab-

geschlossenen beschränkten Mengen kompakt ( Satz von Heine-Borel ). In Bei-

spiel (6) sind genau diejenigen Teilmengen  K ⊆ C[0 ,  1] kompakt, die abgeschlos-

sen, beschränkt und gleichgradig stetig sind ( Satz von Arzel´

 a-Ascoli ); Letzteres

bedeutet

 ∀ε >  0  ∃δ >  0  ∀f ∈ K ∀x, y ∈ M d( x, y)  ≤ δ ⇒ d( f( x) , f( y))  ≤ ε. 

Für jedes  f ∈ K  funktioniert also dasselbe  δ  im  ε- δ-Kriterium der (gleichmäßi-

gen) Stetigkeit. In der Sprache der elementaren Analysis besagt der Satz einfach, 

dass eine beschränkte gleichgradig stetige Funktionenfolge eine gleichmäßig kon-

vergente Teilfolge besitzt. 

Stetige Abbildungen erhalten die Kompaktheit: Das stetige Bild einer kom-

pakten Menge ist wieder kompakt. Insbesondere gilt das Analogon des Satzes

vom Maximum: Ist  K  eine kompakte Teilmenge eines metrischen Raums und  f :

 K →  R stetig, so ist  f  beschränkt und nimmt sein Supremum und Infimum an. 
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8.2

Partielle und totale Differenzierbarkeit

Zur Definition der Differenzierbarkeit bei Funktionen mehrerer Veränderlicher

gibt es einen pragmatischen und einen mathematisch-begrifflichen Zugang; 

glücklicherweise liefern sie aber fast immer dasselbe. 

Der pragmatische Zugang führt zum Begriff der partiellen Ableitung. Wenn  f :

 U →  R eine auf einer offenen Teilmenge des R n  definierte Funktion ist, erklärt

man ihre partiellen Ableitungen an einer Stelle  a ∈ U  durch formelmäßigen

Rückgriff auf die eindimensionale Theorie. Die  k-te partielle Ableitung  ist durch

den Grenzwert

 ∂f

 f ( a

( D

1 , . . . , ak− 1 , ak +  h, ak+1 , . . . , an)

 k f )( a) =

( a) = lim

 ∂xk

 h→ 0

 h

definiert, falls dieser existiert. Man friert also alle Variablen bis auf die  k-

te ein und untersucht die in einer Umgebung von  ak  definierte Funktion

 t → f ( a 1 , . . . , ak− 1 , t, ak+1 , . . . , an) einer Veränderlichen auf Differenzierbar-

keit. Wenn alle  n  partiellen Ableitungen existieren, heißt  f  bei  a partiell diffe-

 renzierbar. In diesem Fall nennt man den hier als Zeile geschriebenen Vektor

(grad  f )( a) = (( D 1 f )( a) , . . . , ( Dnf )( a))

den  Gradienten  von  f  bei  a. Für  f ( x 1 , x 2) = ( x 1 +  x 2) ex 1 ist beispielsweise (grad  f )( x 1 , x 2) = ((1 +  x 1 +  x 2) ex 1  , ex 1 ). 

Das Problem bei diesem Zugang ist, dass er inhaltlich nicht mit der Diffe-

renzierbarkeit in R kompatibel ist, denn partielle Differenzierbarkeit impliziert

nicht die Stetigkeit, was man ja erwarten würde. Das übliche Gegenbeispiel

hierfür ist die Funktion

⎧

⎨  x 1 x 2

für ( x 1 , x 2)  = (0 ,  0) , 

 f ( x

 x 2 +  x 2

1 , x 2) = ⎩ 1

2

0

für ( x 1 , x 2) = (0 ,  0) . 

Statt sich von der rechnerischen Seite (ausgedrückt in (7.4)) leiten zu lassen, 

sollte man sich den mathematisch-inhaltlichen Aspekt, nämlich die lineare Ap-

proximierbarkeit (ausgedrückt in (7.5) und (7.7)) zum Vorbild nehmen. Man

definiert daher: Eine Funktion  f :  U →  R heißt  differenzierbar  bei  a, wenn es

eine (notwendigerweise eindeutig bestimmte) lineare Abbildung  l: R n →  R und

eine in einer Umgebung von 0  ∈  R n  erklärte Funktion  ϕ  mit

 ϕ( h)

 f ( a +  h) =  f ( a) +  l( h) +  ϕ( h) , 

lim

 h→ 0  h = 0

(8.1)

gibt. Das entspricht genau der aus dem Eindimensionalen bekannten Idee,  f

in einer Umgebung von  a  durch eine affin-lineare Funktion zu approximieren, 

wobei der Fehler von kleinerer als linearer Ordnung ist. Dieser Differenzierbar-

keitsbegriff wird auch  totale Differenzierbarkeit  genannt. 

196

8 Höhere Analysis

Aus der Definition ergibt sich nun sofort die Stetigkeit einer differenzierbaren

Funktion; das ist ein Hinweis darauf, dass man die richtige“ Verallgemeinerung

” 

gefunden hat. Die Verbindung zur partiellen Differenzierbarkeit ist sehr eng; 

denn eine differenzierbare Funktion ist partiell differenzierbar, und es gilt für

die lineare Abbildung  l  aus (8.1)

 n



 l( h) =

( Dkf )( a) hk = (grad  f )( a) h =  	(grad  f )( a) , h
. 

(8.2)

 k=1

(Im vorletzten Term haben wir (grad  f )( a) als (1 ×n)-Matrix aufgefasst, im letz-

ten als Vektor.) Umgekehrt braucht eine partiell differenzierbare Funktion nicht

differenzierbar zu sein, wie das obige Beispiel zeigt. Aber wenn die Funktion in

einer Umgebung von  a  partiell differenzierbar ist und die partiellen Ableitungen

bei  a  stetig sind, folgt die Differenzierbarkeit. Daher sieht man sofort, dass die

anfangs genannte Funktion  f ( x 1 , x 2) = ( x 1 +  x 2) ex 1 auf R2 differenzierbar ist. 

Heimlich haben wir mit der neuen Sicht auf die Differenzierbarkeit im R n

einen weiteren Wechsel des Standpunkts vorgenommen. Während die partielle

Differenzierbarkeit vom Rechnen mit den  n  Variablen einer Funktion lebt, sieht

man bei der Differenzierbarkeit  f  als Funktion  einer  Veränderlichen – allerdings

ist diese keine Zahl, sondern ein Vektor. 

Was für Funktionen auf R die Ableitung  f( a) ist, ist bei Funktionen auf

dem R n  die lineare Abbildung  l  aus (8.1), die in (8.2) durch den Gradienten

repräsentiert wurde. Je nach Standpunkt kann man (grad  f )( a) als (Spalten-)

Vektor wie im letzten Term von (8.2) auffassen oder als (1  × n)-Matrix (bzw. 

Zeilenvektor) wie im vorletzten Term; mathematisch besteht zwischen diesen

Objekten eine kanonische Isomorphie. Letzteres macht den Übergang zu den

vektorwertigen Funktionen einfacher; die Darstellung als Spaltenvektor erhellt

aber die geometrische Bedeutung des Gradienten. Diese ergibt sich aus der For-

mel für die  Richtungsableitung  einer differenzierbaren Funktion

 f ( a +  hv)  − f ( a)

( Dv)( a) = lim

=  	(grad  f )( a) , v
. 

 h→ 0

 h

Daher zeigt (grad  f )( a) in die Richtung des stärksten Anstiegs von  f  bei  a. 

Die Diskussion vektorwertiger Funktionen  f :  U →  R m  fällt nun nicht mehr

schwer. Eine solche Funktion heißt differenzierbar bei  a, wenn es eine lineare

Abbildung  L: R n →  R m  und eine in einer Umgebung von 0  ∈  R n  erklärte

R m-wertige Funktion  ϕ  mit

 ϕ( h)

 f ( a +  h) =  f ( a) +  L( h) +  ϕ( h) , 

lim

 h→ 0  h = 0

(8.3)

gibt. Wenn man  L  bezüglich der kanonischen Basen von R n  und R m  als Matrix

schreibt, steht in der  i-ten Zeile der Gradient der  i-ten Koordinatenfunktion. 

Diese Matrix heißt die  Jacobi-Matrix ( Df )( a) von  f  bei  a; sie ist die mehr-

dimensionale Verallgemeinerung der Zahl  f ( a). Die Kettenregel nimmt jetzt
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eine besonders einfache Form an, denn die Jacobi-Matrix der Komposition ist

das Produkt der Jacobi-Matrizen: ( D( f ◦ g))( a) = ( Df )( g( a))( Dg)( a). 

Wir wollen noch einen Blick auf höhere Ableitungen, speziell der Ordnung 2, 

werfen. Die Funktion  f :  U →  R sei differenzierbar; ihre Ableitung ist dann die

Funktion  Df :  U →  R n,  a → (grad  f )( a). Wenn diese Funktion erneut differen-

zierbar ist, kann man ihre Ableitung als ( n × n)-Matrix beschreiben, nämlich

als Jacobi-Matrix von  Df . Die Einträge dieser Matrix, die  Hessesche Matrix  ge-

nannt und mit ( Hf )( a) bezeichnet wird, sind die zweiten partiellen Ableitungen

 ∂ 2 f

( a). Wenn die zweiten partiellen Ableitungen stetig sind, spielt es keine

 ∂xi ∂xj

Rolle, in welcher Reihenfolge partiell differenziert wird ( Satz von Schwarz ); in

diesem Fall ist die Hessesche Matrix symmetrisch. 

8.3

Mittelwertsatz, Taylorformel und lokale Extrema

Wir führen die Diskussion des vorigen Abschnitts weiter und widmen uns zuerst

der mehrdimensionalen Version des Mittelwertsatzes. Sei  f :  U →  R auf der

offenen Menge  U ⊆  R n  differenzierbar, und seien  a, b ∈ U . Wir machen die

geometrische Annahme, dass auch die Verbindungsstrecke von  a  nach  b, das ist

 S =  { (1  − t) a +  tb |  0  ≤ t ≤  1  }, zu  U  gehört, was in konvexen Mengen stets

zutrifft. Dann garantiert der Mittelwertsatz die Existenz einer Stelle  ξ ∈ S  mit

 f ( b)  − f ( a) =  	(grad  f )( ξ) , b − a
. 

(8.4)

Diese Aussage ist vollkommen analog zum eindimensionalen Mittelwertsatz (vgl. 

(7.8) in Abschnitt 7.5); sie wird mittels der Hilfsfunktion  t → f ((1  − t) a +  tb)

auch auf diesen zurückgeführt. Jedoch reicht die bloße partielle Differenzier-

barkeit als Voraussetzung nicht aus. Und genau wie in (7.9) erhält man eine

Ungleichungsversion, wenn stets  (grad  f )( x)  ≤ K  auf  S  gilt, nämlich

 |f( b)  − f( a) | ≤ Kb − a. 

(8.5)

Mittels derselben Hilfsfunktion kann man auch die  Taylorsche Formel

übertragen. Da das Schwierigste dabei ist, eine kompakte Notation zu ersin-

nen, wollen wir uns nur mit der Taylorentwicklung der Ordnung 2 befassen. 

Hierzu sei  f :  U →  R eine zweimal stetig differenzierbare Funktion mit Hesse-

scher Matrix ( Hf )( x) an der Stelle  x. Die Strecke von  a  nach  a +  h  liege in  U . 

Dann existiert ein  ϑ ∈ (0 ,  1) mit

1

 f ( a +  h) =  f ( a) +  	(grad  f )( a) , h
 +  	( Hf )( a +  ϑh) h, h
, 

2

und wie im eindimensionalen Fall ergibt sich die quadratische Approximation

1

 f ( a +  h) =  f ( a) +  	(grad  f )( a) , h
 +  	( Hf )( a) h, h
 +  o( h 2)

2

für  h →  0 in einer Umgebung von  a. 
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Für vektorwertige Funktionen gilt übrigens kein Mittelwertsatz in der Form

von (8.4). Das zeigt das einfache Beispiel  f : [0 ,  2 π]  →  R2,  f ( t) = (cos  t,  sin  t), wo  f (0) =  f (2 π), aber stets  f( t)  = 1 gilt. (8.5) überträgt sich jedoch ohne

Mühe. 

Wie im Fall einer Funktion auf einem Intervall kann mittels der Taylorent-

wicklung ein hinreichendes Kriterium für das Vorliegen eines lokalen Extremums

hergeleitet werden. Sei  f  eine in einer Umgebung von  a ∈  R n  zweimal stetig

differenzierbare reellwertige Funktion. Es gelte (grad  f )( a) = 0, was notwendig

für das Vorliegen eines lokalen Extremums ist; um das einzusehen, betrachte

man die Funktionen  t → f ( a +  tv) einer Veränderlichen. Man nennt dann  a

einen  kritischen Punkt  der Funktion  f . 

Im Fall  n = 1 ist  f ( a)  >  0 ein hinreichendes Kriterium für das Vorliegen

eines lokalen Minimums in einem kritischen Punkt. In der mehrdimensionalen

Theorie übernimmt die symmetrische ( n × n)-Matrix ( Hf )( a), die Hessesche

Matrix, die Rolle der 2. Ableitung, und mit dem richtigen Positivitätsbegriff

erhält man tatsächlich das gewünschte Kriterium:

 Gilt (grad  f )( a) = 0  und ist ( Hf )( a)  positiv definit, so hat f bei a

 ein striktes lokales Minimum. 

Dabei heißt eine symmetrische ( n × n)-Matrix  A positiv definit, wenn für  h = 0

stets  	Ah, h
 >  0 ist. Positive Definitheit lässt sich äquivalent dadurch beschrei-

ben, dass alle Eigenwerte positiv sind bzw. dass alle Hauptunterdeterminanten, 

das sind die Determinanten der ( k × k)-Matrizen ( aij) i,j=1 ,...,k,  k = 1 , . . . , n, 

positiv sind. 

Dieses Kriterium ist außer im Fall  n = 2 nur schwer praktisch anzuwenden. 

Da lokale Maxima analog zu behandeln sind, gestattet es im Fall  n = 2 jedoch





folgendes einfache Kriterium f

 α β

ür die Hessesche Matrix  A = ( Hf )( a) =

 β δ

in einem kritischen Punkt: Ist  α >  0 und det  A >  0, liegt ein lokales Minimum

vor; ist  α <  0 und det  A >  0, liegt ein lokales Maximum vor. Aber man kann

noch eine weitere Information gewinnen, die kein Analogon im Eindimensiona-

len hat. Ist nämlich det  A <  0, so liegt garantiert kein Extremum vor; es gibt

dann ja einen positiven und einen negativen Eigenwert, und in der Richtung der

entsprechenden Eigenvektoren wird  f  einmal minimal und einmal maximal: Es

liegt ein Sattelpunkt vor. 

8.4

Der Satz von Picard-Lindel¨

of

Diverse Probleme in den Naturwissenschaften werden durch Differentialglei-

chungen mathematisch beschrieben, man denke etwa an die Planetenbewegung, 

chemische Prozesse oder Populationsdynamik. Treten in den Gleichungen nur

Funktionen einer Veränderlichen auf, spricht man von gewöhnlichen Differenti-

algleichungen; treten Funktionen mehrerer Veränderlicher auf, spricht man von
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partiellen Differentialgleichungen. In diesem und dem nächsten Abschnitt wer-

fen wir einen Blick auf einen winzigen Ausschnitt der Theorie gewöhnlicher

Differentialgleichungen. 

In diesem Abschnitt diskutieren wir den zentralen Existenz- und Eindeutig-

keitssatz, den Satz von Picard-Lindelöf. Wir betrachten die allgemeine Form ei-

ner expliziten Differentialgleichung 1. Ordnung  y =  f ( t, y). Da die unabhängige

Variable häufig die physikalische Bedeutung der Zeit hat, ist es üblich, dafür den

Buchstaben  t  statt  x  zu verwenden. Die Gleichung zu lösen heißt, eine auf ei-

nem Intervall definierte Funktion  φ:  I →  R zu finden, die  φ( t) =  f ( t, φ( t))

auf  I  erfüllt. Wie schon das einfachste Beispiel  y =  f ( t) zeigt, in dem eine

Stammfunktion von  f  gesucht wird, kann man nicht mit  eindeutiger  Lösbarkeit

rechnen. Die kann man nur unter weiteren Vorgaben erhoffen, wie in dem  An-

 fangswertproblem

 y =  f ( t, y) , 

 y(0) =  u 0 . 

(8.6)

Unter milden Voraussetzungen an  f  kann man in der Tat die eindeutige

Lösbarkeit von (8.6) in einer Umgebung der Anfangsstelle  t 0 = 0 zeigen; dies

ist der Inhalt des Satzes von Picard-Lindelöf, der weiter unten formuliert wird. 

Die Strategie, (8.6) zu lösen, besteht darin, das Anfangswertproblem auf eine

äquivalente Integralgleichung für stetige Funktionen, nämlich

  t

 y( t) =  u 0 +

 f ( s, y( s))  ds

( t ∈ I) , 

(8.7)

0

zurückzuführen. Der Gewinn der Umformulierung ist, dass man (8.7) mittels

kraftvoller Fixpunktprinzipien (siehe Abschnitt 8.11) angehen kann, denn (8.7)

fragt ja nach einem Fixpunkt  y  der durch die rechte Seite definierten Abbil-

dung. (Die Kunst besteht darin,  I  und eine passende Teilmenge  M  des Funk-

tionenraums  C( I) so zu wählen, dass auf die fragliche Abbildung mit  M  als

Definitionsbereich z. B. der Banachsche Fixpunktsatz angewandt werden kann.)

Des Weiteren ist es möglich, auf dieselbe Weise Systeme gewöhnlicher Differen-

tialgleichungen zu studieren; formal sehen diese genauso aus wie (8.6), nur sind

unter  y  und  f  jetzt vektorwertige Funktionen zu verstehen. 

Der bereits angesprochene  Satz von Picard-Lindel¨

 of  lautet:

 Sei G ⊆  R n+1  mit (0 , u 0)  ∈ G und f :  G →  R n stetig. Ferner

 erf¨

 ulle f in einer Umgebung U von (0 , u 0)  eine Lipschitz-Bedingung

 bez¨

 uglich des

 2. Arguments“, also eine Bedingung der Form

 ” 

 f( t, u)  − f( t, v)  ≤ Lu − v für ( t, u) , ( t, v)  ∈ U. 

 Dann gibt es ein Intervall um  0 , auf dem (8.6)  eindeutig l¨

 osbar ist. 

Insbesondere trifft die Voraussetzung zu, wenn  f  stetig differenzierbar ist; das

ist eine Konsequenz des Mittelwertsatzes. Ist  f  nur stetig, kann man immer

noch die Existenz einer Lösung beweisen ( Existenzsatz von Peano), aber die



Eindeutigkeit kann verloren gehen; das Standardbeispiel ist  f ( t, u) = 2

 |u|  mit

 u 0 = 0, wo unter anderem  y( t) = 0 und  y( t) =  t · |t|  Lösungen sind. 
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Der Satz von Picard-Lindelöf macht nur eine lokale Existenzaussage; selbst

wenn  f  auf R2 definiert ist und harmlos aussieht, brauchen Lösungen von (8.6)

nicht auf ganz R zu existieren:  y =  y 2 mit  y(0) = 1 hat auf einer Umgebung

von 0 die eindeutige Lösung  φ( t) = 1 /(1  − t)2, die aber für  t →  1 unbeschränkt

wird ( Blow-up-Phänomen“). 

” 

Explizite Lösungsformeln darf man sich von den Existenzsätzen allerdings

nicht versprechen. Besonders einfach liegen die Verhältnisse jedoch bei den li-

nearen Systemen der Form

 y =  Ay; 

hier ist  A  eine ( n × n)-Matrix. Jetzt existieren die Lösungen in der Tat auf

ganz R, und sie bilden einen Vektorraum, da  A  eine lineare Abbildung auf R n

ist“. Dessen Dimension ist  n, denn nach dem Satz von Picard-Lindelöf ist die

” 

Abbildung  u →  Lösung von  y =  Ay,  y(0) =  u“ bijektiv und natürlich linear, 

” 

folglich ein Vektorraum-Isomorphismus. Um alle Lösungen des Systems zu be-

stimmen, reicht es,  n  linear unabhängige Lösungen zu finden, ein sogenanntes

 Fundamentalsystem. Das gelingt häufig mittels des Ansatzes  y( t) =  ueλt, wobei

 λ  ein Eigenwert von  A  ist, und immer mittels der Exponentialmatrix. Für eine

( n × n)-Matrix  A  ist  eA  durch die absolut konvergente Reihe

 ∞

  Ak

 eA =

 k! 

 k=0

erklärt; falls  A  und  B  kommutieren, gilt dann  eA+ B =  eAeB , und es ist  d eAt =

 dt

 AeAt. Letzteres impliziert, dass die Spalten von  eAt  ein Fundamentalsystem

bilden. 

Gleichungen höherer Ordnung können auf Systeme 1. Ordnung zurückgeführt

werden, indem man die sukzessiven Ableitungen als Hilfsfunktionen einsetzt. 

Die Gleichung  y( n) =  f ( t, y, y, . . . , y( n− 1)) transformiert sich mittels  y 1 =  y, 

 y 2 =  y, . . . ,  yn =  y( n− 1) in das System

 y 1 =  y 2 , y 2 =  y 3 , . . . , yn− 1 =  yn, yn =  f( t, y 1 , . . . , yn) . 

Auf diese Weise lassen sich die obigen Resultate auch für Gleichungen  n-ter

Ordnung gewinnen. 

8.5

Stabilit¨

at von Gleichgewichtspunkten

Im letzten Abschnitt wurde der fundamentale Existenz- und Eindeutigkeitssatz

für Systeme gewöhnlicher Differentialgleichungen formuliert. Im Allgemeinen ist

es unmöglich, solche Gleichungen explizit zu lösen; in der modernen Theorie dy-

namischer Systeme studiert man daher qualitative Eigenschaften der Lösungen. 

Wir betrachten folgendes Szenario. Gegeben sei eine in einer Umgebung  U  von
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 u 0  ∈  R n  stetig differenzierbare Abbildung  f :  U →  R n  mit  f ( u 0) = 0. Dann ist

die konstante Funktion  φ =  u 0 die Lösung des Anfangswertproblems

 y =  f ( y) , 

 y(0) =  u 0 . 

Man nennt  u 0 daher einen  Gleichgewichtspunkt  des Systems  y =  f ( y). Wir

fragen nach der Stabilität dieses Gleichgewichts, d. h., ob für hinreichend nahe

bei  u 0 liegende Anfangswerte  u  die Lösung von

 y =  f ( y) , 

 y(0) =  u

(8.8)

für alle Zeiten in der Nähe“ des Gleichgewichtspunkts  u

” 

0 bleibt. 

Diese Idee wird folgendermaßen präzisiert. Der Punkt  u 0 heißt  stabiles Gleich-

 gewicht, falls es zu jedem  ε >  0 ein  δ >  0 mit folgender Eigenschaft gibt: Wenn

 u − u 0  ≤ δ  ist, existiert die eindeutig bestimmte Lösung  φ  von (8.8) für

alle  t ≥  0, und sie erfüllt  φ( t)  − u 0  ≤ ε  für alle  t ≥  0. Falls zusätzlich

lim t→∞ φ( t) =  u 0 gilt, spricht man von einem  asymptotisch stabilen Gleich-

 gewicht. Ist das Gleichgewicht nicht stabil, heißt es  instabil. (Es gibt Beispiele

instabiler Gleichgewichte, wo trotzdem lim t→∞ φ( t) =  u 0 erfüllt ist.)

Bevor wir einen Blick auf allgemeine nichtlineare Systeme werfen, wenden wir

uns dem einfachen Fall eines linearen Anfangswertproblems  y =  Ay,  y(0) =  u

zu. Hier lässt sich die Stabilität des Gleichgewichts 0 an den Eigenwerten der

Matrix ablesen. Diese seien nämlich  λ 1 , . . . , λn, und es sei  σ = max Re  λk. Ist

 σ <  0, ist 0 ein asymptotisch stabiles Gleichgewicht; ist  σ >  0, ist 0 ein instabiles

Gleichgewicht; und ist  σ = 0, ist 0 kein asymptotisch stabiles Gleichgewicht, das

genau dann stabil ist, wenn für alle Eigenwerte mit Realteil 0 geometrische und

arithmetische Vielfachheit übereinstimmen. 

Eine Strategie zur Stabilitätsanalyse von (8.8) besteht darin, die Nichtlinea-

rität  f  durch eine lineare Abbildung zu approximieren. Dass dies in einer Umge-

bung von  u 0 möglich ist, besagt gerade die Voraussetzung der Differenzierbar-

keit von  f . Schreibt man  A  für die Jacobi-Matrix ( Df )( u 0) und hat  σ  dieselbe

Bedeutung wie oben, so hat man analog zum linearen Fall den Satz, dass  u 0

für  σ <  0 asymptotisch stabil ist und für  σ >  0 instabil; für  σ = 0 ist keine

allgemeine Aussage möglich. 

Für die Gleichung des mathematischen Pendels  ϕ +  g  sin  ϕ = 0, umgeformt

 l

in ein System (8.8) mittels  f ( u 1 , u 2) = ( u 2 , − g  sin  u

 l

1), liefert dieses Kriteri-

um keinen Aufschluss über die Stabilität des Gleichgewichts (0 ,  0). Aber ei-

ne andere Methode, die  direkte Methode von Lyapunov, hilft weiter. Hier be-

dient man sich des Begriffs der Lyapunov-Funktion. Eine in einer Umgebung

 V  von  u 0 definierte stetig differenzierbare Funktion  E  heißt  Lyapunov-Funktion

(zu  f ), falls  E  bei  u 0 ein striktes lokales Minimum besitzt und die Funkti-

on  ∂E:  u → 	(grad  E)( u) , f ( u) 
  auf  V  die Ungleichung  ∂E ≤  0 erfüllt. Wenn

sogar  ∂E( u)  <  0 für  u =  u 0 gilt, spricht man von einer  strikten Lyapunov-

 Funktion. Löst  φ  die Differentialgleichung  y =  f ( y), so folgt aus der Ketten-

regel  d E( φ( t)) =  ∂E( φ( t)); die Ungleichung  ∂E ≤  0 impliziert also, dass  E

 dt
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längs jeder Lösung abnimmt. Diese Information gewinnt man hier direkt“ mit

” 

Hilfe der rechten Seite  f , ohne eine Lösung explizit kennen zu müssen. Der

Lyapunovsche Stabilitätssatz besagt nun, dass  u 0 ein [asymptotisch] stabiler

Gleichgewichtspunkt ist, wenn es eine [strikte] Lyapunov-Funktion gibt. 

Leider bleibt die Frage offen, wie man der Abbildung  f  ansehen kann, ob

es eine Lyapunov-Funktion gibt, bzw. wie man sie gegebenenfalls findet, denn

dafür gibt es keine Patentrezepte. In physikalischen Systemen ist die Energie

oft ein Kandidat für eine Lyapunov-Funktion. Für das mathematische Pendel

klappt dieser Ansatz jedenfalls und liefert  E( u 1 , u 2) = 1  u 2

(1  −  cos  u

2

2 +  gl

1). 

Hier ist sogar  ∂E = 0; man sagt,  E  sei ein 1. Integral“: Längs einer Lösung ist

” 

 E( φ( t)) = const. 

8.6

Das Lebesguesche Maß

Was ist der Flächeninhalt einer vorgelegten ebenen Figur? Für einfache Figu-

ren wie ein Rechteck ist die Antwort offensichtlich, nämlich das Produkt der

Seitenlängen; für kompliziertere Dinge wie Kreise, Ellipsen etc. hält die Schul-

mathematik Formeln bereit, die mit der Ausschöpfung durch einfache Figuren

wie Recht- oder Dreiecke begründet werden. Durch die Riemannsche Integration

kommen noch Ordinatenmengen – die Fläche unter einer Kurve“ – hinzu. 

” 

Was hier begrifflich geschieht, ist, dass gewissen Teilmengen  A  des R2 eine

Zahl  λ( A), ihr Flächeninhalt, zugewiesen wird, und zwar so, dass Rechtecken ihr

elementargeometrischer Inhalt zugeordnet wird. Ferner erwartet man, dass das

” 

Ganze die Summe seiner Teile“ ist: Sind  A 1 , . . . , An  paarweise disjunkt, so sollte

 λ( A 1  ∪ · · · ∪ An) =  λ( A 1) +  · · · +  λ( An) sein. Es waren Borel und Lebesgue, die

um 1900 erkannten, dass diese Form der Additivität zu kurz greift; schließlich ist

ein Kreis keine endliche Vereinigung von Rechtecken, wohl aber eine abzählbar

unendliche. Daher stellt sich das folgende Maßproblem:

Gibt es eine Abbildung auf der Potenzmenge des R2,  λ:  P(R2)  → [0 , ∞], mit

folgenden Eigenschaften:

(1) Für ein Rechteck  A = [ a 1 , b 1]  × [ a 2 , b 2] gilt

 λ( A) = ( b 1  − a 1)( b 2  − a 2) . 

(2) Sind  A 1 , A 2 , . . .  paarweise disjunkt, so gilt

 λ( A 1  ∪ A 2  ∪ . . . ) =  λ( A 1) +  λ( A 2) +  · · · . 

(3) Es gilt stets  λ( x +  A) =  λ( A), wobei  x +  A =  { x +  a | a ∈ A }. 

Wenn ja, ist sie eindeutig bestimmt? 

Die Eigenschaft (2) heißt  σ-Additivit¨

 at  und die Eigenschaft (3)  Translations-

 invarianz. 
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Natürlich muss man hier akzeptieren, dass der Wert  ∞  angenommen wird, 

denn was sollte  λ(R2) sonst sein? Eine positive Lösung würde den Flächeninhalt

dann axiomatisch charakterisieren. 

In dieser mathematischen Präzision stellt sich das Maßproblem in jeder Di-

mension, wenn man (1) entsprechend anpasst; das gilt auch für die Dimension 1, 

in der Praktiker nichts anderes als Intervalle messen wollen. Die Lösung des

Maßproblems ist aber fundamental für den Aufbau des Lebesgueschen Integral-

begriffs und daher in jeder Dimension relevant. 

Zunächst einmal ist die Lösung sehr ernüchternd: Es gibt nämlich keine sol-

che Abbildung, zumindest nicht, wenn man mit der Mengenlehre ZFC operiert, 

die das Auswahlaxiom einschließt (siehe Abschnitt 12.5). Und doch gibt es ein

positives Resultat, wenn man darauf verzichtet,  λ  für  alle  Teilmengen definieren

zu wollen, und sich damit bescheidet, dies für hinreichend viele Teilmengen zu

tun. 

Zur Präzisierung und zum Nachweis dieses Sachverhalts muss man sich durch

eine recht trockene und manchmal schwer zu visualisierende Begriffswelt schla-

gen. Der Kernbegriff ist jedoch unumgänglich, nicht nur hier, sondern auch in

der Wahrscheinlichkeitstheorie, und das ist der einer  σ-Algebra. Eine  σ-Algebra

auf einer Menge  M  ist ein System  A  von Teilmengen von  M  mit folgenden drei

Eigenschaften:

(a)  ∅ ∈ A . 

(b) Mit  A  liegt auch das Komplement  M \ A  in  A . 



(c) Sind  A

 ∞

1 , A 2 , . . . ∈ A , so auch


A

 j=1

 j . 

Triviale Beispiele sind die Potenzmenge von  M (die größte  σ-Algebra) und

 {∅, M} (die kleinste  σ-Algebra). Für die Analysis auf dem R d  ist die bei wei-

tem wichtigste  σ-Algebra die  Borelsche σ-Algebra B o(R d); diese ist definiert

als der Schnitt sämtlicher  σ-Algebren, die alle offenen Teilmengen enthalten. 

Sie ist also die kleinste  σ-Algebra, die die offenen Teilmengen umfasst. Leider

ist es meistens recht schwerfällig nachzuweisen, dass eine gegebene Teilmen-

ge eine Borelmenge ist. Für Q argumentiert man z. B. so. Man schreibe Q als



Abz

 ∞

ählung  {r 1 , r 2 , . . . } =

 {r

 j=1

 j }; jede Menge  {rj }  ist abgeschlossen und des-

halb gemäß (b) borelsch, und nun zeigt (c), dass auch Q borelsch ist. Obwohl

es nichtborelsche Mengen gibt, kann man aber mit nur geringer Übertreibung

behaupten, dass jede wichtige Menge  A ⊆  R d  eine Borelmenge ist. Kurzum, 

man vergibt sich fast nichts, wenn man statt aller Teilmengen von R d  nur die

Borelmengen betrachtet. Über einige Paradoxa der Maßtheorie, die mit patholo-

gischen, insbesondere nichtborelschen Mengen zusammenhängen, berichtet der

Abschnitt 12.7. 

Nun können wir die positive Lösung des Maßproblems formulieren. 

 Es gibt genau eine Abbildung λ:  B o(R d)  → [0 , ∞]  mit:

(1)  λ([ a 1 , b 1]  × · · · × [ ad, bd]) = ( b 1  − a 1)  · · · ( bd − ad) . 
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(2)  Sind A 1 , A 2 , . . . ∈ B o(R d)  paarweise disjunkt, so gilt

 λ( A 1  ∪ A 2  ∪ . . . ) =  λ( A 1) +  λ( A 2) +  · · · . 

(3)  F¨

 ur jede Borelmenge A und jedes x ∈  R d gilt λ( x +  A) =  λ( A) . 

Man nennt  λ  das  d-dimensionale Lebesguemaß. 

Der Beweis des Satzes ist nicht einfach und technisch aufwändig, aber letzt-

endlich konstruktiv, denn der Ansatz

-  ∞



 ∞



. 

 λ( A) = inf

 λ( Ij)  | A ⊆

 Ij, Ij  Intervall

 j=1

 j=1

führt zum Erfolg; mit Intervall ist hier eine Menge wie unter (1) gemeint, wofür

 λ  ja vorgegeben ist. Man nennt  A ⊆  R d  eine  Nullmenge, wenn das obige Infimum

= 0 ist. 

Kehren wir zur einleitenden Frage dieses Abschnitts zurück. Wie berich-

tet, besitzen borelsche Mengen einen kanonisch definierten Flächeninhalt. Jetzt

können wir den Kreis zum Ausgangspunkt des Riemannschen Integrals schlie-

ßen. Für eine stückweise stetige Funktion  f : [ a, b]  → [0 , ∞) ist nämlich in der

Tat  A =  { ( x, y)  ∈  R2  | a ≤ x ≤ b, 0  ≤ y ≤ f ( x)  }, die Menge der Punkte unter



” 

der Kurve“, eine Borelmenge mit  λ( A) =

 b f( x)  dx. 

 a

8.7

Das Lebesguesche Integral

Das Riemannsche Integral ist recht einfach zu erklären und führt zu einer be-

friedigenden Theorie für stetige Funktionen auf einem kompakten Intervall. 

Alles, was darüber hinausgeht, ist beim Riemannschen Zugang jedoch recht

schwerfällig: Unbeschränkte Funktionen und nicht kompakte Intervalle ver-

langen einen weiteren Grenzübergang, der punktweise Grenzwert einer Folge

Riemann-integrierbarer Funktionen braucht nicht integrierbar zu sein (selbst

wenn die Grenzfunktion beschränkt ist), Sätze über die Vertauschbarkeit von Li-

mes und Integral sind jenseits der gleichmäßigen Konvergenz nur sehr mühevoll

zu gewinnen, und der Übergang ins Höherdimensionale macht Probleme. Da-

her ist das Riemannsche Integral für die Bedürfnisse der höheren Analysis

nicht der Weisheit letzter Schluss, und J. Dieudonné schreibt im ersten Band

seiner  Grundz¨

 uge der modernen Analysis  leicht verächtlich, das Riemannsche

Integral habe heute bestenfalls den Stellenwert einer

halbwegs interessanten

” 

Übungsaufgabe“. 

Mit dem Lebesgueschen Integral steht jedoch ein Integralbegriff zur

Verfügung, der diese Mankos überwindet. Wir besprechen zuerst, wie man das

Lebesguesche Integral einer Funktion  f ≥  0 auf einem Intervall  I  erklärt; hierbei

dürfen sowohl das Intervall als auch die Funktion unbeschränkt sein. Die Grund-

idee ist, die Funktion durch Treppenfunktionen  fn  zu approximieren, wofür sich

8.7
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ein Integralbegriff aufdrängt, und dann den Grenzübergang  n → ∞  zu machen. 

Das ist oberflächlich betrachtet die gleiche Strategie wie beim Riemannschen

Integral. Im Ansatz unterscheiden sich die beiden Integralbegriffe dadurch, dass

man beim Riemannschen Integral den Definitionsbereich in kleine Teilintervalle

aufteilt und beim Lebesgueschen den Wertevorrat, also [0 , ∞). Lebesgue selbst

hat in einem Vortrag das unterschiedliche Vorgehen so veranschaulicht: Das

Riemannsche Vorgehen ähnele einem Kaufmann ohne System“, der seine Ein-

” 

nahmen in der Reihenfolge zählt, in der er sie erhält. Seinen eigenen Ansatz

vergleicht er mit dem eines umsichtigen Kaufmanns“, der  m( E

” 

1) Münzen zu

1 Krone,  m( E 2) Münzen zu 2 Kronen,  m( E 3) Scheine zu 5 Kronen etc. zählt

und natürlich dieselben Gesamteinnahmen bilanziert, weil er, wie reich er auch

” 

sei, nur eine endliche Anzahl von Banknoten zu zählen hat.“ Und Lebesgue

ergänzt: Aber für uns, die wir unendlich viele Indivisiblen zu zählen haben, ist

” 

der Unterschied zwischen den beiden Vorgehensweisen wesentlich.“

Schauen wir uns nun die Details an. Zu  n ≥  1 setze

˜

 k

 k

 k + 1

 fn( x) =

für

 ≤ f( x)  < 

 , k = 0 ,  1 ,  2 , . . . 

2 n

2 n

2 n

und

 fn( x) = min { ˜

 fn( x) ,  2 n}. 

Die Skizze zeigt ein Beispiel für ei-

f(x)

ne Funktion  f  und  f 1. Die Funktion

 fn  nimmt nur die endlich vielen Werte

0 ,  1 /

2

2 n,  2 / 2 n, . . . ,  2 n  an, und zwar  k/ 2 n  auf

der Menge  Ek,n =  f − 1[[ k/ 2 n, k+1 / 2 n)], 

dem Urbild dieses Intervalls unter  f , und

1

2 n  auf  En =  f − 1[[2 n, ∞)]. Nun gibt es

einen naheliegenden Kandidaten für das

0

x

Integral von  fn; der Beitrag über der

0

1

2

3

Menge  Ek,n  sollte  k/ 2 n  mal Länge von

” 

 Ek,n“ sein. Im Beispiel der Skizze ist sichtlich“  E

” 

 k,n  stets eine endliche Verei-

nigung von Intervallen und hat daher eine wohldefinierte Länge. Um diese Größe

allgemein als Lebesguesches Maß von  Ek,n  interpretieren zu können und so den

Weg zum Lebesgueschen Integral weiter zu beschreiten, machen wir jetzt über  f

die Annahme, dass für alle Intervalle  J  das Urbild  f − 1[ J ] eine Borelmenge ist; 

solche Funktionen werden  Borel-messbar  genannt. Es folgt dann übrigens, dass

sogar für alle Borelmengen  A  das Urbild  f − 1[ A] seinerseits eine Borelmenge ist, 

was häufig als Definition der Messbarkeit benutzt wird. 

Für Borel-messbares  f ≥  0 ist daher



4 n− 1

  k

 fn dλ =

 λ( E

2 n

 k,n) + 2 nλ( En)  ∈ [0 , ∞]

(8.9)


I

 k=0
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erklärt. Ferner gilt ja  f 1( x)  ≤ f 2( x)  ≤ . . .  und  fn( x)  → f ( x) für alle  x (man sagt, ( fn) konvergiere monoton); daraus folgt, dass auch die Folge der Integrale

  f


I

 n dλ  monoton wächst. Daher können wir für Borel-messbare Funktionen

 f ≥  0 das  Lebesguesche Integral





 f dλ = lim

 fn dλ ∈ [0 , ∞]

 n→∞


I

I


definieren. Ist das Integral endlich, heißt  f integrierbar. 

An diesem Vorgehen ist ein Aspekt unbefriedigend, nämlich, dass wir  f

auf eine penibel vorgeschriebene Art und Weise durch Treppenfunktionen ap-

proximiert haben. Wäre dasselbe Ergebnis herausgekommen, wenn man den

Wertevorrat durch Intervalle der Länge 3 −n  statt 2 −n  diskretisiert hätte? 

Glücklicherweise ja: Sind ( gn) und ( hn) Folgen Borel-messbarer Treppenfunk-





tionen, die monoton gegen  f  konvergieren, so gilt lim n

 g

 h


I

 n dλ = lim n


I

 n dλ. 

Im letzten Schritt befreien wir uns nun von der Positivitätsannahme. Ist  f :

 I →  R Borel-messbar, so sind es auch der Positiv- bzw. Negativteil  f +:  x →

max {f ( x) ,  0 }  bzw.  f −:  x →  max {−f ( x) ,  0 }; es ist dann  f =  f +  − f −.  f  heißt



 integrierbar, wenn  f + und  f −  es sind, mit anderen Worten, wenn

 |f| dλ < ∞


I

ist. In diesem Fall setzt man







 f dλ =

 f +  dλ −

 f − dλ. 


I

I



I

Es ist nun nicht schwer zu zeigen, dass die integrierbaren Funktionen einen



Vektorraum bilden, auf dem  f →

 f dλ  linear ist. Das ist genauso wie in der


I

Riemannschen Theorie, und jeder Integralbegriff sollte das leisten. Ferner stellt

sich beruhigenderweise heraus, dass das Riemannsche und das Lebesguesche

Integral einer stückweise stetigen Funktion denselben Wert haben. Deswegen

wird das Lebesguesche Integral über [ a, b] auch mit dem traditionellen Symbol

  b f( x) dx  bezeichnet. 

 a

Was die Lebesguesche Theorie so überlegen macht, ist die Leichtigkeit, mit

der Grenzwertsätze bewiesen werden können; das ist ihr gewissermaßen durch

die  σ-Additivität des Lebesgueschen Maßes, worauf sie basiert, in die Wiege

gelegt. Der wohl wichtigste Grenzwertsatz ist der  Lebesguesche Konvergenzsatz, 

auch  Satz von der dominierten Konvergenz  genannt:

 Seien g, f 1 , f 2 , . . . :  I →  R  integrierbar. Es gelte |fn( x) | ≤ g( x)  sowie

 fn( x)  → f ( x)  für alle x. Dann ist auch f integrierbar, und es gilt





 fn dλ →

 f dλ. 


I

I


Man beachte, dass nur die punktweise Konvergenz der Funktionenfolge voraus-

gesetzt wird. 
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Ein weiterer Vorzug der Lebesgueschen Theorie ist ihre Flexibilität. Bei der

Einführung des Lebesgueschen Integrals ist an keiner Stelle ausgenutzt worden, 

dass die Funktion auf einem Intervall definiert war. Das geschah nur sehr indi-

rekt, indem in (8.9) das eindimensionale Lebesguemaß verwandt wurde. Daher

lässt sich genauso ein Lebesgue-Integral für Funktionen gewinnen, die auf einer

Borelmenge des R d  erklärt sind. Zur Berechnung solcher Funktionen steht der

mächtige  Satz von Fubini  zur Verfügung, der z. B. Integrale über R2 auf iterierte

Integrale zurückführt; kurz besagt er



 +

, 

 +

, 

 f ( x, y)  d( x, y) =

 f ( x, y)  dx

 dy =

 f ( x, y)  dy

 dx. 

R2


R

R



R

R


Noch allgemeiner gestattet die obige Vorgehensweise, ein Integral auf einer Men-

ge zu definieren, auf der ein  σ-additives Maß vorliegt. Das ist die Grundlage der

Wahrscheinlichkeitstheorie; siehe insbesondere Abschnitt 11.1 und 11.3. 

8.8

Der Gaußsche Integralsatz

Der Gaußsche Integralsatz (auch als Divergenzsatz bekannt) kann als mehr-

dimensionale Version des Hauptsatzes der Differential- und Integralrechnung

angesehen werden. Wenn wir diesen für eine stetig differenzierbare Funktion  f

in der Form

  b

 f ( x)  dx =  f ( b)  − f ( a)

(8.10)

 a

formulieren, können wir seine Aussage so wiedergeben: Das Integral über die

Ableitung ist gleich einer

orientierten Summe der Randwerte der Funktion“, 

” 

orientiert deshalb, weil ein Plus- und ein Minuszeichen auftauchen. 

Der Gaußsche Integralsatz macht eine ganz ähnliche Aussage, die aber einige

weitere Begriffe voraussetzt. Wir beschreiben diese zuerst für den R3, genauer

für die Kugel  B =  {x ∈  R3  | x ≤ ρ}. Statt einer Funktion  f  betrachten

wir nun ein in einer Umgebung  U  von  B  definiertes stetig differenzierbares

Vektorfeld  f :  U →  R3, und statt der Ableitung betrachtet man die  Divergenz

von  f = ( f 1 , f 2 , f 3), 

 ∂f

 ∂f

 ∂f

div  f =

1 +

2 +

3  . 

 ∂x 1

 ∂x 2

 ∂x 3

Dies ist eine stetige Funktion auf  U . Die linke Seite in (8.10) muss man im



Gaußschen Integralsatz durch

(div  f )( x)  dx  ersetzen. Nun zur rechten Sei-


B

te, der orientierten Summe der Randterme. Hier erwartet man jetzt ein Inte-

gral über den Rand von  B; dieses nimmt im Gaußschen Integralsatz die Form

  	f( x) ,ν( x) 
dS( x) an. Hier ist erklärungsbedürftig, was  ν( x) und  dS( x) be-


∂B

deuten. 
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Ersteres ist einfach, zumindest im Fall der Kugel. Für  x ∈ ∂B  ist  ν( x) der nach

 außen (hierin liegt die Orientierung des Randes) weisende Vektor der Länge 1, 

der in  x  senkrecht auf dem Rand der Kugel steht; das ist einfach  x/
x
 =  x/ρ. 

Mit  dS( x) ist angedeutet, dass gemäß des kanonischen Oberflächenmaßes zu

integrieren ist. Um das zu erklären, stellen wir uns die Kugeloberfläche mit

Hilfe von Längen- und Breitengraden parametrisiert vor, d. h., wir wählen die

Parametrisierung

Φ: [0 ,  2 π]  × [0 , π]  → ∂B, 

Φ( t 1 , t 2) = (cos  t 1 sin  t 2 ,  sin  t 1 sin  t 2 ,  cos  t 2) . 

Nun betrachten wir ein kleines“ Rechteck  R  in der  t

” 

1- t 2-Ebene um den Punkt  t. 

Es wird unter Φ auf ein

kleines krummliniges Viereck“ abgebildet. Wenn Φ

” 

linear wäre, wäre Φ( R) ein Parallelogramm mit Flächeninhalt (det Φ T Φ)1 / 2. 

Aber als differenzierbare Abbildung wird Φ im Kleinen von linearen Abbildun-

gen approximiert, also ist es plausibel, dass Φ( R) ungefähr den Flächeninhalt

(det( DΦ)( t) T ( DΦ)( t))1 / 2 haben sollte, wobei ( DΦ)( t) die Jacobi-Matrix von Φ

bei  t  ist. Wir setzen daher  gΦ( t) = det( DΦ)( t) T ( DΦ)( t) und für eine stetige

(oder beschränkte borelsche) Funktion  h:  ∂B →  R



 

2 π

 π

 h( x)  dS( x) =

 h(Φ( t)) gΦ( t)1 / 2  dt 2  dt 1 . 


∂B

0


0

Der Term  gΦ( t) wird auch  Maßtensor  genannt, explizit ist in unserem Bei-

spiel  gΦ( t) = sin2  t 2. Implizit haben wir übrigens das Lebesguesche Maß auf



der Kugeloberfläche erklärt, nämlich durch  λ∂B( A) =

 χ


∂B

 A( x)  dS( x) mit der

Indikatorfunktion  χA( x) = 1 für  x ∈ A  und  χA( x) = 0 für  x /

 ∈ A. 

Der  Gaußsche Integralsatz  lautet nun





(div  f )( x)  dx =

 	f( x) , ν( x) 
 dS( x) . 

(8.11)


B

∂B

Nicht nur ist die Aussage zu der des Hauptsatzes analog, auch der Beweis wird

auf diesen zurückgeführt. Für Physiker ist (8.11) im Übrigen evident, denn die

Divergenz ist ein Maß für die Quellstärke einer stationären Strömung, so dass

auf der linken Seite die insgesamt in  B  erzeugte Substanz steht, die dem, was

durch den Rand fließt, die Waage halten muss, und das steht auf der rechten

Seite. 

Die obigen Ausführungen können genauso gemacht werden, wenn eine kom-

pakte Teilmenge  B ⊆  R n  mit glattem Rand statt einer Kugel betrachtet wird. 

Auch dann kann man die Existenz eines eindeutig bestimmten äußeren Einheits-

normalenfeldes  ν  nachweisen und mit einer entsprechenden Parametrisierung Φ

arbeiten. Möglicherweise braucht man aber mehrere Φ (einen endlichen Atlas“), 

” 

um ganz  ∂B  zu überdecken. Jedenfalls gilt (8.11) in voller Allgemeinheit. 
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Eine wichtige Anwendung des Gaußschen Integralsatzes ist die  Formel von

 der partiellen Integration. Seien  U ⊆  R n  offen,  B ⊆ U  kompakt mit glattem

Rand,  f, g:  U →  R stetig differenzierbar, und  g  verschwinde auf  ∂B. Dann ist





 ∂g

 ∂f

 f ( x)

( x)  dx =  −

( x) g( x)  dx. 

 ∂x

 ∂x


B

j



B

j


Diese und andere Anwendungen wie die Greenschen Formeln sind fundamental

in der Theorie partieller Differentialgleichungen. 

8.9

Holomorphe Funktionen

Die Funktionentheorie beschäftigt sich mit den differenzierbaren Funktionen

einer komplexen Veränderlichen auf einer offenen Teilmenge von C, also solchen

Funktionen  f :  U →  C, für die für alle  z ∈ U  der Grenzwert

 f ( z +  h)  − f ( z)

 f ( z) = lim

 h→ 0

 h

existiert. Wenngleich diese Definition identisch mit der Definition der Ablei-

tung einer reellen Funktion auf einem Intervall ist, sind die Konsequenzen völlig

unterschiedlich, von denen einige im Folgenden vorgestellt werden sollen. Des-

halb tragen komplex-differenzierbare Funktionen auch einen eigenen Namen, sie

werden  holomorph (oder analytisch; weshalb, wird gleich erklärt) genannt. 

Der erste Unterschied ist, dass komplex-differenzierbare Funktionen automa-

tisch beliebig häufig differenzierbar sind und sogar in einer Umgebung jedes

Punkts des Definitionsbereichs durch eine Potenzreihe dargestellt werden:

 ∞

  f( k)( z

 f ( z) =

0) ( z − z

 k! 

0) k. 

 k=0

Die Reihe konvergiert in jedem offenen Kreis um  z 0, der in  U  liegt. Funktio-

nen, die durch Potenzreihen dargestellt werden, heißen  analytisch; daher ist die

Namensgebung analytisch“ für holomorph“ berechtigt. 

” 

” 

Die nächste überraschende Eigenschaft drückt der  Satz von Liouville  aus: Je-

de auf ganz C holomorphe beschränkte Funktion ist konstant. Natürlich ist das

reelle Analogon zu diesem Satz falsch, wie das Beispiel der Sinusfunktion zeigt. 

Andersherum kann man argumentieren, dass die komplexe Sinusfunktion, die



wie die reelle durch die Reihe

 ∞

( − 1) k zk  definiert wird, unbeschränkt sein

 k=0 (2 k+1)! 

muss. Es gilt sogar der wesentlich tieferliegende  Satz von Picard : Jede auf ganz

C holomorphe Funktion, die zwei komplexe Zahlen als Werte nicht annimmt, 

ist konstant. Eine der Anwendungen des Satzes von Liouville ist der  Fundamen-

 talsatz der Algebra: Jedes nichtkonstante Polynom mit komplexen Koeffizienten

hat mindestens eine komplexe Nullstelle. 
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Aus der Potenzreihenentwicklung schließt man den Identitätssatz für holomor-

phe Funktionen auf Gebieten. Eine offene zusammenhängende Teilmenge von C

wird  Gebiet  genannt; das ist eine offene Teilmenge  G, in der je zwei Punkte

” 

durch einen stetigen Weg verbunden werden können“, d. h., zu  z 0 , z 1  ∈ G  exis-

tiert eine stetige Abbildung  γ: [ α 0 , α 1]  → G  mit  γ( α 0) =  z 0 und  γ( α 1) =  z 1. 

(Diese Beschreibung zusammenhängender offener Teilmengen von C ist mit der

allgemeinen topologischen Definition kompatibel; vgl. Abschnitt 9.5.) Der  Iden-

 tit¨

 atssatz  besagt, dass zwei holomorphe Funktionen auf einem Gebiet  G  be-

reits dann übereinstimmen, wenn sie nur auf einer in  G  konvergenten Folge

übereinstimmen. 

Auch die Konvergenzaussagen über Folgen holomorpher Funktionen gestal-

ten sich viel glatter als in der reellen Theorie; zu letzterer vgl. Abschnitt 7.8. Es

gilt nämlich der  Weierstraßsche Konvergenzsatz : Sind  fn:  U →  C holomorphe

Funktionen auf einer offenen Menge und konvergiert die Folge ( fn) auf kom-

pakten Teilmengen von  U  gleichmäßig, etwa gegen die Grenzfunktion  f , so ist

 f  ebenfalls holomorph, und ( f n) konvergiert auf kompakten Teilmengen von  U

gleichmäßig gegen  f . 

All diese Aussagen basieren auf dem Cauchyschen Integralsatz, dem Dreh-

und Angelpunkt der Funktionentheorie. Bei diesem geht es um komplexe  Kur-

 venintegrale. Um ein solches Integral zu erklären, sei  γ: [ α, β]  →  C eine steti-

ge und stückweise stetig differenzierbare Kurve, im Folgenden kurz Kurve ge-

nannt (vgl. auch Abschnitt 7.12). Ferner sei  f  eine auf der Spur von  γ, also auf

Sp( γ) =  {γ( t)  | α ≤ t ≤ β}  erklärte stetige Funktion. Dann definiert man



  β

 f ( z)  dz =

 f ( γ( t)) γ( t)  dt. 

 γ

 α

Nun sei  f :  G →  C holomorph auf einem Gebiet, und  γ  sei zusätzlich geschlos-

sen, was nichts anderes als  γ( α) =  γ( β) bedeutet. Der Cauchysche Integralsatz



behauptet dann

 f ( z)  dz = 0, vorausgesetzt, dass das Innere“ von Sp( γ) zu  G

 γ

” 

gehört. Was das bedeutet, ist im Fall, dass  γ  eine Kreislinie beschreibt, klar, im

Allgemeinen aber nicht so offensichtlich, wie es auf den ersten Blick erscheint. 

Man möchte ausdrücken, dass Sp( γ) keine

Löcher“ von  G  umschließt. 

” 

Klärung bietet hier der Begriff der Homotopie, über den ausführlich in Ab-

schnitt 9.10 berichtet wird. Zwei geschlossene Kurven  γ 0 , γ 1: [ α, β]  → G  heißen

in  G homotop, wenn es eine stetige Abbildung  H: [0 ,  1]  × [ α, β]  → G  gibt mit

folgenden Eigenschaften:  H(0 , t) =  γ 0( t),  H(1 , t) =  γ 1( t),  H( s,  0) =  H( s,  1) für

8.10

Der Residuensatz
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alle  s  und  t. Die Vorstellung ist, dass  γ 0 mit Hilfe der geschlossenen Wege  γs:

 t → H( s, t) stetig in  γ 1 überführt wird, ohne  G  zu verlassen. Eine geschlosse-

ne Kurve heißt  nullhomotop, wenn sie zu einer konstanten Kurve homotop ist. 

Wenn jede geschlossene Kurve in  G  nullhomotop ist, nennt man  G einfach zu-

 sammenh¨

 angend ; anschaulich hat ein solches Gebiet keine Löcher. Beispielsweise

sind konvexe Gebiete einfach zusammenhängend. 

Nun können wir den  Cauchyschen Integralsatz  präzise formulieren. 

 Sei G ein Gebiet, und sei γ eine nullhomotope geschlossene Kurve. 

 Ferner sei f :  G →  C  holomorph. Dann gilt



 f ( z)  dz = 0 . 

 γ

 Weiter gilt dies f¨

 ur alle geschlossenen Kurven, wenn G einfach zu-

 sammenh¨

 angend ist. 

Eine Weiterentwicklung dieses Satzes ist der Residuensatz, über den der

nächste Abschnitt berichtet. 

8.10

Der Residuensatz

In diesem Abschnitt befassen wir uns mit Funktionen, die

bis auf einzelne

” 

Stellen“ in einem Gebiet holomorph sind, wie etwa  f ( z) = 1 /z, wo  z 0 = 0 solch

ein Ausnahmepunkt ist. 

Technisch gesehen seien ein Gebiet  G  und eine Teilmenge  S ⊆ G  vorgegeben, 

wobei  S  keinen Häufungspunkt in  G  hat (zum Beispiel eine endliche Menge). Fer-

ner sei  f :  G \ S →  C holomorph; die Punkte in  S  werden die  Singularitäten  von

 f  genannt. Sie sind isoliert in dem Sinn, dass  f  in einer punktierten Umgebung

von  z 0  ∈ S, also in ˙

 B( z 0 , r) =  {z ∈  C  |  0  < |z − z 0 | < r}  holomorph ist. Isolierte

Singularitäten fallen in drei Kategorien: einmal die  hebbaren Singularit¨

 aten, die

dadurch bestimmt sind, dass man durch eine geschickte Zuweisung eines Wertes

 f ( z 0) eine auf dem ganzen Kreis  B( z 0 , r) holomorphe Funktion erhält, dann

die  Pole, für die lim z→z |f ( z) | =  ∞  ist, und schließlich alle

0

übrigen, die man

 wesentliche Singularit¨

 aten  nennt. Der  Satz von Casorati-Weierstraß  charakte-

risiert wesentliche Singularitäten dadurch, dass das Bild jeder punktierten Um-

gebung ˙

 B( z 0 , ε) dicht in C liegt. Typische Beipiele sind  f ( z) = sin  z/z ( z 0 = 0

ist hier eine hebbare Singularität; man setze nämlich  f (0) = 1),  f ( z) = 1 /z

( z 0 = 0 ist hier ein Pol) und  f ( z) = exp(1 /z) ( z 0 = 0 ist hier eine wesentliche

Singularität). 

Ist die Funktion  f  im punktierten Kreis ˙

 B( z 0 , r) holomorph, kann man  f  in

eine  Laurentreihe

 ∞



 f ( z) =

 cn( z − z 0) n

 n= −∞
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entwickeln; hebbare Singularitäten sind jetzt dadurch charakterisiert, dass

 cn = 0 für alle  n <  0, Pole dadurch, dass  cn = 0 für mindestens ein und

höchstens endlich viele  n <  0, und wesentliche Singularitäten dadurch, dass

 cn = 0 für unendlich viele  n <  0 gilt. Besitzt  f  nur Pole als Singularitäten, 

nennt man  f meromorph. Der Koeffizient  c− 1 ist von besonderer Bedeutung; er

wird  Residuum  genannt und mit res( f ;  z 0) bezeichnet. 

Der Residuensatz berechnet für eine holomorphe Funktion mit isolierten Sin-



gularitäten das Kurvenintegral

 f ( z)  dz  durch eine gewichtete Summe der Re-

 γ

siduen. Die Wichtung zählt dabei, wie häufig  γ  eine Singularität  z 0  /

 ∈  Sp( γ)

umrundet“. Diese Größe wird durch die  Umlaufzahl

” 



1

 dz

 n( γ;  z 0) = 2 πi

 z − z

 γ

0

wiedergegeben, von der man nachweist, dass sie stets eine ganze Zahl ist, die

in einfachen Fällen mit der elementargeometrischen Umlaufzahl übereinstimmt; 

z. B. ist für die einmal im Uhrzeigersinn durchlaufene Kreislinie, parametrisiert

durch  γ: [0 ,  2 π]  →  C,  γ( t) =  eit, die Umlaufzahl  n( γ;  z 0) = 1, wenn  |z 0 | <  1, und  n( γ;  z 0) = 0, wenn  |z 0 | >  1. 

Die präzise Fassung des  Residuensatzes  lautet:

 Seien G ein Gebiet, S ⊆ G eine (notwendigerweise höchstens ab-

 z¨

 ahlbare) Teilmenge ohne H¨

 aufungspunkte in G, f :  G \ S →  C  holo-

 morph, und sei γ eine nullhomotope Kurve in G mit S ∩  Sp( γ) =  ∅. 

 Dann gilt



1



 f ( z)  dz =

 n( γ;  z

2 πi

0) res( f ;  z 0) . 

 γ

 z 0 ∈S

Der Satz kann recht einfach auf den Cauchyschen Integralsatz zurückgeführt

werden. Er hat viele Anwendungen in der Funktionentheorie, aber auch in der

reellen Analysis bei der Berechnung uneigentlicher Integrale. Das soll an ei-

nem Beispiel skizziert werden, das freilich auch mit reellen Methoden behan-

  ∞

delt werden könnte. Um das uneigentliche Riemannsche Integral

1

 −∞ / 1+ x 4  dx

zu berechnen, kann man folgenden Umweg ins Komplexe machen. Sei  f ( z) =

1 / 1+ z 4; diese Funktion ist meromorph mit den Polen  z 1 =  eiπ/ 4,  z 2 =  ei 3 π/ 4, 

 z 3 =  ei 5 π/ 4,  z 4 =  ei 7 π/ 4. Für  R >  1 integrieren wir  f über die folgende Kurve γ =  γ( R): Sp( γ) verläuft auf der reellen Achse von  −R  bis  R (diesen Teil der

Kurve nennen wir  γ 1) und dann längs eines Halbkreises mit Radius  R  in der

oberen Halbebene von  R  nach  −R (diesen Teil der Kurve nennen wir  γ 2). Nach

dem Residuensatz ist



1

1

 π

 f ( z)  dz = res( f ;  z

 √ ; 

2 πi

1) + res( f ;  z 2) = 2 πi

 γ

2
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die letzte Gleichung erfordert eine kurze Rechnung. Ferner ist

 f ( z)  dz =

 γ 1






R

 − f ( x)  dx  sowie lim

 f ( z)  dz = 0. Daraus ergibt sich


R

 R→∞ γ 2   ∞  1

 π

 dx =  √ . 

 −∞  1 +  x 4

2

8.11

Fixpunkts¨

atze

Das Lösen von Gleichungen ist eine Kernaufgabe der Mathematik, und in der

öffentlichen Wahrnehmung wird sie bisweilen als damit identisch angesehen. 

Es ist eine Binsenweisheit, dass man durch Umformen Gleichungen häufig in

eine besser zugängliche Form bringen kann; zum Beispiel ist 4 ξ −  cos  ξ = sin  ξ

äquivalent zur Gleichung 1 / 4(cos  ξ + sin  ξ) =  ξ. In dieser Gestalt erkennen wir

die Gleichung als Fixpunktaufgabe wieder, nämlich für die Abbildung  F :  x →

1 / 4(cos  x + sin  x) ist ein  Fixpunkt  gesucht, das ist ein  ξ, das unter  F  invariant

gelassen wird:

 F ( ξ) =  ξ. 

In der mathematischen Literatur gibt es Hunderte von Aussagen der folgenden

Form: Gewisse Abbildungen  F :  M → M  besitzen einen Fixpunkt. Nur die

wenigsten dieser Fixpunktsätze sind wirklich bedeutsam; in diesem Abschnitt

diskutieren wir drei der wichtigsten. 

Zunächst ist der  Banachsche Fixpunktsatz  zu nennen. 

 Sei ( M, d)  ein nichtleerer vollst¨

 andiger metrischer Raum, und sei F :

 M → M eine Kontraktion; d. h., es existiert eine Zahl q <  1  mit

 d( F ( x) , F ( y))  ≤ q d( x, y)  für alle x, y ∈ M. 

 Dann besitzt F genau einen Fixpunkt. Genauer gilt: Ist x 0  ∈ M

 beliebig, so konvergiert die durch

 xn+1 =  F ( xn) , n ≥  0 , 

 definierte Iterationsfolge gegen den eindeutig bestimmten Fixpunkt

 ξ, und zwar ist

 d( xn, ξ)  ≤ qn d( x

1  − q

1 , x 0) . 

Die Grundidee des Beweises soll kurz angedeutet werden. Durch einen



Teleskopsummentrick schätzt man  d( x

 k− 1

 n+ k, xn)  ≤

 d( x

 j=0

 n+ j+1 , xn+ j )  ≤

 k− 1  qn+ jd( x

 j=0

1 , x 0) ab. Das zeigt, dass ( xn) eine Cauchy-Folge ist; der Grenz-

wert  ξ  muss dann ein Fixpunkt sein. Durch Grenzübergang  k → ∞  folgt die

behauptete a-priori-Abschätzung für  d( xn, ξ), und die Eindeutigkeit des Fix-

punkts ist eine unmittelbare Konsequenz der Kontraktionsbedingung. 
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Der Beweis ist konstruktiv. Man erhält den Fixpunkt explizit als Grenzwert

der Iterationsfolge, und mittels der a-priori-Abschätzung weiß man, wie viele

Terme man zur Approximation bis zur gewünschten Genauigkeit benötigt. 

Der Banachsche Fixpunktsatz wartet mit einem so günstigen Preis-Leistungs-

Verhältnis auf wie kaum ein anderer Satz der Mathematik; bei fast trivialem

Beweis ist er praktisch universell anwendbar, vom Newtonverfahren bis zu den

Fraktalen. Wir haben im Abschnitt 8.4 über den Satz von Picard-Lindelöf be-

reits angedeutet, wie ein Anfangswertproblem für ein System gewöhnlicher Diffe-

rentialgleichungen in ein äquivalentes Fixpunktproblem überführt werden kann. 

Die Schwierigkeit bei der Anwendung des Banachschen Fixpunktsatzes liegt in

der Regel nicht darin, die Abbildung  F  zu finden, sondern vielmehr eine Menge

 M  als Definitionsbereich, die unter  F  invariant ist und auf der  F  kontraktiv ist. 

Das trifft insbesondere beim Beweis des Satzes von Picard-Lindelöf zu. 

Auf das einleitende Beispiel  F ( x) = 1 / 4(cos  x + sin  x) zurückkommend, sieht

man hier sofort, dass  F  das Intervall [ − 1 / 2 ,  1 / 2] in sich abbildet und wegen des

Mittelwertsatzes eine Kontraktion mit  q = 1 / 2 ist (vgl. (7.9) in Abschnitt 7.5). 

Der eindeutige Fixpunkt ist 0 .  31518. . . . Startet man die Iterationsfolge  xn+1 =

 F ( xn) bei  x 0 = 0, lauten die ersten Glieder auf 5 Stellen

0; 0 .  25; 0 .  30407; 0 .  31338; 0 .  31489; 0 .  31513; 0 .  31517; 0 .  31518; 0 .  31518 . 

Hier konvergiert die Iterationsfolge schneller als von der a-priori-Abschätzung

vorausgesagt, denn diese garantiert  |xn − ξ| ≤ (1 / 2) n ·  1  ≤  10 − 5 für  n ≥  16, 

1 / 2

4

obwohl bereits  |x 7  − ξ| ≤  10 − 5. 

Kommen wir jetzt zum  Brouwerschen Fixpunktsatz. 

 Sei B =  {x ∈  R d | x ≤  1 }, und sei F :  B → B stetig. Dann besitzt

 F einen Fixpunkt. 

Dieser Satz liegt ungleich tiefer als der Banachsche Fixpunktsatz, außer im

Fall  d = 1, wo er leicht auf den Zwischenwertsatz zurückgeführt werden kann. Es

ist nicht einmal intuitiv einleuchtend, ob die Aussage plausibel ist. Im Gegensatz

zum Banachschen Satz ist der Beweis hier nicht konstruktiv, und natürlich kann

man keine Eindeutigkeit erwarten (betrachte die identische Abbildung). In der

Tat gilt der Brouwersche Satz nicht nur für die Kugel, sondern für jede kompakte

konvexe Menge. In dieser Form lässt er sich sogar auf unendlich-dimensionale

Räume ausdehnen; das ist der Inhalt des  Schauderschen Fixpunktsatzes:

 Seien X ein normierter Raum, K ⊆ X nichtleer, kompakt und kon-

 vex, und sei F :  K → K stetig. Dann besitzt F einen Fixpunkt. 

Auch der Brouwersche und der Schaudersche Fixpunktsatz haben zahllose

Anwendungen, zum Beispiel impliziert letzterer den Existenzsatz von Peano

aus Abschnitt 8.4. 
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8.12

Der Bairesche Kategoriensatz

Der Satz von Baire gestattet elegante Existenzbeweise (zum Beispiel für stetige

Funktionen, die an keiner Stelle differenzierbar sind) und führt außerdem zu

einem Kleinheitsbegriff für Teilmengen. 

Der Ausgangspunkt ist die Beobachtung, dass in jedem metrischen Raum

der Schnitt von endlich vielen offenen und dichten Teilmengen wieder dicht

ist. (Dabei heißt  D ⊆ M dicht, wenn  D =  M  ist.) Wie das Beispiel von Q, 

abgezählt als Q =  { rn | n ∈  N  }, mit den offenen dichten Mengen Q  \ {rn}

demonstriert, braucht diese Aussage für abzählbar viele solche Teilmengen nicht

mehr zu gelten. Baire zeigte (ursprünglich für die reelle Achse), dass man jedoch

in vollständigen metrischen Räumen ein positives Resultat besitzt:

(Satz von Baire)

 Ist ( M, d)  ein vollst¨

 andiger metrischer Raum und sind O 1 , O 2 , . . . 



 offen und dicht, so ist auch

 ∞


O

 n=1

 n dicht. 

Dieser unscheinbar anmutende Satz, der gar nicht schwer zu beweisen ist, hat

sich zu einem universellen Prinzip der abstrakten Analysis entwickelt; einige

Anwendungen sollen gleich genannt werden. 

Offene und dichte Teilmengen eines vollständigen metrischen Raums sind also

sehr dicht“, man kann nämlich abzählbar viele davon schneiden, und das Re-

” 

sultat ist wieder eine dichte und insbesondere nichtleere Teilmenge. Man kann

noch einen Schritt weitergehen. Nennt man einen abzählbaren Schnitt offener

Mengen eine  Gδ-Menge (hier soll  G  an Gebiet und  δ  an Durchschnitt erinnern), 

so kann man die Aussage des Satzes von Baire auch folgendermaßen wieder-

geben, denn

abzählbar mal abzählbar ist abzählbar“: Der Schnitt abzählbar

” 

vieler dichter  Gδ-Mengen eines vollständigen metrischen Raums ist wieder eine

dichte  Gδ-Menge. 

Häufig drückt man den Baireschen Satz in einer etwas anderen Sprache aus, 

die von Baire selbst stammt. Dazu benötigen wir ein paar Vokabeln. Eine Teil-

menge  E  von  M  heißt  nirgends dicht, wenn ihr Abschluss keine inneren Punk-

te besitzt (zu diesen topologischen Grundbegriffen siehe Abschnitt 9.1); eine

abzählbare Vereinigung von nirgends dichten Mengen heißt  Menge 1. Kategorie, 

und eine  Menge 2. Kategorie  ist eine Menge, die nicht von 1. Kategorie ist. Ein



Beispiel einer Menge 1. Kategorie ist Q wegen der Darstellung Q =

 n∈ N {rn}. 

Durch Komplementbildung erhält man aus dem Satz von Baire die folgende

Fassung, die als  Bairescher Kategoriensatz  bekannt ist. 

 In einem vollst¨

 andigen metrischen Raum ( M, d)  liegt das Komple-

 ment einer Menge 1. Kategorie dicht. Insbesondere ist M selbst von

 2. Kategorie. 

Man kann den Baireschen Kategoriensatz nutzen, um die Existenz mathema-

tischer Objekte mit vorgelegten Eigenschaften zu begründen, nach folgendem
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Muster. Gesucht sind etwa stetige Funktionen auf [0 ,  1], die nirgends differen-

zierbar sind. Man betrachte dazu das Ensemble aller interessierenden Objek-

te (hier den Raum  C[0 ,  1] aller stetigen Funktionen) und mache es zu einem

vollständigen metrischen Raum (hier durch die von der Supremumsnorm ab-

geleitete Metrik). Dann zeige man, dass die Objekte, die die gewünschte Ei-

genschaft nicht haben, darin eine Menge 1. Kategorie bilden (das gelingt hier

für die Menge der stetigen Funktionen, die mindestens eine Differenzierbarkeits-

stelle haben). Da der gesamte Raum nach dem Baireschen Kategoriensatz von

2. Kategorie ist, muss es Elemente mit der gesuchten Eigenschaft (also stetige, 

nirgends differenzierbare Funktionen) geben. 

An dieser Beweisstrategie sind zwei Dinge bemerkenswert. Zum einen ist der

Beweis nicht konstruktiv; er liefert kein explizites Beispiel. Zum anderen zeigt

er aber das

typische“ Verhalten, denn eine Menge 1. Kategorie kann nach

” 

dem Baireschen Satz als klein“, sogar als vernachlässigbar“ angesehen werden. 

” 

” 

Die typische stetige Funktion ist also im Gegensatz zur Anschauung nirgends

differenzierbar, was die vormathematische Definition“, eine stetige Funktion sei

” 

eine Funktion, deren Graphen man durchgehend zeichnen könne, ad absurdum

führt. Eine andere nichtkonstruktive Methode zum Beweis der Existenz stetiger, 

nirgends differenzierbarer Funktionen hält die Wahrscheinlichkeitstheorie bereit, 

siehe Abschnitt 11.12. 

Es folgt eine Aufzählung weiterer Anwendungen; die Argumentation ist dabei

im Detail bisweilen recht verwickelt. 

(1) Wenn  fn:  M →  R stetige Funktionen auf einem vollständigen metrischen

Raum sind, die punktweise gegen die Grenzfunktion  f  konvergieren, so muss

 f  zwar nicht stetig sein, kann aber auch nicht vollkommen unstetig sein: Die

Stetigkeitspunkte von  f  bilden eine dichte  Gδ-Menge. Insbesondere besitzt die

Ableitung einer differenzierbaren Funktion auf R viele“ Stetigkeitsstellen. 

” 

(2) Ist  T :  X → Y  eine stetige bijektive lineare Abbildung zwischen zwei

Banachräumen, so ist auch die Umkehrabbildung stetig. Dieser Satz ist funda-

mental in der Funktionalanalysis. 

(3) Es gibt stetige 2 π-periodische Funktionen, deren Fourierreihe an

überabzählbar vielen Stellen divergiert. 

(4) Ist  f : R  →  R beliebig häufig differenzierbar und existiert zu jedem  x ∈  R

eine Ableitungsordnung  n =  nx  mit  f ( n)( x) = 0, so ist  f  ein Polynom. 

Auf der reellen Achse kann man die Vernachlässigbarkeit einer Menge außer

durch den Mächtigkeitsbegriff (siehe Abschnitt 12.1) – abzählbare Teilmengen

von R sind gewiss als klein“ anzusehen – sowohl topologisch (Mengen 1. Ka-

” 

tegorie) als auch maßtheoretisch (Nullmengen) messen. Zur Erinnerung:  A ⊆  R

heißt Nullmenge, wenn es zu jedem  ε >  0 eine Folge von Intervallen [ an, bn] mit





Gesamtlänge  ≤ ε  gibt, die  A überdecken:  A ⊆

[ a

( b

 n

 n, bn], 

 n

 n − an)  ≤ ε. 

Erstaunlicherweise sind diese Kleinheitsbegriffe alles andere als deckungsgleich, 

denn man kann R als Vereinigung einer Nullmenge und einer Menge 1. Kategorie

schreiben. 

9 Topologie und Geometrie

Die Topologie beschäftigt sich mit dem Begriff des Raums und wird deshalb

oft als Teilgebiet der Geometrie gesehen. Daher mag es verwundern, dass eine

Grobeinteilung der Topologie das Gebiet der geometrischen Topologie expli-

zit erwähnt. Die anderen Hauptgebiete sind die mengentheoretische und die

algebraische Topologie. Die Verallgemeinerung des Raumkonzepts in der men-

gentheoretischen Topologie vom euklidischen zum metrischen und schließlich

topologischen Raum führt zu einem ausgesprochen flexiblen Konzept, dessen

Vokabular und Grundbegriffe Einzug in nahezu alle mathematischen Bereiche

gefunden hat. Was dabei Raum genannt wird, ist allerdings sehr allgemein, 

sehr abstrakt und entzieht sich oft unserer Vorstellungskraft. Geometrische To-

pologie untersucht dagegen Räume, die zumindest im Kleinen sich nur wenig

von euklidischen Räumen unterscheiden. Algebraische Topologie entstand aus

dem erfolgreichen Versuch, Strukturen in diesen Räumen mit Hilfe algebraischer

Konzepte zu organisieren. 

Die Grobeinteilung der Geometrie nennt neben der Topologie unter anderen

die Differentialgeometrie und die axiomatische Geometrie. Letztere beschäftigt

sich mit Mengen von Punkten, Geraden, Ebenen etc., zwischen denen Inzidenz-

beziehungen gelten, die gewisse Axiome erfüllen. Diese Art von Geometrie wird

traditionellerweise in der Schule unterrichtet. Sie hat nichts gemein mit der

Differentialgeometrie; diese betrachtet die Räume der geometrischen Topologie, 

die zusätzlich eine infinitesimal definierte Metrik besitzen, wie Zustandsräume

klassischer mechanischer Systeme oder die Raumzeiten der allgemeinen Relati-

vitätstheorie. 

In diesem Kapitel sollen einige einführende Aspekte dieser disparaten Theo-

rien angesprochen werden. 

Die Abschnitte 1 bis 7 beschreiben die grundlegenden Definitionen und eini-

ge wichtige Ergebnisse der mengentheoretischen Topologie wie Zusammenhang, 

Kompaktheit, Produkt- und Quotiententopologie, alles Konzepte, die im allge-

meinen Sprachgebrauch von Mathematikern Einzug gefunden haben. Abschnitt

8 untersucht Flächen im R3 und gibt einen ersten elementaren Einblick in die

Differentialgeometrie. Mannigfaltigkeiten sind das primäre Untersuchungsobjekt

der geometrischen Topologie (Abschnitt 9), und die Abschnitte 10 und 11 ge-

ben einen – zugegeben vagen – Einblick in zwei Konzepte aus der algebraischen

Topologie. Das Kapitel schließt mit einem Exkurs über euklidische und nicht-

euklidische Geometrie. 

O. Deiser et al.,  12 x 12 Schlüsselkonzepte zur Mathematik, 
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9.1

Topologische R¨

aume

In Abschnitt 8.1 haben wir gesehen, wie mühelos sich Konvergenz- und Ste-

tigkeitsbegriff vom Bereich der reellen Zahlen auf metrische Räume übertragen

lassen. Wir haben dort auch erfahren, dass es zum Überprüfen der Stetigkeit

einer Abbildung zwischen metrischen Räumen genügt, die offenen Mengen die-

ser Räume zu kennen: Eine Abbildung ist genau dann stetig, wenn die Urbilder

offener Mengen offen sind. Nun gibt es ziemlich unterschiedliche Metriken auf

einer Menge, deren zugehörige offene Mengen übereinstimmen. Zum Beispiel

hat die Metrik  d( x, y) := min { 1 , |x − y|}  dieselben offenen Mengen wie die

Standardmetrik auf R. Aber der Durchmesser von (R , d) ist 1, die abgeschlos-

sene Einheitskugel um  x, d. h. die Menge  {y ∈  R  | d( x, y)  ≤  1 }, ist ganz R, 

während die offene Einheitskugel um  x  das Intervall ( x −  1 , x + 1) ist, sich also

die abgeschlossene Einheitskugel um  x  deutlich von der abgeschlossenen Men-

ge [ x −  1 , x + 1] unterscheidet, die aus ( x −  1 , x + 1) durch Hinzunahme aller

Grenzwerte von Folgen in ( x −  1 , x + 1) entsteht. 

Dies legt nahe, für Stetigkeits- und Konvergenzuntersuchungen anstelle von

Metriken Strukturen auf Mengen zu beschreiben, die auf dem Begriff der offenen

Menge beruhen. Folgendes Axiomensystem hat sich dabei, nicht nur weil es so

einfach ist, als erfolgreich erwiesen. 

Es sei  X  eine Menge. Eine Menge  T  von Teilmengen von  X  heißt  Topologie

 auf X, falls gilt:

O(i)  X  und  ∅  gehören zu  T . 

O(ii) Beliebige Vereinigungen von Mengen aus  T  gehören zu  T . 

O(iii) Endliche Durchschnitte von Mengen aus  T  gehören zu  T . 

Ein  topologischer Raum  ist dann ein Paar ( X, T ), wobei  T  eine Topologie auf

der Menge  X  ist. Die Elemente von  T  heißen die  offenen Mengen  von ( X, T ), 

und wie bei den metrischen Räumen heißt eine Teilmenge von  X abgeschlossen, 

wenn sie das Komplement einer offenen Menge ist. Ist ( X, T ) ein topologischer

Raum, so nennen wir die Elemente von  X Punkte  des topologischen Raums. 

Man kann übrigens auf das Axiom O(i) verzichten und sieht das auch in

manchen Büchern, wenn man akzeptiert, dass die leere Vereinigung, also die

Vereinigung keiner Menge, die leere Menge ist und der leere Durchschnitt von

Teilmengen von  X  ganz  X  ist. 

Die erste Axiomatisierung topologischer Räume von F. Hausdorff im Jahr

1914 stellte nicht die offenen Mengen in den Vordergrund, sondern den Umge-

bungsbegriff. Das mag daran gelegen haben, dass sich damit ohne Umweg der

Begriff beliebig nah“ formalisieren lässt, der eine wesentliche Rolle in unserer

” 

Vorstellung von Konvergenz und Stetigkeit spielt. Anschaulich soll eine Um-

gebung eines Punktes  x  alle Punkte enthalten, die genügend nah bei  x  sind. 

In einem metrischen Raum sind z. B. die Punkte der  ε-Kugel  B( x, ε) um  x, 

 B( x, ε) =  {y | d( y, x)  < ε}, alle Punkte, die  ε-nahe bei  x  sind. Eine Umgebung

9.1
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von  x  ist also eine Menge, die ein  B( x, ε) enthält. Die Menge  B( x, ε) selbst wird

auch als  ε-Umgebung von  x  bezeichnet. Beliebig nahe heißt dann  ε-nahe für alle

 ε >  0. Zwei verschiedene Punkte können dann nicht beliebig nahe beieinander

sein; aber ein Punkt  x  kann einer Teilmenge  A  beliebig nahe sein, nämlich wenn

jede  ε-Umgebung von  x  einen Punkt aus  A  enthält. 

Nun ist  B( x, ε) offen, und jede offene Menge, die  x  enthält, enthält auch

ein  B( x, ε). Folgende Definition bietet sich deshalb an: Eine Teilmenge  U  eines

topologischen Raums ist eine  Umgebung eines Punkts x, wenn es eine offene

Menge  W  mit  x ∈ W ⊆ U  gibt. 

Wird für  x ∈ X  die Menge aller Umgebungen von  x  mit  U ( x) bezeichnet, so

gilt für die Familie ( U ( x)) x∈X:

U(i) Ist  U ∈ U ( x) und  U ⊆ V , so ist  V ∈ U ( x). 

U(ii) Für alle  U ∈ U ( x) ist  x ∈ U . 

U(iii) Sind  U, V ∈ U ( x), so ist  U ∩ V ∈ U ( x). 

U(iv) Zu jedem  U ∈ U ( x) gibt es ein  V ∈ U ( x), so dass für alle  y ∈ V  gilt, 

dass  U ∈ U ( y) ist. 

U(i–iii) sind klar. Als  V  in U(iv) nehmen wir irgendeine offene Menge  V  mit

 x ∈ V ⊆ U . Die Existenz einer solchen Menge folgt aus der Umgebungsdefiniti-

on. 

Eine Familie ( U ( x)) x∈X, die U(i–iv) erfüllt, nennt man Umgebungssystem

auf der Menge  X. Aus einem Umgebungssystem erhält man eine Topologie, 

indem man eine Menge offen nennt, wenn sie Umgebung jedes ihrer Punkte

ist. Ist ( U ( x)) x∈X  das Umgebungssystem des topologischen Raums ( X, T ), 

so bekommen wir auf diese Weise die Topologie  T  zurück. Ebenso erhalten

wir, wenn wir mit einem Umgebungssystem starten, mit dessen Hilfe offene

Mengen definieren und mit diesen wieder ein Umgebungssystem bestimmen, 

das ursprüngliche Umgebungssystem zurück. Deswegen spielt es keine Rolle, ob

wir topologische Räume mit Hilfe einer Topologie oder eines Umgebungssystems

definieren. 

Konvergenz von Folgen formuliert sich etwas einfacher mit Hilfe von Umge-

bungen. Die Folge ( xi) i=1 ,  2 ,...  von Punkten des topologischen Raums ( X, T )

 konvergiert gegen den Punkt x ∈ X  genau dann, wenn außerhalb jeder Umge-

bung von  x  höchstens endlich viele Folgenglieder liegen. Für metrische Räume

ist diese Definition äquivalent zur ursprünglichen, so dass zwei Metriken auf

einer Menge mit denselben zugehörigen offenen Mengen dieselben konvergenten

Folgen besitzen. 

Wir werden, wie in der Literatur üblich, zur Vereinfachung der Notation an-

stelle von ( X, T ) einfach  X  schreiben. Wenn wir also von einem topologischen

Raum  X  sprechen, so denken wir uns die Menge  X  mit einer Topologie verse-

hen, und auf diese beziehen wir uns, wenn wir von offenen Mengen von  X  und

Umgebungen von Punkten in  X  sprechen. 
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Da unsere Begriffswahl den Verhältnissen in metrischen Räumen entnommen

ist, sind selbstverständlich die offenen Mengen eines metrischen Raumes ( X, d)

eine Topologie auf  X. Wir erhalten damit ein großes Beispielreservoir. Ein to-

pologischer Raum, dessen offene Mengen die offenen Mengen einer Metrik sind, 

heißt  metrisierbar. Es ist leicht, nicht metrisierbare topologische Räume anzu-

geben. In einem metrischen Raum sind alle Punkte abgeschlossen (wir erlauben

uns hier und im Folgenden die etwas schlampige Sprechweise, eine einelementi-

ge Menge mit dem in ihr liegenden Element zu benennen). Nun ist  {∅, X}  für

jede Menge  X  eine Topologie. In diesem topologischen Raum sind  ∅  und  X  die

einzigen abgeschlossenen Mengen. Ein Punkt ist daher in dieser Topologie nur

dann abgeschlossen, wenn dieser Punkt das einzige Element von  X  ist. Die To-

pologie  {∅, X}  auf  X  heißt  indiskrete Topologie auf X (jeder Punkt liegt in jeder

Umgebung jedes anderen Punktes, so dass jeder Punkt jedem anderen Punkt

beliebig nahe ist). Die Menge aller Teilmengen von  X  ist ebenso eine Topologie. 

Sie heißt die  diskrete Topologie auf X (jeder Punkt besitzt eine Umgebung, die

keinen weiteren Punkt enthält, so dass kein Punkt einer Menge, die ihn nicht

enthält, beliebig nahe ist). 

Weitere Beispiele und auch Verfahren, selbst interessante Beispiele zu kon-

struieren, werden wir in den folgenden Abschnitten kennenlernen, insbesondere

in 9.4, 9.5 und 9.7. 

Schneidet jede Umgebung des Punktes  x  die Teilmenge  A  des topologischen

Raums  X, ist also  x  beliebig nahe bei  A, so heißt  x Ber¨

 uhrpunkt von A, und die

Menge aller Berührpunkte von  A  heißt der  Abschluss von A  oder  abgeschlossene

 H¨

 ulle von A. Enthält  A  eine Umgebung von  x, so heißt  x innerer Punkt von

 A, und die Menge aller inneren Punkte von  A  heißt das  Innere  oder der  offene

 Kern von A. Der Abschluss von  A  wird mit  A  bezeichnet und ist die kleinste

 ◦

abgeschlossene Menge, die  A  enthält. Das Innere von  A  wird mit  A  oder Int  A

 ◦

bezeichnet und ist die größte in  A  enthaltene offene Menge. Die Differenz  A \ A

heißt der  Rand von A, wird mit Fr( A) bezeichnet und ist als Durchschnitt der

 ◦

abgeschlossenen Mengen  A  und  X \ A  stets abgeschlossen. Anstelle von Fr( A)

findet man in der Literatur oft die Bezeichnung  ∂A. 

Die Forderungen O(i–iii) an eine Topologie sind leicht zu erfüllen. Dies erlaubt

es, topologische Räume mit den abstrusesten Eigenschaften zu konstruieren. 

Das ist manchmal instruktiv, aber man sollte es nicht übertreiben: Viele inter-

essante Räume sind Unterräume des R n  oder eines unendlich-dimensionalen

Banachraums (vgl. Abschnitt 8.1), oder sie entstehen aus solchen mit Hilfe

expliziter Konstruktionen (vgl. Abschnitt 9.4). Dabei ist ein  Unterraum ei-

 nes topologischen Raums ( X, T ) eine Teilmenge  A ⊆ X  mit der Topologie

 T ∩ A :=  {A ∩ W | W ∈ T }. Aus naheliegenden Gründen heißt diese Topologie

die  Spurtopologie: Die offenen Mengen von  A  sind die Spuren, die die offenen

Mengen von  X  auf  A  hinterlassen. 

9.2

Stetige Abbildungen
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Wenn wir uns ins Gedächtnis rufen, dass in einem metrischen Raum Umge-

bungen des Punkts  x  Mengen sind, die eine  ε-Kugel  B( x, ε) enthalten, so ist

die  ε- δ-Definition der Stetigkeit einer Abbildung  f  im Punkt  x (Abschnitt 8.1)

äquivalent zu der Bedingung, dass das Urbild jeder Umgebung von  f ( x) eine

Umgebung von  x  ist. Diese Formulierung übernehmen wir wörtlich für Abbil-

dungen zwischen topologischen Räumen. 

Es seien ( X, T ) und ( Y, S ) topologische Räume und  f :  X → Y  eine Abbil-

dung. Sie heißt  stetig in x ∈ X, wenn das Urbild jeder Umgebung von  f ( x) eine

Umgebung von  x  ist ( U ∈ U ( f( x))  ⇒ f − 1( U)  ∈ U ( x)). Die Abbildung heißt

 stetig, wenn sie in jedem Punkt  x ∈ X  stetig ist. Mit Hilfe offener Mengen lässt

sich dies einfacher formulieren:

( X, T ), ( Y, S ) und  f  seien wie oben. Genau dann ist  f  stetig, wenn

die Urbilder offener Mengen offen sind ( W ∈ S ⇒ f − 1( W )  ∈ T ). 

Dass die Komposition zweier stetiger Abbildungen wieder stetig ist, folgt un-

mittelbar aus der Definition. Denn ist  f :  X → Y  in  x ∈ X  und  g:  Y → Z  in

 y =  f ( x) stetig und ist  W ⊆ Z  eine Umgebung von ( g ◦ f )( x) =  g( y), so ist we-

gen der Stetigkeit von  g  in  y  die Menge  V :=  g− 1( W ) eine Umgebung von  f ( x)

in  Y  und wegen der Stetigkeit von  f  in  x  die Menge  f − 1( V ) =  f − 1( g− 1( W )) =

( g ◦ f ) − 1( W ) eine Umgebung von  x. Also ist  g ◦ f  in  x  stetig. 

Ist  X  ein diskreter Raum, so sind alle Abbildungen von  X  in einen beliebigen

Raum stetig; ist  X  indiskret, so sind alle Abbildungen von irgendeinem Raum

nach  X  stetig. Diskrete und indiskrete Räume sind also, was stetige Abbildungen

anlangt, ziemlich uninteressant. 

Überraschend erscheint auf den ersten Blick folgendes Beispiel. Es seien  ∅, { 0 }

und  { 0 ,  1 }  die offenen Mengen des Raumes  X :=  { 0 ,  1 }. Dann gibt es stetige

surjektive Abbildungen  f : [0 ,  1]  → X, und zwar sehr viele. Nimm nämlich ir-

gendeine offene echte Teilmenge  W  von [0 ,  1] und setze  f ( t) = 0 für  t ∈ W  und

 f ( t) = 1 sonst; dann ist  f  stetig. 

Während es auf einer Menge sehr viele verschiedene Metriken geben kann, die

dieselben stetigen Abbildungen in metrische Räume besitzen, sind zwei Topolo-

gien auf  X, die dieselben stetigen Abbildungen in topologische Räume besitzen, 

identisch. Für konvergente Folgen gilt die entsprechende Aussage nicht. Das

liegt daran, dass eine Folge höchstens abzählbar viele Punkte hat. Das sind zu

wenige Punkte, um die Umgebungen eines Punktes in den Griff zu bekommen. 

In einem topologischen Raum gilt z. B. im Allgemeinen nicht, dass es zu jedem

Punkt  x ∈ A  eine in  A  liegende gegen  x  konvergierende Folge gibt. Allerdings

gehört jeder Punkt zu  A, der Grenzwert einer in  A  liegenden Folge ist. 

 Zum Isomorphiebegriff topologischer R¨

 aume: Unter einem Isomorphismus

(vgl. Abschnitt 1.12) zwischen den topologischen Räumen  X  und  Y  versteht

man eine bijektive Abbildung,  f :  X → Y , die die Menge der offenen Mengen
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von  X  bijektiv auf die Menge der offenen Mengen von  Y  abbildet. Dies ist genau

dann der Fall, wenn  f  und die Umkehrabbildung  f − 1 stetig sind, und  f  heißt

dann ein  Hom¨

 oomorphismus. Gibt es zwischen  X  und  Y  einen Homöomorphis-

mus, heißen  X  und  Y hom¨

 oomorph. 

Interpretiert man die Menge der offenen Mengen als Struktur eines topolo-

gischen Raumes, so würde man erwarten, dass die strukturerhaltenden Abbil-

dungen offene Mengen auf offene Mengen abbilden. Homöomorphismen tun das, 

aber stetige Abbildungen nur ganz selten. Um einzusehen, dass die stetigen Ab-

bildungen doch die

richtigen“ Abbildungen zwischen topologischen Räumen

” 

sind, erinnern wir an die Bemerkung, dass die Formalisierung des Begriffs be-

” 

liebig nahe“ bei der Definition topologischer Räume Pate stand. Wenn wir für

jede Teilmenge  A  des topologischen Raums wissen, welche Punkte zum Ab-

schluss von  A  gehören, also welche Punkte  A  beliebig nahe sind, kennen wir

alle abgeschlossenen Mengen und somit die Topologie. Als Struktur bietet sich

somit an, die Teilmenge  A  und den Punkt  x  in Relation zu setzen, wenn  x ∈ A

ist. Ist nun  f  eine Abbildung zwischen topologischen Räumen, so ist  f  genau

dann in  x  stetig, wenn für jede Menge  A  gilt, dass  f ( x)  ∈ f ( A) ist, wenn  x ∈ A

ist (ist  x  beliebig nahe an  A, so ist  f ( x) beliebig nahe an  f ( A)). Dies entspricht

auch unserer Anschauung, dass stetige Abbildungen nichts auseinanderreißen. 

Insgesamt ist also  f :  X → Y  genau dann stetig, wenn für alle  A ⊆ X  gilt, 

dass  f ( A)  ⊆ f ( A) ist. Allerdings bleibt es dabei, dass, anders als bei Grup-

pen, Ringen, Körpern, Vektorräumen, eine bijektive strukturerhaltende (d. h. 

hier: stetige) Abbildung im Allgemeinen kein Isomorphismus ist. Die identische

Abbildung auf  X, einmal versehen mit der diskreten, das andere Mal mit der

indiskreten Topologie, ist dafür ein frappierendes Beispiel. 

9.3

Beschreibung von Topologien

Um Topologien auf einer Menge festzulegen, listet man selten die Menge aller

offenen Mengen auf. Um kürzer eine Topologie zu beschreiben, kann man die

Tatsache nutzen, dass der Durchschnitt einer beliebigen Menge von Topologien

auf  X  wieder eine Topologie auf  X  ist. Insbesondere gibt es zu einer vorgege-

benen Menge  S  von Teilmengen von  X  eine kleinste Topologie auf  X, die  S

enthält. Ist umgekehrt  T  eine Topologie auf  X, so heißt eine Teilmenge  S  der

Potenzmenge von  X Subbasis von T , falls  T  die kleinste Topologie auf  X  ist, 

die  S  enthält. Wir sagen dann, dass  T  von  S  erzeugt wird. Die offenen Men-

gen, d. h. die Elemente von  T , sind dann genau die Vereinigungen endlicher

Durchschnitte von  S . Genauer: Jedes  W ∈ T  hat die Form

  



 S , 

 j∈J S∈Sj
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wobei  J  eine Menge und  Sj  für jedes  j ∈ J  eine endliche Teilmenge von  S

ist. Eine  Basis einer Topologie auf X  ist eine Menge  B  von Teilmengen von

 X, so dass jede offene Menge der Topologie eine Vereinigung von Mengen aus

 B  ist. Beispiel einer Subbasis der Standardtopologie auf R, d. h. der durch

die übliche Metrik induzierten Topologie, ist die Menge der Intervalle ( −∞, a), 

( b, ∞),  a, b ∈  Q. Eine Basis der Standardtopologie des R n  ist die Menge aller

offener Würfel mit einem rationalen Eckpunkt und rationaler Kantenlänge, also

von Würfeln der Form  Wa,b :=  {x ∈  R n | ai < xi < ai +  b,  i = 1 , . . . , n}, wobei

 a ∈  R n  rationale Koordinaten hat und  b >  0 rational ist. Diese Basis von R n

besteht aus abzählbar vielen Elementen. 

Subbasen gestatten nicht nur, Topologien ökonomischer zu beschreiben, sie

sind auch nützlich, um Stetigkeit von Abbildungen zu überprüfen: Ist  f :  X →

 Y  eine Abbildung zwischen topologischen Räumen, so ist  f  stetig, wenn die

Urbilder der Mengen einer Subbasis von  Y  in  X  offen sind. 

Auch Umgebungssysteme eines topologischen Raumes lassen sich knapper

beschreiben. Da jede Obermenge einer Umgebung von  x ∈ X  wieder eine Um-

gebung von  x  ist, genügt es, zu jedem  x ∈ X  eine Menge  B( x) von Umgebungen

von  x  anzugeben, so dass jede Umgebung von  x  eine Obermenge einer Menge

aus  B( x) ist. Wir nennen dann  B( x) eine  Umgebungsbasis  von  x. Ist ( X, d) ein

metrischer Raum, so ist für jedes  x ∈ X  die Menge  B( x) :=  {B( x,  1 /n)  | n ∈  N }

eine Umgebungsbasis von  x. Jeder Punkt eines metrischen Raums besitzt also

eine abzählbare Umgebungsbasis. Abzählbarkeit spielt eine wichtige Rolle. Des-

wegen zeichnet man topologische Räume, deren Punkte alle eine abzählbare Um-

gebungsbasis besitzen, aus und sagt, dass sie das  1. Abz¨

 ahlbarkeitsaxiom  erfüllen. 

Besitzt ein Raum eine abzählbare Basis, so sagt man, dass er das  2. Abz¨

 ahlbar-

 keitsaxiom  erfüllt. Ein Raum, der das 2. Abzählbarkeitsaxiom erfüllt, erfüllt

natürlich auch das 1. Abzählbarkeitsaxiom. 

Die Eigenschaft, eines der Abzählbarkeitsaxiome zu erfüllen, vererbt sich auf

Unterräume eines topologischen Raums. 

Es folgen einige Beispiele. 

(i) Die Intervalle [ a, ∞),  a ∈  R, bilden die Basis einer Topologie auf R. Jeder

Punkt  a ∈  R besitzt eine einelementige Umgebungsbasis, nämlich die Umgebung

[ a, ∞). Der Raum selbst besitzt keine abzählbare Basis. 

(ii) Beliebt ist auch die von den halboffenen Intervallen  {[ a, b)  | a, b ∈  R }

erzeugte Topologie auf R. Der zugehörige Raum heißt  Sorgenfrey-Gerade. Die

Topologie enthält die Standardtopologie als echte Teilmenge und erfüllt das 1., 

aber nicht das 2. Abzählbarkeitsaxiom. 

(iii) Die Menge aller unendlichen Intervalle ( a, ∞), ( −∞, b),  a, b ∈  Q, ist eine

Subbasis der Standardtopologie auf R. 
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9.4

Produktr¨

aume und Quotientenr¨

aume

Betrachten wir die offenen Mengen des R2 = R  ×  R, so fällt auf, dass jedes

Produkt  V × W  offener Mengen  V, W ⊆  R in R  ×  R offen ist, aber nicht jede

offene Menge von R × R Rechtecksform“  V ×W  hat, wie das Innere eines Kreises

” 

zeigt. Aber die Rechtecke“  V × W ,  V, W  offen in R, bilden eine Basis, da ja

” 

schon die offenen Rechtecke ( a, b)  × ( c, d) eine Basis bilden. Dies legt folgende

Definition nahe: Es seien  X, Y  topologische Räume; dann heißt die von den

Mengen der Form  V × W ,  V  offen in  X  und  W  offen in  Y , erzeugte Topologie

auf  X × Y  die  Produkttopologie  der Topologien auf  X  und  Y , und  X × Y  mit der

Produkttopologie heißt das  topologische Produkt  von  X  und  Y  oder, einfacher, 

das Produkt von  X  und  Y . Beachte, dass die Menge aller Mengen der Form

 V × W ,  V  offen in  X  und  W  offen in  Y , sogar eine Basis der Produkttopologie







ist wegen der Gleichung


V

V



W

 j∈J,k∈K

 j ×Wk = (

 j∈J

 j ) ×(

 k∈K

 k ). Damit ist

klar, wie auf endlichen Produkten  X 1  × · · · × Xn  die Produkttopologie aussieht:

Als Basis nehme man die Quader“  W

” 

1  × · · · × Wn,  Wj  offen in  Xj ,  j = 1 , . . . , n. 

Bei unendlichen Produkten dauerte es eine Weile, bis man sich darauf einigte, 

welche Topologie vernünftig ist. Wesentlich ist dabei die Beobachtung, dass die

Menge der offenen Quader“  W

” 

1  × · · · × Wn, für die alle  Wj  bis auf höchstens

eines gleich dem ganzen Raum  Xj  sind, eine Subbasis der Produkttopologie ist. 

Das bedeutet, dass die Produkttopologie auf  X 1 ×· · ·×Xn  die kleinste Topologie

ist, so dass für alle  i  die Projektion  pi:  X 1  × · · · × Xn → Xi, ( x 1 , . . . , xn)  → xi, 

auf den  i-ten Faktor stetig ist. Dies fordern wir nun für beliebige Produkte. 

' 

Die entsprechende Topologie auf


X

 j∈J

 j  hat dann eine Basis, deren Mengen

' 

die

Quader“


W

” 

 j∈J

 j  sind, wobei jedes  Wj  offen in  Xj  ist und alle bis auf

endlich viele der  Wj  gleich  Xj  sind. Als angenehme Zugabe erhalten wir eine

einfache Charakterisierung stetiger Abbildungen in ein Produkt hinein: Ist  Y

' 

ein topologischer Raum, so ist eine Abbildung  f :  Y →


X

 j∈J

 j  genau dann

stetig, wenn alle Kompositionen  pi ◦ f :  Y → Xi  stetig sind. Dabei ist, wie oben, 

 pi  die Projektion auf den  i-ten Faktor. 

' 

Gilt  Xj =  X  für alle  j ∈ J, so schreibt man anstelle von


X

 j∈J

 j  oft  X J , da

' 

die Punkte von


X

 j∈J

 j  in diesem Fall einfach die Abbildungen von  J  in  X  sind. 

In der Produkttopologie von  XJ  konvergiert dann eine Folge von Abbildungen

 fn:  J → X  genau dann gegen  f :  J → X, wenn ( fn) punktweise gegen  f  konver-

giert. Das heißt, dass für alle  j ∈ J  die Folge  fn( j) in  X  gegen  f ( j) konvergiert. 

' 

Anstelle der Familie ( pi:


X

 j∈J

 j → Xi) i∈J  kann man etwas allgemeiner

eine Menge  X  und eine Familie von Abbildungen ( fj :  X → Xj) j∈J  betrachten, 

wobei die  Xj  topologische Räume sind. Die kleinste Topologie auf  X, so dass alle

 fj  stetig sind, heißt dann die  Initialtopologie auf X  bezüglich der Familie ( fj). 

Mit dieser Topologie auf  X  ist eine Abbildung  g:  Y → X  genau dann stetig, 

wenn alle Kompositionen  fj ◦ g:  Y → Xj  stetig sind. Die Produkttopologie

' 

ist somit die Initialtopologie bezüglich der Familie ( pi:


X

 j∈J

 j → Xi) i∈J . 
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Zusätzlich gilt für die Produkttopologie, dass die Zuordnung  f → ( pj ◦ f ) j∈J

' 

' 

eine Bijektion von  C( Y, 


X

 C( Y, X

 j∈J

 j ) auf

 j∈J

 j ) definiert, wobei wir mit

 C( A, B) die Menge der stetigen Abbildungen des topologischen Raums  A  in

den topologischen Raum  B  bezeichnen. Beachte, dass die Spurtopologie auf der

Teilmenge  A  des topologischen Raums  X  die Initialtopologie auf  A  bezüglich

der Inklusion  A ⊆ X  ist. 

Durch Umkehren der Pfeile erhält man anstelle einer Familie ( fj:  X → Xj)

von Abbildungen einer Menge  X  in topologische Räume  Xj  eine Familie ( fj:

 Xj → X) und kann die größte Topologie auf  X  betrachten, so dass alle  fj  stetig

sind. Die entsprechende Topologie heißt dann  Finaltopologie auf X  bezüglich

der Familie ( fj). Interessant für uns ist der Spezialfall einer einzigen surjektiven

Abbildung  f :  Y → X, wobei  Y  ein topologischer Raum ist. Die Finaltopolo-

gie auf  X  bezüglich  f  heißt  Quotiententopologie, und  X  mit dieser Topologie

heißt  Quotientenraum. Der Name rührt daher, dass eine surjektive Abbildung

 f :  Y → X  zu einer Äquivalenzrelation führt, deren Äquivalenzklassen die Urbil-

der der Punkte von  X  sind. Bezeichnen wir diese Äquivalenzrelation mit  ∼, so

können wir  X  mit  Y /∼, der Menge der Äquivalenzklassen, identifizieren, also als

Quotienten auffassen. Eine Menge  W ⊆ X  ist offene Menge der Quotientento-

pologie genau dann, wenn ihr Urbild  f − 1( W ) in  Y  offen ist, und eine Abbildung

 g:  X → Z  von  X  in einen topologischen Raum  Z  ist genau dann bezüglich der

Quotiententopologie stetig, wenn die Komposition  g ◦ f  stetig ist. Eine stetige

Abbildung  X → Z  ist also dasselbe“ wie eine stetige Abbildung  h:  Y → Z, die

” 

jedes  f -Urbild eines Punktes von  X  auf einen Punkt von  Z  abbildet. Die letzte

Aussage bedeutet einfach, dass es eine Abbildung  g:  X → Z  mit  h =  g ◦ f  gibt. 

Es folgen einige Beispiele. 

(i) (Kollabieren eines Unterraums) Es sei  Y  ein topologischer Raum und

 A ⊆ Y . Zwei Punkte von  Y  seien äquivalent, wenn sie entweder gleich sind

oder beide in  A  liegen. Der zugehörige Quotientenraum wird aus naheliegenden

Gründen mit  Y /A  bezeichnet. Er entsteht aus  Y , indem man  A  auf einen Punkt

kollabieren lässt. 

(ii) (Kegel über  Z) Es sei  Z  ein topologischer Raum, [0 ,  1] sei das Einheitsin-

tervall mit der Standardtopologie. Dann heißt aus naheliegenden Gründen der

Raum  Z × [0 ,  1] der Zylinder über  Z  und  C( Z) := ( Z × [0 ,  1]) /( Z × { 1 }) der Kegel ¨

 uber Z. 

Z × {1}

C(Z)

Z × [0, 1]


Z

Z × {0}


Z

Z × {0}
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 Warnung:  Das Bild legt nahe, dass der Kegel über z. B. einem Intervall ( a, b)  ⊆

R die Vereinigung aller Verbindungsstrecken im R2 von Punkten im Intervall

( a, b)  ×{ 0 }  mit dem Kegelpunkt (0 ,  1) ist. Das ist aber nicht so. Mit ein bisschen

Nachdenken sieht man, dass der Bildpunkt von ( a, b)  × { 1 }  in  C(( a, b)) keine

abzählbare Umgebungsbasis besitzt. Also ist  C(( a, b)) nicht einmal metrisierbar, 

geschweige denn ein Unterraum von R2. Die Vorstellung, die das Bild vermittelt, 

ist aber korrekt, wenn  Z  ein kompakter (siehe Abschnitt 9.7) Unterraum eines

R n  ist. 

(iii) ( M¨

 obiusband ) Hier nimmt man ein Rechteck, sagen wir  R := [0 ,  1]  ×

[ − 1 ,  1]. Auf  R  sei  ∼  die von (0 , y)  ∼ (1 , −y),  y ∈ [ − 1 ,  1], erzeugte Äquivalenzrelation. Der Quotientenraum  R/∼, eigentlich jeder dazu homöomorphe Raum, 

heißt Möbiusband (siehe Bild). 

Bild von  { 0 } × [ − 1 ,  1]

(iv) (Verkleben zweier Räume mittels einer Abbildung) Hier nimmt man

zwei (disjunkte) Räume  X  und  Y  und klebt“ einen Unterraum  A  von  X  an

” 

 Y  an. Dazu muss man für alle  a ∈ A  festlegen, an welchen Punkt von  Y

der Punkt  a  angeklebt wird. Das macht man mit einer stetigen Abbildung

 f :  A → Y . Etwas formaler betrachtet man auf der disjunkten Vereinigung

 X  Y  die von  a ∼ f ( a),  a ∈ A, erzeugte Äquivalenzrelation und bildet

den Quotientenraum ( X  Y ) /∼ =:  X ∪f Y . Dabei ist eine Teilmenge von

 X  Y  genau dann offen, wenn ihre Durchschnitte mit  X  und  Y  offen sind. 


X

Verklebung von  A  an  f ( A)


Y

Die naheliegende Abbildung  Y → X ∪f Y  ist dann eine Einbettung, d. h. ein

Homöomorphismus auf sein Bild. Ist speziell  Y  ein Punkt, so erhalten wir  X/A. 

Die Stetigkeit von  f  garantiert eine Verträglichkeit der offenen Mengen von  X, 

 Y  und  X ∪f Y . Dennoch muss man sich, selbst bei sehr harmlosen Klebeab-

bildungen, auf Überraschungen einstellen. Sind zum Beispiel  X = R  × { 1 }  und

 Y = R  × { 0 }  disjunkte Kopien von R, ist  A = R  \ { 0 }  und  f ( x,  1) = ( x,  0), x ∈  R \{ 0 }, so enthält  X ∪f Y  zwei zu R homöomorphe Unterräume, nämlich die

Bilder von  Y  und  X. Damit besitzt jeder Punkt des Quotienten beliebig kleine

zu offenen Intervallen homöomorphe offene Umgebungen, aber jede Umgebung

des Bildpunkts  x 1 von ( x,  1) trifft jede Umgebung des Bildpunkts  x 0 von ( x,  0), 
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obwohl in  X ∪f Y  die Punkte  x 0 und  x 1 verschieden sind. So etwas kann in

metrischen Räumen nicht passieren. 

(v) (Nochmals das Möbiusband) Nimm den Kreisring  X :=  {z ∈  C  |  1  ≤

 |z| ≤  2 }, den Unterraum  A :=  {z ∈  C  | |z| = 1 }  von  X  und eine weitere Kopie

 Y  von  A, die wir uns als zu  X  disjunkt denken. Definiere  f :  A → Y  durch

 f ( z) =  z 2. Dann ist  X ∪f Y  wieder ein Möbiusband. Mit etwas Nachdenken

findet man einen Homöomorphismus, der den Unterraum  Y  von  X ∪f Y  auf den

Mittelkreis des Möbiusbandes, d.h. das Bild von [0 ,  1]  × { 0 }  in  R/∼  aus Beispiel

(iii) abbildet. 

(vi) (Anheften einer  n-Zelle an  Y ) Dies ist ein Spezialfall des Verklebens, bei

der  X =  Bn, die Einheitskugel im R n, und  A =  Sn− 1 :=  {x ∈  R n | x = 1 }  die

 n −  1-dimensionale Sphäre, also der Rand von  Bn  ist. (Diese Konstruktion ist in

obigem Bild angedeutet.) Das Anheften einer 0-Zelle bedeutet, einen isolierten

Punkt hinzuzufügen. Anstelle  einer n-Zelle kann man auf naheliegende Wei-

se auf einen Schlag eine beliebige Familie von  n-Zellen anheften. Einen Raum, 

den man aus der leeren Menge durch sukzessives Anheften von Familien von

 n-Zellen,  n = 0 , . . . , k, erhält, nennt man einen  k-dimensionalen  CW-Komplex

(hier wird natürlich angenommen, dass die Familie der angehefteten  k-Zellen

nichtleer ist). Diese Räume spielen in der geometrischen Topologie und Homo-

topietheorie eine wichtige Rolle. 

9.5

Zusammenhang

Der Zwischenwertsatz der elementaren Analysis (siehe Abschnitt 8.3) beruht

wesentlich auf der Vollständigkeit von R. Wir werden den Zwischenwertsatz in

diesem Abschnitt deutlich verallgemeinern und seinen Beweis auf den Zusam-

menhangsbegriff gründen. Um den klassischen Satz als Spezialfall zu erhalten, 

müssen wir zeigen, dass das Einheitsintervall [0 ,  1] zusammenhängend ist, und

hier geht wieder ein, dass R vollständig ist. 

Bevor wir den Begriff Zusammenhang definieren, betrachten wir einen Raum

 X, der sich in zwei nicht leere Mengen  A  und  B :=  X \A  zerlegen lässt, die nichts

miteinander zu tun haben. Letzteres soll heißen, dass jeder Punkt von  A  eine zu

 B  disjunkte und damit in  A  liegende Umgebung besitzt und jeder Punkt von  B

eine zu  A  disjunkte und damit in  B  liegende Umgebung besitzt. Zwangsläufig

sind dann  A  und  B  offen und abgeschlossen, und die Abbildung  f :  X → { 0 ,  1 }, 

 f ( x) = 0, falls  x ∈ A,  f ( x) = 1, falls  x ∈ B, ist dann stetig und surjektiv. Die

stetige Abbildung  f  zerreißt“  X  in zwei Teile, und da vorstellungsgemäß (siehe

” 

Abschnitt 9.2) stetige Abbildungen nichts auseinanderreißen, was zusammen-

gehört, fassen wir dann  X  als nicht zusammenhängend auf. Positiv formuliert

lautet die Definition: Ein topologischer Raum  X  heißt  zusammenh¨

 angend, wenn

 X  die einzige nichtleere offene und abgeschlossene Teilmenge von  X  ist. 
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Die Existenz einer von  X  verschiedenen nichtleeren offenen und abgeschlosse-

nen Menge  A  ist äquivalent zur Existenz einer Zerlegung von  X  in zwei disjunkte

offene nichtleere Mengen, nämlich  A  und  X \A. Wie wir gesehen haben, ist diese

Aussage wiederum äquivalent zur Existenz einer stetigen surjektiven Abbildung

 f :  X → { 0 ,  1 }. 

Aus der Definition folgt unmittelbar, dass stetige Bilder zusammenhängen-

der Räume zusammenhängend sind. Denn ist  f :  X → Y  surjektiv und stetig

und ist  A ⊆ Y  nichtleer, offen, abgeschlossen und von  Y  verschieden, so ist

 f − 1( A) nichtleer, offen, abgeschlossen und von  X  verschieden. Insbesondere ist

jeder zu einem zusammenhängenden Raum homöomorphe Raum selbst zusam-

menhängend. 

Ein wichtiges Beispiel für einen zusammenhängenden Raum ist das Einheitsin-

tervall [0 ,  1]. Sei nämlich  A  eine nichtleere offene und abgeschlossene Teilmenge. 

Indem wir notfalls zum Komplement übergehen, können wir annehmen, dass

0  ∈ A  ist. Ist das Komplement  B  von  A  nichtleer, so sei  m  das Infimum von  B. 

Da  A  und  B  offen sind, kann  m  weder zu  A  noch zu  B  gehören, und wir haben

einen Widerspruch. 

Eine Teilmenge  A  eines Raumes heißt zusammenhängend, falls  A  als Un-

terraum zusammenhängend ist. Ist  A ⊆ X  zusammenhängend, so ist auch  A

zusammenhängend. Denn ist  C  eine offene und abgeschlossene Teilmenge von

 A, so ist  A ∩ C  offen und abgeschlossen in  A. Wichtig ist, dass  A ∩ C  nicht leer

ist, wenn  C =  ∅. Das liegt natürlich daran, dass jeder Punkt von  A  im Abschluss

von  A  liegt. 

Sind  A  und  B  zusammenhängende Teilmengen eines Raumes und trifft  A  die

Menge  B  oder  B  die Menge  A, so ist  A∪B  zusammenhängend, und ist  Aj,  j ∈ J, 

eine Familie zusammenhängender Teilmengen mit nichtleerem Durchschnitt, so



ist


A

 j∈J

 j  zusammenhängend. Insbesondere ist für einen gegebenen Punkt

 x 0  ∈ X  die Menge aller Punkte  x, zu denen es eine stetige Abbildung  w: [0 ,  1]  →

 X  mit  w(0) =  x 0 und  w(1) =  x  gibt, zusammenhängend. Ein solches  w  nennen

wir Weg (in  X) von  x 0 nach  x, und gibt es zu jedem Punkt  x  von  X  einen Weg

von  x 0 nach  x, so nennen wir  X wegzusammenhängend. 

Wegzusammenhängende Räume sind zusammenhängend. Die Umkehrung gilt

nicht. Das Standardbeispiel dazu ist der Raum  X :=  {( x,  sin(1 /x))  ∈  R2  |

0  < x ≤  1 } ∪ {(0 , y)  ∈  R2  | − 1  ≤ y ≤  1 }, d. h. der Abschluss des Graphen

der Funktion  x →  sin(1 /x), 0  < x ≤  1 (vgl. Skizze auf Seite 171). Nun ist

der Graph einer auf (0 ,  1] definierten stetigen Funktion als stetiges Bild der

wegzusammenhängenden Menge (0 ,  1] zusammenhängend, also ist auch  X  als

Abschluss einer zusammenhängenden Menge zusammenhängend. Es gibt aber

keinen Weg in  X  von (1 /π,  0) zu irgendeinem Punkt der Form (0 , y)  ∈ X. Das

liegt daran, dass die zweite Komponente  w 2 eines solchen Wegs  w = ( w 1 , w 2) in

jedem Intervall ( τ − ε, τ ) jeden Wert zwischen  − 1 und 1 unendlich oft annimmt, 

wenn  τ  der erste Zeitpunkt  t  ist, an dem  w 1( t) = 0 ist. Aber  w 2( t) muss für

 t → τ  gegen  w 2( τ ) konvergieren, wenn  w 2 stetig ist. 

9.6
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 ◦

Für jede Teilmenge  A  eines Raumes  X  ist  X =  A ∪  Fr  A ∪ ( X \ A) eine dis-

 ◦

junkte Zerlegung von  X, und  A  und  X \ A  sind offen. Eine zusammenhängen-

 ◦

de Teilmenge von  X, die  A  und  X \ A  trifft, muss deshalb auch Fr  A  treffen. 

Zusammen mit der Tatsache, dass stetige Bilder zusammenhängender Räume

zusammenhängend sind, erhalten wir den Zwischenwertsatz:

 Es sei B ⊆ Y ein Unterraum und f :  X → Y sei stetig. Ist X

 ◦

 zusammenh¨

 angend und trifft f ( X)  sowohl B als auch Y \B, so trifft

 f ( X)  auch  Fr  B. 

Den üblichen Zwischenwertsatz erhalten wir aus der Tatsache, dass jedes In-

tervall [ a, b] zusammenhängend ist und dass für jeden Wert  c  zwischen  f ( a) und

 f ( b),  f : [ a, b]  →  R stetig, der Rand von ( c, ∞) in R gleich  {c}  ist. Ist also eine

der Zahlen  f ( a) und  f ( b) größer als  c  und die andere kleiner, so nimmt  f  in

( a, b) den Wert  c  an. 

Auch für gewisse Beweise lässt sich der Zusammenhangsbegriff nutzen. Wenn

man z. B. nachweisen will, dass alle Punkte eines Raums eine gewisse Eigen-

schaft besitzen, so genügt es bei einem zusammenhängenden Raum zu zeigen, 

dass die Menge der Punkte, die die Eigenschaft erfüllen, nichtleer, offen und

abgeschlossen ist. Hier ist ein Beispiel. Es sei  X  ein Raum, in dem jeder Punkt

 x  eine Umgebung  Ux  besitzt, so dass es zu jedem  y ∈ Ux  einen Weg in  X  von

 x  nach  y  gibt. Dann kann man zeigen, dass  X  wegzusammenhängend ist, wenn

 X  zusammenhängend ist. Wir nutzen dazu aus, dass ein Weg von  a  nach  b  und

ein Weg von  b  nach  c  sich zu einem Weg von  a  nach  c  zusammensetzen lassen. 

Weiter ist für einen Weg  w  von  a  nach  b  die Abbildung  w−( t) :=  w(1  − t), 

 t ∈ [0 ,  1], ein Weg von  b  nach  a. Verwendet man dies, so sieht man, dass die

Menge  V  aller Punkte von  X, die mit einem gegebenen Punkt  x 0 durch einen

Weg verbunden sind, nichtleer, offen und abgeschlossen und somit ganz  X  ist. 

Insbesondere ist ein zusammenhängender lokal wegzusammenhängender Raum

wegzusammenhängend. Dieses Argumentationsschema wird häufig in der Funk-

tionentheorie (vgl. Abschnitt 8.9) angewandt. 

Dabei heißt ein Raum  lokal wegzusammenh¨

 angend, wenn jeder Punkt eine

Umgebungsbasis aus wegzusammenhängenden Umgebungen besitzt. Analog de-

finiert man  lokal zusammenh¨

 angend  oder – allgemeiner – lokal

irgendetwas“, 

” 

wenn irgendetwas“ eine Eigenschaft ist, die topologische Räume haben können. 

” 

9.6

Trennung

Sind  x  und  y  verschiedene Punkte des metrischen Raumes ( X, d), so sind für  ε < 

 d( x, y) / 2 die  ε-Umgebungen  B( x, ε) , B( y, ε) von  x  und  y  disjunkt. Insbesondere sind alle Punkte eines metrischen Raumes abgeschlossen. (Hier erlauben wir uns

wieder wie schon im Abschnitt 9.1, einpunktige Mengen durch ihre Punkte zu
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benennen.) Sind weiter  A  und  B  disjunkte abgeschlossene Mengen, so ist die

Funktion

 d( x, A)  − d( x, B)

 f ( x) :=

 , 

 x ∈ X, 

 d( x, A) +  d( x, B)

eine stetige Abbildung  f :  X → [ − 1 ,  1] mit  A ⊆ f− 1(1) und  B ⊆ f − 1( − 1). 

Insbesondere sind  f − 1((0 ,  1]) und  f − 1([ − 1 ,  0)) disjunkte Umgebungen von  A

und  B. Anschaulich gesprochen lassen sich in metrischen Räumen Punkte und

sogar disjunkte abgeschlossene Mengen durch offene Mengen trennen. 

In einem indiskreten Raum lassen sich je zwei nichtleere disjunkte Mengen

nicht durch offene Mengen trennen (außer  ∅  und  X  gibt es ja keine), und gibt

es in ihm mindestens zwei Punkte, so ist kein Punkt abgeschlossen. Beim Ver-

kleben zweier Räume (Beispiel (iv) in Abschnitt 9.4) haben wir ein Beispiel

eines Raumes gesehen, dessen Punkte alle abgeschlossen sind, es aber Punkte

gab, die sich nicht durch offene Mengen trennen ließen. Will man also über die

Trennungseigenschaften verfügen, die wir z. B. von Unterräumen euklidischer

Räume kennen, so muss man diese fordern. Räume, die eine oder mehrere der

angesprochenen Trennungseigenschaften besitzen, bekommen dann einen spezi-

ellen Namen. 

Die vielleicht wichtigsten darunter sind die  Hausdorffr¨

 aume, in denen sich je

zwei Punkte durch offene Mengen trennen lassen, und die  normalen R¨

 aume. 

Letztere sind Räume, in denen alle Punkte abgeschlossen sind und sich zwei

disjunkte abgeschlossene Mengen durch offene Mengen trennen lassen. 

Hausdorffräume heißen oft auch  T 2-Räume, und Räume, in denen alle Punk-

te abgeschlossen sind, heißen  T 1-Räume.  T 3-Räume sind Räume, in denen sich

abgeschlossene Mengen und in ihnen nicht enthaltene Punkte durch offene Men-

gen trennen lassen, in  T 4-Räumen lassen sich je zwei disjunkte abgeschlossene

Mengen durch offene Mengen trennen. Ein Raum ist also normal, wenn er  T 1-

und  T 4-Raum ist. Ein Raum, der  T 1- und  T 3-Raum ist, heißt  regulär. Wie wir

oben gesehen haben, sind metrische Räume normal. 

Ein ganz wichtiges Ergebnis ist, dass in  T 4-Räumen disjunkte abgeschlosse-

ne Mengen sogar durch stetige Abbildungen getrennt werden können. Genauer

gelten:

(Fortsetzungssatz von Tietze)

 Jede auf einer abgeschlossenen Menge A eines T 4 -Raumes X vor-

 gegebene stetige Funktion f :  A → [0 ,  1]  lässt sich zu einer stetigen

 Funktion F :  X → [0 ,  1]  fortsetzen. 

Korollar (Lemma von Urysohn)

 Sind A und B disjunkte abgeschlossene Mengen eines T 4 -Raumes X, 

 so gibt es eine stetige Abbildung F :  X → [0 ,  1]  mit F ( A)  ⊆ { 0 } und

 F ( B)  ⊆ { 1 }. 

9.7

Kompaktheit
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Zwei Eigenschaften beschränkter abgeschlossener Teilmengen  A  des R n  spielen

in der Analysis eine wichtige Rolle. Einmal besitzt jede Folge von Punkten in

 A  einen Häufungspunkt in  A, und zum anderen nimmt jede stetige Funktion  f :

 A →  R auf  A  ihr Maximum und ihr Minimum an. Diese Aussagen gelten für

beschränkte abgeschlossene Teilmengen eines vollständigen metrischen Raumes

im Allgemeinen nicht mehr. Eine Analyse der Beweise zeigt, dass die sogenann-

te Heine-Borel-Eigenschaft wesentlich ist. Diese wird deshalb zur definierenden

Eigenschaft für kompakte Räume. Wir benötigen zuvor den Begriff der  ¨

 Uber-

 deckung eines Raumes X. Das ist eine Familie  W := ( Wj) j∈J  von Teilmengen



von  X  mit  X =


W

 j∈J

 j .  Eine Teilüberdeckung von  W  ist eine Unterfamilie

( Wj) j∈I, I ⊆ J, die wieder eine Überdeckung ist. Die Teilüberdeckung heißt

endlich, wenn  I  endlich ist. Sind alle  Wj,  j ∈ J, offen, so heißt die Überdeckung

 W  offen. Mit diesen Bezeichnungen nennen wir einen topologischen Raum  kom-

 pakt, wenn jede offene Überdeckung eine endliche Teilüberdeckung besitzt. Eine

 Teilmenge A von X heißt kompakt, wenn sie als Unterraum kompakt ist. 

Ist  f :  X → Y  stetig und ist  X  kompakt, so ist auch  f ( X) kompakt. Denn ist

( Wj) j∈J  eine offene Überdeckung von  f ( X), so ist wegen der Stetigkeit von  f  die

Familie ( f − 1( Wj )) j∈J  eine offene Überdeckung von  X. Ist ( f − 1( Wj)) j∈I  eine

endliche Teilüberdeckung von  X, so ist ( Wj) j∈I  eine endliche Teilüberdeckung

der ursprünglichen Überdeckung von  f ( X). Insbesondere ist also jeder zu einem

kompakten Raum homöomorphe Raum selbst kompakt. 

Ist  A ⊆ X  ein Unterraum von  X, so gehört zu jeder offenen Menge  V  von  A

nach Definition der Unterraumtopologie eine offene Menge  W  von  X  mit  V =

 W ∩ A. Zu einer offenen Überdeckung von  A  gehört also eine Familie ( Wj) j∈J

offener Mengen von  X, deren Vereinigung  A  enthält. Ist  A  abgeschlossen, so

ist ( Wj) j∈J  zusammen mit der offenen Menge  X \ A  eine offene Überdeckung

von  X. Also ist jede  abgeschlossene  Teilmenge eines kompakten Raums selbst

kompakt. 

Jede endliche Teilmenge eines topologischen Raumes ist kompakt. In einem

diskreten Raum sind genau die endlichen Teilmengen kompakt. In einem indis-

kreten Raum sind alle Teilmengen kompakt. Es braucht also nicht jede kom-

pakte Teilmenge eines Raumes abgeschlossen zu sein. Es gilt aber: In einem

Hausdorffraum ist jede kompakte Teilmenge abgeschlossen. 

Etwas allgemeiner gilt, dass sich in einem Hausdorffraum je zwei disjunkte

kompakte Mengen durch offene Mengen trennen lassen. Es folgt, dass jeder

kompakte Hausdorffraum normal ist. 

Weiter sehen wir, dass eine kompakte Teilmenge  A  eines metrischen Raumes

abgeschlossen und beschränkt ist. Denn wäre  A  nicht beschränkt und ist  x ∈ A, 

so wäre ( B( x, i)  ∩ A) i∈ N eine offene Überdeckung von  A, die keine endliche

Teilüberdeckung besitzt. 
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Daraus folgt unmittelbar, dass eine auf einem kompakten Raum definierte

stetige Funktion ihr Maximum und Minimum annimmt. Denn ist  f :  X →  R

stetig, so ist mit  X  auch  f ( X) kompakt, also in R beschränkt und abgeschlossen. 

Also gehören inf  f ( X) und sup  f ( X) zu  f ( X). 

In R n  sind umgekehrt beschränkte und abgeschlossene Mengen auch kompakt

( Satz von Heine-Borel ). Dazu genügt es nachzuweisen, dass ein  n-dimensionaler

Würfel kompakt ist. Denn eine beschränkte abgeschlossene Teilmenge des R n

liegt in einem Würfel und ist in diesem abgeschlossen. Dass ein Würfel der

Kantenlänge  a  kompakt ist, zeigt man mit dem Intervallschachtelungsargu-

ment aus der elementaren Analysis. Man startet mit einer offenen Überdeckung

des Würfels. Besitzt diese keine endliche Teilüberdeckung, so zerlege man den

Würfel in 2 n  Würfel der Kantenlänge  a/ 2. Mindestens einer davon besitzt kei-

ne endliche Teilüberdeckung der ursprünglichen Überdeckung. Diesen zerlegt

man in 2 n  Würfel der Kantenlänge  a/ 4. Wieder besitzt wenigstens einer davon

keine endliche Teilüberdeckung. So fortfahrend erhalten wir eine absteigende

Folge von Würfeln  Wi  der Kantenlänge  a/ 2 i, also eine Würfelschachtelung, die

gegen einen Punkt  x  des ursprünglichen Würfels konvergiert, und kein  Wi  be-

sitzt eine endliche Teilüberdeckung. Nun liegt  x  in einer der offenen Mengen

der Überdeckung, sagen wir in  V . Dann gibt es  ε >  0 mit  B( x, ε)  ⊆ V . Da

 √

 Wi  Durchmesser

 na/ 2 i  hat, lässt sich daher, im Widerspruch zur Wahl von

 √

 Wi, jedes  Wi  mit

 na/ 2 i < ε  schon mit einer einzigen Menge der Überdeckung

überdecken, nämlich durch  V . 

Dass in einem kompakten Raum jede Folge einen Häufungspunkt besitzt, 

sieht man am besten, indem man die Kompaktheit mit Hilfe abgeschlosse-

ner Mengen formuliert. Ist  W = ( Wj) j∈J  eine offene Überdeckung von  X, 

so ist  A = ( Aj) j∈J  mit  Aj :=  X \ Wj,  j ∈ J, eine Familie abgeschlosse-

ner Mengen mit leerem Durchschnitt und umgekehrt. Also ist  X  genau dann

kompakt, wenn jede Familie ( Aj) j∈J  abgeschlossener Mengen in  X  mit leerem

Durchschnitt eine endliche Teilfamilie mit leerem Durchschnitt enthält ( endli-

 che Durchschnittseigenschaft ). Ist nun ( xn) eine Folge im topologischen Raum

 X, so ist nach Definition  z ∈ X  ein Häufungspunkt von ( xn), wenn jede Um-

gebung von  z  jedes Endstück  {xn | n ≥ m},  m ∈  N, der Folge trifft. Also ist

 ∞ {x

 m=1

 n | n ≥ m}  die Menge  H  der Häufungspunkte der Folge ( xn). Da keine



der Mengen

 m

 {x

 k=1

 n | n ≥ k} =  {xn | n ≥ m}  leer ist, ist für kompaktes  X  die

Menge  H  auch nicht leer. 

Beachte: Im Allgemeinen ist es nicht richtig, dass ein Häufungspunkt  z  ei-

ner Folge Grenzwert einer Teilfolge ist. Es ist richtig, falls  z  eine abzählbare

Umgebungsbasis besitzt. Demnach besitzt in einem kompakten Raum, der das

1. Abzählbarkeitsaxiom erfüllt, jede Folge eine konvergente Teilfolge. Ein Raum, 

in dem jede Folge eine konvergente Teilfolge besitzt, heißt  folgenkompakt (vgl. 

Abschnitt 8.1). 

Ein ganz wichtiges Kompaktheitsergebnis ist der  Satz von Tikhonov :

9.8
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 Ist ( Xj) j∈J eine Familie nichtleerer topologischer Räume, so ist

' 


X

 j∈J

 j genau dann kompakt, wenn jedes Xj , j ∈ J , kompakt ist. 

Eine Richtung der Implikation ist leicht, da jedes  Xi  stetiges Bild des Produkts

unter der Projektion auf den  i-ten Faktor ist. Die Umkehrung ist interessanter

und für unendliche Produkte etwas diffiziler. Der übliche Beweis nutzt das Fil-

terkonzept, auf das wir nicht eingehen, und beruht ganz wesentlich darauf, wie

für unendliche Produkte die Produkttopologie definiert wurde. 

Wegen der guten Eigenschaften kompakter Räume sucht man nach  Kompak-

 tifizierungen  gegebener topologischer Räume  X. Das sind kompakte Räume ˆ

 X, 

die  X  als  dichten  Teilraum enthalten. Letzteres heißt, dass ˆ

 X  der Abschluss  X

von  X  in ˆ

 X  ist. 

Die  Aleksandrovsche Einpunkt-Kompaktifizierung X+ entsteht aus  X  durch

Hinzufügen eines einzigen neuen Punkts  ∞. Eine Umgebungsbasis von  ∞  bilden

die Mengen  {∞}∪( X \K) mit  K ⊆ X  kompakt. Die Punkte aus  X  behalten ihre

Umgebungsbasen aus  X. Ist  X  hausdorffsch und sind somit kompakte Mengen

abgeschlossen, so definiert dies eine Topologie auf  X+, und  X+ ist kompakt. 

Wenn  X  außerdem  lokal kompakt  ist, d. h., wenn jeder Punkt von  X  eine Umge-

bungsbasis aus kompakten Umgebungen besitzt, so ist  X+ selbst hausdorffsch. 

Ist  X  nicht kompakt, so ist es dicht in  X+. Zum Beispiel ist (R n)+ homöomorph

zur  n-dimensionalen Sphäre  Sn :=  {x ∈  R n+1 | x = 1 }. Die stereographische

Projektion  Sn \ {(0 , . . . ,  0 ,  1) } →  R n  zusammen mit (0 , . . . ,  0 ,  1)  → ∞  definiert einen Homöomorphismus von  Sn  auf  X+. Die Alexandrovsche Einpunkt-

Kompaktifizierung eines Raumes  X  wird oft mit  αX  bezeichnet. 

Die mengentheoretische Topologie kennt noch andere Kompaktifizierungen. 

Die größte unter ihnen ist die  Stone- ˇ

 Cech-Kompaktifizierung βX  eines halb-

wegs gutartigen Raums  X, etwa eines normalen Raums. Benötigt die Aleksan-

drovsche Kompaktifizierung maximal einen weiteren Punkt, so enthält  βX  meis-

tens sehr viele weitere Punkte; z. B. hat  β N die Mächtigkeit der Potenzmenge

von R. Sie hat folgende universelle Eigenschaft: Ist  f :  X → Y  eine stetige Ab-

bildung in einen kompakten Hausdorffraum, so existiert eine stetige Fortsetzung

 F :  βX → Y . Das Beispiel  f ( x) = sin 1 /x  zeigt also, dass [0 ,  1] nicht die Stone-

Čech-Kompaktifizierung von (0 ,  1] ist. 

9.8

Fl¨

achen im R3

Dieser Abschnitt gewährt uns einen ersten knappen Einblick in die  Differential-

 geometrie. Diese studiert Räume, die als topologische Räume lokal aussehen wie

offene Mengen des R n  und mit einer infinitesimal gegebenen Metrik versehen

sind, was sie für die Physik interessant macht. 

Wir beschränken uns auf Flächen im R3, also Objekte, die wir uns recht gut

vorstellen können. Schon diese Theorie hat eine lange Geschichte mit vielen
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Ergebnissen und vielen immer noch offenen Fragen. Wir konzentrieren uns auf

die Erläuterung einiger grundlegenden Konzepte und einiger Beispiele. 

Eine  Fl¨

 ache  im R3 ist ein Unterraum  M  des R3, in dem jeder Punkt eine zu

einer offenen Teilmenge des R2 homöomorphe Umgebung besitzt. Es gibt also

zu jedem  p ∈ M  einen Homöomorphismus  ϕ:  U → V  mit  U  offen in R2,  V

offen in  M  und  p ∈ V . Ein solches  ϕ  nennen wir eine lokale Parametrisierung

von  M  um  p. Damit  M  keine Kanten oder Spitzen hat, sondern schön glatt

aussieht, verlangen wir zusätzlich, dass alle  ϕ, aufgefasst als Abbildung nach


R

 ∂ϕ

 ∂ϕ

3, unendlich oft stetig differenzierbar und dass die Spalten

und

der

 ∂u 1

 ∂u 2

3  ×  2-Matrix der partiellen Ableitungen erster Ordnung in jedem Punkt  u ∈ U

linear unabhängig sind. 

∂ϕ (u)

n = 2

ϕ

∂p2


M

e2


p

u e


W

1


∂ϕ (u)

∂p1

U ⊂ R2

Der von diesen beiden Vektoren aufgespannte Unterraum des R2 heißt der

 Tangentialraum  in  p =  ϕ( u) an  M  und wird mit  Tp( M ) bezeichnet. Die Tan-

gentialebene in  p  an  M , also die Ebene, die  M  in  p  berührt, ist der affine

Unterraum  p +  Tp( M ). Der Raum  Tp( M ) und damit auch die Tangentialebene

an  M  in  p  hängen nur von  M  und  p  ab und nicht von der gewählten lokalen

Parametrisierung. 

Einfache Beispiele sind die Lösungsmengen quadratischer Gleichungen wie

 x 2

 a 2 +  y 2

 b 2 +  z 2

 c 2

= 1 (Ellipsoid),  x 2

 a 2 +  y 2

 b 2  − z 2

 c 2

= 1 (einschaliges Hyperboloid), 

 x 2

 a 2  − y 2

 b 2  − z 2

 c 2

= 1 (zweischaliges Hyperboloid) oder  z =  x 2

 a 2 +  y 2

 b 2

(elliptisches

Paraboloid). 

 z

 z

 z

 z

 c

 a  1

 b

 a

 a

 b

 a

 b

 y

 y

 x

 y

 x

 x

 x

 y

Dass diese Mengen tatsächlich Flächen sind, sieht man z. B. beim Ellipsoid

wie folgt. Die offene Teilmenge, deren Punkte positive  z-Koordinate haben, 







kann man durch  ϕ( u 1 , u 2) =  u 1 , u 2 , 

 c 2(1  − u 21

parametrisieren, wobei

 a 2  − u 2

2

 b 2 )

 u 2

 u 2

( u

1

2

1 , u 2) die Punkte der offenen Ellipsenscheibe  a 2 +  b 2  <  1 durchläuft. Ist die  z-







Komponente negativ, so nimmt man  u 1 , u 2 , − c 2(1  − u 21

, und verfährt

 a 2  − u 2

2

 b 2 )

analog mit den Punkten, deren  x- bzw.  y-Koordinaten von 0 verschieden sind. 
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Weitere beliebte Flächen sind die Rotationsflächen. Man erhält sie durch Ro-

tation um die  x-Achse des in der  x- y-Ebene liegenden Graphen einer positiven

unendlich oft differenzierbaren Funktion. 

Das Standardskalarprodukt des R3 induziert ein Skalarprodukt auf den Tan-

gentialräumen in den Punkten der Fläche  M . Die Abbildung, die jedem Punkt

 p ∈ M  dieses Skalarprodukt in  Tp( M ) zuordnet, heißt  1. Fundamentalform. Für

das Skalarprodukt in  Tp( M ) schreibt man oft  	 , 
p. Ist  ϕ:  U → W  eine loka-

 ∂ϕ

 ∂ϕ

le Parametrisierung, so sind

( u) und

( u) eine Basis von  T

 ∂u

 ϕ( u)( M ), so

 i

 ∂uj

dass man das Skalarprodukt in  p =  ϕ( u) kennt, wenn man die Skalarprodukte

zwischen allen Paaren dieser Basisvektoren kennt. Die entsprechende symme-

trische 2  ×  2-Matrix wird oft mit ( gij( u)) bezeichnet. Der Name Fundamental-

form kommt daher, dass ein Skalarprodukt eine (symmetrische, positiv definite)

quadratische Form ist. Und sie ist fundamental, da sie die metrischen Verhält-

nisse auf der Fläche vollständig bestimmt. Ist  w: [ r, s]  → M  ein stückweise

stetig differenzierbarer Weg in  M , so ist seine Länge (siehe Abschnitt 7.12)

 


 


 s

 	

 s

 w( t) , w( t) 
 dt =

 	w( t) , w( t) 


 r

 r

 w( t)  dt, denn  w( t)  ∈ Tw( t)( M ). Der

Abstand zweier Punkte  a  und  b  in  M  ist für ein in  M  lebendes Wesen das

Infimum der Längen aller stückweise stetig differenzierbaren Wege in  M  von

 a  nach  b. Ist  M  zusammenhängend (Abschnitt 9.5), so gibt es zwischen zwei

Punkten von  M  immer einen unendlich oft differenzierbaren Weg. Dieses Infi-

mum wird nicht immer angenommen. In der  x- y-Ebene ohne den Nullpunkt zum

Beispiel, einer recht simplen Fläche, ist der Abstand zwischen ( − 1 ,  0) und (1 ,  0)

gleich 2, aber jeder Weg zwischen diesen Punkten, der den Nullpunkt meidet, 

ist länger als 2. 

Der Ersatz für gerade Linien auf  M  sind Wege  w: [ r, s]  → M , für die für alle

 r ≤ t 1  < t 2  ≤ s  der Teil von  w  zwischen  t 1 und  t 2 die kürzeste Verbindung auf

 M  zwischen  w( t 1) und  w( t 2) ist, wenn  w( t 1) und  w( t 2) genügend nahe beiein-

ander sind. Ein solcher Weg  w  heißt  Geod¨

 atische, falls  w  zusätzlich proportional

zur Bogenlänge parametrisiert ist. Diese Bedingungen führen zu einer Differen-

tialgleichung 2. Ordnung, so dass wir für jedes  p ∈ M  und  v ∈ Tp( M ) genau

eine maximale Geodätische  w: ( r, s)  → M  finden mit 0  ∈ ( r, s),  w(0) =  p  und

 w(0) =  v. 

Die Geodätischen werden allein durch die 1. Fundamentalform bestimmt, wir

brauchen dazu keine weitere Information, wie die Fläche im R3 liegt. Um den

Unterschied klar zu machen, nennen wir zwei Flächen isometrisch isomorph, 

wenn es eine bijektive stetig differenzierbare Abbildung  f  der einen auf die an-

dere gibt, so dass die Ableitung in jedem Punkt eine Orthonormalbasis dessen

Tangentialraums in eine Orthonormalbasis des Tangentialraums des Bildpunkts

abbildet. Dann gehen nämlich die 1. Fundamentalformen ineinander über. Be-

trachte zum Beispiel den unendlichen Zylinder  {( x, y, z)  | x 2 +  y 2 = 1 }, aus

dem die durch ( − 1 ,  0 ,  0) gehende Mantellinie entfernt worden ist, und den Strei-

fen  −π < x < π  der  x- y-Ebene. Dann bildet  f ( x, y) := (cos( x) ,  sin( x) , y) den
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Streifen bijektiv auf den Zylinder ohne Mantellinie ab. Den Tangentialraum des

Streifens in ( x, y) können wir mit dem R2 identifizieren, und dessen Standard-

basis geht unter der Ableitung von  f  im Punkt ( x, y) über in die Vektoren

( −  sin( x) ,  cos( x) ,  0) und (0 ,  0 ,  1). Das ist eine Orthonormalbasis des Tangential-

raums in (cos( x) ,  sin( x) , y) des Zylinders. Also sind der Streifen und Zylinderteil

isometrisch isomorph. Es gibt aber keine abstandserhaltende Abbildung des R3, 

die die eine Fläche in die andere überführt. 

Eigenschaften einer Fläche, die man aus der 1. Fundamentalform herleiten

kann, nennt man Eigenschaften der inneren Geometrie der Fläche. Man kann

sie allein aus den Abstandsverhältnissen in der Fläche verstehen, ohne Bezug

zum umgebenden Raum herstellen zu müssen. 

Aber es ist manchmal von Vorteil, dies doch zu tun. Eine geodätische Kurve

 w  in  M  lässt sich nämlich auch dadurch charakterisieren, dass ihre zweite Ablei-

tung in jedem Punkt eine Normale an diese Fläche ist, also auf dem jeweiligen

Tangentialraum senkrecht steht. Damit kann man sehen, dass auf der 2-Sphäre

vom Radius  r  um den Nullpunkt genau die mit konstanter Geschwindigkeit

durchlaufenen Großkreise, das sind die Schnittkreise der Sphäre mit Ebenen

durch den Nullpunkt, die Geodätischen sind. Denn jede Normalengerade an die

Sphäre geht durch den Nullpunkt. Wir sehen auch, dass bei Rotationsflächen

alle Meridiane, das sind die Kurven, die durch Rotation um einen festen Winkel

aus dem die Fläche definierenden Graphen entstehen, Geodätische sind, und auf

dem Zylinder sind es die Kurven konstanter Steigung. 

Überraschend und wichtig für die weitere Entwicklung der Differentialgeome-

trie ist die Tatsache, dass bei Flächen, anders als bei Kurven im Raum, die

innere Geometrie auch Auskunft über Krümmungseigenschaften gibt. Dass es

lokal betrachtet z. B. Unterschiede zwischen der Sphäre und dem Zylinder gibt, 

die wir gefühlsmäßig mit Krümmung verbinden, sehen wir an der Winkelsum-

me geodätischer Dreiecke, die auf dem Zylinder stets  π  ist, aber bei der Sphäre

stets größer ist, selbst wenn das Dreieck sehr klein ist. Auf dem hyperbolischen

Paraboloid  z =  x 2  − y 2 ist diese Summe kleiner als  π. Das Krümmungskonzept, 

das diese Phänomene erklärt, geht zurück auf C. F. Gauß und heißt entspre-

chend Gaußkrümmung. Die Gaußkrümmung ist eine reellwertige Funktion, die

jedem Punkt der Fläche ihre Krümmung in diesem Punkt zuordnet. Die übliche

Definition geschieht mit Hilfe der sogenannten  2. Fundamentalform, die explizit

die Lage der Fläche im umgebenden Raum nutzt. Aus den Eigenschaften der

2. Fundamentalform lässt sich folgende Definition der Gaußkrümmung herleiten, 

die sich zunächst auch auf den umgebenden Raum bezieht. Es sei  b  ein Punkt

der Fläche  M . Es sei  nb  einer der beiden Einheitsvektoren des R3, die ortho-

gonal zum Tangentialraum  Tb( M ) sind. Zu jedem 1-dimensionalen Unterraum

 X  von  Tb( M ) sei  EX  der von  X  und  nb  aufgespannte Unterraum des R3. Der

Durchschnitt von  M  mit dem affinen Unterraum  EX +  b  ist in einer Umgebung

von  b  eine ebene Kurve. Deren Krümmung in  b  sei  kb( X). Beachte, dass  kb( X)

ein Vorzeichen hat. Ist die Kurve durch Bogenlänge parametrisiert, so ist ihre
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zweite Ableitung  kb( X)  · nb. Dabei hängt  kb( X) nicht vom Durchlaufsinn der

Kurve ab. (Das ist anders als in Abschnitt 7.12, ist aber kein Widerspruch, da

dort von einer kanonischen Orientierung der Ebene ausgegangen wird.)

EX + b

nb


M

b


X + b

M ∩ (EX + b)

Man stellt nun fest, dass entweder  kb( X) nicht von  X  abhängt oder dass

es genau zwei zueinander orthogonale  X 1,  X 2 gibt, so dass  kb( X 1) das Mini-

mum und  kb( X 2) das Maximum all dieser Krümmungen ist. Man nennt dann

 X 1 und  X 2 die  Hauptkrümmungsrichtungen  und  kb( X 1) und  kb( X 2) die  Haupt-

 kr¨

 ummungen  von  M  in  b. Diese hängen offensichtlich nicht allein von der inneren

Geometrie ab, wie das Beispiel von Ebene und Zylinder weiter oben zeigt. Ins-

besondere hängen ihre Vorzeichen von der Wahl von  nb  ab. Aber ihr Produkt

 kb( X 1) kb( X 2) lässt sich allein aus der Kenntnis der 1. Fundamentalform in einer

beliebigen Umgebung von  b  in  M  bestimmen. Dies ist die Aussage des gefeierten

 Theorema egregium  von Gauß. Man nennt dieses Produkt die  Gaußkr¨

 ummung

 K( b) von  M  in  b. Im Fall, dass  kb( X) für alle  X  gleich ist, nimmt man natürlich

 kb( X)2 für  K( b), wobei es auf die Wahl von  X  nicht ankommt. 

Punkte, in denen die Gaußkrümmung größer, kleiner oder gleich 0 ist, nennt

man respektive  elliptisch,  hyperbolisch  oder  Flachpunkt. Alle Punkte eines El-

lipsoids haben positive Krümmung, eines hyperbolischen Paraboloids negative

Krümmung, und alle Punkte eines Zylinders haben Krümmung 0. 

Hier sind noch einige mit der Gaußkrümmung verbundene Ergebnisse. 

(a) Winkelsummen: Die Summe der Innenwinkel eines geodätischen Drei-



ecks Δ ist  π +

 K( b)  dA( b), wobei  dA( b) der infinitesimale Flächen-

Δ

inhalt in  b  ist. 

(b) Flächeninhalte von geodätischen Scheiben: Ist  Ab( r) der Flächeninhalt

der Menge der Punkte von  M , deren Abstand von  b  höchstens  r  ist, so

ist  K( b) = lim r→ 0 12(1  − Ab( r)

 πr 2 ). Beachte, dass  πr 2 der Flächeninhalt

der Kreisscheibe vom Radius  r  der Ebene ist. 

(c) Topologie von Flächen, der Satz von Gauß-Bonnet: Für jede kompak-



te Fläche  M  des R3 ist

 K( b)  dA( b) = (1  − g)4 π, wobei  g ≥  0


M

ganz ist. Zwei kompakte Flächen  M 1 und  M 2 des R3 sind genau dann





homöomorph, wenn

 K( b)  dA( b) =

 K( b)  dA( b). Die Zahl  g

 M 1

 M 2

heißt Geschlecht der Fläche. Die Sphäre z. B. hat Geschlecht 0, der

Torus  S 1  × S 1 Geschlecht 1 (siehe auch Abschnitt 9.9). 
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9.9

Mannigfaltigkeiten

Vom Standpunkt der mengentheoretischen Topologie sind Mannigfaltigkeiten

harmlos aussehende Räume mit sehr guten Eigenschaften. Eine  n-dimensionale

Mannigfaltigkeit, oder kürzer  n-Mannigfaltigkeit, ist ein Hausdorffraum  M  mit

abzählbarer Basis, in dem jeder Punkt eine zu einer offenen Teilmenge des R n

homöomorphe offene Umgebung besitzt. Die Flächen im R3 aus Abschnitt 9.8

sind spezielle 2-Mannigfaltigkeiten. Zu einer  n-Mannigfaltigkeit  M  gibt es also

eine Familie von Homöomorphismen  ϕi:  Wi → Ui,  i ∈ J, wobei die  Ui  offen in

R n  sind und ( Wi) i∈J  eine offene Überdeckung von  M  ist. Eine solche Familie

heißt  Atlas von M , die  ϕi  heißen  Karten  des Atlas. Für je zwei Karten  ϕi  und  ϕj

haben wir den Homöomorphismus  ϕji :=  ϕj ◦ ϕ− 1:  ϕ

 i

 i( Wi ∩ Wj )  → ϕj ( Wi ∩ Wj )

zwischen offenen Mengen des R n. Die Abbildungen  ϕji  heißen die Kartenwechsel

des Atlas. Sind alle Kartenwechsel  k-mal stetig differenzierbar, so heißt der Atlas

ein  Ck-Atlas, 0  ≤ k ≤ ∞. Mannigfaltigkeiten mit einem  Ck-Atlas heißen  Ck-

Mannigfaltigkeiten, und unter einer differenzierbaren Mannigfaltigkeit verstehen

wir eine  Ck-Mannigfaltigkeit mit  k ≥  1. Anstelle von  C 0-Mannigfaltigkeit sagt

man meist topologische Mannigfaltigkeit. Die Flächen aus Abschnitt 9.8 sind

 C∞-Mannigfaltigkeiten. Differenzierbare Mannigfaltigkeiten sind die globalen

Objekte, auf denen Differentialgleichungen leben. Genauer lassen sich ihnen auf

natürliche Weise Objekte wie z. B. das Tangentialbündel und damit verwand-

te Vektorbündel zuordnen, auf denen Differentialgleichungen leben. Deswegen

spielen sie in der Mathematik und Physik eine wichtige Rolle. 

Eine Abbildung  f :  M → N  zwischen  Ck-Mannigfaltigkeiten heißt  Ck-

 Abbildung, wenn für jede Karte  ϕ:  W → U  von  M  und  ϕ:  W  → U   von

 N  die Abbildung  ϕ ◦ f ◦ ϕ− 1:  ϕ( W ∩ f − 1( W ))  → ϕ( W ) zwischen offenen

Mengen euklidischer Räume  k-mal stetig differenzierbar ist. 

Zwei topologische Mannigfaltigkeiten heißen isomorph, wenn sie homöomorph

sind. Zwei  Ck-Mannigfaltigkeiten heißen isomorph, wenn es eine bijektive Abbil-

dung  f  zwischen ihnen gibt, so dass  f  und  f − 1 beide  k-mal stetig differenzierbar

sind. Ein solches  f  nennt man einen  Ck- Diffeomorphismus, manchmal auch nur

Diffeomorphismus, dies aber nur, wenn  k ≥  1 ist. 

Zwei  Ck-Atlanten einer Mannigfaltigkeit nennen wir äquivalent, wenn ihre

Vereinigung wieder ein  Ck-Atlas ist. Dies ist genau dann der Fall, wenn die Iden-

tität ein  Ck-Diffeomorphismus ist. Wir identifizieren dann die beiden Mannig-

faltigkeiten. Jede  Ck-Mannigfaltigkeit besitzt einen maximalen  Ck-Atlas. Man

kann zeigen, dass für  k ≥  1 jeder maximale  Ck-Atlas einen  C∞-Unteratlas be-

sitzt. Wir betrachten deswegen ab jetzt nur noch  C∞-Mannigfaltigkeiten. 

Hier sind einige der wesentlichen Fragen, die man Mannigfaltigkeiten stellt, 

und einige Antworten. 

(a) Glätten: Besitzt der maximale Atlas jeder topologischen  n-Mannigfal-

tigkeit einen  C∞-Unteratlas? Ja für  n ≤  3; aber im Allgemeinen nein
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in höheren Dimensionen. In den Dimensionen 5, 6 und 7 ist die Ant-

wort positiv, wenn einige Homologiegruppen (siehe Abschnitt 9.11)

verschwinden. Ab Dimension 8 nutzt auch das nichts mehr. 

(b) Eindeutigkeit der Glättungen: Sind zwei homöomorphe differenzierba-

re Mannigfaltigkeiten diffeomorph? Ja, wenn  n ≤  6 und nicht gleich 4

ist; nein in höheren Dimensionen. 

(c) Klassifikation differenzierbarer und topologischer Mannigfaltigkeiten:

Das ist einfach in den Dimensionen 1 und 2, in Dimension 3 im Prinzip

gemacht, aber schwierig, und nachweisbar unmöglich ab Dimension 4. 

Allerdings weiß man sehr viel, wenn man den Homotopietyp der Man-

nigfaltigkeit vorschreibt (siehe dazu Abschnitt 9.10). 

Klassifikationsfragen differenzierbarer und topologischer Mannigfaltigkeiten

in Dimension  n ≥  5 nutzen intensiv Methoden der algebraischen Topologie, auf

die wir ein ganz klein wenig in den Abschnitten 9.10 und 9.11 eingehen. Zu

Dimension 3 und 4 kommen wir weiter unten. Die in all diesen Fällen geleistete

Arbeit wurde in den letzten 50 Jahren reichlich mit Fieldsmedaillen bedacht, 

den Nobelpreisen der Mathematik. 

Dimension 1 und 2 sind relativ einfach zu klassifizieren. Zusammenhängende

1-Mannigfaltigkeiten sind entweder zur Einheitskreislinie im R2 oder zur reellen

Geraden diffeomorph. Um alle kompakten zusammenhängenden Flächen, d. h. 

zusammenhängende 2-Mannigfaltigkeiten, zu beschreiben, ist folgendes Kon-

zept nützlich. Sind  M  und  N  zwei zusammenhängende  n-Mannigfaltigkeiten, 

so erhält man ihre zusammenhängende Summe  M # N , indem man aus  M  und

 N  das Innere einer eingebetteten  n-dimensionalen Kugel entfernt und die bei-

den Resträume entlang der Ränder der Kugeln vermöge eines Diffeomorphismus

oder Homöomorphismus verklebt.  M # N  ist bis auf Isomorphie von den Wahlen

der Kugeln unabhängig. 

Eine 2-Mannigfaltigkeit ist  orientierbar, wenn sie keine Kopie des Möbius-

bandes enthält. (Letzteres hat als Fläche im R3 keine

Vorder-“ und

” 

Rückseite“; vgl. die Skizze auf Seite 226.) Jede orientierbare zusammenhängen-

” 

de 2-Mannigfaltigkeit entsteht aus der 2-Sphäre, indem man sukzessive zusam-

menhängende Summen mit dem Torus, der Oberfläche eines Rings im R3, bildet. 

Geschieht dies  g-mal, so erhält man eine Fläche vom Geschlecht  g. 

1

2

. . . 

g

Die kompakten zusammenhängenden nichtorientierbaren Flächen vom Ge-

schlecht  g  sind zusammenhängende Summen von  g  Kopien der projektiven Ebe-

ne. Dabei ist die projektive Ebene die Fläche, die aus der Kreisscheibe durch

Identifizieren gegenüberliegender Randpunkte entsteht. Entfernt man aus der

projektiven Ebene eine Kreisscheibe, so entsteht ein Möbiusband. 
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Kompakte 2-Mannigfaltigkeiten sind genau dann homöomorph, wenn sie glei-

ches Geschlecht haben und beide orientierbar oder beide nichtorientierbar sind. 

In Dimension 3 schnellt der Schwierigkeitsgrad drastisch in die Höhe. Wir

nennen eine 3-dimensionale orientierbare differenzierbare Mannigfaltigkeit ir-

reduzibel, wenn jede differenzierbar eingebettete 2-Sphäre eine Kugel beran-

det. Man kann zeigen, dass jede kompakte zusammenhängende orientierbare

3-Mannigfaltigkeit eine zusammenhängende Summe endlich vieler irreduzibler

3-Mannigfaltigkeiten und endlich vieler Kopien von  S 2 ×S 1 ist und dass die Sum-

manden bis auf die Reihenfolge eindeutig bestimmt sind. Daher interessiert man

sich nur noch für irreduzible 3-Mannigfaltigkeiten. Diese kann man entlang ein-

gebetteter Tori weiter zerlegen. Unter diesen gibt es eine bis auf Diffeomorphie

eindeutige Familie, die die Mannigfaltigkeit in Bestandteile zerlegt, die nur noch

in einem gewissen Sinne triviale Einbettungen von Tori zulässt. Ende der 1970er

Jahre gab Thurston eine Familie von acht Geometrien im Sinne des Erlanger

Programms von Felix Klein (siehe Abschnitt 9.12) an und vermutete, dass je-

der dieser Bestandteile der 3-Mannigfaltigkeit zu einer dieser Geometrien zählt. 

Diese Vermutung wurde 2003 von G. Perelman mit tiefliegenden auf der Theorie

partieller Differentialgleichungen beruhenden Methoden der Differentialgeome-

trie bewiesen. Die Überprüfung der Korrektheit seines Beweises durch eine Rei-

he hochkarätiger Mathematiker hat über sechs Jahre gedauert. Damit ist zwar

noch nicht alles über 3-Mannigfaltigkeiten gesagt, aber man hat doch einen ge-

wissen Überblick. Insbesondere wurde durch Perelman die Poincaré-Vermutung

in Dimension 3 gelöst, eines der sieben Millenniumsprobleme des Clay Ma-

thematical Institute. Es ist bis jetzt das einzige dieser Probleme, das gelöst

wurde. Die Poincaré-Vermutung besagt, dass eine zur 3-dimensionalen Sphäre

homotopieäquivalente (siehe Abschnitt 9.10) 3-Mannigfaltigkeit tatsächlich zur

3-Sphäre homöomorph ist. Das Analogon der Poincaré-Vermutung in den Di-

mensionen 1 und 2 ist einfach, und es wurde in Dimensionen oberhalb 4 in

den 1960er Jahren von S. Smale und in Dimension 4 mit ausgesprochen sub-

tilen Methoden der geometrischen Topologie 1982 von M. Freedman bewiesen. 

Eine kompakte zusammenhängende 3-Mannigfaltigkeit ist genau dann zu  S 3

homotopieäquivalent, wenn sie  einfach zusammenh¨

 angend  ist, d. h., wenn ihre

Fundamentalgruppe (Abschnitt 9.10) trivial ist. Für höher-dimensionale Man-

nigfaltigkeiten muss man zusätzlich fordern, dass alle Homologiegruppen bis zur

halben Dimension verschwinden. 

Dimension 4 ist ein ausgesprochener Sonderfall. Methoden der mathemati-

schen Physik zeigen uns eine unglaublich vielfältige Welt mit noch vielen weißen

Flecken auf der Landkarte. Gibt es bis Dimension 3 zu jeder kompakten topolo-

gischen Mannigfaltigkeit bis auf Diffeomorphie genau eine zu ihr homöomorphe

differenzierbare Mannigfaltigkeit und in Dimension größer als 4, wenn über-

haupt eine, dann höchstens endlich viele, so gibt es unendlich viele kompakte

4-Mannigfaltigkeiten, von denen jede homöomorph zu unendlich vielen paarwei-

se nicht diffeomorphen differenzierbaren Mannigfaltigkeiten ist. Besonders ein-
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drucksvoll ist die Situation für die euklidischen Räume. Ist  n = 4, so gibt es bis

auf Diffeomorphie genau eine zum R n  homöomorphe differenzierbare Mannigfal-

tigkeit. Ist  n = 4, so gibt es überabzählbar viele. Das macht nachdenklich, insbe-

sondere wenn man daran denkt, dass das Raum-Zeit-Kontinuum 4-dimensional

ist. 

9.10

Homotopie

Vermutet man, dass zwei Räume homöomorph sind, so versucht man, einen

Homöomorphismus zwischen ihnen zu konstruieren. Wenn man aber, wie z. B. 

bei R3 und R4, vermutet, dass sie nicht homöomorph sind, und man nicht sieht, 

wie dem Problem direkt beizukommen ist, kann man nach notwendigen Kriterien

suchen, die einer Berechnung eher zugänglich sind. Die Homotopietheorie liefert

hierzu starke Werkzeuge. Sie reduziert Räume auf ein relativ starres Skelett, 

assoziiert zu ihnen Ringe und Gruppen und übersetzt kontinuierliche Probleme

in kombinatorische und algebraische Fragen. 

Im Folgenden bezeichnet  I  stets das Einheitsintervall [0 ,  1]. Ist  f :  X × I → Y

eine Abbildung, so sei  f ( −, t):  X → Y  für  t ∈ I  gegeben durch  f ( −, t)( x) =

 f ( x, t). Analog definieren wir für jedes  x ∈ X  den Weg  f ( x, −):  I → Y . Zwei

stetige Abbildungen  a, b:  X → Y  heißen  homotop, wenn es ein stetiges  f :  X ×

 I → Y  gibt mit  a =  f ( −,  0) und  b =  f ( −,  1). Die Abbildung  f  heißt dann

 Homotopie zwischen a und b. Die Familie der  f ( −, t) verbindet die Abbildungen

 a  und  b  auf stetige Weise durch stetige Abbildungen. Anders ausgedrückt lässt

sich mit Hilfe der  f ( −, t) die Abbildung  a  stetig in die Abbildung  b  deformieren. 

Die Homotopie  f  bewegt dabei für jedes  x ∈ X  den Punkt  a( x) entlang des in

 Y  liegenden Wegs  f ( x, −) in den Punkt  b( x). Ist  A ⊆ X  und für jedes  x ∈ A

der Weg  f ( x, −) konstant, so heißt  f  Homotopie relativ  A. 

Homotopie und Homotopie relativ  A  sind Äquivalenzrelationen auf der Men-

ge aller stetigen Abbildungen zwischen zwei gegebenen topologischen Räumen, 

und sind  a, b:  X → Y  und  c, d:  Y → Z  homotop, so sind auch  c ◦ a, d ◦ b:  X → Z

homotop. Dies führt zu einem neuen Äquivalenzbegriff zwischen topologischen

Räumen. Eine stetige Abbildung  f :  X → Y  heißt  Homotopieäquivalenz, wenn

es ein stetiges  g:  Y → X  gibt, so dass  g ◦ f  zu id X  und  f ◦ g  zu id Y  homotop ist. 

Die Abbildung  g  heißt dann Homotopieinverses von  f . Zwei Räume heißen  ho-

 motopie¨

 aquivalent, wenn es zwischen ihnen eine Homotopieäquivalenz gibt. Man

sagt dann auch, dass die Räume denselben Homotopietyp haben. Homöomorphe

Räume sind offensichtlich homotopieäquivalent. 

Die Inklusion  j:  Sn− 1  →  R n \ { 0 }  ist ein Beispiel einer Homotopieäqui-

valenz, die kein Homöomorphismus ist. Ein Homotopieinverses ist die Re-

traktionsabbildung  x → r( x) :=  x/x; denn es ist  r ◦ j = id Sn− 1, und

 f ( x, t) =  tx + (1  − t) x/x  definiert eine Homotopie zwischen  j ◦ r  und idR n\{ 0 }. 
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Der R n  selbst ist homotopieäquivalent zu einem Punkt. Solche Räume heißen

aus naheliegendem Grund  zusammenziehbar. Alle R n  haben also denselben Ho-

motopietyp. Ist aber  f : R k →  R l  ein Homöomorphismus, so sind R k \ { 0 }  und

R l \ {f(0) }  und somit auch R k \ { 0 }  und R l \ { 0 }  homöomorph. Dann sind

aber  Sk− 1 und  Sl− 1 homotopieäquivalent. Wir müssen also zeigen, dass sie es

für  k =  l  nicht sind, um die Homöomorphie von R k  und R l  zu widerlegen. Es

reicht jetzt zwar nicht aus, nur zu zeigen, dass die Sphären nicht homöomorph

sind, dafür haben wir es jetzt aber mit etwas kleineren“ kompakten Räumen

” 

zu tun. Dass für  k =  l  die  k- und  l-Sphäre nicht homotopieäquivalent sind, sieht

man an einigen der Invarianten wie Homotopie- und Homologiegruppen, die in

der algebraischen Topologie topologischen Räumen zugeordnet werden. (Erstere

werden unten definiert, letztere im nächsten Abschnitt.) Homotopie- und Ho-

mologiegruppen sind wie die meisten dieser Invarianten Homotopieinvarianten. 

Dies hat zur Folge, dass homotopieäquivalente Räume isomorphe Homotopie-

und Homologiegruppen besitzen. Ist  k >  0, so ist die  n-te (singuläre) Homo-

logiegruppe von  Sk  stets 0 (will sagen, die nur aus dem neutralen Element

bestehende Gruppe), außer wenn  n = 0 oder  n =  k  ist; dann ist diese Gruppe

isomorph zu Z. Für  n >  0 ist die  n-te Homologiegruppe von  S 0 stets 0. Also ist

 Sk  zu  Sl  genau dann homotopieäquivalent, wenn  k =  l  ist. 

Homotopiegruppen eines Raumes lassen sich leichter beschreiben als die Ho-

mologiegruppen. Sie sind aber im Allgemeinen sehr viel schwieriger zu berech-

nen. Homotopiegruppen eines Raumes  X  werden immer bezüglich eines Basis-

punkts  x 0  ∈ X  definiert. Die Elemente der  n-ten Homotopiegruppe  πn( X, x 0)

von ( X, x 0) sind die Homotopieklassen relativ  {e 1 }  aller stetigen Abbildungen  f :

 Sn → X  mit  f ( e 1) =  x 0. Dabei ist  e 1  ∈ Sn  der erste Vektor der Standardbasis

des R n+1. 

Die erste Homotopiegruppe, also  π 1( X, x 0), heißt auch  Fundamentalgruppe

 von X zum Basispunkt x 0. Ihre Elemente entsprechen Homotopieklassen relativ

 { 0 ,  1 }  von geschlossenen Wegen  w:  I → X  mit Anfangs- und Endpunkt  x 0. Sind

 w  und  w  zwei solche Wege, so erhalten wir einen neuen Weg  w ∗ w, indem wir

erst  w  und anschließend  w  jeweils mit doppelter Geschwindigkeit durchlaufen. 

Die Homotopieklasse von  w ∗ w  hängt nur von den Homotopieklassen von  w

und  w  ab, so dass  ∗  eine Multiplikation auf  π 1( X, x 0) induziert. Mit dieser

Multiplikation wird  π 1( X, x 0) eine Gruppe. Das Einselement ist die Klasse des

konstanten Wegs in  x 0, und das Inverse der Klasse von  w  ist die Klasse des

umgekehrt durchlaufenen Wegs  w−,  w−( t) =  w(1 −t). Auf analoge Weise erklärt

man eine Multiplikation der höheren Homotopiegruppen. Der Isomorphietyp

dieser Gruppen hängt für wegzusammenhängende  X  nicht vom Basispunkt ab. 

Deswegen unterdrückt man diesen oft in der Notation, wenn es nur auf den

Isomorphietyp ankommt. Die Fundamentalgruppe der 1-Sphäre ist isomorph zu

Z, wobei  n ∈  Z der Homotopieklasse der Wege entspricht, die  S 1  n-mal im

positiven Sinn umlaufen. Im Allgemeinen ist  π 1( X, x 0) nicht abelsch. Betrachte

zum Beispiel zwei Kreise, die sich in einem Punkt  x 0 berühren. Man kann zeigen, 
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dass ein Weg, der erst den ersten und dann den zweiten Kreis umläuft, nicht

homotop zu einem Weg ist, der die Kreise in umgekehrter Reihenfolge umläuft. 

Die höheren Homotopiegruppen sind alle abelsch. Es ist relativ leicht zu sehen, 

dass  πn( S 1) = 0 für  n >  1 und dass  πn( Sk) = 0 für  n < k  ist. Weiter gilt

wie bei der Fundamentalgruppe, dass  πn( Sn) zu Z isomorph ist, wobei der

Isomorphismus zählt, wie oft eine Abbildung  Sn  positiv oder negativ überdeckt. 

Eine Abbildung  f :  Sn → X  ist genau dann homotop relativ  {e 1 }  zu einer

konstanten Abbildung, wenn sich  f  zu einer stetigen Abbildung  F :  Bn+1  → X

erweitern lässt, wobei  Bn+1  ⊆  R n+1 die Einheitskugel ist. Geht dies nicht, 

so ergibt sich die Vorstellung, dass  X  ein ( n + 1)-dimensionales Loch hat, 

das vom Bild von  f  eingeschlossen wird. Die obigen Ergebnisse über die Ho-

motopiegruppen der Sphären bestätigen also unsere Vorstellung, dass die  k-

Sphäre ein ( k + 1)-dimensionales Loch“ hat und dass die  n-te Homotopiegrup-

” 

pe ( n + 1)-dimensionale

Löcher“ entdeckt. Die Überraschung war groß, als

” 

H. Hopf um 1930 nachwies, dass  π 3( S 2) unendlich ist, die 2-Sphäre demnach

ein 4-dimensionales Loch“ hat. Inzwischen weiß man, dass es für jedes  k >  1

” 

beliebig große  n  mit  πn( Sk)  = 0 gibt. Die Bestimmung der Homotopiegruppen

der Sphären hat sich als sehr schwierig herausgestellt und ist eine der größten

Herausforderungen der algebraischen Topologie. Die genaue Kenntnis ist aus-

gesprochen wichtig für viele Fragen der geometrischen Topologie, insbesondere, 

was das Verständnis von Mannigfaltigkeiten betrifft. 

9.11
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Auch in der Homologietheorie sucht man nach Objekten im Raum  X, die poten-

tiell etwas umschließen, und fragt, ob man das auffüllen kann oder nicht. Kann

man es nicht auffüllen, so liegt in einem gewissen Sinne ein Loch vor. Diese Ideen

präzise umzusetzen hat auch historisch ein wenig gedauert. Selbst die Definiti-

on der noch einigermaßen anschaulichen  simplizialen Homologietheorie  benötigt

ein wenig Aufwand. Wir begnügen uns deshalb mit einem kleinen Beispiel. 

Es seien  A, B, C  und  D  vier nicht in einer Ebene liegende Punkte im R3. Zu

ihnen fügen wir die sechs zwischen ihnen liegenden Kanten und die von je drei

Punkten aufgespannten vier Dreiecke hinzu. Jede Kante hat zwei Richtungen, 

jedes Dreieck zwei Umlaufsinne, die wir uns als Orientierungen der Kanten bzw. 

Dreiecke denken. Punkte besitzen nur eine Orientierung. Die formalen ganzzahli-

gen Linearkombinationen der orientierten Punkte, Kanten und Dreiecke nennen

wir 0-, 1- bzw. 2-Ketten. Ketten bilden bezüglich komponentenweiser Addition

eine abelsche Gruppe. Dabei identifizieren wir noch das negative einer orientier-

ten Kante (eines orientierten Dreiecks) mit der umgekehrt orientierten Kante

(dem umgekehrt orientierten Dreieck). Der Rand eines orientierten Dreiecks ist

die Summe der gerichteten Kanten, die den Umlaufsinn bestimmen. Der Rand
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einer gerichteten Kante ist die Differenz des End- und Anfangspunkts. Punk-

te haben keinen Rand, also Rand 0. Die Randabbildung dehnen wir linear auf

die Ketten aus; so ist etwa der Rand von  AB +  BC  gleich  C − A. Nun ist

klar, wann eine Kette ein Rand heißt. Als Beispiel betrachten wir eine 0-Kette

 aA+ bB+ cC+ dD,  a, b, c, d ∈  Z. Sie ist genau dann ein Rand, wenn  a+ b+ c+ d = 0

ist. Denn der Rand jeder Kante ist die Differenz zweier Punkte, so dass eine 0-

Kette höchstens dann Rand ist, wenn die Koeffizientensumme Null ist, und ist

umgekehrt  a =  −( b+ c+ d), so ist der Rand von ( b+ c+ d) AB +( c+ d) BC + dCD

gleich  −( b +  c +  d) A +  bB +  cC +  dD =  aA +  bB +  cC +  dD. Eine Kette heißt Zykel, wenn ihr Rand 0 ist. Jeder Rand ist ein Zykel. Die 1- und 2-dimensionalen

Zykel sind für uns die Objekte, die potentiell etwas einschließen. Ist ein Zykel

ein Rand, so lässt er sich auffüllen. Wir nennen deswegen zwei Zykel äquivalent

oder  homolog, wenn sie sich um einen Rand unterscheiden. Die entsprechenden

Homologieklassen lassen sich repräsentantenweise addieren und bilden die Ho-

mologiegruppen unseres Beispiels. Da jeder Punkt zum Punkt  A  homolog ist, 

ist jede 0-Kette homolog zu einem Vielfachen von  A, die entsprechende 0. Ho-

mologiegruppe ist also isomorph zu Z. Jeder 1-Zykel ist Summe von Rändern

von Dreiecken, also ein Rand. Denn man sieht schnell, dass jeder 1-Zykel Sum-

me geschlossener Kantenwege der Länge 3, das sind Ränder von Dreiecken, und

der Länge 4 ist. Aber z. B. der Kantenweg  AB +  BC +  CD +  DA  ist gleich

( AB +  BC +  CA) + ( AC +  CD +  DA), da  CA +  AC = 0 ist. Also verschwindet

die 1. Homologiegruppe. Die 2. Homologiegruppe ist die Gruppe der 2-Zykel, 

da die Gruppe der 3-Ketten trivial ist. Eine 2-Kette ist ein Zykel, wenn sich

die Kanten der Ränder der involvierten Dreiecke gegenseitig aufheben. Jede 2-

Kette lässt sich eindeutig in der Form  a BDC +  b ACD +  c ADB +  d ABC  mit

 a, b, c, d ∈  Z schreiben. Diese ist genau dann ein Zykel, wenn  a, b, c  und  d  gleich

sind. Also ist die 2. Homologiegruppe isomorph zu Z. Sie entdeckt demnach das

3-dimensionale Loch unseres Objekts. Die höheren Homologiegruppen sind tri-

vial, da die freie abelsche Gruppe über der leeren Menge nach Definition trivial

ist. Wir sehen hier den ersten Unterschied zu den Homotopiegruppen. Denn

der Raum, den die Vereinigung der Punkte, Kanten und Dreiecke bildet, ist

der Rand eines Tetraeders und somit homöomorph zu  S 2. Aber deren höhere

Homotopiegruppen sind nicht alle 0. 

Das Beispiel sollte klarmachen, wie man Ketten, Zykel, Ränder und Homolo-

giegruppen für Simplizialkomplexe definiert. Dies sind wie in unserem Beispiel

Mengen von Simplices in einem euklidischen Raum, so dass sich je zwei Simplices

in einem gemeinsamen Seitensimplex schneiden. Dabei ist ein  k-dimensionales

Simplex die konvexe Hülle von  k + 1 Punkten, die einen  k-dimensionalen affi-

nen Unterraum aufspannen. Eine Seite ist dann die Hülle einer nicht notwendig

echten Teilmenge der Punkte. 

Es ergibt sich aber hier sofort ein großes Problem. Eigentlich will man topo-

logischen Räumen Homologiegruppen zuordnen. Der einem Simplizialkomplex

zugeordnete topologische Raum ist die Vereinigung all seiner Simplices. Dieser
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Raum lässt sich aber auf unendlich viele schwer übersehbare Weisen in Sim-

plices zerlegen. Sind die zugehörigen Homologiegruppen überhaupt isomorph? 

Zusätzlich möchte man dann auch wissen, ob alle uns interessierenden Räume

wie zum Beispiel Mannigfaltigkeiten (siehe Abschnitt 9.9) homöomorph zu einer

Vereinigung der Simplices eines Simplizialkomplexes sind. Solche Räume hei-

ßen triangulierbar. Diese Fragen führten zur sogenannten  Triangulations-  und

 Hauptvermutung. Erstere besagt, dass jede Mannigfaltigkeit triangulierbar ist. 

Die Hauptvermutung besagt, dass zwei Simplizialkomplexe, deren zugehörige

Räume homöomorph sind, im naheliegenden Sinn isomorph sind, nachdem man

ihre Simplices eventuell weiter in kleinere zerlegt hat. Beide Vermutungen ha-

ben sich als falsch herausgestellt. Aber lange bevor man das wusste, konnte man

mit Hilfe der sogenannten simplizialen Approximation stetiger Abbildungen zwi-

schen triangulierten Räumen nachweisen, dass die Homologiegruppen triangu-

lierbarer Räume nicht von den Triangulierungen abhängen. Obendrein hatte

man mit der  singul¨

 aren Homologietheorie  eine für alle topologischen Räume de-

finierte Homologietheorie, die homotopieinvariant war und auf triangulierbaren

Räumen mit der simplizialen Theorie übereinstimmte. 

Der Unterschied zwischen Homotopie- und Homologiegruppen lässt sich grob

wie folgt andeuten. Die Zykel der Homotopiegruppen sind Bilder von Sphären, 

und berandet werden Bilder von Kugeln. Die Zykel der Homologiegruppen sind

sehr viel allgemeiner, insbesondere sind Bilder kompakter orientierbarer Man-

nigfaltigkeiten Zykel, aber nicht nur diese. Ebenso werden Bilder beliebiger ori-

entierbarer kompakter Mannigfaltigkeiten mit Rand berandet, aber nicht nur

diese. Es gibt daher eine Abbildung  h:  πn( X, x 0)  → Hn( X) von den Homotopie-

in die Homologiegruppen, die sogenannte Hurewicz-Abbildung. Diese ist im All-

gemeinen weder surjektiv noch injektiv. Sie ist aber ein Isomorphismus, wenn

 X  wegzusammenhängend und  πi( X) für 1  ≤ i < n  trivial ist. 
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In diesem abschließenden Abschnitt beschäftigen wir uns mit der klassischen

ebenen Geometrie auf axiomatischer Grundlage. 

Ca. 300 v. Chr. schrieb Euklid die  Elemente, ein Werk, das die zu dieser Zeit

in Griechenland bekannten Sätze der Geometrie und der Zahlentheorie darstellt

und begründet. Für die Geometrie blieben die  Elemente  bis ins 19. Jahrhundert

der maßgebliche Text, dessen logische Strenge lange unerreicht blieb. 

Euklid beginnt seine Abhandlung mit Definitionen, Postulaten und Axiomen, 

die er der Anschauung entlehnt und als evident annimmt. Einige muten modern

an, wie seine Definition eines Quadrats, andere bleiben nebulös ( Ein Punkt ist, 

” 

was keine Teile hat. Eine Linie ist eine Länge ohne Breite.“). Aus diesen Grund-

annahmen (und bereits daraus bewiesenen Aussagen) baut Euklid streng de-
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duktiv das Gebäude der ebenen Geometrie auf, die wir heute euklidisch nennen. 

Euklids Bedeutung liegt insbesondere darin, dass er die Geometrie als kohärentes

System darstellt, in dem alle Aussagen rigoros bewiesen werden; er begnügt sich

nicht damit, sie bloß durch verschiedene Beispiele zu belegen. Daher sind die

 Elemente, obwohl 2300 Jahre alt, in der Anlage durch und durch modern. 

Vom heutigen Standpunkt aus ist Euklids Durchführung jedoch nicht ganz oh-

ne Kritik zu sehen. Zum einen können neue Begriffe nur durch bereits eingeführte

definiert werden, was Euklids obige

Definition“ einer Geraden nicht leistet. 

” 

Zum anderen benutzt er Schlussweisen, die ihm intuitiv selbstverständlich er-

scheinen, die aber nicht aus seinen Axiomen folgen, z. B. dass eine Gerade

durch einen Eckpunkt eines Dreiecks, die in das Innere“ des Dreiecks zeigt, die

” 

gegenüberliegende Seite schneidet. Im Jahr 1899 veröffentlichte D. Hilbert ein

Axiomensystem, das von derlei Unvollkommenheiten frei ist. 

Hilberts Ausgangspunkt sind zwei

Systeme von Dingen“, will sagen zwei

” 

Mengen,  P  und  G , deren Elemente Punkte“ bzw. Geraden“ genannt werden. 

” 

” 

Was Punkte“ und Geraden“ eigentlich sind, ist unerheblich, entscheidend sind

” 

” 

einzig die Beziehungen zwischen ihnen. Diese werden durch verschiedene Axiome

festgelegt. (In diesem Zusammenhang wird das Bonmot Hilberts überliefert, 

wonach man stets statt Punkt, Gerade, Ebene auch Tisch, Stuhl, Bierseidel

sagen können muss.)

Die erste Gruppe von Axiomen sind die  Inzidenzaxiome. Sie erklären, was es

bedeutet, dass der Punkt  P  auf der Geraden  g  liegt; diese wollen wir nun etwas

näher vorstellen. 

(I1) Zwei verschiedene Punkte liegen auf genau einer Geraden. 

(I2) Auf jeder Geraden liegen mindestens zwei Punkte. 

(I3) Es gibt drei Punkte, die nicht auf einer Geraden liegen. 

Es ist klar, dass die kartesische Ebene R2 der analytischen Geometrie diese

Axiome erfüllt. Man kann dieses Beispiel auch dualisieren: Mit  P = die Menge

der Geraden in R2,  G = die Menge der Punkte von R2 und  P ∈ P  liegt auf

” 

 g ∈ G“  ⇔ g ∈ P  erhält man ebenfalls ein Modell derselben Inzidenzgeometrie. 

Ein weiteres Beispiel, das zeigt, wie allgemein die Axiome (I1)–(I3) sind, ist

 P =  {a, b, c}, eine Menge mit drei Elementen, und  G = alle zweielementigen

Teilmengen von  P  mit  P ∈ P  liegt auf  g ∈ G“  ⇔ P ∈ g. 

” 

Die sphärische Geometrie erfüllt die Inzidenzaxiome jedoch nicht. Hier ist  P

eine Sphäre im Raum R3, d. h. die Oberfläche einer Kugel,  G  die Menge der

Großkreise (also der Schnitte der Sphäre mit Ebenen durch den Mittelpunkt)

und  P ∈ P  liegt auf  g ∈ G“  ⇔ P ∈ g. (I1) ist verletzt, da Nord- und Südpol

” 

auf unendlich vielen Großkreisen liegen. Identifiziert man aber zwei antipodale

Punkte und betrachtet man den entsprechenden Raum der Äquivalenzklassen, 

die sogenannte  projektive Ebene, so sind die Inzidenzaxiome erfüllt. 

Die nächste Axiomengruppe regelt die Sprechweise der Punkt  B  liegt zwi-

” 

schen den Punkten  A  und  C“. Wir erwähnen nur eines dieser Axiome:
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(Z1) Zwischen je zwei verschiedenen Punkten liegt ein weiterer Punkt. 

Die Z-Axiome gestatten es, die Strecke zwischen zwei Punkten, einen von einem

Punkt ausgehenden Strahl und den Winkel zwischen zwei Strahlen zu definie-

ren; Letzterer ist definitionsgemäß die Vereinigung dieser Strahlen. Das obige

Beispiel einer Geometrie mit drei Punkten erfüllt (Z1) nicht, in der Tat tut dies

keine endliche Geometrie, da aus (Z1) sogar folgt, dass zwischen zwei verschie-

denen Punkten unendlich viele Punkte liegen. 

Die dritte Axiomengruppe beschäftigt sich mit Kongruenzbeziehungen: Wann

sind zwei Strecken bzw. Winkel kongruent (d. h. gleich groß“)? Die Kongruenz-

” 

axiome sollen hier ebenfalls nicht aufgezählt werden. 

Die bisher genannten Axiome bilden die Basis der sogenannten  absoluten Geo-

 metrie. In ihr lassen sich noch nicht alle Sätze der klassischen euklidischen Geo-

metrie beweisen, etwa der Satz über die Winkelsumme im Dreieck. Hierzu fehlt

noch das  Parallelenaxiom; zwei Geraden  g  und  h  heißen  parallel, wenn  g =  h

ist oder  g  und  h  keinen gemeinsamen Punkt haben. 

(P) Zu jedem Punkt  P  und jeder Geraden  g  gibt es höchstens eine Gerade

durch  P , die zu  g  parallel ist. 

Die Hilbertschen Axiome werden vervollständigt durch sogenannte Stetig-

keitsaxiome, die z. B. die Ebene Q2 ausschließen. In diesem Axiomensystem

sind die Sätze der euklidischen Geometrie rigoros ableitbar. 

Das Parallelenaxiom (P) spielt eine besondere Rolle bei Euklid, aber er drückt

es nicht in der angegebenen Weise aus, sondern in der folgenden verklausulierten

Form, die jedoch modulo der übrigen Axiome Euklids zu (P) äquivalent ist:

(P )

Wenn zwei gerade Linien von einer dritten so geschnitten werden, 

” 

dass die beiden innern, an einerlei Seite der schneidenden Linie liegen-

den Winkel kleiner als zwei rechte sind, so treffen die beiden geraden

Linien, wenn man sie so weit, als nötig ist, verlängert, an eben der Sei-

te zusammen, an welcher die Winkel liegen, die kleiner als zwei rechte

sind.“

Die meisten Kommentatoren gehen davon aus, dass Euklid davon überzeugt

war, (P ) aus seinen übrigen Axiomen herleiten zu können. Diese Überzeugung

teilten alle Mathematiker bis zum Beginn des 19. Jahrhunderts, und es wurden

verschiedene fehlerhafte Beweise produziert. Diese versuchten nämlich, etwas in

den Begriff der Parallelität hineinzulesen, das dort gar nicht steht, z. B. dass

parallele Geraden einen festen Abstand haben; aber der Abstandsbegriff ist den

Euklidschen Axiomen fremd. In den 30er Jahren des 19. Jahrhunderts wendete

sich jedoch das Blatt. J. Bolyai (1832) und N. Lobachevski (1840) konstruierten

nämlich unabhängig voneinander ein Modell einer Geometrie, das die Axiome

Euklids mit Ausnahme des Parallelenaxioms erfüllt. Auch Gauß war eine solche

Geometrie bekannt, wie wir aus seinen Briefen wissen, aber er hat nichts dazu

veröffentlicht. 
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Bolyai und Lobachevski konstruierten ihre Geometrie auf einer negativ ge-

krümmten Fläche im (euklidischen) Raum; sie wird heute  hyperbolische Geo-

 metrie  genannt. In ihr ist die Winkelsumme in jedem Dreieck kleiner als 180 ◦. 

Es gibt auch nichteuklidische Geometrien, in denen die Winkelsumme von Drei-

ecken stets größer als 180 ◦  ist. 

Nach Poincaré kann man ein Modell der hyperbolischen Geometrie auch in

der euklidischen Ebene konstruieren. Dazu betrachtet man die obere Halbebene

des R2 bzw. äquivalenterweise die obere Halbebene H der komplexen Ebene, 

also H =  { z ∈  C  |  Im  z >  0  }. Die Geraden in dieser Geometrie sind senkrechte

euklidische Halbgeraden sowie euklidische Halbkreise mit Mittelpunkt auf der

reellen Achse. Es ist klar, dass in dieser Geometrie das Parallelenaxiom verletzt

ist: Sowohl die imaginäre Achse als auch der obere Einheitshalbkreis sind Par-

allelen zu  { z ∈  H  |  Re  z =  − 2  }  durch den Punkt  i. Um die Kongruenzaxiome

zu verifizieren, bedient man sich der  hyperbolischen Metrik

 |w − z| +  |w − z|

 dH ( w, z) = log  |w − z| − |w − z|. 

Insgesamt zeigen diese Konstruktionen, dass es nicht nur  eine  Geometrie gibt, 

und was die richtige Geometrie des uns umgebenden physikalischen Raums ist, 

ist Gegenstand heftiger Debatten in der Physik. 

Als rein mathematische Frage hat F. Klein 1872 in seiner als

Erlanger

” 

Programm“ bekannt gewordenen Antrittsvorlesung die Idee aufgebracht, Geo-

metrien Gruppen von Transformationen zuzuordnen, die Geraden in Geraden

überführen und unter denen die Sätze der Geometrie erhalten bleiben. Was die

euklidische Geometrie angeht, spielt die Lage und Größe einer geometrischen Fi-

gur keine Rolle, so dass Translationen, Rotationen, Spiegelungen und Streckun-

gen (Dilatationen) zu dieser Transformationsgruppe gehören. Für die hyperbo-

lische Geometrie im Poincaréschen Modell ist dies die Gruppe der gebrochen-

linearen Transformationen

 az +  b

 T ( z) =

 , 

 a, b, c, d ∈  R , ad − bc = 1 . 

 cz +  d

Allgemein wirft Klein folgendes umgekehrte Problem auf. 

Es ist eine Mannigfaltigkeit und in derselben eine Transformati-

” 

onsgruppe gegeben; man soll die der Mannigfaltigkeit angehörigen

Gebilde hinsichtlich solcher Eigenschaften untersuchen, die durch die

Transformationen der Gruppe nicht geändert werden.“

Die Bearbeitung dieses Forschungsprogramms hat in den letzten 100 Jahren zu

einer fruchtbaren Wechselwirkung von Geometrie und Gruppentheorie geführt. 

10 Numerik

Der Numerik geht es um die Näherung und Berechnung mathematischer Größen. 

War man bei der Umsetzung von Rechenverfahren bis zum 20. Jahrhundert

auf Papier und Bleistift oder mechanische Rechenmaschinen angewiesen, so

eröffnete die Erfindung des Computers neue Möglichkeiten. Der technischen

Neuerung folgte ein systematischer Aufbau der Theorie zur Genauigkeit und

Stabilität von numerischen Algorithmen. Diese Entwicklung findet ihren Wi-

derhall auch in den folgenden zwölf Abschnitten. 

Zu Beginn diskutieren wir drei grundlegende Begriffe der Numerik: die Kon-

dition eines mathematischen Problems (Abschnitt 10.1), die Gleitkommazah-

len (Abschnitt 10.2) und die Stabilität eines numerischen Verfahrens (Ab-

schnitt 10.3). Insbesondere die Kondition und die Stabilität gehören zum theo-

retischen Werkzeug, mit dem die erreichte Genauigkeit einer numerischen Simu-

lation abgeschätzt werden kann. 

Die nächste inhaltliche Einheit bilden die drei großen Themen der nume-

rischen linearen Algebra: lineare Gleichungssysteme (Abschnitt 10.4), Least-

Squares-Probleme (Abschnitt 10.5) und Eigenwerte linearer Abbildungen (Ab-

schnitt 10.6). Für die linearen Gleichungssysteme wird das Gaußsche Elimi-

nationsverfahren diskutiert. Das Least-Squares-Problem wird mit einer QR-

Zerlegung der Systemmatrix gelöst. Als exemplarischer Eigenwertlöser wird die

Vektoriteration vorgestellt. 

Die folgenden zwei Abschnitte widmen sich Fragen der Approximationstheo-

rie, indem sie die Interpolation von stetigen Funktionen mit algebraischen Poly-

nomen  x → xk (Abschnitt 10.7) und mit trigonometrischen Polynomen  x → eikx

(Abschnitt 10.8) ansprechen. Für die algebraischen Polynome liegt unser Au-

genmerk auf den Lebesgue-Konstanten sowie den baryzentrischen Interpolati-

onsformeln. Die trigonometrischen Polynome werden als Träger der diskreten

und schnellen Fourier-Transformation besprochen. 

Das nächste Beitragspaar befasst sich mit der numerischen Integration von

stetigen Funktionen. Abschnitt 10.9 behandelt grundlegende Fragen der Kondi-

tion, einfache Summationsverfahren sowie die summierte Trapezregel. Orthogo-

nale Polynome und die Gaußschen Quadraturverfahren stehen im Mittelpunkt

von Abschnitt 10.10. 

Zuletzt werden die Runge-Kutta-Verfahren zur numerischen Lösung gewöhn-

licher Differentialgleichungen (Abschnitt 10.11) und das Newton-Verfahren als

iterative Methode zum Lösen nichtlinearer Gleichungssysteme (Abschnitt 10.12)

vorgestellt. In beiden Abschnitten stehen Kondition und Stabilität außen vor, 

da für deren Diskussion ein weiterer theoretischer Rahmen erforderlich wäre. 

O. Deiser et al.,  12 x 12 Schlüsselkonzepte zur Mathematik, 

DOI 10.1007/978-3-8274-2298-9_10, © Spektrum Akademischer Verlag Heidelberg 2011
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Lineare Gleichungssysteme mit nur zwei Gleichungen und zwei Unbekannten

können bereits überraschen. In einer Arbeit aus dem Jahr 1966 diskutiert Wil-

liam Kahan das lineare Gleichungssystem  Aw =  b  mit









0 .  2161 0 .  1441

0 .  1440

 A =

 , 

 b =

 . 

1 .  2969 0 .  8648

0 .  8642

Die Matrix  A  ist invertierbar, und das Gleichungssystem hat die eindeutige

Lösung  w = (2 , − 2) T . Angenommen, der Lösungsvektor wäre nicht bekannt, so

dass die Genauigkeit einer numerischen Lösung ˆ

 w  nicht über die Differenz zur

exakten Lösung  w, sondern nur über das  Residuum b − A ˆ

 w  beurteilt werden

kann. Für das Kahansche Beispiel weicht der Vektor ˆ

 w = (0 .  9911 , − 0 .  4870) T

sowohl in der Länge als auch in der Richtung von der Lösung  w  deutlich ab. 

Dennoch ist das Residuum  b − A ˆ

 w = ( − 10 − 8 ,  10 − 8) T  klein. Dies kann durch

den numerische Grundbegriff der Kondition erklärt werden. 

Wir widmen uns der abstrakten Problemstellung, dass für eine Funktion  f  und

ein gegebenes  x  der Funktionswert  y =  f ( x) berechnet werden soll. Addieren

wir eine kleine Störung Δ x, so stellt sich die Frage, wie weit  f ( x + Δ x) und  f ( x)

voneinander abweichen und wie sehr  f  die Störung verstärkt. Kontextabhängig

wird man Δ x  und die Differenz Δ y =  f ( x+Δ x) −f ( x) mit einem absoluten oder

einem relativen Fehlermaß messen. Ist  f : R2  →  R beispielsweise eine Funktion

von R2 nach R, so könnte man den Abstand der Funktionswerte im Betrag

absolut messen und die Störung komponentenweise relativ:

 |

 |Δ x

Δ y| =  |Δ y|, 

 | Δ x| = max

 k |

 k=1 ,  2

 |xk| . 

Die  Kondition κf ( x) einer beliebigen Funktion  f  für den Punkt  x  definiert

man nun als die kleinste Zahl  κ ≥  0, für die es ein  δ >  0 gibt, so dass

 | f( x + Δ x)  − f( x) | ≤ κ| Δ x|

für alle  | Δ x| ≤ δ  gilt. Die Kondition hängt von den verwendeten Fehlermaßen

ab und spiegelt wider, wie sehr  f  kleine Störungen verstärkt. Stammen die Feh-

lermaße von einer Metrik, so ist die Kondition eine lokale Lipschitz-Konstante. 

Probleme heißen  gut konditioniert  oder  schlecht konditioniert, je nachdem, ob

ihre Kondition in etwa 1 oder sehr groß ist. Ist die Kondition gleich unendlich, 

so spricht man von einem  schlecht gestellten Problem. 

Wir betrachten eine Funktion  f : R2  →  R mit stetiger erster Ableitung im

Punkt  x  und verwenden die speziellen Fehlermaße von eben. Dann kann man

aus der Taylor-Formel ableiten, dass

+







, 

1

  ∂f



  ∂f



 κ









 f ( x) =  |

( x)

( x)

 f ( x) |   ∂x

  · |x 1 | + 

  · |x 2 |

1

 ∂x 2
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gilt. Wenden wir dies für die Addition  f ( x 1 , x 2) =  x 1 +  x 2 an, so ergibt sich

 |x

 κ

1 | +  |x 2 |

+( x) =  |x 1 +  x 2 | . 

Haben  x 1 und  x 2 gleiches Vorzeichen, so ist  κ+( x) = 1, und man betrachtet

die Addition bei gleichem Vorzeichen als gut konditioniert. Sind  x 1 und  x 2

fast betragsgleich und haben entgegengesetztes Vorzeichen, so fällt  |x 1 | +  |x 2 |

deutlich größer als  |x 1 +  x 2 |  aus, und die Kondition  κ+( x) ist sehr groß. Eine

Subtraktion fast gleich großer positiver Zahlen ist deshalb schlecht konditioniert. 

Man spricht in diesem Fall von  Ausl¨

 oschung (siehe auch Abschnitt 10.3). 

Sei nun  A ∈  R n×n  eine invertierbare Matrix und  f : R n →  R n,  f ( x) =  A− 1 x, 

die Funktion, welche die Lösung des zu  A  gehörigen Gleichungssystems mit

rechter Seite  x  angibt. Wir wählen relative Fehlermaße bezüglich einer beliebigen

Norm des R n, 

 | Δ x| =  Δ x/x, 

 | Δ y| =  Δ y/y

und erhalten

 f( Ax + Δ x)  − f( Ax)  · Ax

 A− 1  · Ax

 κf ( Ax) = lim

sup

 δ→ 0  ||

 f( Ax)  · Δ x

=

 x

 , 

Δ x||≤δ

wobei  A− 1  = max {A− 1 x | x = 1 }  die Matrixnorm von  A− 1 bezeichnet, 

siehe Abschnitt 5.7. Es ergibt sich unmittelbar  κf ( Ax)  ≤ A− 1  · A, und da

 A  invertierbar ist, auch  κf ( x)  ≤ A− 1  · A  für alle  x. Man nennt die positive

Zahl

 κ( A) =  A− 1  · A

die  Kondition der Matrix A. Die Kondition einer Matrix hängt von der verwen-

deten Norm ab und gibt darüber Auskunft, wie sich Störungen der rechten Seite

schlimmstenfalls auf die Lösung des linearen Gleichungssystems auswirken. Für

schlecht konditionierte Gleichungssysteme sucht man deshalb nach invertierba-

ren Matrizen  M , für die  κ( M A) deutlich kleiner als  κ( A) ausfällt, und arbeitet

mit dem zu  Aw =  b äquivalenten Gleichungssystem  M Aw =  M b. Dieses praxis-

relevante Vorgehen nennt man  Vorkonditionierung. 

Wir kehren nun zu Kahans Beispiel zurück. In der Supremumsnorm schreiben

sich die relativen Fehler als

 

 |

 b − Az∞

 w − z∞

Δ x| =

 

 , 

 | Δ y| =

 . 

 b∞

 w∞

Für den Quotienten  | Δ y| /| Δ x|  und somit für die Kondition von  f ( x) =  A− 1 x

im Punkt  b  erhält man dann in etwa 2  ·  108. Die Inverse

3





 − 86480000 14410000

 A− 1 =

129690000  − 21610000

hat nur Einträge mit sehr großem Betrag, und die Kondition der Matrix  A  liegt

bei etwa 3  ·  108. Dass ein Vektor mit kleinem Residuum so weit weg von der

exakten Lösung liegen kann, erklärt sich also durch schlechte Kondition. 
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10.2

Gleitkomma-Arithmetik

Auf einem Computer stehen nur endlich viele Informationseinheiten zur

Verfügung. Man arbeitet deshalb bei der Umsetzung numerischer Verfahren mit

endlichen Teilmengen der rationalen Zahlen Q, welche einen möglichst weiten

Bereich der reellen Zahlen überstreichen. Eine solche Menge von  Gleitkomma-

 zahlen  wird durch vier ganze Zahlen festgelegt: die  Basis b, die  Pr¨

 azision p, 

sowie die Zahlen  e min und  e max, welche den  Exponentenbereich  abgrenzen. Man

setzt

/

0

 G =

 ± m · be−p |  0  ≤ m ≤ bp −  1 , e min  ≤ e ≤ e max  . 

Alternativ kann man eine Gleitkommazahl auch als

+

, 

 ±

 d

 d

 dp

 m · be−p =  ± be

1 + 2 +  . . . +

 b

 b 2

 bp

darstellen, wobei die  Ziffern d 1 , . . . , dp  aus der Menge  { 0 ,  1 , . . . , b −  1 }  stammen. 

Für die Basis  b = 10 kann dies als  ± m ·  10 e−p =  ±  10 e ·  0 .d 1 d 2  . . . dp  umge-

schrieben werden, und die Zahlen haben in Abhängigkeit vom Exponenten  e  ein

gleitendes

Komma“. (In der Numerik ist es üblich, der internationalen Kon-

” 

vention folgend, Dezimalbrüche mit einem Punkt statt Komma zu schreiben; 

trotzdem nennt man im Deutschen Gleitkomma-Arithmetik, was im Englischen

floating point arithmetic heißt.) Um für jedes  x ∈ G,  x = 0, eine eindeutige Dar-

stellung zu erreichen, fordert man zusätzlich  m ≥ bp− 1 oder äquivalent  d 1  = 0. 

Solche Gleitkommazahlen heißen  normalisiert, und wir gehen im Folgenden von

normalisierten Zahlen aus. Es gilt für den kleinsten und größten Betrag:

 g min := min {|x| | x ∈ G, x = 0 } =  be min − 1 , 

 g max := max {|x| | x ∈ G} =  be max (1  − b−p) . 

Der IEEE-Gleitkommastandard 754r, der vom weltweiten Berufsverband des

Institute of Electrical and Electronics Engineers“ (IEEE) entwickelt wurde, 

” 

hat die Basis  b = 2. Dieser Standard wird von fast allen modernen Prozessoren

und Softwarepaketen umgesetzt. Die zwei Hauptformate  single precision  und

 double precision  werden von Gleitkommazahlen mit 32 beziehungsweise 64 Bits

getragen. Die Bits werden so verteilt, dass die einfache Genauigkeit die Präzision

 p = 24 und den Exponentenbereich ( e min , e max) = ( − 125 ,  128) hat, während für

die doppelte Genauigkeit  p = 53 und ( e min , e max) = ( − 1021 ,  1024) gilt. 

Gleitkommazahlen sind nicht äquidistant, da die Abstände bei jeder Potenz

der Basis  b  um einen Faktor  b  springen. Die nächstgrößere Gleitkommazahl nach

der 1 folgt im Abstand der  Maschinengenauigkeit ε :=  b 1 −p. Alle Gleitkomma-

zahlen zwischen 1 und  b  haben den gleichen Abstand  ε, die Gleitkommazahlen

zwischen  b− 1 und 1 haben den Abstand  ε/b. Allgemein gilt für jedes  x ∈ G

 εb− 1 |x| ≤  min {|x − y| | y ∈ G, y =  x} ≤ ε|x|. 
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Seien  G∞  die Menge aller Gleitkommazahlen mit unbegrenztem Exponenten-

bereich,  e ∈  Z und

fl: R  → G∞, x →  argmin {|x − y| | y ∈ G∞}

die  Rundungsabbildung.  Im Fall, dass eine reelle Zahl  x ∈  R genau in der Mitte

zweier Gleitkommazahlen liegt, muss eine Rundungsregel greifen. Der IEEE-

Standard wählt hierfür diejenige der beiden Gleitkommazahlen, deren letzte

Ziffer  dp  gerade ist ( round to even“). 

” 

Wir kehren in den beschränkten Exponentenbereich zurück. Auch wenn

die doppelte Genauigkeit des IEEE-Standards Gleitkommazahlen des Betrags

10 ± 308 enthält, läuft man durch einfache arithmetische Operationen wie das

Quadrieren oft aus den aufgelösten Betragsgrößen heraus. Man spricht von

 ¨

 Uberlauf  und  Unterlauf, falls

 | fl( x) | > g max bzw. 0  < | fl( x) | < g min

für ein  x ∈  R gilt. Überlauf lässt sich jedoch durch geeignete Skalierun-

gen eindämmen. Zum Beispiel kann man die euklidische Länge eines Vektors

( x 1 , x 2)  ∈  R2 folgendermaßen berechnen:



 s = max {|x 1 |, |x 2 |}, 

 x 2 =  s · ( x 1 /s)2 + ( x 2 /s)2 . 

Oft werden Gleitkommazahlen nicht durch ihre Maschinengenauigkeit  ε =

 b 1 −p  charakterisiert, sondern durch 1  ε, den sogenannten  unit round off. Dies

2

ist durch den relativen Fehler  | fl( x)  − x|/|x|  der Rundungsabbildung begründet. 

Liegt  x ∈  R vom Betrag her im Intervall [ g min , g max], so gilt

fl( x) =  x(1 +  δ)

für ein  δ ∈  R mit  |δ| ≤  1  ε. Das heißt, dass der relative Fehler nicht größer

2

als die halbe Maschinengenauigkeit ausfällt. Für die Hauptformate des IEEE-

Standards ist 1  ε ≈  6  ·  10 − 8 beziehungsweise 1  ε ≈  1  ·  10 − 16 bei einfacher und

2

2

doppelter Genauigkeit. 

Diese einfache, aber wichtige Abschätzung motiviert, dass man für die

grundlegenden arithmetischen Operationen Plus, Minus, Mal und Geteilt das

 Standardmodell der Gleitkomma-Arithmetik  annimmt: Für alle  x, y ∈ G  mit

 |x  op  y| ∈ [ g min , g max] gilt

fl( x) op fl( y) = ( x  op  y)(1 +  δ) , 

 |δ| ≤  1 ε, 

2

wobei wir mit op sowohl die üblichen arithmetischen Operationen + , −, ·, /  auf

den reellen Zahlen als auch die entsprechenden Gleitkomma-Operationen be-

zeichnen. Das Modell verlangt also für die Gleitkomma-Arithmetik eine gleich

große Fehlerschranke, wie sie für das Runden des exakten Ergebnisses gilt. Es ist

für fast alle modernen Computer gültig und wird insbesondere von den IEEE-

Standards umgesetzt. Es ist deshalb der allgemeine Ausgangspunkt für die Feh-

leranalyse numerischer Verfahren. 
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10.3

Numerische Stabilit¨

at

Die numerische Berechnung der Nullstellen eines Polynoms zweiten Grades sollte

einfach sein, da man sogar auf eine geschlossene Lösungsformel zurückgreifen

kann. Wir geben uns zu Testzwecken zwei Nullstellen vor,  x+ = 3000 und  x− =

1 + 10 − 12. Das Polynom

( x − x+)  · ( x − x−) =  x 2 +  bx +  c

hat die Koeffizienten  b =  −( x+ +  x−) =  − 3001  −  10 − 12 und  c =  x+ x− =

 √

3000 + 3  ·  10 − 9. Wir werten die Lösungsformel  x± = 1 ( −b ±

 b 2  −  4 c) in

2

Gleitkomma-Arithmetik mit doppelter Genauigkeit, das heißt mit einer Ma-

schinengenauigkeit  ε = 2 − 52  ≈  2  ·  10 − 16, aus und erhalten die Werte 3000 und

1 .  000000000000910. Weshalb ist die kleinere Nullstelle ab der zwölften Nach-

kommastelle falsch, obwohl die Gleitkommazahlen das Intervall [1 ,  2] mit Ge-

nauigkeit  ε  auflösen? 



Wir betrachten die Abbildung  f ( x) = 1 ( −x

 x 2  −  4 x

2

1  −

1

2) und berechnen

ihre Konditionszahl bezüglich der Fehlermaße, die wir in Abschnitt 10.1 für die

Diskussion der Auslöschung verwendet haben. Man erhält





1 

 x 1

 √

+ 1  · |x

2

1 | +

 |x 2 |

 √

 x 2

 x 2

 κ

1 − 4 x 2

1 − 4 x 2

 f ( x) =







1  x

 x 2  −  4 x 

2

1 +

1

2

und für  x = ( b, c) ergibt sich eine Kondition von etwa 2. Numerische Fehler

lassen sich also durch eine Konditionszahl allein nicht erklären. Wir erweitern

deshalb die Fehleranalyse um ihren zweiten Grundbegriff, der Stabilität. 

Wir stellen uns also dem Problem, für eine Funktion  f  und ein gegebenes  x  den

Wert  f ( x) zu berechnen, und arbeiten in Gleitkomma-Arithmetik mit Maschi-

nengenauigkeit  ε. Das numerische Verfahren modellieren wir durch eine Funk-

tion ˆ

 f , der ein leicht gestörter Eingabewert  x + Δ x übergeben wird. Der nume-

rische Fehler schreibt sich dann als







 f ( x)  − ˆ

 f ( x + Δ x) =  f ( x)  − f ( x + Δ x) +  f ( x + Δ x)  − ˆ

 f ( x + Δ x)  . 

Der erste Summand ist im Fehlermaß durch die entsprechende Konditionszahl

beschränkt: Für hinreichend kleines  | Δ x|  gilt

 | f( x)  − f( x + Δ x) | ≤ κf ( x) | Δ x| . 

Für den zweiten Summanden definiert man den  Stabilit¨

 atsindikator σ ˆ( x) des

 f

numerischen Verfahrens ˆ

 f  im Punkt  x  als die kleinste Zahl  σ ≥  0, für die es ein

 δ >  0 gibt, so dass

 | f( x)  − ˆ

 f ( x) | ≤ σ κf ( x)  ε
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für alle  ε ≤ δ  gilt. Der Stabilitätsindikator hängt von den verwendeten Fehlerma-

ßen ab und kontrolliert gemeinsam mit der Kondition des Problems den Fehler

des numerischen Verfahrens. Diese Definition zielt nicht auf die Ausführung des

Verfahrens auf einem konkreten Rechner mit fester Maschinengenauigkeit, son-

dern auf eine idealisierte Situation, in der die Maschinengenauigkeit hinreichend

klein gewählt werden kann, so dass sie unter die  δ-Schranke fällt. 

Ein numerisches Verfahren heißt  stabil  oder  instabil, je nachdem, ob der Stabi-

litätsindikator von der Größenordnung 1 oder sehr groß ist. Ein stabiles Verfah-

ren erreicht für ein gut konditioniertes Problem in etwa Maschinengenauigkeit. 

Für ein schlecht konditioniertes Problem sind hingegen alle Verfahren im Sinne

dieser Definition stabil. 

Im vorherigen Beispiel zur Nullstellenberechnung liegt der numerische Fehler

drei Größenordnungen über dem, was man für ein stabiles Verfahren erwar-

ten würde. Wie diese Instabilität entsteht, lässt sich aus der Kettenregel für

den Stabilitätsindikator erklären: Ein numerisches Verfahren besteht aus einer

Abfolge von Gleitkomma-Operationen, die man zu handhabbaren Teilschritten

zusammenfasst. Unser Beispielverfahren kann man als ˆ

 f = ˆ

 h ◦ ˆ

 g  zerlegen, wobei



ˆ

 g  und ˆ

 h  die Probleme  g( x 1 , x 2) = ( x 1 , 

 x 2  −  4 x

( −y

1

2) und  h( y 1 , y 2) = 1

2

1  − y 2)

lösen. Die Produktabschätzung für den Stabilitätsindikator





 σ ˆ( x) κ

 σ ( g( x)) +  σ

 f

 f ( x)  ≤ κh( g( x))  ·

ˆ

 h

ˆ

 g ( x) κg ( x)

legt nahe, die Kondition der Teilprobleme  g( x) und  h( g( x)) für den Punkt

 x = ( b, c) zu überprüfen, und man findet in  h( g( b, c)) eine Auslöschung. Die

Instabilität ist hier also einem schlecht konditionierten Teilproblem geschul-

det. Berechnet man alternativ die kleinere Nullstelle über den Quotienten

 √

 x− =  c/x+ =  c/  1 ( −b +

 b 2  −  4 c), so fußt das Verfahren auf einer Formel, 

2

die sich aus gut konditionierten, stabil lösbaren Einzelproblemen zusammen-

setzt. Das Verfahren ist also stabil und liefert erwartungsgemäß die Nullstelle

1 .  000000000001000. 

In der Praxis ist die Schätzung des Stabilitätsindikators  σ ˆ( x) meist schwie-

 f

rig, da er vom Fehler des Verfahrens und der Kondition des Problems abhängt. 

Man wechselt deshalb die Perspektive und betrachtet das Ergebnis ˆ

 f ( x) eines

numerischen Verfahrens als den Wert der Funktion  f  für einen gestörten Ein-

gabepunkt  x + Δ x:

ˆ

 f ( x) =  f ( x + Δ x) . 

Man schätzt anstelle des  Vorw¨

 artsfehlers | f ( x)  − ˆ

 f ( x) |  den  Rückwärtsfehler

 | Δ x|  und ergänzt den zuvor entwickelten Begriff der Vorwärtsstabilität folgen-

dermaßen. Der  Stabilit¨

 atsindikator ρ ˆ( x) der Rückwärtsanalyse für das Verfah-

 f

ren ˆ

 f  im Punkt  x  ist die kleinste Zahl  ρ ≥  0, für die es ein  δ >  0 gibt, so

dass

 | Δ x| ≤ ρ ε
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für alle  ε ≤ δ  gilt. Man nennt ein numerisches Verfahren ˆ

 f r¨

 uckw¨

 artsstabil  im

Punkt  x, wenn der Stabilitätsindikator  ρ ˆ( x) von der Größenordnung 1 ist. Im

 f

gut konditionierten Fall berechnet also ein rückwärtsstabiles Verfahren die rich-

tige Lösung für ein naheliegendes Problem, während ein vorwärtsstabiles Ver-

fahren lediglich eine fast richtige Lösung für ein naheliegendes Problem liefert. 

Diese Interpretation wird auch von der leicht zu beweisenden Abschätzung

 σ ˆ( x)  ≤ ρ ( x)

 f

ˆ

 f

gestützt. Aus der Rückwärtsstabilität folgt also die Vorwärtsstabilität. 

Die Produktformel für ein zusammengesetztes Verfahren ˆ

 f = ˆ

 h ◦ ˆ

 g, deren

erster Teilschritt auf einer invertierbaren Abbildung  g  beruht, lautet

 ρ ˆ( x)  ≤ ρ

(ˆ

 g( x)) . 

 f

ˆ

 g ( x) +  κg− 1 ( g( x))  ρˆ

 h

Ist der erste Teilschritt beispielsweise eine Addition  g( x) = 1 +  x  für ein be-

tragskleines  x, so ist die relative Konditionszahl

 |( g− 1) ( g( x)) | · |g( x) |

 | 1 +  x|

 κg− 1( g( x)) =

 |g− 1( g( x)) |

=

 |x|

sehr groß, und das Verfahren möglicher Weise nicht rückwärtsstabil. Man verliert

in diesem Fall Information über den Eingabewert  x, da die Gleitkommazahlen

den Bereich kurz unter und nach der 1 gröber auflösen als die Bereiche kleinen

Betrags. 

Ein vorwärtsstabiles, aber nicht rückwärtsstabiles Verfahren ist das Lösen li-

nearer 2 × 2-Systeme. Wir vergleichen die Cramersche Regel mit dem Gaußschen

Eliminationsverfahren mit Spaltenpivotisierung (siehe Abschnitte 5.5 und 10.6)

und lösen das schlecht konditionierte Gleichungssystem  Aw =  b, das wir im Ab-

schnitt 10.1 diskutiert haben. Wir erhalten in doppelter Genauigkeit folgende

relative Fehler für die numerische Lösung ˆ

 w  und die echte Lösung  w = (2 , − 2) T :

 κ( A)  ≈  3  ·  108

 | w − ˆ

 w|

 | b − A ˆ

 w|

Cramer (vorwärtsstabil)

1 .  7998  ·  10 − 9

1 .  1673  ·  10 − 10

Gauß (rückwärtsstabil)

1 .  7998  ·  10 − 9

7 .  7038  ·  10 − 17

Das rückwärtsstabile Gaußsche Eliminationsverfahren hat einen Rückwärts-

fehler  | b − A ˆ

 w| =  b − A ˆ

 w∞/b∞  in der Größenordnung der Maschinen-

genauigkeit, während der Vorwärtsfehler  | w − ˆ

 w| =  w − ˆ

 w∞/w∞  etwa

acht Größenordnungen darüber liegt. Dies bestätigt nicht nur die Faustregel, 

dass der Vorwärtsfehler durch die Kondition mal dem Rückwärtsfehler be-

schränkt ist, sondern zeigt, dass diese obere Schranke von der Größenordnung

her auch angenommen werden kann. Der Rückwärtsfehler der Cramerschen Re-

gel liegt etwa sechs Größenordnungen über der Maschinengenauigkeit, während

der Vorwärtsfehler gleich dem des Eliminationsverfahrens ist. 
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10.4

Das Gaußsche Eliminationsverfahren

Die Gaußsche Elimination ist ein direktes Verfahren zum Lösen linearer Glei-

chungssysteme, das in der westlichen Kultur zumeist Carl Friedrich Gauß zu-

geschrieben wird. Schon vor unserer Zeitrechnung wurde die Methode aber in

der chinesischen Mathematik für konkrete Systeme mit bis zu fünf Unbekannten

verwendet. 

Die Idee der Gaußschen Elimination ist es, lineare Gleichungssysteme mit

 m  Gleichungen und  n  Unbekannten zu lösen, indem man sie durch sukzessive

Umformungen in obere Trapezgestalt überführt (siehe auch Abschnitt 5.4). Ein

System  Ax =  b  mit  A ∈  R m×n  und  b ∈  R m  wird durch Linksmultiplikation mit

einfach handhabbaren Matrizen auf die Form  Rx = ˜

 b  gebracht, wobei  R ∈  R m×n

eine obere Trapezmatrix ist und  R( k, l) = 0 für alle  k > l  erfüllt. Schematisch

sieht die Elimination folgendermaßen aus:

⎛

⎞

⎛

⎞

⎛

⎞

 × × × × ×

 × × × × ×

 × × × × ×

⎜

⎟

⎜

⎟

⎜

⎟

 A = ⎜

⎝  × × × × × ⎟

⎠  → ⎜

⎝

 × × × × ⎟

⎠  → ⎜

⎝

 × × × × ⎟

⎠ =  R. 

 × × × × ×

 × × × ×

 × × ×

Wir diskutieren zuerst den Fall einer invertierbaren Matrix  A ∈  R n×n. Hier

besitzt  Ax =  b  immer eine eindeutig bestimmte Lösung  x, und es gilt der fol-

gende Satz: Genau dann, wenn die Untermatrizen  A(1 :  k,  1 :  k)  ∈  R k×k  für alle

 k < n  ebenfalls invertierbar sind, lässt  A  eine eindeutige Zerlegung der Form

⎛

⎞ ⎛

⎞

1

 × × ×

⎜

⎟ ⎜

⎟

 A = ⎜

⎝  ×  1 ⎟

⎠ ⎜

⎝

 × × ⎟

⎠ =  LR

 × ×  1

 ×

zu, wobei der  Linksfaktor L ∈  R n×n  eine untere Dreiecksmatrix mit lauter

Einsen auf der Diagonalen und der  Rechtsfaktor R ∈  R n×n  eine invertierbare

obere Dreiecksmatrix ist. 

Die Gaußsche Elimination berechnet die  LR-Zerlegung  in folgender Weise. 

Man multipliziert das Gleichungssystem  Ax =  b  von links mit unteren Drei-

ecksmatrizen  L 1 , . . . , Ln− 1. Bezeichnen wir mit  A( k) =  Lk− 1  · · · L 1 A, so ist

 Lk  die Dreiecksmatrix mit lauter Einsen auf der Diagonalen und dem Vektor

 −A( k)( k+1 :  n, k) /A( k)( k, k)  ∈  R n−k  in der  k-ten Spalte unterhalb der Diagonalen. Die Invertierbarkeit der Untermatrizen von  A  garantiert, dass die  Pivotele-

 mente A( k)( k, k) nicht verschwinden. Die Linksmultiplikation mit  Lk  entspricht

der simultanen Addition eines Vielfachen der  k-ten zu den darauffolgenden Zei-

len. Dies räumt das System  Ax =  b  unterhalb der Diagonalen aus und bringt

es auf obere Dreiecksform  Rx =  c, wobei  R =  A( n) =  Ln− 1  · · · L 1 A  der Rechts-

faktor ist und  c =  Ln− 1  · · · L 1 b  gilt. Der Linksfaktor ist  L =  L− 1  · · · L− 1 . Das

1

 n− 1
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Dreieckssystem  Rx =  c  lässt sich nun durch Rückwärts-Substitution einfach

lösen, und wir erhalten das gesuchte  x über

 x( k) = ( c( k)  − R( k, k + 1 :  n)  · x( k + 1 :  n))  /R( k, k) , k = 1 , . . . , n. 

Dieses einfache Eliminationsverfahren ist möglicherweise instabil. Seien ˆ

 L  und

ˆ

 R  die in Gleitkomma-Arithmetik mit Maschinengenauigkeit  ε  berechneten LR-

Faktoren von  A, und bezeichne   · ∞  die Zeilensummennorm einer Matrix. 

Man kann dann zeigen, dass der Rückwärtsfehler   ˆ

 L ˆ

 R − A∞/A∞  vor allem

von  L∞R∞/A∞  dominiert wird. Dieser Quotient kann aber beliebig groß

sein, wie das folgende Beispiel zeigt:







 




 δ  1

1 0

 δ

1

=

 . 

1 1

1 1

0 1  −  1

 δ

 δ

Hier gelten  A∞ →  1 und  L∞, R∞ → ∞, falls  δ →  0. 

Wir führen deshalb zusätzliche Zeilenvertauschungen ein, die darauf abzielen, 

nicht durch kleine Pivotelemente zu teilen, und verbessern so in den meisten

Fällen die Stabilität des Verfahrens. Man sucht im  l-ten Schritt in der  l-ten Spal-

te nach dem betragsgrößten Element  A( l)( k∗, l) und vertauscht die  l-te mit der

 k∗-ten Zeile, bevor die Matrix  Ll  gebildet wird. Die zugehörige Permutationsma-

trix  Pl  geht durch die Vertauschung der  l-ten und der  k∗-ten Zeile aus der Ein-

heitsmatrix hervor. Das Eliminationsverfahren führt dann auf das obere Drei-

eckssystem  Rx =  c  mit  R =  Ln− 1 Pn− 1  · · · L 1 P 1 A  und  c =  Ln− 1 Pn− 1  · · · L 1 P 1 b. 

Da nur spaltenweise nach dem betragsgrößten Element gesucht wird, spricht

man von einer  Spaltenpivotisierung. Durch Einfügen mehrerer Inverser der Per-

mutationsmatrizen  P 1 , . . . , Pn− 1 lässt sich die invertierbare obere Dreiecksma-

trix  R  als  R =  LP A  schreiben, wobei  L  eine untere Dreiecksmatrix mit lauter

Einsen auf der Diagonalen ist, deren Einträge alle vom Betrag her kleiner oder

gleich 1 sind.  P  ist eine Permutationsmatrix. Gaußsche Elimination mit Spal-

tenpivotisierung berechnet also die LR-Zerlegung von  P A. 

Verlassen wir die quadratischen Matrizen, die gemeinsam mit ihren Unterma-

trizen invertierbar sind, so gilt Folgendes. Für jede Matrix  A ∈  R m×n  gibt es

eine Permutationsmatrix  P ∈  R m×m, eine untere Dreiecksmatrix  L ∈  R m×m

mit Einsen auf der Diagonalen und allen Einträgen vom Betrag her kleiner oder

gleich 1 sowie eine obere Trapezmatrix  R ∈  R m×n, so dass  P A =  LR  gilt. Die

Linksmultiplikation mit  P  garantiert, dass das oben beschriebene Eliminations-

verfahren wohldefinierte Matrizen  L 1 , . . . , Ln− 1 aufbaut und zu einem oberen

Trapezsystem führt. Die linearen Gleichungssysteme  Ax =  b  und  Rx =  L− 1 P b

haben dieselbe Lösungsmenge. 

Gaußsche Elimination mit Spaltenpivotisierung braucht größenordnungs-

mäßig 2 (min {m, n})3 skalare Additionen und Multiplikationen. Die Matrix  A

3

kann während der Rechnung mit dem Rechtsfaktor  R überschrieben werden. Für

den quadratischen Fall  m =  n  hat man die folgende Stabilitätsabschätzung von
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James Wilkinson aus dem Jahr 1961. Die durch Gaußsche Elimination mit Spal-

tenpivotisierung berechnete numerische Lösung ˆ

 x  ist die Lösung eines gestörten

Gleichungssystems ( A +  E)ˆ

 x =  b, und für die Störung gilt

+

, 

 E∞ ≤ nε

5  ˆ

 L∞ ˆ

 R∞

 

3 +

+  O( ε 2) . 

 A∞

2

 A∞

ˆ

 L  und ˆ

 R  sind hierbei die berechneten LR-Faktoren von  P A. Diese Abschätzung

gleicht der für die Elimination ohne Pivotisierung bis auf den wesentlichen Un-

terschied, dass die Pivotisierung  |L( i, j) | ≤  1 erzwingt. 

Prinzipiell kritisch ist immer der Rechtsfaktor. Unser vorheriges Beispiel zeigt, 

dass er ohne Spaltenpivotisierung beliebig wachsen kann. Für den mit Spalten-

pivotisierung berechneten Rechtsfaktor gibt es jedoch die dimensionabhängige

obere Schranke  R∞/A∞ ≤  1 2 n− 1, die von den Matrizen angenommen

 n

wird, bei denen auf der Diagonale 1, unterhalb der Diagonale  − 1, in der letzten

Spalte 1 und ansonsten 0 steht. Im Fall  n = 3 ergibt sich beispielsweise:

⎛

⎞

⎛

⎞ ⎛

⎞

1

0 1

1

0 0

1 0 1

⎜

⎜

⎟

⎜

⎟ ⎜

⎟

⎝  − 1 1 1 ⎟

⎠ = ⎜

⎝  − 1 1 0 ⎟

⎠ ⎜

⎝ 0 1 2 ⎟

⎠  . 

 − 1  − 1 1

 − 1  − 1 1

0 0 4

Aus der 2001 von Daniel Spielman und Shang-Hua Teng ins Leben gerufenen

 Smoothed Analysis  stammen Erklärungsansätze, weshalb in der Praxis auftre-

tende Matrizen fast immer gutartige Rechtsfaktoren haben. Folgendes Experi-

ment mit  n = 70 und dem eben besprochenen  A  deutet die Argumentations-

richtung an:  G  ist die numerische Umsetzung einer Matrix, deren Einträge un-

abhängige, identisch gemäß  N (0 , σ 2),  σ = 10 − 9, verteilte Zufallsvariablen sind. 

Wir lösen in doppelter Genauigkeit für eine beliebige rechte Seite  Ax =  b  und

( A +  G) x =  b  durch Gaußsche Elimination mit Spaltenpivotisierung. Im ersten

Fall ist der Rückwärtsfehler erwartungsgemäß etwa 104, während das durch  G

gestörte System fast auf Maschinengenauigkeit gelöst wird. 

 R∞/A∞ ≈  1019

 Aˆ x − b∞

 ( A +  G)ˆ x − b∞

ˆ

 x  für  Ax =  b

3 .  0721  ·  104

3 .  0721  ·  104

ˆ

 x  für ( A +  G) x =  b

1 .  1888  ·  10 − 8

2 .  1511  ·  10 − 15

Die Smoothed Analysis hat die vermuteten Stabilitätsbschätzungen für die

Gaußsche Elimination mit Spaltenpivotisierung noch nicht bewiesen. Ungeklärt

ist auch, welche Störungstypen das Stabilitätsverhalten wie beeinflussen. 

Gauß hat im Juni 1798 in seinem wissenschaftlichen Tagebuch geschrieben:

 Problema eliminationis ita solutum ut nihil amplius desiderari possit. (Problem

der Elimination so gelöst, dass nichts mehr zu wünschen bleibt.) Wir wünschen

uns trotzdem noch eine vollständige Erklärung ihrer Stabilität. 
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10.5

Die Methode der kleinsten Quadrate

Im Vorwort seines Buches über die Bewegung der Himmelskörper schreibt Gauß, 

dass die erste Anwendung seiner Methode der kleinsten Fehlerquadrate zur Wie-

derauffindung des Asteroiden Ceres im Dezember 1801 geführt hat. Es gibt

begründete Zweifel, ob Gauß diese Methode als Erster gefunden hat. Ihr Ein-

satz, um den flüchtigen Planeten der Beobachtung wieder zurückzugeben“, ist

” 

jedoch sicher ein Glanzstück angewandter Mathematik. 

Die abstrakte Problemstellung linearer Ausgleichsrechnung ist die folgende. 

Gegeben sind ein Vektor  b ∈  R m  von Messwerten und eine Matrix  A ∈  R m×n. 

Gesucht ist ein Vektor  x ∈  R n, so dass  Ax  möglichst gut die Messwerte repro-

duziert. Da die Anzahl  m  der Messungen in der Regel größer als die Anzahl  n

der Unbekannten ist, hat man es meist mit einem überbestimmten Gleichungs-

system zu tun. Man sucht deshalb nach einem Vektor  x, für den das Residuum

 b − Ax  minimal ist. Kontextabhängig wird man das Residuum mit unterschied-

lichen Normen messen. Ist die Wahl jedoch auf die euklidische Norm gefallen, 

so löst man ein  Problem der kleinsten Fehlerquadrate, wenn man

 m



 b − Ax 22 =

( bk − ( Ax) k)2

 k=1

minimiert. Bezeichnen wir mit  P b  die orthogonale Projektion von  b  in das Bild

von  A, so ist jedes  x  mit  Ax =  P b  eine Lösung des Ausgleichsproblems. Hat

 A  vollen Rang, so ist die Lösung  x  auch eindeutig. Wir werden im Folgenden

immer annehmen, dass  m ≥ n  gilt, und  A  vollen Rang  n  hat. 

Die Bedingung  Ax =  P b  ist äquivalent dazu, dass  b − Ax  im Kern der trans-

ponierten Matrix  AT  liegt, und dies ist äquivalent zur  Normalengleichung

 AT Ax =  AT b. 

Die Matrix  AT A  ist positiv definit und erlaubt eine Faktorisierung  AT A =

 LLT , wobei die invertierbare untere Dreiecksmatrix  L ∈  R n×n  der  Cholesky-

 Faktor  von  A  genannt wird. Die Normalengleichung lässt sich effizient und

rückwärtsstabil mit etwa 1  n 3 arithmetischen Operationen lösen. 

3

Obwohl das Ausgleichsproblem und die Normalengleichung die gleiche

Lösung haben, sind sie für die Konstruktion numerischer Verfahren keines-

wegs äquivalent, wie folgendes Beispiel von Peter Läuchli aus dem Jahr 1961

verdeutlicht. Seien

⎛

⎞

⎛ ⎞

⎜ 1 1 ⎟

⎜ 2 ⎟

 A = ⎜

⎝  δ  0 ⎟

⎠  , 

 b = ⎜

⎝  δ ⎟

⎠  . 

0  δ

 δ

Unabhängig von  δ >  0 ist die exakte Lösung  x = (1 ,  1) T . Berechnen wir jedoch

für  δ = 10 − 7 in doppelter Genauigkeit die Lösung der Normalengleichung, so
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erhalten wir einen relativen Fehler  x − ˆ

 x 2 /x 2 von etwa 10 − 2. Die nume-

rische Fehleranalyse klärt die Situation. Für relative Fehlermaße bezüglich der

euklidischen Norm ist die Kondition des Problems in etwa 107. Das Verfahren

ˆ

 f = ˆ

 h ◦ ˆ

 g  mit  g( x) =  AT x  und  h( y) = ( AT A) − 1 y  hat jedoch einen zweiten

Teilschritt, dessen Kondition  κh( g( b))  ≈  1014 noch schlechter ist. Der Weg über

die Normalengleichung kann also zu einem instabilen Verfahren führen. 

Eine alternative Methode stammt aus einer einflussreichen Veröffentlichung

von Gene Golub aus dem Jahr 1965. Sie verwendet orthogonale Transformatio-

nen, um dann ein oberes Dreieckssystem zu lösen. Die Matrix  A ∈  R m×n  lässt

eine eindeutige Zerlegung in eine orthogonale Matrix  Q ∈  R m×m  und eine obere

Trapezmatrix  R ∈  R m×n  mit positiven Diagonaleinträgen zu:

⎛

⎞

⎛

⎞ ⎛

⎞

 × ×

 × × ×

 × ×

⎜

⎟

⎜

⎟ ⎜

⎟

 A = ⎜

⎝  × × ⎟

⎠ = ⎜

⎝  × × × ⎟

⎠ ⎜

⎝

 × ⎟

⎠ =  QR. 

 × ×

 × × ×

Mit der  QR-Zerlegung  schreibt sich das Normquadrat des Residuums als

 b − Ax 22 =   ( QT b)(1 :  n)  − R(1 :  n, :) x  22 +   ( QT b)( n + 1 :  m)   22 , wobei ( QT b)(1 :  n) die Projektion von  QT b  auf die ersten  n  Zeilen bezeichnet. 

Die Lösung des Ausgleichsproblems ist deshalb die Lösung des oberen Drei-

eckssystems  R(1 :  n, :) x = ( QT b)(1 :  n), welches durch Rückwärtssubstitution

rückwärtsstabil gelöst wird. 

Ein rückwärtsstabiles Verfahren zur QR-Zerlegung geht auf Alston Househol-

der 1958 zurück. Im ersten Schritt wird die erste Spalte  a =  A(: ,  1) der Matrix  A

durch Multiplikation mit einer orthogonalen  Householder-Matrix

 H 1 = Id  −  2 vvT /v 22

auf ein Vielfaches des ersten Einheitsvektors  e 1 = (1 ,  0 , . . . ,  0) T ∈  R m  abgebil-

det. Diese Matrizen werden auch Reflektoren genannt, weil sie an der Hyper-

ebene aller auf  v  senkrecht stehenden Vektoren spiegeln. Von den beiden für

 v  in Frage kommenden Vektoren  a ± ae 1 wählt man  v =  a + sgn( a 1) ae 1. 

Im  k-ten Schritt bearbeitet man dann die Matrix ( Hk− 1  · · · H 1 A)( k :  m, k :  n)

und bildet deren erste Spalte durch eine Householder-Matrix ˜

 Hk  auf den ersten

kanonischen Einheitsvektor im R m−k+1 ab. Die zugehörige  m×m-Householder-

Matrix  Hk  ergibt sich als





Id 0

 Hk =

 . 

0

˜

 Hk

Wie im Gaußschen Eliminationsverfahren werden also sukzessive die Einträge

unter der Diagonalen eliminiert, nur dass die einfachen Transformationsmatrizen

nicht untere Dreiecksform haben, sondern orthogonal sind. Die QR-Zerlegung

benötigt arithmetische Operationen in einer Größenordnung von 2 m 2 n −  2  n 3. 

3
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10.6

Eigenwertprobleme

Wir beschäftigen uns nach den linearen Gleichungssystemen und Ausgleichs-

problemen mit dem dritten großen Thema der numerischen linearen Algebra, 

den linearen Eigenwertproblemen. Ist  A ∈  R n×n  eine Matrix, so berechnen wir

Zahlen  λ  und Vektoren  x = 0, welche die lineare Eigenwertgleichung

 Ax =  λx

erfüllen. Lineare Eigenwertprobleme sind fast überall anzutreffen. Ein beliebtes

Beispiel ist das Google-Eigenwertproblem, welches die Wichtigkeit einer Inter-

netseite zu bestimmen hilft. 

Der Einfachheit halber beschränken wir uns hier auf symmetrische Matri-

zen  A =  AT , die genau  n  betragsverschiedene Eigenwerte besitzen, und num-

merieren diese nach ihrem Betrag,  |λ 1 | > . . . > |λn|. Die Eigenräume sind

dann alle eindimensional. Die relative Konditionszahl der Abbildung auf den

 j-ten Eigenwert  A → λj =  λj( A) ist durch  κλ ( A) =  A/|λ

 j

 j |  gegeben, wobei

 A = sup {Ax | x = 1 }  die zur euklidischen Norm gehörige Matrixnorm ist. 

Verwenden wir, dass für symmetrische Matrizen  A  die Matrixnorm  A  gleich

dem Betrag  |λ 1 |  des dominanten Eigenwertes  λ 1 ist, so ergibt sich

 A

 |λ

 κ

1 |

 λ ( A) =

 j

 |λj| =  |λj|

( j = 1 , . . . , n) . 

Das heißt, dass die  n  verschiedenen Eigenwerte  λ 1 , . . . , λn  alle gut konditioniert

sind, es sei denn, die betragskleineren Eigenwerte sind vom Betrag her sehr viel

kleiner als  |λ 1 |. 

In den eindimensionalen Eigenräumen gibt es genau zwei normierte Eigen-

vektoren. Wir bezeichnen mit  xj  den zum Eigenwert  λj  gehörigen normierten

Eigenvektor, dessen erste nicht verschwindende Komponente positiv ist, und

nennen ihn den  j-ten Eigenvektor. Für die relative Konditionszahl der Abbil-

dung auf den  j-ten Eigenvektor  A → xj =  xj( A) gilt

 A

 κx ( A) =

 j

 |λj| ·  min {|λk − λj| | k =  j}

( j = 1 , . . . , n) . 

Ein Eigenvektor ist also tendenziell schlechter konditioniert als der ihm zugehö-

rige Eigenwert, da seine Konditionszahl auch vom Abstand zum nächstliegenden

Eigenwert abhängt. 

Das einfachste Verfahren zur Berechnung des dominanten Eigenvektors ist

die  Vektoriteration. Ausgehend von einem Startvektor  v ∈  R n, der auf  x 1

nicht senkrecht steht, berechnet man iterativ die Vektoren  vk :=  Akv/Akv. 

Im Grenzwert  k → ∞  konvergiert nämlich der Abstand von  vk  zum domi-

nanten Eigenraum gegen Null. Dies gilt aus folgendem Grund: Wir schreiben

 v =  	v, x 1 
x 1 +  · · · +  	v, xn
xn  als Linearkombination der (orthogonalen) Eigen-

vektoren und stellen  Akv  entsprechend als

 Akv =  	v, x 1 
λk 1 x 1 +  · · · +  	v, xn
λknxn
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dar. Da die Eigenvektoren alle aufeinander senkrecht stehen, gilt außerdem

 Akv 2 =  	v, x 1 
 2 λ 2 k

1

+  · · · +  	v, xn
 2 λ 2 k

 n , und wir finden eine positive Kon-

stante  C >  0, die von  A  und  v  abhängt, so dass

 vk − ( ±x 1)  ≤ C|λ 2 /λ 1 |k

für alle  k ≥  0 gilt. Das Vorzeichen  ±  kann sich abhängig vom Vorzeichen von  λk 1

pro Iterationsschritt ändern. Berechnet man in den Iterationsschleifen zusätzlich

den  Rayleigh-Quotienten

 r: R n \ { 0 } →  R , 

 x → 	x, Ax


 	x, x


des Vektors  vk, so erhält man auch den dominanten Eigenwert. Schreiben wir

nämlich  vk  und  Avk  als Linearkombination der Eigenvektoren, so ergibt sich

 r( vk) =  	vk, x 1 
 2 λ 1 +  · · · +  	vk, xn
 2 λn, und wir finden eine Konstante  c >  0, so

dass

 |r( vk)  − λ 1 | ≤ c |λ 2 /λ 1 | 2 k

für alle  k ≥  0 gilt. Die Vektoriteration konvergiert also linear gegen den domi-

nanten Eigenraum und quadratisch gegen den dominanten Eigenwert. 

Diese Konvergenz ist langsam, wenn der erste und zweite Eigenwert nahe

beieinanderliegen, und es gibt deswegen viele weitergehende Verfahren zur Ei-

genwertberechnung. Google verwendet jedoch eine Variante der Vektoriteration. 

Die hier auftretenden Matrizen sind zwar nicht symmetrisch, aber sehr groß und

haben nur wenige von 0 verschiedene Einträge, so dass es vorteilhaft ist, in der

Iteration im Wesentlichen nur Matrix-Vektor-Produkte zu berechnen. 

Oft wird einer Eigenwertberechnung eine orthogonale Ähnlichkeitstrans-

formation vorangestellt, die möglichst viele Matrixeinträge auf 0 setzt. Man

geht hier ähnlich wie bei der in Abschnitt 10.5 diskutierten QR-Zerlegung vor. 

Durch die  k-te der insgesamt  n −  2 Konjugationen mit Householder-Matrizen

 H 1 , . . . , Hn− 2 werden die Spalten- und Zeilenabschnitte  A( k + 2 :  n, k) und

 A( k, k + 2 :  n) eliminiert. Das Produkt

 QT AQ :=  HT

 n− 2  · · · H T

1  A H 1  · · · Hn− 2

ist dann eine Tridiagonalmatrix mit ( QT AQ)( k, l) = 0 für  |k − l| >  1. Im Fall

 n = 3 bedeutet das

⎛

⎞

⎛

⎞

⎛

⎞

 × × ×

 × × ×

 × ×

⎜

⎟  HT ⎜

⎟  ·

⎜

⎟


H

 A = ⎜

1  ·

1

⎝  × × × ⎟

⎠  −→ ⎜

⎝  × × × ⎟

⎠  −→ ⎜

⎝  × × × ⎟

⎠ =  QT AQ. 

 × × ×

 × ×

 × ×

Dieses rückwärtsstabile Verfahren benötigt etwa 4  n 3 arithmetische Operatio-

3

nen und übergibt mit  QT AQ  eine symmetrische Matrix an den Eigenwertlöser, 

welche die gleichen Eigenwerte wie  A  hat, aber nur noch 5 n  arithmetische Ope-

rationen für eine Matrix-Vektor-Multiplikation braucht. Diese Vorbehandlung

garantiert in den meisten Fällen eine erhebliche Effizienzsteigerung. 
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10.7

Polynominterpolation

Gegeben seien  n + 1 paarweise verschiedene Stützstellen  x 0 , . . . , xn  im Inter-

vall [ − 1 ,  1] und  n + 1 dazugehörige reelle Werte  y 0 , . . . , yn, die sich beispiels-

weise aus einer Reihe von Temperaturmessungen oder dem wiederholten Blick

auf den Kontostand ergeben haben können. Die einfachsten Funktionen, mit

denen man solche Punkte interpolieren kann, sind Polynome. Für die Paare

( x 0 , y 0) , . . . , ( xn, yn) gibt es genau ein Polynom  pn( x) vom Grad kleiner oder

gleich  n  mit

 ∀j = 0 , . . . , n :  pn( xj) =  yj. 

Das Polynom, welches zu den speziellen Werten  yk = 1 und  yj = 0 für alle  j =  k

gehört, wird das  k-te  Lagrange-Polynom 
k( x) genannt. Hiermit lässt sich das

Interpolationspolynom  pn( x) in der auf Joseph-Louis Lagrange im Jahr 1795

zurückgehenden Darstellung als

 n



 pn( x) =

 yj
j( x)

 j=0

' 

schreiben. Bezeichnen wir das Stützstellenpolynom

 n

( x − x

 j=0

 j ) mit  sn+1( x)

' 

und die baryzentrischen Gewichte

( x

 j= k

 k − xj ) − 1 mit  wk , so ergibt sich

' 

( x − xj)

 w

 


 j= k

' 

 k

 k ( x) =

=  sn

( x

+1( x)  x − x

 j= k

 k − xj )

 k

und damit auch die  erste baryzentrische Interpolationsformel

 n

  y

 p

 j wj

 n( x) =  sn+1( x)

 . 

 x − xj

 j=0

Diese Formel erlaubt eine rückwärtsstabile Berechnung des Interpolationspoly-

noms mit etwa 5 n  arithmetischen Operationen für vorberechnete baryzentrische

Gewichte. Möchte man eine weitere Stützstelle  xn+1 hinzufügen, so müssen die

bisherigen baryzentrischen Gewichte  wk,  k = 0 , . . . , n, jeweils durch  xk − xn+1

geteilt und ein weiteres Gewicht  wn+1 berechnet werden. Dieses Update benötigt

in etwa 4 n  arithmetische Operationen. 

Neben der stabilen Berechenbarkeit stellt sich auch die Frage nach der Kon-

dition. Wir nehmen an, die reellen Werte  y 0 , . . . , yn  wären die Funktionswerte

einer stetigen Funktion  f  an den Stellen  x 0 , . . . , xn, und bezeichnen mit  Pnf

das zugehörige Interpolationspolynom. Die absolute Kondition der Polynom-

interpolation ist dann


P

Λ

 nf ∞

 n =

sup

 

 . 

 f 

 f ∈C[ − 1 ,  1]

 ∞
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Diese Konditionszahl heißt auch die  Lebesgue-Konstante. Sie gibt für feste

Stützstellen an, wie stark sich Änderungen der zu interpolierenden Funktion auf

das Interpolationspolynom auswirken. Die Lebesgue-Konstante wächst mindes-

tens wie 2 log( n + 1) + 0 .  5212, egal wie die Stützstellen liegen. Dieses unbe-

 π

schränkte Wachstum spiegelt sich auch im Satz von Georg Faber aus dem Jahr

1901 wider, der zu jeder Stützknotenmenge eine stetige Funktion  f  findet, so

dass die Folge der Interpolationspolynome nicht gleichmäßig gegen  f  konver-

giert. Für äquidistante Stützstellen wächst die Lebesgue-Konstante nicht nur

logarithmisch, sondern sogar exponentiell in der Knotenzahl  n. 

In dieses düstere Bild passt das berühmte Beispiel von Carl Runge, der 1901

das Interpolationspolynom der Funktion  f ( x) = 1 /(1 + 25 x 2) für äquidistante

Stützstellen untersuchte. Er zeigte, dass es eine kritische Konstante  xc ≈  0 .  72

gibt, so dass der Fehler  f ( x)  − ( Pnf )( x) dann und nur dann für  n → ∞  ge-

gen Null konvergiert, wenn  |x| < xc  ist. Der Beweis benötigt Argumente der

Funktionentheorie. Dennoch kann man die Problemlage erahnen, wenn man die

Formel

 f ( n+1)( ξ)

 f ( x)  − ( Pnf )( x) =  sn+1( x) ( n + 1)! 

betrachtet, die den Interpolationsfehler im allgemeinen Fall beschreibt. Die Ab-

leitungen von  f  werden hier an einer Stelle  ξ  ausgewertet, die in der konvexen

Hülle von  x  und den Stützstellen liegt. Im Beispiel von Runge sind nun die

höheren Ableitungen von  f  an den Rändern des Intervalls nicht klein genug, um

das Wachstum des äquidistanten Stützstellenpolynoms aufzufangen. 

Anders liegt der Fall für die Chebyshev-Knoten erster Art, das heißt für die

Nullstellen des ( n + 1)-ten Chebyshev-Polynoms, 





 x

2 j+1  π

 j = cos

 , 

 j = 0 , . . . , n. 

 n+1 2

Für diese Stützstellen, die sich zu den Rändern des Intervalls [ − 1 ,  1] hin passend

häufen, fällt die Supremumsnorm  sn+1 ∞  des Stützstellenpolynoms minimal

aus. Die Lebesgue-Konstante ist mit Λ n ≤  2 log( n + 1) + 1 fast bestmöglich. Es

 π

gibt zudem eine Konstante  Cs >  0, so dass für alle  s-mal stetig differenzierbaren

Funktionen  f

 f − Pnf∞ ≤ Cs n−s+1  f( s) ∞

gilt. Man spricht hier von  spektraler Konvergenz. Die baryzentrischen Gewich-

te sind aus der Formel  w

 π

 j = ( − 1) j  sin( 2 j+1

) einfach zu berechnen. Aus all

 n+1 2

diesen Gründen sind die Chebyshev-Knoten für die Polynominterpolation die

Stützstellen der Wahl. Wir treffen sie auch in Abschnitt 10.10 bei der Gauß-

Chebyshev-Quadratur wieder. 
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Wechseln wir für die Interpolation von den algebraischen Polynomen  x → xk

zu den trigonometrischen Polynomen  x → eikx, so berühren wir die mathemati-

sche Grundlage vieler Algorithmen zur Bild- und Signalverarbeitung. Ohne die

schnelle Fouriertransformation (oder auch Fast Fourier Transform, FFT) wären

Audioformate wie MP3 und Datenübertragung im Wireless LAN nicht denkbar. 

Gegeben seien  n  paarweise verschiedene Stützstellen  x 0 , . . . , xn− 1 im Intervall

[0 ,  2 π) und  n  dazugehörige komplexe Zahlen  y 0 , . . . , yn− 1. Dann gibt es genau



ein trigonometrisches Polynom  p

 n− 1

 n( x) =

 c

 j=0

 j eijx  vom Grad kleiner oder

gleich  n −  1, welches

 ∀j = 0 , . . . , n −  1 :  pn( xj) =  yj

erfüllt. Wir beschränken uns auf äquidistante Stützstellen  xk = 2 πk/n  und

stellen fest, dass in diesem Fall die Auswertung der trigonometrischen Monome



 jk

 eijxk =

 e 2 πi/n

=  ωjk

 n

eine Potenz der ersten Einheitswurzel vom Grad  n  ergibt. Die Koeffizienten



des Interpolationspolynoms lassen sich als  c

 n− 1

 j = 1

 y

 n

 k=0

 k ω−jk

 n

schreiben, und

der Koeffizientenvektor  c = ( c 0 , . . . , cn− 1) T  ergibt sich aus dem Wertevektor

 y = ( y 0 , . . . , yn− 1) T  durch die lineare Abbildung  c = 1  F y, wobei  F  die Fourier-

 n

Matrix



 n− 1

 F =

 ω−jk

 n

 j,k=0

ist. Unter normalen Umständen erfordert eine solche Matrix-Vektor-Multipli-

kation etwa 2 n 2 arithmetische Operationen. Ist  n = 2 m  jedoch eine Potenz

von 2, so kann die Fourier-Matrix als  F =  Am · · · A 1 P  faktorisiert werden.  P

ist eine Permutationsmatrix, die gerade und ungerade Indizes vertauscht. Die

Faktoren  A 1 , . . . , Am  sind die blockdiagonalen Matrizen

⎛

⎞


B

⎜ 2 k  0  · · ·  0

⎜

⎟

⎜ 0  B

⎟

2 k · · ·

0 ⎟

 Ak = ⎜

⎜ . 

. 

. 

. 

⎟  ∈  R n×n, 

⎝ . 

⎟

. 

.. 

. . .. ⎠

0

0

 · · · B 2 k

wobei der 2 m−k-mal wiederholte Diagonalblock von der Form





Id


B

2 k− 1

Ω2 k− 1

 ∈  R2 k× 2 k

2 k =

Id2 k− 1  −Ω2 k− 1

und Ω r = diag(1 , ω− 1

2 k , . . . , ω−r+1

2 k

) eine Diagonalmatrix der Länge  r = 2 k− 1

ist. Da die Matrixfaktoren pro Zeile maximal zwei Einträge haben, benötigt die

Berechnung von  c =  Am . . . A 1 P y  etwa 2 n  log  n  arithmetische Operationen. 
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Diese Art der Koeffizientenberechnung ist rückwärtsstabil. Sie heißt die

 schnelle Fouriertransformation  mit Radix-2-Faktorisierung. Sie geht auf eine

Arbeit von Gauß aus dem Jahr 1805 zurück, in der der Algorithmus zur Inter-

polation von Asteroidenflugbahnen verwendet wird. Die erneute Entdeckung der

Faktorisierung durch James Cooley und John Tukey in den 1960er Jahren führte

zu einer der einflussreichsten Veröffentlichungen der numerischen Mathematik. 

Sind die  yj =  f ( xj) die Werte einer stetigen 2 π-periodischen Funktion  f , 

so setzt man oft die zweite Hälfte der Stützstellen an den Anfang und sieht

sie als äquidistant im Intervall [ −π, π) verteilt an. Aufgrund der Periodizität

bedeutet dies nur eine symmetrische Umnummerierung. Das zu  xk = 2 πk/n

und  f  gehörige Interpolationspolynom  Pnf  schreibt sich dann als ( Pnf )( x) =

 n/ 2 − 1  c

 j= −n/ 2  j eijx. Der  j-te Interpolationskoeffizient

 n/ 2 − 1

 n/ 2 − 1

1



1



1

 cj =

 ykω−jk

 ·  2 π

 f ( xk) e−ijxk =

 Tn( gj)

 n

 n

= 2 π n

2 π

 k= −n/ 2

 k= −n/ 2

ist der Wert der summierten Trapezregel  Tn  für die numerische Quadratur der

2 π-periodischen Funktion  gj( x) =  f ( x) e−ijx, siehe auch Abschnitt 10.9. Ande-

rerseits ergibt das Integral über die Funktion  gj  gerade den  j-ten Fourierkoeffi-

zienten der Funktion  f , 

  π

(

1

 fj =

 f ( x) e−ijxdx, 

2 π

 −π

siehe Abschnitt 7.9. Die Interpolationskoeffizienten approximieren also die Fou-

rierkoeffizienten. Für stetig differenzierbare 2 π-periodische Funktionen konver-



giert die Fourierreihe  f ( x) =

 ∞

(

 f

 j= −∞ j eijx  gleichmäßig. Man folgert damit aus

der Interpolationseigenschaft von  Pnf , dass

 ∞



 c

(

 j =

 fj+ kn

 k= −∞

gilt. In jedem  cj  sind also neben (

 fj  noch unendlich viele weitere Fourierkoef-

fizienten als sogenannte  Aliase  versteckt. Diese Verbindungen zur Theorie der

Fourierreihen legen nahe, die Abbildung  y →  1  F y =  c  die  diskrete Fourier-

 n

 transformation  zu nennen. 

Die Fehleranalyse der trigonometrischen Interpolation und der Polynomin-

terpolation mit Chebyshev-Stützstellen sind eng verwandt. Die Lebesgue-

Konstante Λ n = sup { Pnf ∞/f ∞ | f  stetig ,  2 π-periodisch }  bezüglich der

Supremumsnorm wächst mindestens wie 4

 π 2 (log  n + 3) + 0 .  1. Es gibt eine Kon-

stante  Cs >  0, so dass für alle  s-mal stetig differenzierbaren 2 π-periodischen

Funktionen  f

 f − Pnf∞ ≤ Cs n−s f( s) ∞

gilt. Mit wachsendem Polynomgrad  n  verschlechtert sich also wieder die absolute

Konditionszahl, während der Interpolationsfehler sogar spektral konvergiert. 

268

10 Numerik

10.9

Numerische Integration und Summation

Die Approximation des Integrals einer stetigen Funktion  f : [ a, b]  →  R erfolgt

über einen Summationsprozess

  b

 n



 I( f ) :=

 f ( x) dx ≈

 wjf ( xj ) =:  Q( f ) , 

 a

 j=0

den man  numerische Quadratur  nennt. Durch die Konstruktion von guten

Stützstellen  x 0 , . . . , xn ∈ [ a, b] und Gewichten  w 0 , . . . , wn ∈  R enstehen Quadra-

turformeln, die den Inhalt krummlinig berandeter Flächen durch den einfacherer

Flächen approximieren. 

Wir beginnen mit einer vergleichenden Konditionsbetrachtung. Die absolute

und die relative Konditionszahl der Abbildung  f → I( f ) bezüglich der Supre-

mumsnorm  f ∞ = sup {|f ( x) | | x ∈ [ a, b] }  sind

 f∞

 κ abs

 f

( I) = 1 , 

 κ rel

 f ( I ) =  |I( f) | . 

Für die Quadraturabbildung  f → Q( f ) gilt

 w

 κ abs

1 f ∞

 f

( Q) =  w 1 , 

 κ rel

 f ( Q) =

 |Q( f) | , 

wobei  w 1 =  |w 0 | +  . . . +  |wn|  die  
 1-Norm des Vektors  w = ( w 0 , . . . , wn)

der Quadraturgewichte ist. Die beiden relativen Konditionszahlen können für

Funktionen mit vielen Vorzeichenwechseln beliebig groß werden, weswegen die

Integration und Quadratur von oszillierenden Funktionen beide schlecht kondi-

tioniert sind. Nehmen wir an, dass die Integrale konstanter Funktionen exakt

berechnet werden, so gilt

 κ abs

 f

( Q)  ≥ κ abs

 f

( I) , 

wobei die beiden Konditionszahlen genau dann gleich sind, wenn die Quadra-

turgewichte  w 0 , . . . , wn ≥  0 erfüllen. Damit die Quadratur die Kondition des

vorliegenden Integrals nicht verschlechtert, werden also üblicher Weise Quadra-

turformeln mit positiven Gewichten konstruiert. 

Die einfachsten Quadraturformeln sind die  einfache Mittelpunktsregel  und die

 einfache Trapezregel, 

 M[ a,b]( f) = ( b − a) f(  a+ b ) , 


T

( f ( a) +  f ( b))  . 

2

[ a,b]( f ) =  b−a

2

Sie approximieren das Integral durch die Fläche des Rechtecks mit Höhe  f (  a+ b )

2

beziehungsweise durch die des Sehnentrapezes. Beide Regeln integrieren lineare

Funktionen offenbar exakt. Das folgt auch aus der Darstellung des Quadratur-

fehlers für zweimal stetig differenzierbare Funktionen mittels geeigneter Zwi-

schenstellen  ξ 1 , ξ 2  ∈ ( a, b) als

 M[ a,b]( f)  − I( f) =  − ( b−a)3  f( ξ

 f ( ξ

24

1) , 

 T[ a,b]( f)  − I( f) = ( b−a)3

12

2) . 
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Diese einfachen Ansätze lassen sich folgendermaßen verbessern. Man legt die

Stützstellen als äquidistantes Gitter ins Intervall [ a, b],  xj =  a+ jh,  h = ( b−a) /n, 

 j = 0 , . . . , n, und definiert die  summierte Trapezregel  durch die Summation über

die Werte von  n  einfachen Trapezregeln:

 n



 n− 1



 Tn( f ) :=

 T[ x

( f ( x

 hf ( x

 j− 1 ,xj ]( f ) =  h

2

0) +  f ( xn)) +

 j ) . 

 j=1

 j=1

Für zweimal stetig differenzierbare Funktionen summiert sich dann der Quadra-

turfehler zu

 Tn( f )  − I( f ) =  b−a h 2 f ( ξ) , 

 ξ ∈ ( a, b) geeignet . 

12

Analog kann man aus  n  einfachen Mittelpunktsregeln eine summierte Mittel-

punktsregel konstruieren, die ebenfalls einen Fehler der Größenordnung  n− 2

erreicht. Die summierte Trapezregel ist jedoch in folgender Beziehung einzig-

artig: Für (2 m + 2)-fach stetig differenzierbare Funktionen der Periode  b − a

gilt

 Tn( f )  − I( f ) =  Cm( b − a) h 2 m+2 f(2 m+2)( ξ) , 

 ξ ∈ ( a, b) geeignet , 

wobei  Cm ≥  0 eine von  n  und  f  unabhängige Konstante ist. Für periodische

Funktionen ist die summierte Trapezregel also spektral konvergent (siehe auch

Abschnitte 10.7 und 10.8 für spektral konvergente Interpolationsverfahren). 

Ist eine geeignete Quadraturformel konstruiert, so muss am Ende der Vektor

( w 0 f ( x 0) , . . . , wnf ( xn)) aufsummiert werden. Wir bezeichnen mit  ε  die Maschi-

nengenauigkeit und mit ˆ

 S( y) den in Gleitkomma-Arithmetik berechneten Wert

der Summe  S( y) =  y 0 +  . . . +  yn  eines beliebigen Vektors  y = ( y 0 , . . . , yn). 

Die  rekursive Summation  summiert der Reihe nach auf, was im Fall  n = 4 der

Klammerung

 S = ((( y 0 +  y 1) +  y 2) +  y 3) +  y 4

entspricht. Dies ergibt einen absoluten Vorwärtsfehler, dessen obere Schranke

linear mit der Summationslänge wächst,  |S( y)  − ˆ

 S( y) | ≤ εny 1 +  O( ε 2). Die

 paarweise Summation  hingegen addiert benachbarte Komponenten des Vektors

und erzeugt so im ersten Schritt den Vektor ( y 0 +  y 1 , . . . , yn− 1 +  yn) oder ( y 0 +

 y 1 , . . . , yn− 2 +  yn− 1 , yn), je nachdem, ob  n  ungerade oder gerade ist. Dieser

Summationsprozess wird rekursiv wiederholt, bis nach etwa log  n  Schritten die

Gesamtsumme berechnet ist. Im Fall  n = 4 klammert die paarweise Summation

also folgendermaßen:

 S = (( y 0 +  y 1) + ( y 2 +  y 3)) +  y 4 . 

Der absolute Vorwärtsfehler hat dann eine obere Schranke, die nur logarithmisch

wächst,  |S( y) − ˆ

 S( y) | ≤ ε  log  ny 1 + O( ε 2). Dies ist eine deutliche Verbesserung

zum linearen Anwachs bei der rekursiven Summation. 
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Wir wollen für eine nichtnegative Funktion  ω: ( a, b)  → [0 , ∞) das zugehörige

gewichtete Integrationsproblem

  b

 n



 f ( x) ω( x) dx ≈

 wjf ( xj)

 a

 j=0

numerisch lösen, indem wir uns erneut auf den Spuren von Gauß bewegen. In

einer Arbeit zur numerischen Integration aus dem Jahr 1814 verfolgte er folgen-

den Ansatz: Er sah in der optimalen Wahl von  n + 1 Stützstellen  x 0 , . . . , xn  und

 n + 1 Gewichten  w 0 , . . . , wn  die Möglichkeit, das Integral von Polynomen vom

Grad kleiner oder gleich 2 n + 1 exakt zu berechnen. Wird dieses Ziel erreicht, so

wird insbesondere das Integral der zu den Stützstellen gehörigen Interpolations-



polynome  p

 n

 n( x) =

 f ( x

 j=0

 j ) 
j ( x) exakt berechnet, und die Gewichte müssen

durch die Formel

  b

 wj =

 
j( x) ω( x) dx, 

 j = 0 , . . . , n

 a

' 

beschrieben sein, wobei  
j( x) =

( x − x

 k= j

 k ) /( xj − xk ) das  j-te Lagrange-

Polynom ist (vgl. Abschnitt 10.7). Da  
j ( xj) = 1 und  
j( xk) = 0 für  j =  k  gilt

und  
j( x)2 ein Polynom vom Grad 2 n  ist, gilt dann auch

 n



  b

 wj =

 wk
j ( xk)2 =

 
j( x)2 ω( x) dx >  0 . 

 k=0

 a

Die Stützstellen sind durch die Zielvorgabe auch eindeutig festgelegt. Bevor wir

sie im Detail angeben, erlauben wir uns einen kurzen Diskurs über orthogonale

Polynome. 

Eine Folge von Polynomen ( πj) j≥ 0, deren  j-tes Folgenglied ein Polynom vom

Grad  j  mit führendem Koeffizienten 1 ist, heißt  orthogonal  bezüglich  ω, falls

  b

 πj( x) πk( x) ω( x) dx = 0 , 

 j =  k

 a

gilt. Eine solche Polynomfolge ist durch die Orthogonalitätsbedingung und die

Forderung, dass der führende Koeffizient 1 ist, eindeutig bestimmt. Sie erfüllt

eine Dreiterm-Rekursion

 πj+1( x) = ( x − αj) πj( x)  − βjπj− 1( x) , 

 π 0( x) = 1 , 

 π 1( x) =  x +  α 0 , 

für deren Koeffizienten





 b

 b

 xπj( x)2 ω( x) dx

 πj( x)2 ω( x) dx

 α

 a

 a

 j =



 , 

 β



 b

 j =

 b

 π

 π

 a

 j ( x)2 ω( x) dx

 a

 j− 1( x)2 ω( x) dx
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gilt. Für viele klassische orthogonale Polynomsysteme sind die Rekursionsko-

effizienten bekannt. Besonders einfach sind sie im Fall der  Legendre-Polynome

und der  Chebyshev-Polynome erster Art, die von Adrien-Marie Legendre (1783)

beziehungsweise Pafnuty Chebyshev (1854) eingeführt wurden. Beide Systeme

gehören zu Gewichtsfunktionen auf dem Intervall ( − 1 ,  1). Für die Legendre-

Polynome ist es die Eins-Funktion  ω( x) = 1, welche die Koeffizienten  αj = 0, 

 j ≥  0, und  βj = 1 /(4  − j− 2),  j ≥  1, erzeugt. Für die Chebyshev-Polynome ist

 √

es die Funktion  ω( x) = 1 /  1  − x 2, welche zu den Koeffizienten  αj = 0,  j ≥  0, 

und  β 1 = 1 ,  β

,  j ≥  2, führt. 

2

 j = 1

4

Die Stützstellen der Gaußschen Quadratur stammen von dem zu  ω  gehörigen

orthogonalen Polynomsystem. Das  j-te orthogonale Polynom  πj  besitzt  j  ver-

schiedene Nullstellen im Intervall ( a, b), und die Stützstellen  x 0 , . . . , xn  müssen

genau die  n + 1 Nullstellen des ( n + 1)-ten orthogonalen Polynoms sein. Die

Gauß-Chebyshev-Quadraturformel wird dann beispielsweise aus den Gewichten





 w

2 j+1  π

 j =

 π

und den Stützstellen  x

aufgebaut. 

 n+1

 j = cos

 n+1 2

Für die Integration bezüglich anderer Gewichtsfunktionen erlaubt die

Dreiterm-Rekursion die Berechnung der Quadraturformel über das Lösen ei-

nes lineares Eigenwertproblems. Die Stützstellen  x 0 , . . . , xn  sind nämlich die

 n + 1 verschiedenen Eigenwerte der symmetrischen Tridiagonalmatrix

⎛

 √

⎞

 α

 β

⎜ 0

1

⎜  √

 √

⎟

⎜  β

 β

⎟

⎜

1

 α 1

2

⎟

⎜

⎟

. 

. 

. 

⎜

. 

⎟

. 

. . 

. . 

 . 

⎜

⎟

⎜

 √

 √

⎟

⎝

 β

⎟

 n− 1  αn− 1

 βn

 √

⎠

 βn

 αn



Die Gewichte lassen sich aus der Formel  w

 b

 j

=

 vj,  1

 ω( x) dx  berech-

 a

nen, wobei  vj,  1 die erste Komponente des normalisierten  j-ten Eigenvektors

ist. Das vorliegende Eigenwertproblem ist gut konditioniert und lässt sich

rückwärtsstabil mit einer Anzahl von arithmetischen Operationen lösen, die

von der Größenordnung  n 2 ist. Für die Berechnung vieler Stützstellen gibt es

sogar Verfahren, die geeignete gewöhnliche Differentialgleichungen lösen und im

numerischen Aufwand proportional zu  n  sind. 

Für (2 n+2)-mal stetig differenzierbare Funktionen  f  ist der Integrationsfehler

der Gaußschen Quadraturverfahren durch





 b

 n



 f (2 n+2)( ξ)

 b

 f ( x) ω( x) dx −

 wjf ( xj ) =

 πn

(2 n + 2)! 

+1( x)2 ω( x) dx, 

 a

 j=0

 a

gegeben, wobei  ξ ∈ ( a, b) ist. Polynome vom Grad 2 n + 1 werden also exakt

integriert, und dieser hohe Grad an Genauigkeit begründet, dass die Gaußsche

Quadratur in vielen Situationen das Verfahren der Wahl ist. 
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10.11

Runge-Kutta-Verfahren

Wir betrachten eine Funktion  f : R  ×  R d →  R d  in zwei Argumenten ( t, x) und

die gewöhnliche Differentialgleichung

 x( t) =  f ( t, x) , 

 x( t 0) =  x 0

mit einem Anfangswert ( t 0 , x 0)  ∈  R  ×  R d. Wir nehmen an, dass es genau eine

stetig differenzierbare Funktion  t → x( t) gibt, welche die Differentialgleichung

löst. Für die numerische Approximation der Lösung  x( t) in vorgegebenen Zeit-

punkten  t 0  < t 1  < . . . < tn  konstruiert man eine Funktion ˆ

 x:  {t 0 , . . . , tn} →  R d

mit der Eigenschaft  x( tj)  ≈ ˆ

 x( tj) für alle  j = 0 , . . . , n. Wir nehmen der Ein-

fachheit halber an, dass alle Zeitpunkte den gleichen Abstand ˆ

 τ =  tj+1  − tj

haben. 

Das  explizite Euler-Verfahren  aus dem Jahr 1768 approximiert die Lösungs-

kurve  t → x( t) in den Punkten  t 0 , . . . , tn  durch ihre Tangenten,  x( tj+1)  ≈

 x( tj) + ( tj+1  − tj) x( tj), und definiert

ˆ

 x( t 0) =  x 0 , 

ˆ

 x( tj+1) = ˆ

 x( tj ) + ˆ

 τ f ( tj, ˆ

 x( tj ))

( j = 0 , . . . , n −  1) . 

Die aneinandergesetzten Tangenten ergeben einen Polygonzug

ˆ

 x( t) = ˆ

 x( tj) + ( t − tj)  f ( tj, ˆ

 x( tj))

( t ∈ [ tj, tj+1] , j = 0 , . . . , n −  1)  . 

Die lokale Tangenten-Approximation ist eine Taylor-Entwicklung erster Ord-

nung, und man kann leicht abschätzen, wie weit sich der Polygonzug nach kurzer

Zeit von der Lösungskurve entfernt. Für jede kompakte Menge  K ⊂  R  ×  R d  fin-

det sich nämlich eine Konstante  CK >  0 und ein  τK >  0, so dass für alle

Anfangswerte ( t 0 , x 0)  ∈ K  und alle 0  < τ < τK

 x( t 0 +  τ)  − ˆ x( t 0 +  τ)  ≤ CKτ 2

gilt. Da das Euler-Verfahren Schritt für Schritt das gleiche Konstruktionsprinzip

wiederholt, kann man hieraus

max  x( tj)  − ˆ

 x( tj )  ≤ C ˆ

 τ

 j=0 ,...,n

für eine weitere Konstante  C >  0 folgern, sofern die Schrittweite ˆ

 τ  hinreichend

klein ist. Man sagt deshalb, dass das Euler-Verfahren  von der Ordnung p = 1

konvergiert. 

Im Spezialfall einer von  x  unabhängigen Differentialgleichung  x( t) =  f ( t) mit

Anfangswert  x( t 0) =  x 0 kann man die exakte Lösung  x  mittels eines Integrals

  t

schreiben. Es gilt  x( t

 j+1

 j+1) =  x( tj ) +

 f ( s) ds  für alle  j = 0 , . . . , n −  1. Man

 tj

erkennt, dass das Euler-Verfahren mit

  tj+1

 f ( s) ds ≈ ( tj+1  − tj)  f ( tj)

 tj
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eine Quadraturformel verwendet, die nur konstante Funktionen exakt integriert. 

Carl Runge schlug nun 1869 vor, wenigstens lineare Funktionen exakt zu inte-



grieren und die Mittelpunktsregel

 b f( s) ds ≈ ( b − a) f( a+ b) einzusetzen. Dies

 a

2

motiviert ein Verfahren

ˆ

 x( t 0) =  x 0 , 

ˆ

 x( tj+1) = ˆ

 x( tj) + ˆ

 τ ψ( tj, ˆ

 x( tj) , ˆ

 τ )

( j = 0 , . . . , n −  1) , 

welches die  Inkrementfunktion ψ: R  ×  R d × (0 , ∞)  →  R d  des Euler-Verfahrens

 ψ( t, x, τ ) =  f ( t, x) durch die ineinander geschachtelte  f -Auswertung

 ψ( t, x, τ ) =  f ( t +  τ , x +  τ f ( t, x))

2

2

ersetzt. Martin Kutta baute im Jahr 1901 diese Verbesserung in rekursiver Wei-

se aus. Er schrieb die Rungesche Inkrementfunktion in der zweistufigen Form

 k 1( t, x, τ ) =  f ( t, x),  ψ( t, x, τ ) =  f ( t +  τ , x +  τ k

2

2 1), was die folgende Verallgemei-

nerung zum  s-stufigen expliziten Runge-Kutta-Verfahren  nahelegt:

 ki( t, x, τ ) =  f ( t +  ciτ, x +  τ ( ai 1 k 1 +  . . . +  ai( i− 1) ki− 1)) ( i = 1 , . . . , s) , 

 ψ( t, x, τ ) =  b 1 k 1( t, x, τ ) +  . . . +  bsks( t, x, τ ) , 

wobei  b, c ∈  R s  Vektoren sind und  A ∈  R s×s  eine untere Dreiecksmatrix mit

lauter Nullen auf der Diagonalen ist. Zum Beispiel wird das Euler-Verfahren

durch  b = 1,  c = 0 und  A = 0 definiert, das von Runge durch  b = (0 ,  1), 

 c = (0 ,  1 ) und  A ∈  R2 × 2 mit  a

,  a

2

21 = 1

2

11 =  a 12 =  a 22 = 0. 

Angenommen, ein  s-stufiges Runge-Kutta-Verfahren hat die folgende Eigen-

schaft: Für jede Differentialgleichung  x( t) =  f ( t, x),  x( t 0) =  x 0 gibt es eine

Konstante  C >  0, so dass

max  x( tj)  − ˆ

 x( tj)  ≤ C ˆ

 τ p

 j=0 ,...,n

für hinreichend kleine Schrittweiten ˆ

 τ  gilt. Man sagt in diesem Fall, dass das

Verfahren  von der Ordnung p  konvergiert, und zeigt, dass  p ≤ s  gilt. Ein

erster Schritt in die Richtung der bestmöglichen Konvergenzordnung ist die

Überprüfung der folgenden  Konsistenzbedingung:

1

lim

 x( t 0 +  τ)  − ˆ x( t 0 +  τ)  = 0 . 

 τ → 0  τ

Dafür muss die Inkrementfunktion  ψ( t, x,  0) =  f ( t, x) erfüllen. Da  ki( t, x,  0) =

 f ( t, x) für alle  i = 0 , . . . , s  gilt, bedeutet dies  b 1 +  . . . +  bs = 1 für den Parame-

tervektor  b. Weitergehende, technisch anspruchsvollere Bedingungsgleichungen

an  A,  b  und  c  führen zu Runge-Kutta-Verfahren bestmöglicher Ordnung. Der

Satz, dass die

 numerische Berechnung irgend einer L¨

 osung einer gegebenen

” 

 Differentialgleichung . . . die Aufmerksamkeit der Mathematiker bisher wenig

 in Anspruch genommen“ hat, ist mittlerweile, fast 150 Jahre nach Runges ein-

flussreicher Arbeit, Geschichte. 
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10.12

Das Newton-Verfahren

Wir suchen für eine stetig differenzierbare Funktion  f : R  →  R eine Nullstelle, 

also ein  x∗ ∈  R mit  f ( x∗) = 0. Wir linearisieren, um eine Folge reeller Zahlen

 x 1 , x 2 , x 3  . . .  zu konstruieren, die gegen die Nullstelle  x∗  konvergiert: Unter der

Annahme, dass  xn  nahe bei  x∗  liegt, approximieren wir die Funktion  f  durch

ihre Tangente im Punkt  xn  und werten in  x∗  aus:

0 =  f ( x∗)  ≈ f ( xn) +  f( xn)( x∗ − xn) . 

Gilt  f ( xn)  = 0, so motiviert diese lokale Näherung die Iterationsvorschrift

 xn+1 =  xn − f ( xn)  , 

 f ( xn)

welche gemeinsam mit einem Startwert  x 0  ∈  R das  Newton-Verfahren  definiert. 

Isaac Newton hat 1669 in seiner Abhandlung

De analysi per aequationes

” 

numero terminorum infinitas“ eine derartige Methode angewandt, um für das

kubische Polynom  f ( x) =  x 3  −  2 x −  5 die reelle Nullstelle in der Nähe von  x = 2

zu approximieren. Die Formulierung für polynomielle Gleichungen und später

für nichtlineare Gleichungssysteme geht auf die britischen Mathematiker Joseph

Raphson (1690) beziehungsweise Thomas Simpson (1740) zurück. 

Ist  F : R d →  R d  stetig differenzierbar und  J( x) = ( ∂jFi( x))  ∈  R d×d  die

Jacobi-Matrix von  F  im Punkt  x ∈  R d, so schreibt sich das Newton-Verfahren

als

 xn+1 =  xn − J( xn) − 1 F ( xn) . 

Streng genommen haben wir also im Mehrdimensionalen zwei Schritte pro Ite-

ration. Zum einen wird das lineare Gleichungssystem  J ( xn) dn =  −F ( xn) nach

der sogenannten  Newton-Korrektur dn  gelöst, und dann wird  dn  im Schritt

 xn+1 =  xn +  dn  auf den Vorgänger  xn  addiert. 

Für die grundlegende Form der Konvergenztheorie trifft man drei Annah-

men. Wir formulieren sie mittels einer Norm   ·   auf R d  und ihrer zugehörigen

Matrixnorm  A = max {Ax | x = 1 },  A ∈  R d×d. 

(a) Es gibt ein  x∗ ∈  R d  mit  F ( x∗) = 0. 

(b) Es gibt eine offene Menge Ω   x∗, so dass  J: Ω  →  R d×d  Lipschitz-stetig

ist mit Lipschitz-Konstante  γ >  0. 

(c)  J∗ :=  J( x∗) ist invertierbar. 

Unter diesen drei Voraussetzungen kann man zeigen, dass es ein  ε >  0 gibt, 

so dass für alle Startwerte  x 0  ∈  R d  mit  x 0  − x∗ < ε  das Newton-Verfahren

wohldefiniert ist und eine Folge  x 1 , x 2 , x 3 , . . .  aufbaut, die gegen  x∗  konvergiert. 

Insbesondere gilt für alle  n = 0 ,  1 ,  2 , . . . 

 xn+1  − x∗ ≤ γ · J− 1

 ∗  · xn − x∗ 2 . 
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Für gute Startwerte und invertierbare Ableitungen ist das Newton-Verfahren

also quadratisch konvergent. 

Die Wahl des Startwertes ist für den Erfolg wesentlich. Suchen wir zum

Beispiel die Nullstelle  x∗ = 0 der Funktion  f ( x) = arctan( x) ausgehend von

 x 0 = 10, so bewegen wir uns jenseits des eben diskutierten lokalen Konvergenz-

satzes:

 n

0

1

2

3

4

 xn

10

 − 138 .  584

2 .  989  ·  104

 − 1 .  404  ·  109

3 .  094  ·  1018

 dn

 − 148 .  584 3 .  003  ·  104

 − 1 .  404  ·  109

3 .  094  ·  1018

 − 1 .  504  ·  1037

Die Iterierten  xn  schwingen mit immer größerer Amplitude. Die Newton-

Korrekturen  dn  jedoch zeigen zumindest in die Richtung der Nullstelle. Die-

se Beobachtung motiviert die Konstruktion von  ged¨

 ampften Newton-Verfahren, 

welche die ursprüngliche Newton-Iteration durch

 xn+1 =  xn +  λndn

mit geeigneten Skalaren  λn ∈ (0 ,  1] korrigieren. 

Den Abbruch eines Newton-Verfahrens kann man am Fehler  xn − x∗  oder am

Residuum  F ( xn) festmachen. Wir sprechen exemplarisch ein einfaches Kriteri-

um an. Man schreibt  xn − x∗ =  xn+1  − dn − x∗  und folgert mit der obigen

quadratischen Fehlerabschätzung

 xn − x∗ ≤ dn +  γ · J− 1

 ∗  · xn − x∗ 2 . 

Dies bedeutet, dass nahe  x∗  der Fehler und die Newton-Korrektur vergleich-

bare Länge haben, und man beendet die Iteration, sobald  dn < τ  für eine

vorgegebene Toleranz  τ >  0 erfüllt ist. 

Für die Wahl einer erreichbaren Toleranz  τ  muss berücksichtigt werden, dass

die tatsächlich berechnete Newton-Iteration von der Form

ˆ

 xn+1 = ˆ

 xn − ( J(ˆ

 xn) +  En) − 1( F (ˆ

 xn) +  en) +  εn

ist. Man kann sie im Standardmodell der Gleitkomma-Arithmetik mit Maschi-

nengenauigkeit  ε (siehe Abschnitt 10.2) analysieren und zeigen, dass der relative

Fehler  ˆ

 xn − x∗/x∗  monoton fällt, bis er bei

 ˆ xn+1  − x∗ ≈ J− 1

 ∗ 

 ε

 x∗

 x∗ ψ( F, x∗) + 12

stagniert, wobei die Funktion  ψ  den Fehler der  F -Auswertung in der Form

 en ≤ uF (ˆ xn) + ψ( F, ˆ xn, u) kontrolliert. Dieses Ergebnis illustriert die Wich-

tigkeit der  F -Auswertungen für die Genauigkeit des Newton-Verfahrens. 


11 Stochastik

Den Zufall beherrschbar zu machen ist das Ziel aller Glücksritter, ihn berechen-

bar zu machen ist Aufgabe der Mathematik. Das Teilgebiet der Mathematik, in

dem zufällige Phänomene modelliert und untersucht werden, ist die Stochastik. 

Sie ist im 17. Jahrhundert aus dem Verlangen entstanden, die Gesetzmäßigkeiten

des Glücksspiels zu erforschen, und auch heute hat dessen zeitgenössische Ver-

sion, die Finanzspekulation, der Stochastik starke Impulse verliehen. 

Die moderne Stochastik wurde um 1930 von A. N. Kolmogorov begründet. 

Wie in jeder mathematischen Disziplin ist der Ausgangspunkt eine Handvoll

Definitionen, aus denen die Theorie entwickelt wird. Das technische Vehikel ist

hier eine Verallgemeinerung der Lebesgueschen Maß- und Integrationstheorie; in

diesem Sinn ist die Stochastik eine Unterabteilung der Analysis. Diese Sichtweise

trägt allerdings nicht der stochastischen Intuition Rechnung. In seinem Buch

 Probability  hat L. Breiman diesen Doppelcharakter so beschrieben: Probability

” 

theory has a right hand and a left hand. On the right is the rigorous foundational

work using the tools of measure theory. The left hand ‘thinks probabilistically,’

reduces problems to gambling situations, coin-tossing, and motions of a physical

particle.“

Dementsprechend wird die Stochastik gelegentlich in einen

elementaren“

” 

und einen fortgeschrittenen“ Teil aufgespalten; in ersterem wird versucht, den

” 

maßtheoretisch-technischen Aspekt auf ein Minimum zu reduzieren. Hier wollen

wir weitgehend diesen elementaren Standpunkt einnehmen, aber bisweilen auf

nichttriviale maßtheoretische Konstruktionen hinweisen. 

Eine andere Schichtung der Stochastik geschieht durch die Einteilung in Wahr-

scheinlichkeitstheorie und Statistik; in der Wahrscheinlichkeitstheorie geht man

davon aus, die auftretenden Wahrscheinlichkeitsverteilungen zu kennen; die Auf-

gabe der Statistik ist es, diese aus Beobachtungen zu schätzen. 

Im Einzelnen stellen wir in den Abschnitten 11.1 bis 11.4 das wahrscheinlich-

keitstheoretische Grundvokabular (Wahrscheinlichkeitsmaß und Wahrschein-

lichkeitsraum, Zufallsvariable, Erwartungswert und Varianz, Unabhängigkeit)

vor, besprechen dann in 11.5 bis 11.7 Grenzwertsätze (Null-Eins-Gesetze, das

Gesetz der großen Zahl und den zentralen Grenzwertsatz) und schließen dar-

an zwei Abschnitte aus der Statistik über Parameterschätzung und statistische

Tests an. Es sei bemerkt, dass die Statistik einen eigenen mathematischen Be-

griffsapparat benutzt, der auf dem Begriff des statistischen Raums aufbaut; 

darauf gehen wir aber nicht ein. Die letzten drei Abschnitte behandeln einige

Themen aus dem Bereich der stochastischen Prozesse wie Markovsche Ketten, 

Irrfahrten und die Brownsche Bewegung. 

O. Deiser et al.,  12 x 12 Schlüsselkonzepte zur Mathematik, 
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11.1

Wahrscheinlichkeitsr¨

aume

Der erste Schritt, den Zufall berechenbar zu machen, besteht darin, eine mathe-

matische Struktur zu ersinnen, mit der man zufällige Phänomene fassen kann. 

Dies gelang um 1930 mit dem Begriff des Wahrscheinlichkeitsraums und des

Wahrscheinlichkeitsmaßes. 

Die Wahrscheinlichkeit eines Ereignisses anzugeben bedeutet, diesem Ereig-

nis eine Zahl zwischen 0 und 1 zuzuordnen mit der Interpretation, dass es für

das Ereignis um so wahrscheinlicher ist einzutreten, je größer diese Zahl ist. 

Ferner sollte die Wahrscheinlichkeit unvereinbarer Ereignisse additiv sein. Diese

Forderung übersetzt man wie folgt. Ereignisse sind Teilmengen einer gewissen

Grundmenge Ω, deren Elemente Elementarereignisse heißen, und die Zuordnung

 A →  P( A) sollte den Regeln

P( A ∪ B) = P( A) + P( B) für  A ∩ B =  ∅

(11.1)

und P(Ω) = 1 genügen. Man beachte, dass (11.1) die Philosophie das Ganze ist

” 

die Summe seiner Teile“ wiedergibt, genauso, wie wir es bei der Diskussion des

Flächeninhalts am Anfang von Abschnitt 8.6 postuliert haben. Und genau wie

dort greift (11.1) mathematisch zu kurz (man muss statt zweier oder endlich vie-

ler eine Folge von Ereignissen berücksichtigen), und genau wie dort muss man im

Allgemeinen das Vorhaben aufgeben,  jeder  Teilmenge eine Wahrscheinlichkeit

zuordnen zu wollen. 

Somit kommen wir zur fundamentalen Definition der Wahrscheinlichkeits-

theorie. Ein  Wahrscheinlichkeitsraum  ist ein Tripel (Ω , A ,  P), das aus einer

Menge Ω (den Elementarereignissen), einer  σ-Algebra von Teilmengen von Ω

(den Ereignissen, denen Wahrscheinlichkeiten zugewiesen werden sollen) und

einem Wahrscheinlichkeitsmaß P auf  A  besteht (das die Wahrscheinlichkeiten

der Ereignisse angibt). Dabei ist eine  σ-Algebra  wie in Abschnitt 8.6 ein System

 A  von Teilmengen von Ω mit:

(a)  ∅ ∈ A . 

(b) Mit  A  liegt auch das Komplement Ω  \ A  in  A . 



(c) Sind  A

 ∞

1 , A 2 , . . . ∈ A , so auch


A

 j=1

 j . 

Ein  Wahrscheinlichkeitsmaß  auf  A  ist eine Abbildung P:  A → [0 ,  1] mit

P(Ω) = 1 und

P( A 1  ∪ A 2  ∪ . . . ) = P( A 1) + P( A 2) +  · · ·

(11.2)

für paarweise disjunkte  Aj ∈ A . 

Das sieht nach trockener Materie aus, besitzt aber naheliegende stochastische

Interpretationen. Beginnen wir mit (11.2). Hier wird für einander ausschließen-

de Ereignisse  A 1 , A 2 , . . .  ausgesagt, dass die Wahrscheinlichkeit, dass eines der

Ereignisse eintritt, gleich der Summe der Einzelwahrscheinlichkeiten ist. Wie

beim Lebesgueschen Maß ist der Vorzug von (11.2) gegenüber der endlichen Va-

riante (11.1) darin begründet, hier den ersten Schritt zu den wichtigen Grenz-
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wertsätzen vorliegen zu haben. Und um (11.2) in konkreten Beispielen beweisen

zu können, muss man darauf gefasst sein, als Definitionsbereich von P nicht

die Potenzmenge von Ω, sondern nur ein Teilsystem  A ⊆ P(Ω) nehmen zu

können. An dieses Teilsystem, das die interessierenden Ereignisse repräsentiert, 

stellt man die Forderungen (a), (b) und (c), denn (b) besagt, dass mit einem

Ereignis  A  auch  A  tritt nicht ein“ ein Ereignis ist, und (c) formuliert, dass mit

” 

 A 1 , A 2 , . . .  auch Eines der Ereignisse  A

” 

 k  tritt ein“ ein Ereignis ist. Mit Hilfe



von (b) erh

 ∞

ält man dann auch


A

Alle  A

 k=1

 k ∈ A , d. h., 





” 

 k  treten ein“ ist ein

Ereignis, und weiter

 ∞


A

Unendlich viele der  A

 k=1

 n≥k

 n ∈ A , d. h., ” 

 k  treten

ein“ ist ein Ereignis. Schließlich garantiert (a), dass es überhaupt Ereignisse

gibt. 

Wir wollen drei Beispiele ansehen. 

(1) Zuerst zum Zufallsexperiment par excellence, dem (einmaligen) Wurf eines

fairen Würfels. Es wird durch folgenden Wahrscheinlichkeitsraum beschrieben:

Ω =  { 1 ,  2 , . . . ,  6 },  A  ist die Potenzmenge von Ω, und P( A) =  |A|/ 6 mit  |A| =

Anzahl der Elemente von  A. Die Frage, ob man eine gerade Zahl würfelt, ist

dann die nach P( { 2 ,  4 ,  6 }). Allgemein nennt man Wahrscheinlichkeitsräume der

Bauart Ω = endliche Menge,  A =  P(Ω) und P( A) =  |A|/|Ω | Laplace-Räume; 

Lottospiel und Kartenmischen sind von diesem Typ. Um konkrete Wahrschein-

lichkeiten auszurechnen, sind häufig kombinatorische Überlegungen nötig, vgl. 

Abschnitt 4.1. 

(2) Im nächsten Beispiel werden Pfeile auf eine kreisförmige Scheibe geworfen, 

der Zufall soll dabei keine Vorliebe für einen bestimmten Bereich der Scheibe

zeigen. Das wahrscheinlichkeitstheoretische Modell hierfür ist der Wahrschein-

lichkeitsraum mit Ω  ⊆  R2, das die Scheibe repräsentiert, mit P( A) =  λ( A) /λ(Ω)

( λ( A) = Flächeninhalt von  A). Hier ist P a priori nur auf geometrisch einfachen

Teilmengen vorgegeben, und im Abschnitt 8.6 wurde erläutert, dass man  λ

und damit P auf die  σ-Algebra der Borelmengen, nicht aber auf die gesamte

Potenzmenge fortsetzen kann. Also ist  A =  B o(Ω) eine adäquate Wahl. Für

einen geübten Dartsspieler ist natürlich nicht die homogene Gleichverteilung als

Wahrscheinlichkeitsmaß zu nehmen, sondern eines, das Bereichen in der Mitte

der Scheibe eine höhere Wahrscheinlichkeit zumisst als außen. 

(3) Im dritten Beispiel betrachten wir die Standardnormalverteilung, der idea-

lisiert viele experimentelle Daten folgen (warum, erklärt der zentrale Grenzwert-

satz in Abschnitt 11.7). Für Teilintervalle  A ⊆  R setze




P

1


( A) =  √

 e−x 2 / 2  dx; 

(11.3)

2 π


A

der Vorfaktor garantiert, dass P(R) = 1. Wie beim Lebesgueschen Maß ist es

auch hier möglich, das auf Intervallen vorgegebene Wahrscheinlichkeitsmaß auf

die Borelsche  σ-Algebra (nicht aber auf die Potenzmenge) so fortzusetzen, dass

(11.2) gilt. 
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Wie die letzten beiden Beispiele zeigen, ist die Wahl der  σ-Algebra manch-

mal eine sehr subtile Aufgabe, deren Lösung auf nichttrivialen Existenzsätzen

beruht. Anfängern kann jedoch geraten werden, diesen Punkt zunächst einmal

zu ignorieren, insbesondere, wenn sie das Lebesguesche Maß noch nicht kennen-

gelernt haben. Ist Ω abzählbar, kann man jedoch immer  A =  P(Ω) wählen. 

11.2

Zufallsvariable

Eine  Zufallsvariable  auf einem Wahrscheinlichkeitsraum (Ω , A ,  P) ist eine  Borel-

 messbare  Abbildung  X: Ω  →  R; d. h., für borelsche Teilmengen  B ⊆  R ist

 X− 1[ B] =  { ω | X( ω)  ∈ B } ∈ A . (Es genügt, dies nur für Intervalle zu fordern.)

Um diesen kargen Begriff mit Leben zu erfüllen, stellen wir uns Tyche, die

Göttin des Zufalls, vor, die volle Information über die Zufallswelt Ω besitzt –

sie weiß also, welches  ω ∈ Ω sie ausgewählt hat –, uns aber nur einen Aspekt

davon mitteilt, nämlich  X( ω). Einen Funktionswert  X( ω) nennt man auch eine

 Realisierung  der Zufallsvariablen  X. 

Im Beispiel des Laplace-Raums Ω =  { 1 ,  2 , . . . ,  6 } × { 1 ,  2 , . . . ,  6 }, der das zwei-

malige Würfeln eines fairen Würfels beschreibt, ist etwa  X( ω) =  X( ω 1 , ω 2) =  ω 2

eine Zufallsvariable, die das Resultat des zweiten Wurfs wiedergibt. Im Gegen-

satz zur Bezeichnung Zufallsvariable“ ist nichts Zufälliges an  X; im Gegenteil

” 

ist  X  so deterministisch wie jede Abbildung: Wenn man  ω  hineinsteckt, kommt

 X( ω) heraus. 

Nur ist es so, dass bloß Tyche weiß, welches  ω  in die Zufallsvariable  X  einge-

geben wurde, und die entscheidende stochastische Frage ist, mit welcher Wahr-

scheinlichkeit  X  einen gewissen Wert (den wir ja beobachten) annimmt bzw. 

in einem gewissen Bereich liegt: Es geht also um P( { ω | X( ω) =  b }) bzw. 

P( { ω | X( ω)  ∈ B }). Da Mengen wie diese in der Wahrscheinlichkeitstheorie

auf Schritt und Tritt auftreten, haben sich naheliegende Kurzschreibweisen ein-

gebürgert:

P( X =  b) = P( { ω | X( ω) =  b }) ,  P( X ∈ B) = P( { ω | X( ω)  ∈ B })

sowie  {X ≥  0 } =  { ω | X( ω)  ≥  0  }  etc. 

Die Frage ist also die nach der  Verteilung  von  X, das ist das gemäß

P X:  B o(R)  → [0 ,  1] ,  P X( B) = P( X ∈ B)

(11.4)

erklärte Wahrscheinlichkeitsmaß auf den Borelmengen von R; damit der letzte

Term überhaupt definiert ist, muss man in der Definition einer Zufallsvariablen

sicherstellen, dass  {X ∈ B}  wirklich zum Definitionsbereich  A  von P gehört. 

Es ist zu bemerken, dass der Wahrscheinlichkeitsraum (Ω , A ,  P) mehr und

mehr in den Hintergrund tritt und die gesamte stochastische Information über

 X  in der Verteilung P X  kodiert ist, und nur diese ist von Interesse. (Es ist
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bloß wichtig zu wissen, dass es überhaupt einen Wahrscheinlichkeitsraum im

Hintergrund gibt.) Beim zweimaligen Würfeln kann die Zufallsvariable Augen-

” 

summe“ einerseits auf Ω =  { 1 ,  2 , . . . ,  6 } × { 1 ,  2 , . . . ,  6 }  durch  X( ω) =  ω 1 +  ω 2

modelliert werden, andererseits auf dem durch ˜

P( { 2 }) = 1 / 36, ˜P( { 3 }) = 2 / 36, . . . , 

˜

P( { 12 }) = 1 / 36 bestimmten Wahrscheinlichkeitsraum ˜Ω =  { 2 ,  3 , . . . ,  12 }  durch

˜

 X(˜

 ω) = ˜

 ω. Beide Zufallsvariablen sind stochastisch äquivalent, da sie dieselbe

Verteilung besitzen. 

Man unterscheidet zwei wichtige Typen von Zufallsvariablen, die diskret und

die stetig verteilten; die elementare Wahrscheinlichkeitsrechnung kennt übrigens

nur diese beiden, und erst der maßtheoretisch fundierten Wahrscheinlichkeits-

theorie bleibt es vorbehalten, die beiden Spezialfälle einem einheitlichen Kon-

zept unterzuordnen. Eine  diskret verteilte Zufallsvariable  nimmt nur endlich

oder abzählbar viele Werte  b 1 , b 2 , . . .  mit positiver Wahrscheinlichkeit an, und

ihre Verteilung ist durch die Zahlen

 pk = P( X =  bk)

(11.5)

festgelegt. Bei einer  stetig verteilten Zufallsvariablen  bestimmt man die Wahr-

scheinlichkeit, dass  a ≤ X ≤ b  ist, durch ein Integral

  b

P( a ≤ X ≤ b) =

 f ( t)  dt

(11.6)

 a

mit einer Funktion  f : R  → [0 , ∞), die im uneigentlichen Riemannschen oder



gar im Lebesgueschen Sinn integrierbar ist mit

R  f ( t)  dt = 1; in der Regel

ist  f  sogar stückweise stetig. Man nennt  f  die  Dichte  der Verteilung; sie ist

allerdings nur bis auf Gleichheit fast überall, d. h. außerhalb einer Menge vom

Lebesguemaß 0, eindeutig bestimmt. (11.6) legt nach allgemeinen Sätzen der

Maßtheorie das Wahrscheinlichkeitsmaß P X  auf  B o(R) durch



P X( B) = P( X ∈ B) =

 f ( t)  dt


B

fest. Die elementare Wahrscheinlichkeitsrechnung drückt alle Aussagen über die

Verteilung von  X  durch (11.5) bzw. (11.6) aus, die moderne Wahrscheinlich-

keitstheorie benutzt stattdessen das Wahrscheinlichkeitsmaß P X. 

Eine andere Möglichkeit, die Verteilung von  X  zu bestimmen, sieht die  Ver-

 teilungsfunktion FX  von  X  vor. Sie ist durch

 FX : R  → [0 ,  1] , 

 FX ( t) = P( X ≤ t)

definiert. Jede Verteilungsfunktion ist monoton wachsend, rechtsseitig stetig und

erfüllt lim t→−∞ FX ( t) = 0 und lim t→∞ FX( t) = 1. Ist  X  stetig verteilt, so ist

 FX  ebenfalls stetig (daher der Name). Tatsächlich besitzt  FX  dann sogar eine

etwas stärkere Eigenschaft, die man Absolutstetigkeit nennt, weswegen stetig
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verteilte Zufallsvariable auch absolutstetig verteilt genannt werden. (Die Stetig-

keit einer Verteilungsfunktion garantiert noch nicht die Existenz einer Dichte

wie in (11.6), wohl aber die Absolutstetigkeit.) (11.6) kann man jetzt durch

P( a ≤ X ≤ b) =  FX( b)  − FX( a)

ausdrücken, denn P X( {a}) = 0. Ist  FX  stetig differenzierbar, so ist nach dem

Hauptsatz der Differential- und Integralrechnung  F   eine Dichte f


X

ür  X. Ist  X

diskret verteilt mit P( X =  bk) =  pk, so macht  FX  bei  bk  einen Sprung der

Höhe  pk. 

Wichtige Beispiele für diskrete Zufallsvariable sind binomialverteilte und

Poisson-verteilte Zufallsvariable. Bei der  Binomialverteilung  geht es darum, 

einen Versuch, der nur zwei Ausgänge hat (üblicherweise Erfolg“ und Miss-

” 

” 

erfolg“ genannt),  n-mal unabhängig durchzuführen und nach der Wahrschein-

lichkeit für genau  k  Erfolge zu fragen, wenn ein einzelner Versuch mit der Wahr-

scheinlichkeit  p  erfolgreich ist. Die entsprechende Verteilung ist die Binomial-

verteilung:

 


P

n


( X =  k) =

 pk(1  − p) n−k, 

 k = 0 ,  1 , . . . , n. 

 k

Die  Poisson-Verteilung  kann als Grenzfall für kleines  p  und großes  n  aufgefasst

werden; sie tritt als Verteilung seltener Ereignisse“ auf (z. B. Tippfehler pro

” 

Seite dieses Buchs). Sie ist bestimmt durch


P

 λk

( X =  k) =

 e−λ, 

 k = 0 ,  1 ,  2 , . . . , 

 k! 

mit einem Parameter  λ, der im obigen Beispiel die durchschnittliche Zahl der

Tippfehler misst und im Abschnitt 11.3 detaillierter erläutert wird. 

Zwei wichtige Beispiele stetiger Verteilungen sind die  Gleichverteilung  auf

[ a, b] mit der Dichte

 1 /b−a  für  a ≤ t ≤ b

 f ( t) =

0

sonst

sowie  normalverteilte  Zufallsvariable. Allgemeiner als in Beispiel (3) aus Ab-

schnitt 11.1 nennt man eine Zufallsvariable normalverteilt (genauer  N ( μ, σ 2)-

normalverteilt), wenn ihre Verteilung eine Dichte der Form

1

 f ( t) =  √

 e−( t−μ)2 / 2 σ 2

2 πσ

besitzt. Der Graph dieser Dichte ist die oft genannte Glockenkurve. Normalver-

teilte Zufallsvariable treten in vielen Anwendungen auf; vgl. Abschnitt 11.7. 
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f(x)

1

x

−2

−1

0

1

2

σ = 0, 5 μ = 0

σ = 1

μ = 0

σ = 1

μ = 0, 75

σ = 0, 5 μ = 0, 5

11.3

Erwartungswert und Varianz

Bei einem Zufallsexperiment, das durch eine Zufallsvariable  X  modelliert wird, 

ist die gesamte stochastische Information in der Verteilung P X  enthalten, vgl. 

(11.4), (11.5) und (11.6). Eine wichtige speziellere Frage ist, welchen Wert  X

im Durchschnitt“ annimmt. 

” Am durchsichtigsten ist diese Frage für diskret verteilte Zufallsvariable, etwa

mit der Verteilung P( X =  bk) =  pk, zu beantworten. Der Durchschnittswert“, 

” 

genannt  Erwartungswert  von  X, ist das mit den Wahrscheinlichkeiten  pk  ge-

wichtete Mittel der Werte  bk:

 ∞



E( X) =

 bkpk. 

(11.7)

 k=1

Ist  X  binomialverteilt mit den Parametern  n  und  p (kurz:  b( n, p)-verteilt), ergibt

sich

 n

  


E

n


( X) =

 k

 pk(1  − p) n−k =  np, 

 k

 k=0

und ist  X  Poisson-verteilt zum Parameter  λ, folgt

 ∞




E

 λk

( X) =

 k

 e−λ =  λ, 

 k! 

 k=0

was die im letzten Abschnitt gegebene Interpretation von  λ  erläutert. 

Im Fall einer stetig verteilten Zufallsvariablen mit Dichte  f  versucht man

durch Diskretisierung eine Formel für den Erwartungswert zu entwickeln. Das

Resultat ist

  ∞

E( X) =

 xf ( x)  dx. 

(11.8)

 −∞
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Bei einer auf dem Intervall [ a, b] gleichverteilten Zufallsvariablen ist dann wie

erwartet E( X) =  a+ b/ 2, und bei einer  N( μ, σ 2)-normalverteilten Zufallsvariablen

ist E( X) =  μ; damit ist die Bedeutung des ersten Parameters  μ  erklärt. 

Die Definition des Erwartungswerts in der maßtheoretisch begründeten Wahr-

scheinlichkeitstheorie ist





E( X) =

 X d P =

 x d P X( x); 

(11.9)

Ω


R

dies schließt (11.7) und (11.8) als Spezialfälle ein. Natürlich ist die stillschwei-

gende Voraussetzung in diesen Formeln für E( X), dass die definierenden In-

tegrale existieren. Ein Standardbeispiel für eine Zufallsvariable, die keinen Er-

wartungswert besitzt, ist eine Cauchy-verteilte Zufallsvariable mit der Dichte

 f ( x) = 1 /π(1+ x 2). Solche Zufallsvariablen werden häufig als paradox aufgefasst:

Obwohl alle Werte von  |X|  endlich sind, ist der Durchschnittswert unendlich! 

Rein analytisch ist ein solches Verhalten natürlich überhaupt nicht paradox, wie

z. B. das Paradebeispiel der Funktion  f : (0 ,  1]  →  R mit  f ( x) = 1 /x  zeigt. 

Aus der allgemeinen Definition ergibt sich sofort die Linearität des Erwar-

tungswerts, insbesondere E( X 1 +  X 2) = E( X 1) + E( X 2), was für stetig verteilte

 Xj  aus (11.8) allein nur mühsam zu schließen ist. Die Linearität gestattet einen

neuen Blick auf den Erwartungswert einer  b( n, p)-binomialverteilten Zufallsva-

riablen  X. Dazu seien nämlich  Y 1 , . . . , Yn  Zufallsvariable, die nur die Werte 0

und 1 annehmen, und zwar mit den Wahrscheinlichkeiten 1  − p  bzw.  p. Dann



kann  X  als

 n


Y

 k=1

 k  dargestellt werden, und da trivialerweise E( Yk) =  p  ist, 

ergibt sich sofort ohne komplizierte Rechnung E( X) =  np. 

Zufallsvariable mit demselben Erwartungswert können sehr unterschiedlich

sein, denn der Erwartungswert repräsentiert nur  einen  Aspekt der Verteilung. 

Eine naheliegende Frage ist daher die nach der durchschnittlichen Abweichung

vom Erwartungswert. Diese kann nicht durch E( X −  E( X)) gemessen wer-

den, weil dieser Term immer 0 ist. Die Einführung von Beträgen, nämlich

E( |X −  E( X) |), führt zu einem analytisch nur schwer zu handhabenden Aus-

druck. Erfolgversprechender ist das Quadrieren, das zur Definition der  Varianz

von  X  führt:

1

2

Var( X) = E ( X −  E( X))2 = E( X 2)  − (E( X))2 . 

Diese Formel setzt voraus, dass E( X 2) existiert, was impliziert, dass auch E( X)

existiert. Setzt man abkürzend  μ = E( X), so ist die Varianz einer diskret ver-

teilten Zufallsvariablen mit P( X =  bk) =  pk

 ∞



 ∞



Var( X) =

( bk − μ)2 pk =

 b 2 kpk − μ 2

 k=1

 k=1

und die einer stetig verteilten Zufallsvariablen mit Dichte  f

  ∞

  ∞

Var( X) =

( x − μ)2 f ( x)  dx =

 x 2 f ( x)  dx − μ 2 . 

 −∞

 −∞
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Konkrete Beispiele sind  b( n, p)-verteilte Zufallsvariable mit Var( X) =  np(1  − p)

und  N ( μ, σ 2)-verteilte Zufallsvariable mit Var( X) =  σ 2. 

Die Wurzel aus der Varianz wird  Standardabweichung  genannt:  σ( X) =

Var( X)1 / 2. Für  N ( μ, σ 2)-verteiltes  X  ist in der Tat  σ( X) =  σ, und wich-

tige Werte für eine solche Zufallsvariable sind P( |X − μ| ≤ σ) = 0 .  683  . . . , 

P( |X − μ| ≤  2 σ) = 0 .  954  . . . , P( |X − μ| ≤  3 σ) = 0 .  997  . . . . Anwender geben

diese Wahrscheinlichkeiten oft in der Form 68.3 % der Werte von  X  liegen zwi-

” 

schen  μ − σ  und  μ +  σ“ wieder; man beachte dazu auch, dass in Anwendungen

 σ( X) dieselbe physikalische Dimension wie  X  hat. 

Erwartungswert und Varianz sind die ersten Momente einer Zufallsvariablen

bzw. deren Verteilung. Allgemein ist das  n-te  Moment  als



  ∞

E( Xn) =

 Xn d P =

 xn d P X ( x)

Ω

 −∞

und das  n-te  zentrierte Moment  als



  ∞

E(( X −  E X) n) =

( X −  E X) n d P =

( x −  E X) n d P X( x)

Ω

 −∞

erklärt. Normalisierte Formen des 3. bzw. 4. zentrierten Moments sind in der

Statistik als  Schiefe  bzw.  Exzess  bekannt. 

11.4

Bedingte Wahrscheinlichkeiten und Unabh¨

angigkeit

Die vorangegangenen Abschnitte legen den Schluss nahe, die Wahrscheinlich-

keitstheorie sei eine Unterabteilung der Integrationstheorie, die bloß ein eigenes

Vokabular verwendet: Funktionen heißen Zufallsvariable, ihre Werte Realisierun-

gen, messbare Mengen Ereignisse, und statt Integral sagt man Erwartungswert. 

In diesem Abschnitt kommt nun eine neue Idee hinzu, die der Wahrschein-

lichkeitstheorie eigen ist, nämlich die Unabhängigkeit bzw. das Bedingen von

Ereignissen. 

Als einfaches Beispiel betrachten wir das zweimalige Werfen eines fairen

Würfels. Die Wahrscheinlichkeit, mindestens 10 Augen zu erzielen, ist dann 1 / 6. 

Falls man jedoch weiß, dass der erste Wurf eine 6 produziert hat, ist die gesuchte

Wahrscheinlichkeit 1 / 2. Das ist kein Widerspruch, da die zweite Wahrscheinlich-

keit eine bedingte Wahrscheinlichkeit ist; man sucht die Wahrscheinlichkeit des

Ereignisses  A

Augensumme  ≥  10“ nicht schlechthin, sondern unter der Be-

” 

dingung, dass das Ereignis  B

1. Würfelwurf = 6“ eingetreten ist. Solch eine

” 

 bedingte Wahrscheinlichkeit  P( A | B) ist durch


P

P( A ∩ B)

( A | B) =

P( B)

erklärt, falls, wie in unserem Beispiel, P( B)  = 0 ist. 
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Aus der Definition ergeben sich sofort zwei wichtige Konsequenzen. Zunächst

gilt die  Formel von der totalen Wahrscheinlichkeit, deren Aussage unmittelbar

plausibel ist: Bilden  B 1 , B 2 , . . .  eine endliche oder unendliche Folge paarweise



disjunkter Ereignisse mit P( Bk)  = 0 und


B

k


 k = Ω, so gilt für jedes Ereignis  A



P( A) =

P( A | Bk)P( Bk) . 

 k

Gewiss haben alle Leser mit Hilfe genau dieser Formel die Aussage P( A) = 1 / 6

des obigen Beispiels nachvollzogen. 

Die  Bayessche Formel  versucht, die bedingte Wahrscheinlichkeit P( A | B) mit

P( B | A) in Beziehung zu setzen. Sie lautet


P

P( A | B

( B

1)P( B 1)



1  | A) =


P

 , 

( A | B

 k

 k )P( Bk)

wobei  A  und die  Bk  wie oben sind und diesmal auch P( A)  = 0 ist. Es ist trivial, 

diese Formel rechnerisch zu verifizieren, und doch sind ihre Konsequenzen oft

kontraintuitiv. Ein typisches Beispiel sind medizinische Tests. Mit den Ereig-

nissen  A

Test auf Erkrankung positiv“,  B

Patient erkrankt“ und  B

Pa-

” 

1 ” 

2 ” 

tient nicht erkrankt“ ist die den Patienten interessierende Wahrscheinlichkeit

P( B 1  | A). Bei einem idealen Test wäre P( A | B 1) = 1 und P( A | B 2) = 0, in der

realen Welt machen Tests aber bisweilen fehlerhafte Vorhersagen, so dass bei-

spielsweise P( A | B 1) = 0 .  9999 (diese Wahrscheinlichkeit wird  Sensitivität  des

Tests genannt) und P( A | B 2) = 0 .  002 (die Komplementärwahrscheinlichkeit

1  −  P( A | B 2) = P( A c  | B 2) heißt  Spezifität  des Tests). Um die Bayessche Formel

anzuwenden, benötigt man noch den Wert P( B 1), die sogenannte  Prävalenz. 

Diese Wahrscheinlichkeit ist in der Regel sehr klein, weil schwere Erkrankungen

sehr selten sind, sagen wir z. B. P( B 1) = 0 .  0001; dann liefert die Bayessche For-

mel P( B 1  | A) = 0 .  047. Die Wahrscheinlichkeit, dass eine positiv getestete Person

wirklich erkrankt ist, liegt also unter 5 %. Die Erklärung dieses Phänomens liegt

darin, dass es sehr viel mehr Gesunde als Kranke gibt; daher wirkt sich die kleine

Fehlerwahrscheinlichkeit, gesunde Patienten als krank zu testen, entsprechend

stark aus. Auch das bekannte Ziegenparadoxon lässt sich mit der Bayesschen

Formel erklären. 

Gestattet das Eintreten von  B  keinen Rückschluss auf die Wahrscheinlichkeit

für das Eintreten von  A, nennt man  A  und  B unabh¨

 angig; die definierende

Bedingung ist also

P( A ∩ B) = P( A)P( B) . 

Liegen mehr als zwei Ereignisse  A 1 , . . . , An  vor, werden diese unabhängig ge-

nannt, wenn für jede Teilmenge  F ⊆ { 1 , . . . , n}  die Produktformel

 






P

 Ak =

P( Ak)

 k∈F

 k∈F
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gilt; für  n = 3 ist also nicht nur P( A 1  ∩ A 2  ∩ A 3) = P( A 1)P( A 2)P( A 3) gefordert, 

sondern auch P( A 1  ∩ A 2) = P( A 1)P( A 2) etc. Schließlich wird eine Folge von

Ereignissen unabhängig genannt, wenn es je endlich viele davon sind. 

Der Unabhängigkeitsbegriff überträgt sich leicht auf Zufallsvariable. Die Zu-

fallsvariablen  X 1 , . . . , Xn  heißen unabhängig, wenn für beliebige Borelmengen

(oder bloß Intervalle)  Bk  die Ereignisse  {X 1  ∈ B 1 }, . . . , {Xn ∈ Bn}  unabhängig

sind. Explizit lautet diese Forderung

P( X 1  ∈ B 1 , . . . , Xn ∈ Bn) = P( X 1  ∈ B 1)  · · · · ·  P( Xn ∈ Bn) . 

(11.10)

Hier benötigt man die entsprechende Formel für Teilmengen nicht, da sie be-

reits enthalten ist; einige der  Bk  können ja R sein. Wieder wird eine Folge von

Zufallsvariablen unabhängig genannt, wenn es je endlich viele davon sind. 

Wir können nun die Darstellung einer binomialverteilten Zufallsvariablen

als Summe von  { 0 ,  1 }-wertigen Zufallsvariablen  X =  Y 1 +  · · · +  Yn  aus dem

letzten Abschnitt präzisieren. Die umgangssprachliche Unabhängigkeit der Ver-

suchswiederholung in der ursprünglichen Beschreibung von  X  weicht jetzt der

Präzisierung, dass  X  Summe der unabhängigen Zufallsvariablen  Y 1 , . . . , Yn  mit

der Verteilung P( Yk = 1) =  p  und P( Yk = 0) = 1  − p  ist. 

Die obige Formel (11.10) lässt sich mittels der gemeinsamen Verteilung der  Xk

wiedergeben. Der Einfachheit halber betrachten wir zwei Zufallsvariable  X 1 und

 X 2 und den assoziierten Zufallsvektor X = ( X 1 , X 2). Die Verteilung von X ist

wie in (11.4) das auf den Borelmengen von R2 erklärte Wahrscheinlichkeitsmaß

PX:  B o(R2)  → [0 ,  1] ,  PX( B) = P(X  ∈ B); 

PX wird die  gemeinsame Verteilung  von  X 1 und  X 2 genannt. Nach allgemeinen

Sätzen der Maßtheorie ist PX durch die Werte auf den Rechtecken  B 1  × B 2

eindeutig bestimmt, und (11.10) kann man kompakt mit Hilfe der maßtheore-

tischen Konstruktion des Produktmaßes durch PX = P X ⊗  P

wiedergeben. 

1

 X 2

Haben die unabhängigen Zufallsvariablen  Xk  eine stetige Verteilung mit Dichte

 fk, so hat X die Dichte  f 1  ⊗ f 2: ( x 1 , x 2)  → f 1( x 1) f 2( x 2), d. h. 



PX( B) =

 f 1( x 1) f 2( x 2)  dx 1  dx 2 . 


B

Daraus kann man schließen, dass  X 1 +  X 2 stetig verteilt ist mit der Dichte



 f ( x) = ( f 1  ∗ f 2)( x) = R  f 2( y) f 1( x − y)  dy;  f 1  ∗ f 2 heißt  Faltung  von  f 1 und  f 2. 

Für die Erwartungswerte unabhängiger Zufallsvariabler gilt der Produktsatz

E( X 1  · · · Xn) = E( X 1)  · · ·  E( Xn)

und für ihre Varianz

Var( X 1 +  · · · +  Xn) = Var( X 1) +  · · · + Var( Xn) . 

Zum Beweis der letzten Gleichung benötigt man, dass unabhängige Zufallsva-

riable  unkorreliert  sind, d. h. 

E(( X 1  −  E( X 1))( X 2  −  E( X 2))) = E( X 1  −  E( X 1))E( X 2  −  E( X 2)) = 0 . 
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11.5

Null-Eins-Gesetze

Unter einem Null-Eins-Gesetz versteht man eine Aussage, die garantiert, dass

gewissen Ereignissen nur die Wahrscheinlichkeiten 0 oder 1 zukommen können; 

statt P( A) = 1 bedient man sich auch der Sprechweise,  A  trete  fast sicher

(abgekürzt f. s.) ein. Das ist der höchste Grad an Sicherheit, den die Wahr-

scheinlichkeitstheorie bieten kann; da ein Wahrscheinlichkeitsmaß Nullmengen

gewissermaßen nicht wahrnehmen kann, kann man keine absolute Sicherheit (das

wäre  A = Ω) postulieren. 

Ein sehr einfaches, aber dennoch sehr schlagkräftiges Null-Eins-Gesetz ist das

Lemma von Borel-Cantelli. Hier betrachtet man Ereignisse  A 1 , A 2 , . . .  und das





Ereignis  A =

 ∞

 ∞


A

 n=1

 k= n

 k =: lim sup  An; es ist also  ω ∈ A  genau dann, wenn

es unendlich viele Ereignisse  Ak , A , . . .  mit  ω ∈ A

gibt (die Auswahl der

1

 k 2

 kj

Teilfolge  k 1 , k 2 , . . .  darf von  ω  abhängen). Man kann  A  verbal mit unendlich

” 

viele  Ak  treten ein“ umschreiben. Dann besagt das  Lemma von Borel-Cantelli:



(a)  Gilt

 ∞

P( A

 k=1

 k )  < ∞, so folgt  P( A) = 0 . 



(b)  Sind die A

 ∞

 k unabh¨

 angig mit

P( A

 k=1

 k ) =  ∞, so folgt  P( A) = 1 . 

Ein zweites wichtiges Null-Eins-Gesetz beschäftigt sich mit Folgen un-

abhängiger Zufallsvariabler  X 1 , X 2 , . . .  und Ereignissen  A, deren Eintreten

nicht von den Werten endlich vieler dieser Zufallsvariablen“ abhängt; man den-

” 



ke z. B. an das Ereignis  A =  { ω |


X

k


 k( ω) konvergiert  }. Zur Präzisierung

dessen betrachtet man die kleinste  σ-Algebra  Ak, die alle Mengen der Form

 X− 1[ B] mit  l > k  und  B ∈ B

 l

o(R) enthält; Ereignisse in dieser  σ-Algebra inter-

pretiert man als nicht von den Werten von  X 1 , . . . , Xk  abhängig. Der Schnitt



 T =  k∈ N  Ak  wird die  σ-Algebra der  terminalen Ereignisse  genannt. Diese

Ereignisse sind es, die eben etwas ungenau als nicht von endlich vielen der  X

” 

 k



abhängig“ beschrieben wurden, und man kann beweisen, dass  { ω |


X

k


 k( ω)

konvergiert  }  in diesem technischen Sinn ein terminales Ereignis ist. 

Nun können wir das  Kolmogorovsche Null-Eins-Gesetz  formulieren. 

 Sind X 1 , X 2 , . . . unabhängige Zufallsvariable und ist A ein termina-

 les Ereignis, so ist  P( A) = 0  oder  P( A) = 1 . 

Tritt also ein terminales Ereignis mit positiver Wahrscheinlichkeit ein, so tritt

es fast sicher ein. 

11.6

Das Gesetz der großen Zahl

Jeder Würfelspieler weiß, dass nach sehr häufigem, sagen wir  n-maligem Werfen

eines fairen Würfels die Augensumme in der Größenordnung 3 .  5  × n  liegt und

dass unter diesen  n  Würfen etwa  n/ 6 Sechsen sind. Diese Werte leiten sich nicht
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nur aus der Erfahrung des Glücksspielers her, sondern sind auch Ausdruck eines

intuitiven Vorverständnisses von Erwartungswert und Wahrscheinlichkeit, wo-

nach der zu erwartende Wert sich im Mittel ungefähr einstellt, wenn man den

Versuch nur oft genug wiederholt. Eine solche Gesetzmäßigkeit wird landläufig

Gesetz der großen Zahl genannt. 

Das erwähnte intuitive Vorverständnis korrespondiert hier mit einem beweis-

baren mathematischen Satz, den wir in diesem Abschnitt diskutieren. Nicht im-

mer liegen Glücksspieler mit ihrer Intuition richtig: Wenn im Lotto seit 30 Wo-

chen nicht mehr die 19 gezogen wurde, so ist es natürlich keinen Deut wahr-

scheinlicher, dass sie in der nächsten Ziehung kommt; die Ziehungen sind ja

unabhängig. 

Betrachten wir das obige Szenario auf dem mathematischen Seziertisch, so

geht es um ein Zufallsexperiment (Würfelwurf), das durch eine Zufallsvariable

 X  mit Erwartungswert E( X) modelliert wird. (Auch das Zufallsexperiment An-

” 

zahl der Sechsen“ ordnet sich dem unter; man muss nur dem Ereignis  A = Sechs

” 

kommt“ die Indikatorvariable  χA( ω) = 1, wenn  ω ∈ A, und  χA( ω) = 0, wenn

 ω /

 ∈ A, zuordnen.) Dieses Experiment wird  n-mal durchgeführt und zwar so, 

dass keine Ausführung eines Versuchs einen anderen Versuch der Versuchsreihe

beeinflusst. Mathematisch gesehen haben wir es mit unabhängigen Zufallsvaria-

blen  X 1 , . . . , Xn  zu tun, die dieselbe Verteilung wie  X  besitzen. Es interessiert

dann die neue Zufallsvariable  Sn =  X 1 +  · · · +  Xn, von der das heuristische

Gesetz der großen Zahl behauptet, sie sei für große  n  von der Größenordnung

E( X)  · n, oder anders gesagt, es sei  Sn/n ≈  E( X). 

Eine solche approximative Gleichheit wird mathematisch durch die Grenz-

wertbeziehung lim n→∞ Sn/n = E( X) präzisiert. In dieser Form machen wir

nun aber die Idealisierung, nicht nur  n, sondern unendlich viele unabhängige

Kopien unserer ursprünglichen Zufallsvariablen zu besitzen und das Zufallsex-

periment also unendlich oft durchzuführen. Um hier sicheren Boden unter den

Füßen zu haben, muss man einen nichttrivialen Existenzsatz beweisen, der es

gestattet, zu einer gegebenen Zufallsvariablen  X: Ω  →  R einen neuen Wahr-

scheinlichkeitsraum ( ˜

Ω , ˜

 A , ˜P) zu konstruieren, auf dem eine Folge unabhängiger

Zufallsvariabler existiert, die alle dieselbe Verteilung wie  X  haben; man spricht

von unabhängigen Kopien von  X. Das gelingt mittels der maßtheoretischen

Konstruktion des unendlichen Produkts der Verteilung P X. 

Des Weiteren ist zu präzisieren, in welchem Sinn die Folge ( Sn/n) gegen E( X)

konvergieren soll. Hier sind zwei unterschiedliche Konvergenzarten wichtig, die

fast sichere und die stochastische Konvergenz. Die  fast sichere  Konvergenz ist

selbsterklärend: Eine Folge ( Zn) von Zufallsvariablen konvergiert fast sicher

gegen die Zufallsvariable  Z, wenn P( { ω | Zn( ω)  → Z( ω)  }) = 1 ist; kurz  Zn → Z


P

f. s. Für die  stochastische Konvergenz Zn → Z  betrachtet man hingegen die

Wahrscheinlichkeit für eine Abweichung  ≥ ε  und verlangt P( |Zn − Z| ≥ ε)  →  0

für jedes  ε >  0. Die fast sichere Konvergenz impliziert die stochastische, aber
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nicht umgekehrt; es braucht dann nicht einmal ein einziges  ω  mit  Zn( ω)  → Z( ω)

zu geben. Jedoch folgt aus der stochastischen Konvergenz die Existenz einer fast

sicher konvergenten Teilfolge. 

Je nach Wahl des zugrundeliegenden Konvergenzbegriffs können wir nun zwei

Versionen des  Gesetzes der großen Zahl  formulieren. Es sei  X  eine Zufallsva-

riable mit Erwartungswert E( X), und  X 1 , X 2 , . . .  seien (auf welchem Wahr-

scheinlichkeitsraum auch immer definierte) unabhängige Kopien von  X  sowie

 Sn =  X 1 +  · · · +  Xn. 

 Sn  P

(Schwaches Gesetz der großen Zahl)

 →  E( X)

 n


S

(Starkes Gesetz der großen Zahl)

 n →  E( X)  f. s. 

 n

Beide Sätze lassen sich einfacher beweisen, wenn  X  endliche Varianz hat; der

Beweis des schwachen Gesetzes ist dann sogar beinahe trivial. Er beruht auf der

einfachen  Chebyshevschen Ungleichung

P( |Z| ≥ α)  ≤  1 Var( Z)

 α 2

für eine Zufallsvariable  Z  mit E( Z) = 0 und für  α >  0. Wendet man diese

Ungleichung nämlich auf  Z =  Sn − n E( X) und  α =  nε  an, folgt







P  Sn −  E



( X)  ≥ ε = P( |Sn − n E( X) | ≥ nε)

 n

 ≤

1

1 Var( X)

Var( Sn − n E( X)) =

 →  0 , 

 n 2 ε 2

 n

 ε 2

was zu beweisen war; man beachte, dass Var( Sn − n E( X)) = Var( Sn) =

Var( X 1) +  · · · + Var( Xn) aufgrund der Unabhängigkeit gilt. 

Man mag sich fragen, warum das schwache Gesetz explizit formuliert wird, 

wenn es doch sowieso aus dem starken folgt. Der Grund liegt darin, dass es

(zumindest im Fall endlicher Varianz) viel einfacher zu beweisen ist und sogar, 

wie oben gezeigt, die quantitative Abschätzung







P  Sn −  E



Var( X)

( X)  ≥ ε ≤  1

(11.11)

 n

 n

 ε 2

für die Abweichung gestattet, die für die schließende Statistik wichtig ist. 

Gesetze der großen Zahl werden auch für nicht identisch verteilte, aber un-

abhängige Zufallsvariable studiert; man sucht dann nach Bedingungen für die

Konvergenz der Mittel 1 /n(( X 1  −  E( X 1)) +  · · · + ( Xn −  E( Xn))) gegen 0; für die



fast sichere Konvergenz ist zum Beispiel

 ∞

Var( Xn/n)  < ∞  hinreichend. 

 n=1

11.7

Der zentrale Grenzwertsatz

In vielen Anwendungen tauchen Zufallsvariable auf, die zumindest näherungs-

weise normalverteilt sind (Körpergröße bei Erstklässlern, jährliche Nieder-

schlagsmenge in einer Wetterstation, Milchleistung der Kühe eines Bauernhofs
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etc.). Der zentrale Grenzwertsatz erklärt, warum; die Aussage dieses Satzes

kann man mit

Die Summe vieler unabhängiger Zufallsvariabler ist ungefähr

” 

normalverteilt“ wiedergeben; natürlich steckt hinter den Wörtern viele“ und

” 

ungefähr“ wieder ein Grenzprozess, der gleich erläutert werden soll. In Anwen-

” 

dungen kann man sich häufig vorstellen, dass viele Einzeleinflüsse die in der

Summe beobachtete Zufallsgröße ausmachen, die nach dem zentralen Grenz-

wertsatz also näherungsweise normalverteilt ist. 

Wir betrachten zunächst den Fall identisch verteilter Zufallsvariabler. Wir

gehen von einer Zufallsvariablen  X  mit endlicher Varianz  σ 2 ( >  0) und Erwar-

tungswert  μ  aus, und es seien  X 1 , X 2 , . . .  unabhängige Kopien von  X. Dann

werden die standardisierten Summenvariablen

( X

 S∗

1 +  · · · +  Xn)  − nμ

 √

 n =

 nσ

definiert, für die E( S∗n) = 0 und Var( S∗n) = 1 gilt. Bezeichnet man noch mit  ϕ

bzw. Φ die Dichte bzw. Verteilungsfunktion der Standardnormalverteilung, also



1

 t

 ϕ( t) =  √

 e−t 2 / 2 , 

Φ( t) =

 ϕ( s)  ds, 

2 π

 −∞

so besagt der  zentrale Grenzwertsatz

lim P( a ≤ S∗n ≤ b) = Φ( b)  − Φ( a)

(11.12)

 n→∞

für alle  a, b ∈  R. Die Konvergenz ist sogar gleichmäßig in  a  und  b. Bezeichnet

man mit Φ μ,σ 2 die Verteilungsfunktion der  N ( μ, σ 2)-Normalverteilung, kann

man also





lim P( a ≤ Sn ≤ b)  − (Φ nμ,nσ 2( b)  − Φ nμ,nσ 2( a) = 0

(11.13)

 n→∞

bzw. 





lim P( a ≤ Sn ≤ b)  − (Φ(  b−nμ

 √

)  − Φ(  a−nμ

 √

) = 0

 n→∞

 nσ

 nσ

schließen; und in diesem Sinn ist die Summenvariable  Sn =  X 1 +  · · · +  Xn

ungefähr wie eine normalverteilte Zufallsvariable mit demselben Erwartungs-

wert und derselben Varianz wie  Sn  verteilt. Die Universalität dieses Satzes ist

bemerkenswert, denn die Grenzverteilung hängt überhaupt nicht von der Ver-

teilung der Ausgangsvariablen  X  ab, solange diese endliche Varianz hat. (Die

Voraussetzung  σ 2  >  0 schließt nur den deterministischen Fall einer fast sicher

konstanten Zufallsvariablen aus.)

Die hinter (11.12) stehende Konvergenz wird  Verteilungskonvergenz  genannt; 

man kann sie mittels der beteiligten Verteilungsfunktionen durch  FS∗ ( t)  → Φ( t)

 n

für alle  t  ausdrücken. Der Beweis des zentralen Grenzwertsatzes ist technisch

aufwändig und wird häufig mit Hilfe der Maschinerie der  charakteristischen

 Funktionen  geführt; die charakteristische Funktion  φX  einer Zufallsvariablen  X

ist definiert durch



 φX ( t) = E( eitX) =

 eitx d P X ( x); 


R
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sie stimmt bis auf ein Vorzeichen und den Normierungsfaktor mit der Fourier-

Transformation des Wahrscheinlichkeitsmaßes P X überein. 

Ein wichtiger Spezialfall des zentralen Grenzwertsatzes ist allerdings elemen-

tarer Behandlung zugänglich. Ist nämlich  X  eine Zufallsvariable mit der Ver-

teilung P( X = 1) =  p, P( X = 0) = 1  − p, so ist die obige Summenvariable

 Sn  binomialverteilt, genauer  B( n, p)-verteilt; in diesem Fall beschreiben (11.12)

bzw. (11.13) die Approximation einer Binomialverteilung durch eine Normalver-

teilung. Dies ist der  Satz von de Moivre-Laplace. Sein Beweis fußt auf der Idee, 

die in den Binomialkoeffizienten steckenden Fakultäten mittels der Asymptotik

der  Stirlingschen Formel

 

 n n√

 n!  ∼

2 πn

 e

zu vereinfachen (das Symbol  ∼  soll bedeuten, dass der Quotient beider Seiten

gegen 1 konvergiert); mit der Stirlingschen Formel kommt also die  e-Funktion

ins Spiel. An einem Histogramm lässt sich die sich herausbildende Glockenkurve

gut erkennen. 

f(x)

x

Handbücher der angewandten Statistik geben die Faustregel an, dass man

unter der Bedingung  np(1  − p)  ≥  9 so tun darf, als sei eine  B( n, p)-verteilte

Zufallsvariable  N ( np, np(1  − p))-verteilt. 

Sind die  X 1 , X 2 , . . .  nicht identisch verteilt, so gilt (11.12) entsprechend, wenn

man mit  s 2 n = Var( X 1 +  · · · +  Xn) = Var( X 1) +  · · · + Var( Xn)

( X

 S∗

1  −  E( X 1)) +  · · · + ( Xn −  E( Xn))

 n =

 sn

setzt; man muss allerdings Voraussetzungen treffen, die verhindern, dass eine

der Zufallsvariablen  Xk  einen dominierenden Einfluss auf die Summe  Sn  besitzt. 

Die allgemeinste Bedingung dieser Art wurde von Lindeberg gefunden; leichter

zugänglich ist jedoch die nach Lyapounov benannte Bedingung

 n

1

 



lim

E  |Xk −  E( Xk) | 2+ δ = 0

für ein  δ >  0 , 

 n→∞ s 2+ δ

 n

 k=1

die die Gültigkeit von (11.12) impliziert. 
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11.8

Parametersch¨

atzung

In den bisherigen Betrachtungen gingen wir stillschweigend davon aus, die auf-

tretenden Wahrscheinlichkeitsverteilungen in allen Aspekten genau zu kennen; 

das ist in Anwendungen aber nicht immer der Fall. Zwar ergibt sich die Wahr-

scheinlichkeitsverteilung beim fairen Würfeln a priori aus der Symmetrie des

Würfels, aber wenn man eine Reißzwecke wirft, ist es nicht klar, mit wel-

cher Wahrscheinlichkeit sie auf dem Rücken oder auf der Seite landet. In ei-

ner ähnlichen Situation befindet man sich in der empirischen Forschung: Wenn

bei einer Wahl über Bestehen oder Abwahl der Regierung abgestimmt wird, 

versuchen Demoskopen, das Wahlergebnis vorherzusagen und somit die Wahr-

scheinlichkeit  p 0 für einen Wahlerfolg der Regierung zu bestimmen, die freilich

vor der Wahl unbekannt ist; und ein Bauer hat guten Grund zu der Annah-

me, dass sein Ernteertrag normalverteilt ist, aber die Parameter  μ  und  σ 2 der

Verteilung liegen nicht explizit vor. 

Solche Parameter zu schätzen ist eine Aufgabe der mathematischen Statis-

tik. Stellen wir uns etwa das Problem, den Erwartungswert einer unbekannten

Verteilung zu schätzen, so liegt es nahe,  n  unabhängige Realisierungen einer

Zufallsvariablen  X  mit der fraglichen Verteilung zu bilden und diese zu mitteln, 

also die neue Zufallsvariable

¯

1

 X =

( X

 n

1 +  · · · +  Xn)

einzuführen. Dann wird man ¯

 X( ω) als Schätzwert des Erwartungswerts von

 X  ansehen. Das ist natürlich das Vorgehen der Demoskopie: Hier hat  X  die

Verteilung P( X = 1) =  p 0 und P( X = 0) = 1  − p 0; jedes  Xk  repräsentiert

eine Wählerbefragung, die in der Stichprobe ( X 1( ω) , . . . , Xn( ω)) resultiert, und

¯

 X( ω) ist der Anteil der Regierungsanhänger unter den  n  Befragten. Wird die

Befragung mit anderen Probanden wiederholt, bekommt man einen neuen Wert

¯

 X( ω), der genauso gut als Schätzwert für den wahren Wert  p 0 = E( X) angese-

hen werden kann. Wie gut ist dieses Schätzverfahren also? 

Der Schätzer ¯

 X  hat gegenüber anderen Schätzern (wie z. B. dem Median  Y

oder dem zugegebenermaßen wenig überzeugenden Schätzer  Z = 1 / 2( X 1 +  Xn))

mehrere Vorzüge. Zum einen ist er  erwartungstreu. Zur Erläuterung dieses Be-

griffs begeben wir uns wieder ins Beispiel der Demoskopie und werden mit der

Notation etwas penibler. Genau genommen ist unser Standpunkt ja, dass  X

nicht eine explizit vorab bekannte Verteilung hat, sondern die Verteilung von

 X  ist eine aus der Familie P p  mit P p( X = 1) =  p  und P p( X = 0) = 1  − p, 

0  ≤ p ≤  1, wir wissen nur nicht, welche. Entsprechend bezeichnen wir Erwar-

tungswerte mit E p  statt einfach mit E. Dann gilt nach den Rechenregeln des

Erwartungswerts

E p( ¯

 X) =  p = E p( X); 
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im Mittel schätzt ¯

 X  also den richtigen Wert. Auch der Schätzer  Z  ist erwar-

tungstreu, nicht aber  Y . 

Des Weiteren ist ¯

 X konsistent, d. h. 

lim P p( | ¯

 X( n)  − p| ≥ ε) = 0 für alle  ε >  0 , 

 n→∞

wobei wir ¯

 X( n) statt ¯

 X  geschrieben haben, denn ¯

 X  hängt ja von  n  ab. Die-

se Aussage ist nichts anderes als das schwache Gesetz der großen Zahl (Ab-

schnitt 11.6). (Die Schätzer  Y  und  Z  sind nicht konsistent.) In Worten besagt

die Konsistenz, dass für große Stichprobenumfänge die Wahrscheinlichkeit einer

Abweichung des Schätzers vom wahren Wert klein ist. 

Das schwache Gesetz der großen Zahl leistet noch andere gute Dienste. 

Die langjährige Leiterin des Allensbacher Instituts für Demoskopie, Elisabeth

Noelle-Neumann, wird mit den Worten zitiert, es sei ein Wunder, dass man nur

ein paar Tausend Leute befragen müsse, um die Meinung eines ganzen Volkes zu

kennen. Das schwache Gesetz der großen Zahl liefert eine Erklärung. Aus seiner

quantitativen Form (11.11) schließt man nämlich


P

 p(1  − p)

 p( | ¯

 X( n)  − p| ≥ ε)  ≤  1

 ≤  1 ; 

 n

 ε 2

4 nε 2

um also die Wahlaussicht  p  bis auf eine Abweichung von  ε = 0 .  02 mit einer

Fehlerwahrscheinlichkeit von 5 % zu bestimmen, genügt es,  n = 12500 (un-

abhängige!) Wähler zu befragen. 

Zur Schätzung der Varianz einer Zufallsvariablen bedient man sich des

Schätzers

 n

1



 s 2 =

 |Xk − ¯

 X| 2 . 

 n −  1  k=1

Dieser Schätzer ist erwartungstreu (um das zu erreichen, hat man den Term

 n −  1 statt  n  im Nenner) und konsistent. 

Statt Erwartungswert und Varianz genau schätzen zu wollen, erscheint es oft

sinnvoller, sich mit einem Intervall zufriedenzugeben, das sehr wahrscheinlich“

” 

diesen Wert enthält. Man spricht dann von einem  Konfidenzintervall  zum Konfi-

denzniveau 1  − α, wenn sehr wahrscheinlich“ mit Wahrscheinlichkeit  ≥  1  − α“

” 

” 

bedeuten soll. (Typische Werte sind  α = 0 .  05 oder  α = 0 .  01.) Um ein solches In-

tervall für eine Erfolgswahrscheinlichkeit  p  zu bestimmen, geht man so vor. Man

beschafft sich  n  unabhängige Zufallsvariable mit der Verteilung P( X = 1) =  p, 

P( X = 0) = 1  − p  und betrachtet deren Summe  Sn, die  B( n, p)-binomialverteilt

ist. Es sei  k =  Sn( ω) eine Realisierung von  Sn. Mit anderen Worten wird das

Zufallsexperiment  n-mal konkret durchgeführt, und man zählt die Anzahl  k  der

Erfolge bei dieser Durchführung. Nun versucht man,  p∗  und  p∗  so zu berechnen, 

dass für die  B( n, p∗)-Verteilung die Wahrscheinlichkeit für  k  oder mehr Erfolge

unter  α/ 2 liegt und für die  B( n, p∗)-Verteilung die Wahrscheinlichkeit für  k  oder

weniger Erfolge ebenfalls unter  α/ 2 liegt. (Das ist übrigens leichter gesagt als
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getan.) Die dem zugrundeliegende Idee ist, dass  p < p∗  inkompatibel mit der

Beobachtung

 k  Erfolge“ ist, wenn es zu viele sind, und das Gleiche gilt für

” 

 p > p∗, wenn es zu wenige sind. Das Intervall  I = [ p∗, p∗] enthält dann  p  mit

einer Wahrscheinlichkeit von mindestens 1  − α. Man beachte, dass  k  zufällig ist

und deshalb  I =  I( ω) ebenfalls; formal ist P p( { ω | p ∈ I( ω)  })  ≥  1  − α. 

Konfidenzintervalle sind in der Literatur vertafelt (neuerdings natürlich auch

online); man findet z. B. für  n = 20 und  k = 5 das Konfidenzintervall

[0 .  116 ,  0 .  474] zum Konfidenzniveau 0 .  95. Die Interpretation dieser Zahlen ist:

Beobachtet man bei 20 Versuchen 5 Erfolge und rät man anschließend, die Er-

folgswahrscheinlichkeit liege zwischen 0.116 und 0.474, so liegt man mit dieser

Strategie in 95 % aller Fälle richtig. 

11.9

Statistische Tests

Wir wollen die Grundideen der Testtheorie anhand eines einfachen Beispiels ent-

wickeln. In einer Zuckerfabrik werden 500 g-Tüten abgefüllt; natürlich kommt

es vor, dass in manchen Tüten ein klein wenig mehr und in anderen ein klein

wenig weniger ist. Da sich beim Abfüllen der Tüten viele unabhängige Einflüsse

überlagern, können wir das Gewicht einer Tüte mit einer  N ( μ, σ 2)-verteilten

Zufallsvariablen modellieren. Der Betreiber der Zuckerfabrik behauptet, seine

Anlage arbeite im Durchschnitt einwandfrei, mit Abweichungen von  ± 8 Gramm; 

mit anderen Worten behauptet er, die Parameter unserer Verteilung seien

 μ = 500 und  σ = 8. Ein Vertreter des Eichamts möchte nun diese Angaben

überprüfen; er bezweifelt nicht, dass die Standardabweichung 8 beträgt, aber

er möchte feststellen, ob der Verbraucher tatsächlich im Schnitt (mindestens)

500 Gramm pro Tüte bekommt. Das Eichamt nimmt sich nun zufällig 3 Zu-

ckertüten und bestimmt das mittlere Gewicht; es ergeben sich 490 Gramm. 

Muss die Zuckerfabrik nun ein Bußgeld zahlen? 

Wahrscheinlichkeitstheoretisch liegt folgende Situation vor: Wir haben es mit

einer  N ( μ, σ)-Verteilung zu tun, in der  σ = 8 bekannt, aber  μ  unbekannt

ist. Die Behauptung der Zuckerfabrik ist  μ ≥  500. Um den Wahrheitsgehalt

dieser Behauptung zu beleuchten, hat das Eichamt drei gemäß der angebli-

chen Verteilung verteilte unabhängige Zufallsvariable beobachtet und die Werte

 x 1 =  X 1( ω),  x 2 =  X 2( ω) und  x 3 =  X 3( ω) gemessen. Dann wurde die Prüfgröße

¯

 X = 1 ( X

( x

3

1 +  X 2 +  X 3) gebildet und ausgewertet: ¯

 x = 13 1 + x 2 + x 3) = 490. Um

zu ermessen, ob das ein unter den gegebenen Umständen zu erwartender Wert

oder ein höchst unwahrscheinlicher Wert ist, müssen wir die Verteilung von ¯


X

unter der Hypothese  μ ≥  500 kennen; diese ist eine  N ( μ,  82 / 3)-Verteilung, und

die Wahrscheinlichkeit, dass ¯

 X ≤  490 ist, beträgt 0 .  015 für  μ = 500 und ist für

größere  μ  noch kleiner. Das heißt: Wenn die Angaben der Zuckerfabrik stim-

men, kommt ein Ergebnis wie bei der Messung nur in höchstens 1.5 % aller
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Überprüfungen vor, ist also eher unwahrscheinlich. Unmöglich ist es allerdings

nicht, aber eben unwahrscheinlich, und deshalb werden wohl die Angaben der

Zuckerfabrik kritisch beäugt werden. 

Systematisieren wir das Vorangegangene. Wir hatten eine Menge von Vertei-

lungen P ϑ  zur Auswahl (alle  N( μ, σ 2)-Verteilungen mit  σ = 8), und es war zu

überprüfen, ob die vorliegende Verteilung einer Teilmenge  H  hiervon angehört

(diejenigen mit  μ ≥  500). Dazu haben wir die in Frage stehende Zufallsvariable

 n-mal unabhängig reproduziert und eine  Testgr¨

 oße, eine neue Zufallsvariable

 T (nämlich ¯

 X), gebildet;  T  wird auch  Teststatistik  genannt. Entscheidend ist

nun, die Verteilung von  T  unter Annahme der Hypothese zu kennen. Führt die

Testgröße zu einem zu unwahrscheinlichen“ Wert, verwirft man die Hypothe-

” 

se, dass  ϑ ∈ H. Was zu unwahrscheinlich“ heißt, muss man zu Beginn des

” 

Tests festlegen – man kann sich die Spielregeln natürlich nicht im Nachhinein

aussuchen. Übliche Werte sind 5 % oder 1 %. Ein eher verbraucherfreundlicher

Eichinspektor würde z. B. das Niveau auf 5 % festlegen und Messergebnisse, die

unwahrscheinlicher als dieses Niveau sind, zum Anlass nehmen, ein Bußgeldver-

fahren in Gang zu setzen. Ein eher fabrikantenfreundlicher Inspektor würde das

Niveau 1 % ansetzen und unseren Fabrikanten von oben davonkommen lassen. 

Systematisieren wir weiter. Wir testen eine  Nullhypothese H 0 gegen eine  Alter-

 native H 1, nämlich  ϑ ∈ H  gegen  ϑ /

 ∈ H. Und je nachdem, wie unsere Testgröße

ausfällt, wird das massiv ( signifikant“) gegen die Nullhypothese sprechen oder

” 

nicht. Im ersten Fall sagt man, man  verwirft  die Nullhypothese, und im zweiten

 beh¨

 alt  man sie  bei  bzw. verwirft sie nicht. Widerlegt oder bewiesen ist damit

nichts; selbst, wenn fast alles gegen die Nullhypothese spricht, kann sie ja richtig

sein. 

Man kann nun nach Abschluss des Tests zwei Fehler machen:

 • H 0 ist richtig, wird aber verworfen. ( Fehler 1. Art)

 • H 0 ist falsch, wird aber beibehalten. ( Fehler 2. Art)

Bis hierher ist der Aufbau der Begriffe symmetrisch (ob wir  μ ≥  500 gegen  μ < 

500 testen oder umgekehrt, erscheint irrelevant). Jedoch ist es praktisch so, dass

die beiden Fehler unterschiedliches Gewicht haben. Es ist nun die Konvention

der Statistik, dass der Fehler 1. Art der gravierendere ist und deshalb genauer

kontrolliert werden sollte. Dieser Konvention haben wir gemäß dem Motto  in

 dubio pro reo  bei der Anlage des Zuckerbeispiels bereits entsprochen. 

Zu Beginn eines Tests gibt man sich ein  α >  0 vor; die Irrtumswahrschein-

lichkeit für einen Fehler 1. Art soll dann garantiert  ≤ α  sein.  α  heißt das  Niveau

des Tests, wie gesagt sind  α = 0 .  05 und  α = 0 .  01 gängige Werte. Ein Test der

Nullhypothese  ϑ ∈ H  gegen die Alternative  ϑ /

 ∈ H  zum Niveau  α  mittels der

Teststatistik  T  verlangt dann, eine Teilmenge  A ⊆  R (genannt  Ablehnungsbe-

 reich  oder  Verwerfungsbereich) mit

P ϑ( T ∈ A)  ≤ α

für alle  ϑ ∈ H

(11.14)
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zu bestimmen. Ist die Nullhypothese richtig, liegt  T  nur mit einer Wahrschein-

lichkeit  ≤ α  in  A; die Interpretation ist: Das ist zu unwahrscheinlich, um wahr

zu sein, also wird die Nullhypothese verworfen. Häufig sind Ablehnungsbereiche

von der Form [ t, ∞) bzw. ( −∞, t]; (11.14) nimmt dann die Form P ϑ( T ≥ t)  ≤ α

bzw. P ϑ( T ≤ t)  ≤ α  für alle  ϑ ∈ H  an. Dann sprechen nur sehr große bzw. nur

sehr kleine Werte von  T  gegen die Nullhypothese; solch ein Test wird  einseitig

genannt. (Unser Zuckerbeispiel war von diesem Typ.) Bei einem  zweiseitigen

 Test  ist die Nullhypothese z. B.  μ =  μ 0, und sowohl sehr große als auch sehr

kleine Werte von  T  sprechen dagegen; der Ablehnungsbereich hat die Form

( −∞, t u]  ∪ [ t o , ∞). 

Leider kann man bei einem Test die Fehler 1. Art und 2. Art nicht gleichzeitig

kontrollieren. Schreiben wir die Menge Θ aller Parameterwerte als Θ =  H ∪ K, 

wobei  H  der Nullhypothese und  K  der Alternative entspricht. Die  G¨

 utefunktion

einer Teststatistik  T  mit dem Ablehnungsbereich  A  ist durch

 GT : Θ  → [0 ,  1] , 

 GT ( ϑ) = P ϑ( T ∈ A)

definiert. Ein Fehler 2. Art bei Vorliegen eines  ϑ ∈ K  tritt dann auf, wenn

 T /

 ∈ A  ausfällt. Die Wahrscheinlichkeit dafür ist P ϑ( T /∈ A) = 1  − GT ( ϑ), und

für  ϑ ∈ K  kann sie bis zu 1  − α  betragen. 

Um zwei verschiedene Testverfahren (also verschiedene Teststatistiken) zu

vergleichen, kann man ihre Gütefunktionen heranziehen. Ist  GT ≥ G

auf

1

 T 2

 K, so kontrolliert  T 1 den Fehler 2. Art besser als  T 2; man sagt dann,  T 1 sei

 trennsch¨

 arfer  als  T 2. Das Verfahren in unserem Beispiel wird  Gauß-Test  ge-

nannt. Der Gauß-Test ist trennschärfer als jeder andere Test (zum gleichen

Niveau und gleichen Stichprobenumfang) des Erwartungswerts einer normal-

verteilten Zufallsvariablen mit bekannter Varianz. 

Es sei erwähnt, dass die Voraussetzung der bekannten Varianz häufig un-

realistisch ist. Bei unbekannter Varianz ist diese noch aus der Stichprobe zu

schätzen; dies führt zu Teststatistiken, die nicht mehr normalverteilt sind, son-

dern einer sogenannten  Studentschen t-Verteilung  folgen. (Diese Verteilung wur-

de von W. S. Gosset gefunden und unter dem Pseudonym Student veröffentlicht; 

sein Arbeitgeber, die Guinness-Brauerei in Dublin, gestattete ihren Angestellten

nämlich nicht, wissenschaftliche Arbeiten zu publizieren, weil man befürchtete, 

darin könnten Betriebsgeheimnisse enthalten sein.)

11.10
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Manche Anwendungen in der Physik, der Biologie oder den Wirtschaftswissen-

schaften lassen sich mit Hilfe von Folgen von Zufallsvariablen modellieren, die

eine bestimmte Abhängigkeitsstruktur aufweisen; auch Googles

page rank“-

” 

Algorithmus ist hier zu nennen. Betrachten wir der Anschaulichkeit halber ein
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weniger seriöses Beispiel. Stellen Sie sich einen Mensakoch vor, der seine Beila-

gen nach folgendem Speiseplan vorbereitet: Kocht er an einem Tag Kartoffeln, 

so kocht er am nächsten Tag mit 50-prozentiger Wahrscheinlichkeit Nudeln und

mit 50-prozentiger Wahrscheinlichkeit Reis (Kartoffeln aber garantiert nicht); 

kocht er an einem Tag Nudeln, so kocht er am nächsten Tag mit 50-prozentiger

Wahrscheinlichkeit Kartoffeln und mit je 25-prozentiger Wahrscheinlichkeit Nu-

deln oder Reis; kocht er an einem Tag Reis, so kocht er am nächsten Tag mit

je 331 / 3-prozentiger Wahrscheinlichkeit Kartoffeln, Nudeln oder Reis. Wenn es

heute Reis gibt, wie hoch ist dann die Wahrscheinlichkeit, dass es in drei Tagen

auch Reis gibt? Wie hoch ist die Wahrscheinlichkeit, dass es heute in einem Jahr

Reis gibt? 

Der hier entstehende Prozess ist eine  Markovsche Kette. Darunter versteht

man eine Folge von Zufallsvariablen  X 0 , X 1 , X 2 , . . .  mit Werten in einer endli-

chen oder abzählbar unendlichen Menge  S, dem  Zustandsraum, die die Bedin-

gung

P( Xn+1 =  in+1  | Xn =  in, . . . , X 0 =  i 0) = P( Xn+1 =  in+1  | Xn =  in) (11.15)

für alle  n  und alle Auswahlen von Elementen  i 0 , . . . , in+1  ∈ S  erfüllen. (11.15)

wird  Markov-Eigenschaft  genannt und drückt die

Gedächtnislosigkeit“ des

” 

stochastischen Prozesses ( Xn) n≥ 0 aus: Bei gegebener Gegenwart ( Xn =  in)

hängt die Zukunft ( Xn+1 =  in+1) nicht von der Vergangenheit ( Xn− 1 =  in− 1 , 

 . . . , X 0 =  i 0) ab. Ist die rechte Seite in (11.15) unabhängig von  n, d. h., gibt es

 pij  mit

P( Xn+1 =  j | Xn =  i) =  pij  für alle  n ≥  0 , 

(11.16)

so heißt die Markovkette  zeitlich homogen; im Folgenden betrachten wir nur sol-

che Ketten. Die Interpretation von  pij  ist dann die der Übergangswahrscheinlich-

keit vom Zustand  i  in den Zustand  j, die zu jedem Zeitpunkt  n  dieselbe ist. 

In diesem Abschnitt werden wir nur zeitlich homogene Markovketten mit

endlichem Zustandsraum  S  untersuchen; es bietet sich dann an,  S  als  { 1 , . . . , s}

zu bezeichnen, und die Übergangswahrscheinlichkeiten können nun bequem als

 ¨

 Ubergangsmatrix P = ( pij) i,j=1 ,...,s  notiert werden. Nach Konstruktion ist je-



de Zeilensumme

 p

 j

 ij

= 1, und natürlich sind die Einträge  pij ≥  0. Eine

Matrix mit diesen Eigenschaften wird  stochastische Matrix  genannt. Es ist ein

nichttrivialer Existenzsatz, dass es zu jeder stochastischen Matrix  P  und jedem

Wahrscheinlichkeitsvektor  μ = ( μ 1 , . . . , μs) (d. h.,  μ  ist eine Wahrscheinlich-

keitsverteilung auf  { 1 , . . . , s}) eine Markovkette ( Xn) n≥ 0 gibt, die (11.15) und

(11.16) erfüllt und daher  P  als Übergangsmatrix sowie  μ  als Startverteilung

(d. h. P X =  μ) besitzt. Diese ist eindeutig bestimmt in dem Sinn, dass die

0

gemeinsamen Verteilungen der  X 0 , . . . , Xn  eindeutig bestimmt sind. In unse-

11.10
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rem Beispiel aus dem ersten Absatz ist mit der Identifikation Kartoffeln = 1, 

Nudeln = 2 und Reis = 3

⎛

⎞

⎜ 0 1 / 2 1 / 2 ⎟

 P = ⎜

⎝ 1 /

⎟

2 1 / 4 1 / 4 ⎠  , 

 μ = (0 ,  0 ,  1) . 

1 / 3 1 / 3 1 / 3

Es ist nun nicht schwer, die Verteilung von  X 1 zu bestimmen, da ja nach der

Formel von der totalen Wahrscheinlichkeit aus Abschnitt 11.4





P( X 1 =  j) =

P( X 1 =  j | X 0 =  i)P( X 0 =  i) =

 μipij. 

 i

 i

Schreibt man wie bei  μ  die Wahrscheinlichkeiten P( X 1 =  j) in einen Zeilen-

vektor  μ(1), so lässt sich die letzte Rechnung kompakt durch  μ(1) =  μP  wie-

dergeben. Analog ergibt sich die Verteilung von  X 2 durch  μ(2) =  μ(1) P =

 μP  2 und allgemein die von  Xn  durch  μ( n) =  μP n. Die  n-Schritt- Über-

gangswahrscheinlichkeiten werden also durch die Matrixpotenz  P n  gegeben. 

Daher wird die anfängliche Frage nach P( X 3 = 3) im Mensabeispiel durch

 . 

151 / 432 = 0 .  3495 beantwortet. 

Die zweite anfangs aufgeworfene Frage betrifft das Langzeitverhalten Mar-

kovscher Ketten. Wir setzen dazu voraus, dass es eine Potenz  P N  gibt, deren

sämtliche Einträge strikt positiv sind; für je zwei Zustände  i  und  j  ist also

die Wahrscheinlichkeit  p( N)  >  0, in  N  Schritten von  i  nach  j  zu gelangen. Das

 ij

impliziert, dass die Markovkette den Zustandsraum ohne periodische Muster

durcheinanderwirbelt“; die technische Vokabel dafür ist  irreduzibel und aperi-

” 

 odisch. 

Für solche Ketten existiert  π = lim n→∞ μP n  für jede Startverteilung  μ, und

der Grenzwert ist unabhängig von  μ. Da sofort  π =  πP  folgt, wird  π  die  sta-

 tion¨

 are Verteilung  der Kette genannt. (In der Sprache der linearen Algebra

ist  π  ein

linker“ Eigenvektor von  P  zum Eigenwert 1.) Darüber hinaus ist

” 

die Konvergenz gegen die stationäre Verteilung exponentiell schnell; Genaueres

lässt sich aus dem Eigenwertverhalten der Matrix  P  ablesen. Setzt man nämlich

 r = max { |λ| | λ = 1 ein Eigenwert von  P }, so gilt  r <  1, und für die Konver-

genzgeschwindigkeit hat man eine Abschätzung der Form  π − μP n ≤ M rn. 

Die Markovsche Kette des Mensabeispiels ist irreduzibel und aperiodisch ( P  2

hat nur positive Einträge), und die stationäre Verteilung ist (5 / 17 ,  6 / 17 ,  6 / 17); 

ferner ist  r = 7 / 12. Für große  n  ist daher 6 / 17 eine sehr gute Approximation an

P( Xn = 3); der Fehler ist für  n ≥  10 kleiner als 10 − 4. Egal, was es heute gab, 

 . 

heute in einem Jahr wird mit einer Wahrscheinlichkeit von 6 / 17 = 0 .  3529 Reis

angeboten. 

300

11 Stochastik

11.11

Irrfahrten

Es seien  X 1 , X 2 , . . .  unabhängige identisch verteilte Zufallsvariable mit Werten

im R d, also Zufallsvektoren. Wie schon in vorangegangenen Abschnitten wollen

wir die Summenvariablen  Sn =  X 1 +  · · · +  Xn  betrachten, aber diesmal unter

einem anderen Aspekt. Die Vorstellung ist jetzt, dass ein zum Zeitpunkt  n = 0

im Punkte 0  ∈  R d  startender Zufallswanderer  ω  sich in der ersten Zeiteinheit

von dort nach  S 1( ω) =  X 1( ω) begibt, in der zweiten Zeiteinheit von dort nach

 S 2( ω) =  S 1( ω) +  X 2( ω), in der dritten von dort nach  S 3( ω) =  S 2( ω) +  X 3( ω) usw. Auf diese Weise entsteht ein zufälliger Pfad,  n → Sn( ω), die  Irrfahrt (engl. 

 random walk ) des Zufallswanderers. 

Speziell wollen wir uns im Folgenden mit der symmetrischen  d-dimensionalen

Irrfahrt auf dem Gitter Z d  beschäftigen. Im Fall  d = 1 ist jetzt die Verteilung

der  Xj  durch P( Xj =  − 1) = P( Xj = 1) = 1 / 2 vorgegeben; der Wanderer wirft

also eine faire Münze, ob er als Nächstes einen Schritt nach vorn oder zurück

macht. Die Verteilung von  Sn  ist eine verschobene Binomialverteilung. Im Fall

 d = 2 hat er vier Möglichkeiten (vor, zurück, links, rechts), die jeweils mit

der Wahrscheinlichkeit 1 / 4 gewählt werden, und im Fall  d = 3 kommen noch

oben und unten hinzu. Allgemein ist bei der  d-dimensionalen symmetrischen

Irrfahrt die Verteilung der  Xj  durch P( Xj =  ±ek) = 1 / 2 d  gegeben, wobei die

 ek  die kanonischen Basisvektoren des R d  bezeichnen. Man zeigt leicht, dass

der mittlere quadratische Abstand einer solchen Irrfahrt vom Ursprung mit der

Anzahl der Schritte übereinstimmt: E( Sn 2) =  n. 

Eine zentrale Frage ist, ob der Zufallswanderer zu seinem Ausgangspunkt

zurückkehrt, genauer, ob das Ereignis  S

”  n = 0 unendlich oft“ die Wahrschein-

lichkeit 1 hat. Man kann mit einer Verallgemeinerung des Kolmogorovschen

Null-Eins-Gesetzes aus Abschnitt 11.5 zeigen, dass für diese Wahrscheinlichkeit

nur die Werte 1 oder 0 in Frage kommen; im ersten Fall nennt man die Irrfahrt

 rekurrent  und im zweiten  transient. Bei der symmetrischen Irrfahrt hängt das

Wiederkehrverhalten stark von der Dimension ab:

 Die d-dimensionale symmetrische Irrfahrt ist rekurrent f¨

 ur d ≤  2

 und transient f¨

 ur d ≥  3 . 

Dieser  Satz von P´

 olya  wird gern griffig so formuliert: Man kann sich im Empire

State Building verlaufen, nicht aber in Manhattan. 

Allerdings kann es bis zur Rückkehr lange dauern. Sei nämlich  T ( ω) =

inf { n ≥  1  | Sn( ω) = 0  }  der Zeitpunkt der ersten Rückkehr;  T  ist eine Zufalls-

variable mit Werten in N  ∪ {∞}. Für  d ≤  2 besagt der Satz von Pólya  T < ∞

fast sicher; es gilt aber E( T ) =  ∞. Man nennt die Irrfahrt dann  nullrekurrent. 

Irrfahrten ( Sn) auf dem Gitter Z d, ob symmetrisch oder nicht, kann man kano-

nisch als Markovsche Ketten auf dem unendlichen Zustandsraum Z d  auffassen, 

und die Begriffe Transienz, Rekurrenz und Nullrekurrenz können allgemeiner

für Markovsche Ketten definiert und studiert werden. 

11.12

Die Brownsche Bewegung
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Werfen wir noch einen genaueren Blick auf die eindimensionale symme-

trische Irrfahrt. Eine interessante Skala von Zufallsvariablen ist hier  L 2 n =

sup { m ≤  2 n | Sm = 0  };  L 2 n  gibt den Zeitpunkt des letzten Besuchs der 0

vor dem Zeitpunkt 2 n  an. Die asymptotische Verteilung der  L 2 n  beschreibt das

 Arcussinusgesetz







1

 b

 dx

2

 √

 √

lim P  a ≤ L 2 n ≤ b =



=

(arcsin

 b −  arcsin  a) . 

 n→∞

2 n

 π

 π

 a

 x(1  − x)

Insbesondere folgt P( L 2 n ≤ n)  →  1 / 2. Diese Konsequenz ist kontraintuitiv:

Wenn Sie mit Ihrem Nachbarn das ganze Jahr täglich um einen Euro auf Kopf

oder Zahl bei einer fairen Münze wetten, werden Sie also mit einer Wahrschein-

lichkeit von etwa 1 / 2 von Juli bis Dezember dauernd auf Verlust stehen. 

11.12

Die Brownsche Bewegung

Die  Brownsche Bewegung  ist das fundamentale Beispiel eines stochastischen

Prozesses in kontinuierlicher Zeit. Die erste Arbeit, die sich mathematisch rigo-

ros damit befasst, stammt von N. Wiener aus dem Jahr 1924, weswegen auch

der Name  Wienerscher Prozess  gebräuchlich ist. Doch schon am Beginn des

20. Jahrhunderts benutzte Bachelier die Brownsche Bewegung in seiner Theo-

rie der Börsenkurse, und Einstein verwandte sie in seiner molekularkinetischen

Theorie der Wärme. Der Name erinnert an den Botaniker Robert Brown, der

1828 eine stetige wimmelnde Bewegung“ von Pollen unter dem Mikroskop be-

” 

obachtete. 

Die formale Definition einer (eindimensionalen) Brownschen Bewegung ist die

einer Familie von Zufallsvariablen ( Bt) t≥ 0 auf einem Wahrscheinlichkeitsraum

(Ω , A ,  P) mit den Eigenschaften (1)  B 0 = 0 f. s., (2)  Bt  ist  N (0 , t)-verteilt, 

(3) die Zuwächse sind unabhängig (d. h.,  Bt − B ,  B − B , . . . ,  B − B

2

 t 1

 t 3

 t 2

 tn

 tn− 1

sind für alle  t 1  ≤ · · · ≤ tn,  n ≥  1, unabhängig), (4) die  Pfade t → Bt( ω) des

Prozesses sind stetig. Dass es solche Zufallsvariablen überhaupt gibt, ist kei-

ne Selbstverständlichkeit, und Wiener war der Erste, der ihre Existenz rigoros

bewiesen hat, und zwar mittels zufälliger Fourierreihen. Ein anderer Existenz-

beweis besteht darin, die Brownsche Bewegung als Grenzfall von symmetrischen

Irrfahrten (Abschnitt 11.11) zu erhalten. Hierbei skaliert man die Länge eines

 √

Zeitintervalls zu  h, die Länge eines Schritts der Irrfahrt ( S( h)

 n

) zu

 h, interpoliert

zwischen den Punkten ( kh, S( h))  ∈  R2 linear (was einen zufälligen Polygonzug

 k

liefert) und geht zum Grenzwert  h →  0 über. Diese Skalierung wird dadurch

motiviert, dass bei einer symmetrischen Irrfahrt mit Schrittweite  s  der mittlere

quadratische Abstand vom Ursprung nach  n  Zeitschritten  ns 2 ist. 

Gleich ihren zeitdiskreten Analoga, den Markovschen Ketten, ist die Brown-

sche Bewegung gedächtnislos und daher ein sogenannter  Markov-Prozess; das

wird durch Bedingung (3) ausgedrückt. Anders gesagt ist für festes  t 0 auch
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( Bt+ t − B )

0

 t 0  t≥ 0 eine Brownsche Bewegung. Eine entscheidende Ausdehnung

ist die Idee der  starken Markov-Eigenschaft : Für gewisse zufällige Zeiten  T , 

genannt Stoppzeiten, ist ( Bt+ T − BT ) t≥ 0 ebenfalls eine Brownsche Bewegung. 

Dabei heißt eine Zufallsvariable  T : Ω  → [0 , ∞]  Stoppzeit, wenn die Gültigkeit der

Ungleichung  T ( ω)  ≤ s  nur von den Werten  Bt( ω) für  t ≤ s  abhängt. (Die techni-

sche Übersetzung dieser informellen Beschreibung erfolgt mit Hilfe der von den

Zufallsvariablen  Bt,  t ≤ s, erzeugten  σ-Algebra  Fs  und lautet  {T ≤ s} ∈ Fs

für alle  s.) Zum Beispiel ist  Ta( ω) = inf { t ≥  0  | Bt( ω) =  a }  eine Stoppzeit, 

genannt  Passierzeit bei a. 

Unter den Pfadeigenschaften sticht besonders deren Nichtdifferenzierbarkeit

hervor. Fast sicher gilt nämlich, dass ein Pfad  t → Bt( ω) an keiner Stelle dif-

ferenzierbar ist. Was vor dem Hintergrund der elementaren Analysis als pa-

thologische Ausnahme erscheint, nämlich eine stetige, nirgends differenzierbare

Funktion, erweist sich unter dem stochastischen Blickwinkel als Regelfall. (In

Abschnitt 8.12 sind wir der Existenz solcher Funktionen schon einmal begegnet; 

auch dort gestattete der Satz von Baire die Interpretation, dass die typische“

” 

stetige Funktion nirgends differenzierbar ist.)
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Die Nullstellenmenge eines Brownschen Pfads  Z( ω) =  { t | Bt( ω) = 0  }  erweist

sich fast sicher als überabzählbare abgeschlossene Menge ohne isolierte Punkte

vom Lebesguemaß 0 und ist daher vom Typ einer Cantormenge; der Beweis fußt

auf der starken Markov-Eigenschaft. Für die Verteilung der letzten Nullstelle

vor dem Zeitpunkt 1, also von  L = sup { t ≤  1  | Bt = 0  }, gilt wie im diskreten

 √

Fall der Irrfahrt ein Arcussinusgesetz der Form P( a ≤ L ≤ b) = 2 (arcsin  b −

 π

 √

arcsin

 a). 

Eine  d-dimensionale Brownsche Bewegung  ist eine Familie von Zufallsvekto-

ren B( d): Ω  →  R d,  t ≥  0, f

 t

ür die die Koordinaten ( B 1

 t , . . . , Bd

 t ) stets unabhängig

sind und die ( Bk

 t ) t≥ 0 jeweils eindimensionale Brownsche Bewegungen sind. (Sie

ist ein Modell dessen, was Brown 1828 beobachtet hat.) Wir interessieren uns

wie bei der  d-dimensionalen Irrfahrt für das Rekurrenzverhalten. Wie gerade

berichtet, kehrt in der Dimension 1 eine Brownsche Bewegung mit Wahrschein-

lichkeit 1 zum Ursprung zurück, für  d ≥  2 ist diese Wahrscheinlichkeit aber 0. 

Aber in der Dimension 2 gilt noch fast sicher inf  { B(2)  | t >  0  } = 0; die

 t

Brownsche Bewegung kehrt also fast sicher in jede  ε-Umgebung des Ursprungs

zurück. In diesem Sinn ist die zweidimensionale Brownsche Bewegung rekurrent; 

in höheren Dimensionen trifft das wie bei der Irrfahrt nicht mehr zu. 
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In diesem Kapitel stellen wir zentrale Begriffe und Ergebnisse der Mengenlehre

und allgemeiner der mathematischen Logik vor. Dabei wollen wir dieses wei-

te Feld nicht repräsentativ abstecken, sondern wir greifen vor allem Themen

auf, die aus grundlagentheoretischer Sicht für die Mathematik als Ganzes von

Bedeutung sind. 

Wir beginnen mit einer Darstellung des Mächtigkeitsvergleichs von Men-

gen mit Hilfe von injektiven und bijektiven Funktionen. Im zweiten Ab-

schnitt besprechen wir dann das Diagonalverfahren, mit dessen Hilfe wir

Größenunterschiede im Unendlichen aufzeigen können. Von fundamentaler Be-

deutung ist dabei die Überabzählbarkeit der Menge der reellen Zahlen. Vom Dia-

gonalverfahren führt ein direkter Weg zur Russell-Antinomie, die wir im dritten

Abschnitt diskutieren. Sie zeigt, dass die freie Mengenbildung über Eigenschaf-

ten nicht haltbar ist. Eine erfolgreiche Lösung der aufgeworfenen Schwierigkeiten

stellt die Zermelo-Fraenkel-Axiomatik dar, deren Axiome wir in Abschnitt vier

vorstellen. Dem vieldiskutierten Auswahlaxiom und seiner Verwendung in der

Mathematik widmen wir den fünften Abschnitt, und dem zum Auswahlaxiom

äquivalenten Zornschen Lemma den sechsten. Im siebten Abschnitt besprechen

wir schließlich noch die schwerwiegenden Limitationen und zuweilen als paradox

empfundenen Sätze, zu denen das Auswahlaxiom in der Maßtheorie führt. 

Im achten Abschnitt stellen wir Turings bestechendes Maschinen-Modell vor, 

mit dessen Hilfe wir eine präzise Definition einer algorithmisch berechenbaren

Funktion geben können – eine Definition, die auch durch moderne Program-

miersprachen nicht erweitert wird. Danach betrachten wir in Abschnitt neun

formale Beweise und weiter das Wechselspiel zwischen Syntax und Semantik, 

das im Korrektheitssatz und im Gödelschen Vollständigkeitssatz zum Ausdruck

kommt. Die beiden auch außerhalb der Mathematik vielbeachteten Gödelschen

Unvollständigkeitssätze, die die Grenzen eines formalen grundlagentheoretischen

Axiomensystems aufzeigen, sind das Thema des zehnten Abschnitts. Im elf-

ten Abschnitt stellen wir die transfiniten Zahlen vor, die aus dem allgemeinen

Wohlordnungsbegriff hervorgehen und ein Abzählen von beliebig großen Men-

gen ermöglichen. Das Kapitel schließt mit einer Einführung in das innerhalb der

Zermelo-Fraenkel-Axiomatik nachweisbar unlösbare Kontinuumsproblem: Die

unbekannte Mächtigkeit der Menge der reellen Zahlen lässt diese Grundstruk-

tur der Mathematik in einem geheimnisvollen Licht erscheinen. 
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12.1

M¨

achtigkeiten

Zwei Hirten, die ihre Schafherden vergleichen wollen, können ihre Schafe paar-

weise durch ein Tor schicken, je eines von jeder Herde. Haben am Ende beide

Hirten keine Schafe mehr, so sind die Herden gleich groß. Andernfalls hat der-

jenige, der noch Schafe übrig hat, mehr Schafe als der andere. 

Mathematisch betrachtet entsteht durch den Vergleich der Schafherden eine

Funktion: Dem Schaf  x  von Herde  M  wird das Schaf  y  von Herde  N  zugeordnet, 

wenn  x  und  y  gemeinsam durch das Tor geschickt werden. Es ergibt sich eine

Injektion  f , deren Definitionsbereich entweder eine echte Teilmenge von  M  oder

aber ganz  M  ist. Im ersten Fall hat  M  mehr Schafe als  N . Ist im zweiten Fall

der Wertebereich von  f  ganz  N (d. h.,  f :  M → N  ist bijektiv), so sind die

Herden gleich groß. Andernfalls ist die Herde  N  größer als die Herde  M . 

Dieser Idee folgend gelangen wir zu einem einfach definierten Größenvergleich

für zwei beliebige Mengen. Allerdings ist etwas Vorsicht geboten, da bei unendli-

chen Mengen der klassische Euklidsche Grundsatz das Ganze ist größer als der

” 

Teil“ nicht mehr gilt. Würden wir definieren:  M  hat weniger Elemente als  N , 

” 

falls es eine Injektion  f :  M → N  gibt, die nicht surjektiv ist“, so hätte N weniger

Elemente als N selbst, da die Zuordnung  f ( n) =  n + 1 eine derartige Injektion

darstellt. Unsere Definition wäre nur für endliche Mengen korrekt. Nach einiger

Suche findet man aber Definitionen für den Größenvergleich zweier Mengen, die

sich universell eignen und die der Intuition immer noch entgegenkommen. Wir

definieren nämlich für je zwei Mengen  M  und  N :

 |M| ≤ |N|, falls es ein injektives  f:  M → N  gibt, 

 |M| =  |N|, falls es ein bijektives  f:  M → N  gibt, 

 |M| < |N|, falls  |M| ≤ |N|  und non( |M| =  |N|). 

Gilt  |M | ≤ |N |, so sagen wir, dass die  Mächtigkeit  von  M kleinergleich  der

 M¨

 achtigkeit  von  N  ist. Gilt  |M | =  |N |, so sagen wir, dass  M  und  N dieselbe

 M¨

 achtigkeit  haben oder  gleichm¨

 achtig  sind. Analoge Sprechweisen gelten für

 |M| < |N|. 

Das Kleinergleich für Mächtigkeiten ist transitiv, und die Gleichmächtigkeit

hat die Eigenschaften einer Äquivalenzrelation. Unerwartete Schwierigkeiten be-

reitet aber die Frage, ob das Kleinergleich mit der Gleichmächtigkeit so zusam-

menhängt, wie es die Zeichenwahl suggeriert. In der Tat gilt aber der  Satz von

 Cantor-Bernstein:

 Gilt |M | ≤ |N | und |N | ≤ |M |, so gilt |M | =  |N |. 

Die Aufgabe des nichttrivialen, aber letztendlich doch elementaren Beweises

ist es, zwei abstrakt gegebene Injektionen  f :  M → N  und  g:  N → M  zu einer

Bijektion  h:  M → N  zu verschmelzen. 
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Mit Hilfe dies Satzes von Cantor-Bernstein lassen sich dann alle elementa-

ren Eigenschaften der Mächtigkeitsrelationen beweisen, z. B. die Transitivität

von  < . Ebenso hilft der Satz bei der Etablierung der Gleichmächtigkeit zweier

Mengen  M  und  N . Denn der Beweis von  |M | ≤ |N |  und von  |N | ≤ |M |  durch

Konstruktion zweier Injektionen ist oft einfacher als der Beweis von  |M | =  |N |

durch Konstruktion einer Bijektion. 

Offen bleibt die Frage der Linearität des Mächtigkeitsvergleichs. Man vermu-

tet aufgrund der Erfahrungen im Endlichen, dass  |M | ≤ |N |  oder  |N | ≤ |M |

für alle Mengen  M  und  N  gilt. Dieser Vergleichbarkeitssatz ist richtig, aber

nicht mehr mit elementaren Mitteln beweisbar (siehe Abschnitt 12.5). Einen

einfachen Beweis kann man mit Hilfe des Zornschen Lemmas führen (siehe Ab-

schnitt 12.6). 

Die Mächtigkeitsvergleiche lassen sich auch zur Definition der Endlichkeit

verwenden: Eine Menge  M  heißt  endlich,  falls es eine natürliche Zahl  n  gibt

derart, dass  M  und  { 0 ,  1 , . . . , n −  1 }  gleichmächtig sind. Andernfalls heißt sie

 unendlich. Eine gleichwertige Definition, die ohne natürliche Zahlen auskommt, 

stammt von Dedekind: Eine Menge  M  heißt  (Dedekind-) unendlich,  falls es eine

Bijektion zwischen  M  und einer echten Teilmenge von  M  gibt. Andernfalls heißt

sie  (Dedekind-) endlich.  Das Phänomen, dass das Ganze ebenso groß sein kann

wie einer seiner echten Teile, charakterisiert die Unendlichkeit. 

Im Endlichen ist alles einfach: Es gilt  |{ 0 , . . . , n −  1 }| ≤ |{ 0 , . . . , m −  1 }|

genau dann, wenn  n ≤ m. Die Methode der Hirten ist also korrekt, was

niemanden überrascht. Überraschend sind dann aber viele der folgenden

Mächtigkeitsresultate für prominente unendliche Mengen:

 | N | =  | Z | =  | Q | =  | N2 | =  | N n| =  |{s | s  ist eine endliche Folge in N }|, 

 | R | =  | R2 | =  | R n| =  | NR | =  |P(N) |,  wobei  n ≥  1 . 

Es gibt also nur abzählbar viele Bücher über einem abzählbaren Alphabet. 

Ebenso hat die Ebene R2 nur R-viele Punkte, und Gleiches gilt für die mehrdi-

mensionalen Kontinua R n  und sogar für NR =  {f | f : N  →  R }. 

Dagegen fallen die Mächtigkeiten der natürlichen Zahlen und der reellen Zah-

len nicht zusammen: Es gilt  | N | < | R |. Die Mächtigkeitstheorie für unendliche

Mengen ist also nicht trivial in dem Sinne, dass je zwei unendliche Mengen

gleichmächtig wären. Es gibt Größenunterschiede nicht nur im Endlichen, son-

dern auch im Unendlichen. Diesem bemerkenswerten Ergebnis widmen wir den

folgenden Abschnitt über das Diagonalverfahren. 

Eine Menge  M  heißt  abz¨

 ahlbar,  falls  |M | ≤ | N |  gilt, und  abzählbar unendlich, 

falls  |M | =  | N |  gilt. Ist  M  nicht abzählbar, so heißt  M überabzählbar.  Das

Resultat  | N | < | R |  besagt also, dass die reellen Zahlen überabzählbar sind. 

Eine abzählbare Menge  M  lässt sich als eine endliche oder unendliche Folge

 x 0 , x 1 , . . . , xn, . . .  erschöpfend aufzählen. Die Überabzählbarkeit einer Menge  M

besagt dagegen: Ist  x 0 , x 1 , . . . , xn, . . .  eine Folge in  M , so gibt es ein  y ∈ M , 
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das von allen  xn  verschieden ist. Für die reellen Zahlen gilt also: Jede noch so

geschickt konstruierte Folge reeller Zahlen vergisst“ eine reelle Zahl. 

” 

Trotz  | Q | < | R |  sind die rationalen Zahlen  dicht  in R: Sind  x < y  reelle Zahlen, 

so gibt es eine rationale Zahl  q  mit  x < q < y. Dieses zuweilen als kontraintuitiv

bezeichnete Ergebnis zeigt, wie sehr ein mehr“ oder weniger“ im Unendlichen

” 

” 

einer exakten Definition bedarf. 

12.2

Das Diagonalverfahren

Gegeben seien Funktionen  fn: N  →  N für alle  n ∈  N. Wir fragen: Gibt es eine

Funktion  g: N  →  N, die alle  fn  dominiert? Dabei soll  g  dominiert  f“ bedeuten, 

” 

dass es ein  n 0 gibt mit:  g( k)  > f ( k) für alle  k ≥ n 0. 

In der Tat gibt es immer eine solche Funktion  g, und wir können sie aus den

Funktionen  f 0 , f 1 , . . . , fn, . . .  durch eine diagonale“ Konstruktion gewinnen. 

” 

Zur Definition des Wertes  g( n) verwenden wir die Werte  f 0( n) , . . . , fn( n) und

setzen  g( n) = max( {fk( n)  | k ≤ n}) + 1. Dann ist  g  wie gewünscht, denn für

alle  n  und alle  k ≥ n  gilt, dass  g( k)  > fn( k). 

Eine Variante dieser Konstruktion bildete de facto das erste diagonale Argu-

mentieren in der Mathematik (Paul du Bois-Reymond 1875). Große Beachtung

und Bedeutung erlangte die Idee aber erst, als Cantor 1892 mit ihrer Hilfe einen

neuen Beweis für die  ¨

 Uberabz¨

 ahlbarkeit der reellen Zahlen  vorlegte, ein grundle-

gendes Resultat, das er bereits 1874 mit einer anderen Methode bewiesen hatte:

 Seien x 0 , x 1 , . . . , xn, . . . reelle Zahlen. Dann existiert eine reelle

 Zahl y mit y =  xn für alle n ∈  N . 

Zum Beweis dieses Satzes schreiben wir alle von Null verschiedenen  xn  in

Dezimaldarstellung:

 x 0 =  a 0 , b 0 ,  0 b 0 ,  1 b 0 ,  2  . . . b 0 ,n, . . . 

 x 1 =  a 1 , b 1 ,  0 b 1 ,  1 b 1 ,  2  . . . b 1 ,n, . . . 

... 

 xn =  an, bn,  0 bn,  1 bn,  2  . . . bn,n, . . . 

... 

Wir definieren nun  y = 0 , c 0 c 1 c 2  . . . ∈  R diagonal“ durch  c

” 

 n = 5 falls  bn,n = 4

und  cn = 4 falls  bn,n = 4. Dann ist  y =  xn  für alle  n ∈  N aufgrund der

Eindeutigkeit der nicht in 0 terminierenden Dezimaldarstellung einer reellen

Zahl ungleich 0. 

Der Beweis zeigt, dass es keine Surjektion  f : N  →  R geben kann, denn sonst

wäre  f (0) , f (1) , . . . , f ( n) , . . .  ein Gegenbeispiel zum obigen Satz. Insbesonde-
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re gilt non( | N | =  | R |). Sicher gilt aber  | N | ≤ | R |, denn die Identität ist eine

Injektion von N nach R. Insgesamt haben wir also  | N | < | R |  gezeigt. 

Auch obige Konstruktion einer dominierenden Funktion liefert die Überab-

zählbarkeit der reellen Zahlen als ein recht einfaches Korollar. Denn sie zeigt

insbesondere, dass es keine Folge von Funktionen von N nach N geben kann, die

alle Funktionen von N nach N durchläuft. Damit ist  | N | < | NN |. Aus der mit Hilfe

des Satzes von Cantor-Bernstein nicht schwer zu zeigenden Gleichmächtigkeit

von NN und R ergibt sich dann die Überabzählbarkeit von R. 

Eine der schönsten, allgemeinsten und zugleich einfachsten Anwendungen der

Diagonalmethode ist der Beweis des folgenden starken  Satzes von Cantor :

 Sei M eine Menge. Dann gilt |M | < |P( M ) |. 

Zunächst ist  |M | ≤ |P( M ) |, denn  f ( a) =  {a}  definiert eine Injektion von

 M  nach  P( M). Es genügt also zu zeigen, dass es keine Surjektion von  M  nach

 P( M) gibt. Sei hierzu  g:  M → P( M). Wir setzen  D =  {a ∈ M | a /∈ g( a) }. 

Dann ist  D /

 ∈  rng( g) und also  g  nicht surjektiv:  Annahme,  es gibt ein  a∗ ∈ M  mit

 g( a∗) =  D. Dann gilt  a∗ ∈ D  genau dann, wenn  a∗ /

 ∈ g( a∗) =  D,  Widerspruch. 

Ist zum Beispiel  M =  { 1 ,  2 ,  3 ,  4 }  und  g(1) =  ∅,  g(2) =  { 1 ,  2 ,  3 },  g(3) =  M , g(4) =  { 3 }, so ist  D =  { 1 ,  4 }, und in der Tat liegt  D  nicht im Wertebereich von  g. 

Jede Funktion  g  auf  M  generiert“ in diesem Sinne eine neue Teilmenge von  M . 

” 

Man kann sich anhand von Matrizen davon überzeugen, dass diese Konstruktion

den Namen Diagonalverfahren verdient. Wir identifizieren Teilmengen von  M

wie üblich mit 0-1-Folgen der Länge 4, also  ∅  mit 0000,  { 1 ,  2 ,  3 }  mit 1110,  M

mit 1111,  { 3 }  mit 0010. 

⎛

⎞

0 0 0 0

⎜

⎜

⎟

⎜1 1 1 0⎟

⎜

⎟

⎝

⎟

1 1 1 1⎠

0 0 1 0

Der Funktion  g  ordnen wir entsprechend die Matrix ( aij )1 ≤i,j≤ 4 zu mit  aij = 1, 

falls  j ∈ g( i), und  aij = 0 sonst (vgl. das Diagramm). Die Diagonale dieser

Matrix ist 0110 und entspricht der Menge  E =  {a ∈ M | a ∈ g( a) } =  { 2 ,  3 }. 

Der 0-1-Tausch der Diagonalen ist 1001, was der Menge  D =  {a ∈ M | a /

 ∈

 g( a) } =  { 1 ,  4 }  entspricht. Die Folge 1001 ist dann per Konstruktion von jeder

Zeile der Matrix verschieden, und folglich ist  D =  g( i) für alle 1  ≤ i ≤  4. 

Die Menge  D  lässt sich bei dieser Betrachtungsweise also aus der Funktion  g

diagonal ablesen“. 

” Nach dem Satz von Cantor gilt:

 | N  |< |P(N) | < |P( P(N)) | < |P( P( P(N))) | < . . . 

Aus der Gleichmächtigkeit von R und  P(N) erhalten wir erneut die Überab-

zählbarkeit der reellen Zahlen. Weiter ist  |P( P(N)) | =  |P(R) | =  | RR |, und
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damit sind also die natürlichen Zahlen, die reellen Zahlen und die Menge RR

der reellen Funktionen drei Repräsentanten für verschiedene Stufen des Unend-

lichen. Welche Unendlichkeitsstufe nimmt nun die Menge R genau ein? Dieses

sog. Kontinuumsproblem diskutieren wir in einem eigenen Abschnitt (siehe Ab-

schnitt 12.12). 

12.3

Die Russell-Antinomie

Wir betrachten noch einmal den Beweis des Satzes von Cantor aus dem vor-

angehenden Abschnitt. Dort hatten wir gesehen, dass für jede Menge  M  und

jede Funktion  g  auf  M  die Menge  D =  {a ∈ M | a /

 ∈ g( a) }  nicht im Wer-

tebereich von  g  liegen kann. (Hierzu ist es nicht notwendig anzunehmen, dass

rng( g)  ⊆ P( M ) ist.) Wählen wir als Funktion  g  die Identität auf  M , so zeigt

das Argument, dass für jede Menge  M  die Menge  D =  {a ∈ M | a /

 ∈ a}  kein

Element von  M  sein kann. Das ist eine etwas skurrile Erkenntnis über Mengen, 

aber wir stoßen auf ernsthafte logische Probleme, wenn wir die Menge  M  sehr

groß wählen. Ist nämlich  M =  {a | a =  a}  die Menge aller Objekte, so folgt aus

unserer Überlegung, dass  D =  {a ∈ M | a /

 ∈ a} =  {a | a /∈ a}  kein Element von

 M  ist. Aber sicher gilt  D =  D, also gilt doch  D ∈ M  nach Definition von  M . 

Wir haben einen Widerspruch erzeugt, ohne irgendetwas widerlegen zu wollen! 

Die Frage: Wo ist hier der Argumentationsfehler?“ lässt sich in der Tat nur

” 

durch eine Revision unserer stillschweigend oder naiv gemachten Annahmen

über die Mengenbildung beantworten, denn in der Argumentation selbst ist

kein Fehler zu finden. Diese Revision verlief historisch alles andere als einfach. 

Zum ersten Mal seit der Entdeckung der irrationalen Zahlen durch die alten

Griechen sah sich die Mathematik gezwungen, ihre Fundamente zu diskutieren

und zu überarbeiten. Es hat nach der Wende zum 20. Jahrhundert, als obiger

Widerspruch unter dem Namen

Russellsche Antinomie“ bekannt wurde und

” 

daneben auch andere

mengentheoretische Antinomien“ die Runde machten, 

” 

mehrere Jahrzehnte gedauert, bis sich die Wogen wieder geglättet hatten und

eine Fundierung der Mathematik erreicht war, die allen antinomischen Angriffen

trotzen konnte und schließlich auch breite Akzeptanz fand. 

In der Tat ist Bertrand Russell durch Überlegungen im Umfeld des Satzes von

Cantor auf seine Antinomie gestoßen, die unabhängig auch von Ernst Zermelo

gefunden wurde. Es lohnt sich, das Argument von jedem unnötigen Kontext zu

befreien und auf seine logische Form zu reduzieren. Wir formulieren also das

Ergebnis neu und wiederholen den kurzen Beweis:

(Russell-Zermelo-Antinomie)

 Die Zusammenfassung R =  {a | a /

 ∈ a} ist keine Menge. Das heißt

 genau: Es gibt keine Menge R derart, dass f¨

 ur alle Objekte a gilt:

 a ∈ R genau dann, wenn a /

 ∈ a. 

(#)
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Zum Beweis nehmen wir an, dass eine Menge  R  mit der Eigenschaft (#)

existiert. Setzen wir nun das Objekt  R  für  a  in (#) ein, so erhalten wir:  R ∈ R

genau dann, wenn  R /

 ∈ R,  Widerspruch. 

In dieser Form sieht die Russell-Antinomie eher nach einem positiven Ergeb-

nis aus. Ein Widerspruch entsteht erst, wenn wir die uneingeschränkte Bildung

von Mengen durch Eigenschaften zulassen. Für jede Eigenschaft  E ( a) hatten

wir die Menge  {a | E ( a) }  aller Objekte  a  mit der Eigenschaft  E  gebildet (sie-

he Abschnitt 1.5). Die Existenz dieser zu  E  gehörigen Menge haben wir ohne

Bedenken angenommen, und genau hier liegt der Fehler. 

Zusammenfassend lassen sich die Ereignisse wie folgt beschreiben. Eine naive

Mengenlehre enthält als zentrales Prinzip das  Komprehensionsschema:

 F¨

 ur jede Eigenschaft E ( a)  existiert die Menge {a | E ( a) } aller Ob-

 jekte a, auf die die Eigenschaft E zutrifft. 

Der Name Schema“ bedeutet hier, dass wir ein Axiom pro Eigenschaft vor-

” 

liegen haben, also unendlich viele Aussagen postulieren. 

Die Russell-Zermelo-Antinomie zeigt, dass das Komprehensionsschema in sei-

ner allgemeinen Form nicht haltbar ist. Die Eigenschaft  E ( a) =  a /

 ∈ a“ führt

” 

rein logisch zu Widersprüchen. Die Mengenbildung ist also nicht so harmlos, wie

sie aussieht! 

Georg Cantor, der Begründer der Mengenlehre, war sich der Schwierigkeiten

der inkonsistenten Zusammenfassungen übrigens schon einige Jahre vor Russell

und Zermelo bewusst. Leider hat er aber darüber nur brieflich mit Hilbert dis-

kutiert, so dass seine Erfahrungen die nachfolgende wissenschaftliche Diskussion

nur indirekt beeinflussten. 

Ein naheliegender Lösungs-Ansatz ist, im Komprehensionsschema alle proble-

matischen Eigenschaften auszuschließen. Das Problem ist hier aber nicht nur ei-

ne Definition von problematisch“, sondern es erhebt sich auch die Frage, welche

” 

Objektwelt man eigentlich axiomatisch beschreiben will, wenn man bestimmte

Eigenschaften nur aufgrund von syntaktischen Merkmalen von der Komprehen-

sion ausschließt. 

Eine Alternative zu diesem syntaktischen Ansatz stellt ein inhaltlich motivier-

tes Axiomensystem dar, das ein intendiertes Modell verfolgt. Eine Axiomatisie-

rung der Zahlentheorie beschreibt zum Beispiel das Modell 0, 1, 2, . . . , das man

vor Augen zu haben glaubt. Durch die Beschreibung eines intuitiven Modells

kann man zu einer gefühlten Sicherheit gelangen, nicht erneut mit einem inkon-

sistenten System zu arbeiten. Welches Modell eine axiomatische Mengenlehre

aber überhaupt beschreiben will, ist zunächst nicht klar. 

Neben inhaltlichen Aspekten wird man sich schließlich auch mit der Anfor-

derung konfrontiert sehen, ein einfaches und brauchbares System zu etablieren, 

das breite Verwendung in der Mathematik finden kann. 

Bei der Lösung, die sich im 20. Jahrhundert schließlich durchgesetzt hat, do-

miniert zunächst der pragmatische Aspekt, den mathematisch wertvollen Teil
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der naiven Mengenlehre zu retten: Das Komprehensionsschema wird durch einen

Satz von Axiomen ersetzt, der die Existenz von Mengen vorsichtig, aber liberal

genug behandelt. Statt problematische Komprehensions-Eigenschaften zu strei-

chen, werden hinreichend viele nützliche Eigenschaften gesammelt. Das erfolg-

reichste derartige Axiomensystem diskutieren wir im folgenden Kapitel. Dieses

System besitzt zudem ein a posteriori gefundenes intendiertes Modell“ (siehe

” 

Abschnitt 12.11). 

12.4

Die Zermelo-Fraenkel-Axiomatik

Ernst Zermelo stellte 1908 ein System von Axiomen vor, das im Lauf der Zeit

noch ergänzt wurde und heute als Zermelo-Fraenkel-Axiomatik (kurz ZFC) der

Mengenlehre bekannt ist. Die beiden Leitmotive sind: (A) Manche Zusammen-

” 

fassungen“  {x | E ( x) }  sind zu groß, um Mengen sein zu können (etwa  {x | x =  x}

oder  {x | x /

 ∈ x}). Sie bilden kein Ganzes“ mehr, mit dem man als Objekt wei-

” 

terarbeiten könnte (vgl. Abschnitt 1.5). (B) Mengentheoretische Axiome werden

aus der mathematischen Praxis gewonnen. Wir sammeln, was wir brauchen. 

Jedes Objekt der Theorie ZFC ist eine Menge (es gibt keine Urelemente“). 

” 

Neben der Gleichheit haben wir nur eine zweistellige Relation  ∈, die  Epsilon-

oder  Element -Relation. Wir fordern:

 Extensionalit¨

 atsaxiom:  Zwei Mengen sind genau dann gleich, wenn sie die

gleichen Elemente haben. 

An die Stelle des inkonsistenten Komprehensionsschemas tritt nun folgendes

Prinzip, das vorsichtiger, aber ähnlich flexibel ist:

 Aussonderungsschema (Existenz von y =  {z ∈ x | E ( z) }):  Zu jeder Eigen-

schaft  E  und jeder Menge  x  gibt es eine Menge  y, die genau die Elemente von

 x  enthält, auf die  E  zutrifft. 

Das Axiom folgt dem ersten Leitmotiv: Die Komprehension  y =  {z ∈ x |

 E ( z) }  liefert eine Teilmenge von  x, und  y  kann daher nicht zu groß“ sein. Das

” 

Aussonderungsschema wird nun durch Existenz-Axiome flankiert, die Mengen

liefern, aus denen man aussondern kann. Wir fordern:

 Existenz der leeren Menge (Existenz von ∅):  Es gibt eine Menge, die kein

Element besitzt. 

 Paarmengenaxiom (Existenz von z =  {x, y}):  Für alle Mengen  x, y  gibt es

eine Menge  z, die genau  x  und  y  als Elemente besitzt. 



 Vereinigungsmengenaxiom (Existenz von y =

 x):  Zu jeder Menge  x  existiert

eine Menge  y, deren Elemente genau die Elemente der Elemente von  x  sind. 

 Unendlichkeitsaxiom (Existenz von  N ):  Es existiert eine kleinste Menge  x, die

die leere Menge als Element enthält und die mit jedem ihrer Elemente  y  auch

 y ∪ {y}  als Element enthält. 
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 Potenzmengenaxiom (Existenz von y =  P( x) ):  Zu jeder Menge  x  existiert

eine Menge  y, die genau die Teilmengen von  x  als Elemente besitzt. 

Die Menge  x  des Unendlichkeitsaxioms heißt  Menge der nat¨

 urlichen Zahlen

und wird mit N oder  ω  bezeichnet. Informal gilt N =  { 0 ,  1 ,  2 , . . .}  mit 0 =  ∅, 1 =

 { 0 }, 2 =  { 0 ,  1 }, . . . ,  n+1 =  n∪{n} =  { 0 , . . . , n}, . . . . Der Satz von Cantor zeigt, dass das Potenzmengenaxiom ausgehend von N zu vielen Stufen des Unendlichen

führt. In der Mathematik wenden wir das Potenzmengenaxiom z. B. an, wenn

wir R aus Q konstruieren. Das letzte Axiom der Zermelo-Axiomatik von 1908

ist ein vieldiskutiertes Axiom, dem wir den folgenden Abschnitt widmen:

 Auswahlaxiom:  Ist  x  eine Menge, deren Elemente nichtleer und paarweise

disjunkt sind, so gibt es eine Menge  y, die mit jedem Element von  x  genau ein

Element gemeinsam hat. 

Zermelos System wurde schließlich noch um zwei Axiome ergänzt:

 Ersetzungsschema (Existenz von {F ( y)  | y ∈ x}):  Das Bild einer Menge  x

unter einer Funktion  F  ist eine Menge. 

 Fundierungsaxiom oder Regularit¨

 atsaxiom (Existenz ∈-minimaler Elemente):

Jede Menge  x =  ∅  hat ein Element  y, das mit  x  kein Element gemeinsam hat. 

Erst mit Hilfe des Ersetzungsschemas kann man z. B. die Existenz der Menge

 M =  {Pn(N)  | n ∈  N }  zeigen, wobei  P 0(N) = N und  Pn+1(N) =  P( Pn(N)). 

Wir ersetzen“ in der Menge  { 0 ,  1 ,  2 , . . .}  jedes Element  n  durch das sprachlich

” 

zugeordnete Objekt  Pn(N) und erhalten so  M. 

Das Fundierungsaxiom schließt Mengen  x  mit  x =  {x},  x ∈ x  oder unendliche

absteigende Folgen  x 0  
 x 1  
 x 2  
 x 3  
 . . .  aus. Es führt zu einem recht klaren

Bild des durch die Axiomatik beschriebenen Universums (siehe Abschnitt 12.11). 

Das vorgestellte Axiomensystem wird mit ZFC bezeichnet, wobei Z“ für Zer-

” 

melo, F“ für Fraenkel und C“ für das Auswahlaxiom steht (engl. axiom of

” 

” 

” 

choice“). Wird ZFC in einer formalen Sprache formuliert, so kann der Eigen-

schaftsbegriff im Aussonderungsschema und der sprachliche Funktionsbegriff im

Ersetzungsschema präzisiert werden. 

ZFC dient heute nicht nur als Axiomatisierung der Mengenlehre, sondern

auch als Fundament für die gesamte Mathematik. Alle mathematischen Objekte

lassen sich als Mengen interpretieren und alle Beweise, die in den verschiedenen

Gebieten der Mathematik geführt werden, lassen sich auf der Basis der ZFC-

Axiome durchführen. Daneben ist die axiomatische Mengenlehre selber zu einer

mathematischen Disziplin mit einer eigenen Dynamik geworden. 

Mit der Axiomatik ZFC gelang es, alle mengentheoretischen Paradoxien zu

eliminieren und zugleich alle wichtigen mengentheoretischen Begriffsbildungen

und Konstrukte zu retten. Die Theorie erwies sich dann aber als unvollständig:

Es gibt interessante Aussagen, die sich in ZFC weder beweisen noch widerlegen

lassen (vgl. Abschnitt 12.10 und Abschnitt 12.12). Dadurch wurde die Suche

nach neuen Axiomen zu einem spannenden Thema, und seine bis heute nicht
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abgeschlossene Durchführung brachte einen ungeahnten Reichtum an verborge-

ner mengentheoretischer Struktur ans Licht. 

12.5

Das Auswahlaxiom

Zermelos  Auswahlaxiom  von 1908 lautet:

 Ist x eine Menge, deren Elemente nichtleer und paarweise disjunkt

 sind, so existiert eine Menge y, die mit jedem Element von x genau

 ein Element gemeinsam hat. 

Ist  y  wie im Axiom, so nennen wir  y  eine  Auswahlmenge  für  x. 

Das Auswahlaxiom hat eine andere Natur als alle anderen Existenzaxiome

des Systems ZFC. Letztere behaupten die Existenz einer in einer bestimmten

Situation eindeutig bestimmten Menge, zum Beispiel von  z =  {x, y}  für gege-

bene  x  und  y  oder von  y =  {z ∈ x | E ( z) }  für eine gegebene Menge  x  und eine

betrachtete Eigenschaft  E . Das Auswahlaxiom dagegen liefert, gegeben  x, eine

unbestimmte dunkle“ Auswahlmenge  y. Wenn wir mit  y  arbeiten, wissen wir

” 

im Allgemeinen nicht mehr genau, welches Objekt wir in der Hand haben. De

facto lassen sich alle Existenzaxiome von ZF als Instanzen des Komprehensi-

onsschemas schreiben und besagen damit, dass bestimmte Zusammenfassungen

eine Menge liefern. Das Auswahlaxiom dagegen erlaubt keine derartige Lesart. 

Die folgenden Aussagen sind allesamt äquivalent zum Auswahlaxiom (über

den restlichen Axiomen):

 Existenz von Auswahlfunktionen:  Sind  I  eine Menge und  Mi | i ∈ I  eine  I-

Folge nichtleerer Mengen, so ist  ×


M

 i∈I

 i  nichtleer, d. h., es gibt ein  f :  I →




M

 i∈I

 i  mit  f ( i)  ∈ Mi  für alle  i ∈ I. 

 Existenz von vollst¨

 andigen Repr¨

 asentantensystemen:  Jede Äquivalenzrelation

besitzt ein vollständiges Repräsentantensystem. 

 Existenz von Injektionen zu Surjektionen:  Für alle surjektiven  f :  A → B  gibt

es ein injektives  g:  B → A  mit  f ( g( b)) =  b  für alle  b ∈ B. 

 Wohlordnungssatz:  Jede Menge lässt sich wohlordnen. 

 Vergleichbarkeitssatz:  Für alle Mengen  M, N  gilt  |M | ≤ |N |  oder  |N | ≤ |M |. 

 Multiplikationssatz:  Für alle unendlichen Mengen  M  gilt  |M × M | =  |M |. 

 Zornsches Lemma:  Sei  P  eine partielle Ordnung derart, dass jede linear geord-

nete Teilmenge von  P  eine obere Schranke besitzt. Dann existiert ein maximales

Element von  P . 

 Hausdorffsches Maximalprinzip:  Jede partielle Ordnung besitzt eine maximale

lineare Teilordnung. 

 Existenz von Basen in Vektorr¨

 aumen:  Jeder Vektorraum besitzt eine Basis. 
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 Satz von Tikhonov:  Das Produkt von kompakten topologischen Räumen ist

kompakt. 

Daneben gibt es viele Sätze der Mathematik, die zwar nicht äquivalent zum

Auswahlaxiom sind, aber auch nicht ohne Auswahlaxiom beweisbar sind, z. B.:

(a)

Eine abzählbare Vereinigung von abzählbaren Mengen ist abzählbar.“

” 

(b)

Jede unendliche Menge ist Dedekind-unendlich.“

” 

(c)

Jeder unendliche Baum, dessen Knoten nur endlich viele Nachfolger

” 

haben, besitzt einen unendlichen Zweig.“

(d)

Jede Menge lässt sich linear ordnen.“

” 

(e) Der Satz von Hahn-Banach aus der Funktionalanalysis. 

Selbst wenn  M  eine Menge nichtleerer und paarweise disjunkter Mengen ist, 

die alle genau zwei Elemente besitzen, lässt sich die Existenz einer Auswahl-

menge für  M  in der Regel nicht ohne Verwendung des Auswahlaxioms zeigen. 

Russell hat hier bildhaft auf den Unterschied zwischen Socken und Schuhen hin-

gewiesen. Aus einer unendlichen Menge  S  von Sockenpaaren können wir eine

Auswahlmenge nur mit Hilfe des Auswahlaxioms gewinnen: Wir wählen“ für

” 

jedes Sockenpaar  S ∈ S  ein  s ∈ S. Liegt dagegen eine unendliche Menge  S

von Schuhen vor, so wird das Auswahlaxiom nicht gebraucht. Die Menge  L  der

linken Schuhe ist dagegen eine Auswahlmenge für  S , die sich durch Vereinigung



und Aussonderung gewinnen lässt:  L =  {s ∈

 S | s  ist ein linker Schuh }. 

Im Endlichen wird das Auswahlaxiom dagegen nicht benötigt. Man zeigt leicht

durch Induktion nach  n ∈  N, dass für eine  n-elementige Menge  x  wie im Aus-

wahlaxiom eine Auswahlmenge  y  existiert. Das Auswahlaxiom und seine Pro-

blematik gehören damit ganz dem Reich des Unendlichen an. 

Den Einsatz des Auswahlaxioms erkennt man in Beweisen sehr leicht an For-

mulierungen wie

für jedes  a ∈ A  wählen wir ein  b ∈ B  mit den und jenen

” 

Eigenschaften“ oder für jedes  a ∈ A  sei  f ( a) ein  b ∈ B  mit . . .“. Können wir

” 

dagegen Objekte eindeutig definieren und etwa schreiben für jedes  a ∈ A  sei

” 

 f ( a) das eindeutig bestimmte  b ∈ B  mit . . .“, so muss das Auswahlaxiom nicht

herangezogen werden. 

Das Auswahlaxiom ist vor allem aufgrund seiner zuweilen als pathologisch“

” 

oder

kontraintuitiv“ empfundenen Konsequenzen kritisiert worden. Es führt

” 

zum Beispiel zur Existenz einer Wohlordnung auf den reellen Zahlen, und es

produziert Teilmengen von R, die nicht Lebesgue-messbar sind. Ganz allgemein

sind die Konsequenzen des Auswahlaxioms in der Maßtheorie besonders ver-

blüffend (siehe Abschnitt 12.7). 

Man weiß durch Arbeiten von Kurt Gödel, dass das Auswahlaxiom nicht

für einen Widerspruch der mengentheoretischen Fundierung verantwortlich sein

kann: Ist ZF widerspruchsfrei, so ist auch ZFC widerspruchsfrei. Wenigstens in

diesem Sinne ist das Auswahlaxiom also über jeden Zweifel erhaben. 
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12.6

Das Zornsche Lemma

Das nach dem Mathematiker Max Zorn benannte  Zornsche Lemma  lautet:

 Sei P eine partielle Ordnung derart, dass jede linear geordnete Teil-

 menge von P eine obere Schranke besitzt. Dann existiert ein maxi-

 males Element von P . 

Wir wollen die kompakte Notation dieses Satzes etwas auflösen. Sei hierzu  ≤

die auf der Menge  P  gegebene partielle Ordnung, d. h.,  ≤  ist reflexiv, antisym-

metrisch und transitiv auf  P . Eine Teilmenge  A  von  P  heißt  linear geordnet, 

falls für alle  a, b ∈ A  gilt, dass  a ≤ b  oder  b ≤ a. Ein  s ∈ P  heißt  obere Schranke

von  A, falls  A ≤ s  gilt, d. h., es gilt  a ≤ s  für alle  a ∈ A. Die Schranke  s  kann, 

muss aber nicht zu  A  gehören. Schließlich heißt ein  z ∈ P maximal  in  P , falls

es kein  x ∈ P  gibt mit  z < x. Maximal“ bedeutet also nichts liegt darüber“

” 

” 

und nicht etwa alles liegt darunter“. Wir bemerken schließlich, dass die leere

” 

Menge als linear geordnete Teilmenge von  P  gilt. Nach Voraussetzung existiert

eine obere Schranke  s ∈ P  von  ∅, also ist  P  automatisch nichtleer. 

Allen Anwendungen des Zornschen Lemmas liegt ein gemeinsames Schema

zugrunde. Man möchte zeigen, dass ein Objekt existiert, das in einem gewis-

sen Sinne nicht mehr verbessert werden kann, also optimal oder maximal in

bestimmter Hinsicht ist. Das Zornsche Lemma wird dann zum Beweis der Exis-

tenz eines solchen guten Objekts eingesetzt. Man definiert hierzu eine Menge  P

von Approximationen an das gesuchte Objekt. Diese Approximationen ordnet

man partiell durch eine Ordnung, die angibt, wann eine Approximation besser

ist als eine andere. Damit sind die Vorbereitungen zu Ende. Man muss nun nur

noch nachweisen, dass jede linear geordnete Menge von Approximationen eine

gemeinsame Verbesserung zulässt, d. h., dass jedes linear geordnete  A ⊆ P  eine

obere Schranke in  P  besitzt. Sobald man dies bewiesen hat, liefert das Zornsche

Lemma ein maximales Element von  P . 

In Anwendungen ist in den meisten Fällen  P  ein nichtleeres Mengensys-

tem, das durch die Inklusion  ⊆  partiell geordnet wird. Die obere Schranken-

Bedingung ist zudem dadurch gesichert, dass für alle nichtleeren linear geord-



neten Teilsysteme  A  von  P , sogenannte (nichtleere)  Ketten, auch  s =

 A ∈ P

ist. Dann ist nämlich  s  eine obere Schranke von  A. Wir halten also explizit fest:

 Sei P =  ∅ ein Mengensystem derart, das für alle Ketten A ⊆ P gilt, 



 dass

 A ∈ P . Dann existiert ein maximales Element von P . 

Wir besprechen einige Anwendungen. Zuerst zeigen wir den  Basiserg¨

 anzungs-

 satz : Jede linear unabhängige Teilmenge  E 0 eines Vektorraumes  V  lässt sich

zu einer Basis ergänzen, d. h., es existiert eine Basis  B  von  V  mit  B ⊇ E 0. 

Die Approximationen“ sind hier die linear unabhängigen Teilmengen von  V , 

” 

die  E 0 fortsetzen. Ein linear unabhängiges  A ⊆ V  ist besser“ als ein linear

” 
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unabhängiges  B ⊆ V , falls  B ⊂ A  gilt. Wir definieren also  P =  {E ⊆ V |



 E  ist linear unabhängig und  E ⊇ E 0 }. Ist nun  A ⊆ P  eine Kette, so ist


A

linear unabhängig und eine Obermenge von  E 0, also ein Element von  P . Nach

dem Zornschen Lemma existiert also ein maximales  B ∈ P . Dann ist aber  B

eine maximale linear unabhängige Teilmenge von  V  und damit eine Basis von

 V . Zudem ist  B ⊇ E 0. 

Weiter zeigen wir den  Vergleichbarkeitssatz f¨

 ur M¨

 achtigkeiten: Für je zwei

Mengen  M  und  N  gilt  |M | ≤ |N |  oder  |N | ≤ |M |. Als Menge von Approxima-

tionen verwenden wir  P =  {f | f :  A → B  bijektiv , A ⊆ M, B ⊆ N }. Ist  A ⊆ P



eine Kette, so ist

 A ∈ P . Also existiert ein maximales Element  g  von  P . Dann

gilt aber dom( g) =  M  oder rng( g) =  N , da wir andernfalls  g  noch fortsetzen

könnten, indem wir ein  x ∈ M −  dom( g) auf ein  y ∈ N −  rng( g) abbilden. Im

ersten Fall ist  g:  M → N  injektiv und damit  |M | ≤ |N |, und im zweiten Fall ist

 g− 1:  N → M  injektiv, also  |N | ≤ |M |. 

Hat man diesen Beweistyp einige Male durchgeführt, so wird man schnell

Wendungen der Form eine typische Anwendung des Zornschen Lemmas zeigt

” 

. . . “ gebrauchen. Erfahrungsgemäß liegen anfängliche Schwierigkeiten zumeist

auch eher darin, mit den Grundbegriffen der Ordnungstheorie umgehen zu

können. Der Rest ist dann Approximieren und Schrankensuche. 

Es bleibt die Frage, wie sich das so vielseitig verwendbare Zornsche Lemma

selbst beweisen lässt. Der Beweis kann nicht völlig elementar sein, denn es gilt:

Das Zornsche Lemma impliziert das Auswahlaxiom. Zum Beweis sei  M  eine

Menge von nichtleeren paarweise disjunkten Mengen. Wir setzen  P =  {X | X



ist eine Auswahlmenge für ein  N ⊆ M }. Für jede Kette  A  in  P  ist

 A ∈ P . Also

existiert ein maximales Element  Y  von  P , und  Y  ist dann eine Auswahlmenge

für  M . 

Eine sehr anschauliche Beweisidee für das Zornsche Lemma lautet:

Steige

” 

die partielle Ordnung so lange hinauf, bis du nicht mehr weiterkommst.“ Zur

Umsetzung dieser Idee müssen allerdings die transfiniten Zahlen verwendet wer-

den, damit der Aufstieg formal befriedigend durchgeführt werden kann (siehe

Abschnitt 12.11). Das Auswahlaxiom wird dann als

Schrittmacher“ benutzt. 

” 

Ist man bei  x ∈ P  angekommen, so wählt“ man im Falle der Existenz ein  y > x

” 

für den nächsten Schritt nach oben. 
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Das Auswahlaxiom führt in der Maßtheorie zu bemerkenswerten Phänomenen. 

So kann zum Beispiel nicht allen Teilmengen  A  von R ein  σ-additives translati-

onsinvariantes Längenmaß  λ( A) zugeordnet werden. Dies zeigt die Konstruktion

von Vitali: Wir definieren für alle  x, y ∈  R  x ∼ y, falls  x−y ∈  Q, und betrachten

ein vollständiges Repräsentantensystem  V ⊆ [0 ,  1] für die Äquivalenzrelation  ∼. 
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Zur Gewinnung der Menge  V  wird das Auswahlaxiom benutzt. Dann hat  V

keine  σ-additive Länge  λ( V ):  Annahme doch.  Die abzählbar vielen Translatio-

nen  V +  q =  {v +  q | v ∈ V },  q ∈  Q, sind eine Zerlegung von R, also hat nach

 σ-Additivität ein  V + q  eine positive Länge  η (sonst wäre  λ(R) = 0). Nach Trans-

lationsinvarianz gilt dann aber auch  λ( V ) =  η. Sei nun  n  so groß, dass  n · η >  2, 



und seien 0  < q 1  < . . . < qn <  1 rationale Zahlen. Sei  W =

 V +  q

1 ≤i≤n

 i. 

Dann ist  W ⊆ [0 ,  2] und  λ( W ) =  nη >  2 =  λ([0 ,  2])  ≥ λ( W ),  Widerspruch! 

Allgemein sind  σ-additive Maße, die auf der ganzen Potenzmenge einer

überabzählbaren Menge definiert sind, schwer zu haben, auch ohne zusätzliche

Symmetrieforderungen wie die Translationsinvarianz. Die Maßtheorie begnügt

sich deswegen mit der Konstruktion von Maßen auf hinreichend großen Teil-

systemen der Potenzmenge, sogenannten  σ-Algebren. Dies ist für viele Anwen-

dungen zwar ausreichend, aber zurück bleibt eine Verunsicherung, die durch die

folgenden, weitaus dramatischeren Resultate noch verstärkt wird. 

Wir brauchen folgenden allgemeinen Begriff der Zerlegungsgleichheit. Sei hier-

zu  M  eine Menge, und sei  G  eine Gruppe von Bijektionen auf  M . Dann heißen

zwei Teilmengen  A  und  B  von  M zerlegungsgleich  oder  st¨

 uckweise kongruent

bzgl.  G, falls es  A 1 , . . . , An ⊆ A,  B 1 , . . . , Bn ⊆ B  sowie  g 1 , . . . , gn ∈ G  gibt mit den Eigenschaften:

(a)  Ai ∩ Aj =  Bi ∩ Bj =  ∅  für alle 1  ≤ i < j ≤ n, 





(b)


A

B


1 ≤i≤n

 i =  A, 

1 ≤i≤n

 i =  B, 

(c)  gi[ Ai] =  Bi  für alle 1  ≤ i ≤ n. 

Sind  A  und  B  zerlegungsgleich bzgl.  G, so schreiben wir  A ∼G B. In der Tat ist

die Zerlegungsgleichheit eine Äquivalenzrelation auf der Potenzmenge von  M . 

Ist z. B.  G  die Gruppe aller Translationen auf R, so sind die Mengen  A =

[0 ,  1]  ∪ [2 ,  4]  ∪ { 6 }, und  B = [3 , − 1]  ∪ { 0 } ∪ [1 ,  2] zerlegungsgleich. Denn seien A 1 = [0 ,  1],  A 2 = [2 ,  4],  A 3 =  { 6 },  B 1 = [1 ,  2],  B 2 = [3 , − 1],  B 3 =  { 0 }. Dann sind  g 1 = tr1,  g 2 = tr − 5 und  g 3 = tr − 6 wie gewünscht, wobei für alle  a ∈  R die

Translation tr a  um  a  definiert ist durch tr a( x) =  x +  a  für alle  x ∈  R. 

Wir nennen nun ein nichtleeres  A ⊆ M paradox  bzgl.  G, falls es eine Zerlegung

von  A  in disjunkte Mengen  B  und  C  gibt mit  A ∼G B ∼G C. Die Mengen

 B  und  C  heißen dann eine  paradoxe Zerlegung  von  A  bzgl.  G. Die Menge  A

zerfällt in diesem Fall also in zwei zerlegungsgleiche Teile  B  und  C  und ist

selbst zerlegungsgleich zu jedem dieser Teile. 

Damit können wir nun die maßtheoretischen Paradoxa von Hausdorff und

Banach-Tarski formulieren. Das  Hausdorff-Paradoxon  lautet:

 Sei S 2 =  {x ∈  R3  | d( x,  0) = 1 } die Oberfläche der Einheitskugel im

R3 . Dann ist S 2  paradox bzgl. der Gruppe  SO3  aller Rotationen im

R3  um eine Achse durch den Nullpunkt. 

Die Sphäre  S 2 zerfällt also in Teile  A  und  B  derart, dass  S 2,  A,  B  durch

Rotationen zur Deckung gebracht werden können. Es folgt, dass es keinen rota-

tionsinvarianten endlich-additiven Inhalt geben kann, der auf allen Teilmengen
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von  S 2 definiert ist. Im Gegensatz dazu gibt es nach einem Satz von Banach

einen isometrieinvarianten Inhalt, der auf allen Teilmengen  A  von R2 definiert

ist. Folglich gilt ein Analogon zum Hausdorff-Paradoxon nicht für die Ebene. 

Die Ursache für dieses Dimensionsphänomen sind kombinatorische Gruppen, 

die sich in der Rotationsgruppe SO3 finden, aber nicht in der Isometriegruppe

 I 2 der Ebene. 

Das Banach-Tarski-Paradoxon baut auf dem Hausdorff-Paradoxon auf. Die

verwendete Gruppe ist hier die Gruppe  I + aller orientierungserhaltenden Iso-

3

metrien im R3. Diese Gruppe wird von allen Translationen und Rotationen

im R3 erzeugt, und darüber hinaus lässt sich sogar jedes Element der Gruppe

schreiben als eine Rotation um eine Achse, gefolgt von einer Translation um

einen zu dieser Achse parallelen Vektor. In seiner irritierend allgemeinen Form

lautet das  Banach-Tarski-Paradoxon  nun:

 Seien A und B beschr¨

 ankte Teilmengen des  R3  mit nichtleerem In-

 neren, d. h., es gebe x 1 , x 2  ∈  R3  und ε 1 , ε 2  >  0  mit Uε ( x

1

1)  ⊆ A und

 Uε ( x

 . Folglich ist

2

2)  ⊆ B. Dann gilt A ∼ B bzgl. der Gruppe I +

3

 jede beschr¨

 ankte Teilmenge des  R3  mit nichtleerem Inneren paradox

 bzgl. I + . 

3

Nach dem Banach-Tarski-Paradoxon sind zum Beispiel eine Erbse und die

Sonne zerlegungsgleich. Wir können die Erbse in endlich viele Teile zerlegen und

diese Teile durch Anwendungen von Rotationen und Translationen zur Sonne

zusammensetzen. Die regelmäßige Form der Sonne ist nicht entscheidend: Wir

können die Erbse analog auch zum Asteroidengürtel zusammensetzen, der auch

noch beliebig viel Feinstaub enthalten darf. Eine andere Zerlegung der Erbse

liefert alle Galaxien unseres Universums . . . 

Alle diese Zerlegungen der Erbse können nicht messbar für ein isometrieinvari-

antes Volumenmaß sein, und nur unter Messbarkeits-Voraussetzungen wäre das

Ergebnis wirklich paradox. In jedem Falle ist das Resultat aber verblüffend. Es

erlaubt uns einen Einblick in die geheimnisvolle Welt der irregulären Teilmengen

des dreidimensionalen Raumes. 

12.8
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Während der Begriff  Algorithmus  selbst schwer präzise zu fassen ist, ist es Alan

Turing und anderen bereits in den 1930er Jahren gelungen, den Begriff der

 (algorithmisch) berechenbaren Funktion  genau zu definieren. In der Folge wur-

den dann eine Vielzahl von unterschiedlichen Definitionen gegeben, die sich alle

äquivalent erwiesen. Wir stellen hier die klassische sog. Turing-Berechenbarkeit

vor, die sich anhand eines einfachen Maschinen-Modells besonders gut illustrie-

ren lässt. 

318

12 Mengenlehre und Logik

Eine  Turing-Maschine  besteht aus einem zweiseitig unendlichen Band von

Zellen, die entweder mit 0 ( leer“) oder mit 1 ( voll“) beschriftet sind. Weiter

” 

” 

besitzt eine Turing-Maschine einen beweglichen Lese- und Schreibkopf, der sich

immer über einer bestimmten Zelle befindet. 

 Lese- und Schreibkopf

. . . 

. . . 

0

1

0

1

1

0

1

0

0

1

0

1

Ein  Turing-Programm  ist ein  P : ( Q−{q 0 }) ×{ 0 ,  1 } → Q×{ 0 ,  1 }×{
, r}, wobei

 Q =  {q 0 , . . . , qn},  n ≥  1, eine endliche Menge von paarweise verschiedenen sog. 

 Zust¨

 anden  ist. Speziell heißt  q 0 der  Haltezustand  und  q 1 der  Startzustand. 

Eine Turing-Maschine arbeitet unter einem Turing-Programm  P  wie folgt. 

Unsere Inputs“ sind Tupel natürlicher Zahlen beliebiger Länge. Für einen Input

” 

( n 1 , . . . , nk)  ∈  N k  beschriften wir das Band mit

 . . .  01 n 1+101 n 2+10  . . .  01 nk+10  . . . , 

wobei 1 m  eine Folge von  m  aufeinanderfolgenden Einsen bedeutet. Dem Input

(2 ,  0 ,  1) entspricht also z. B. das Band  . . .  0111010110  . . .  Der Kopf befindet sich

zu Beginn über der ersten 1 des Bandes, und die Maschine selbst befindet sich

im Startzustand  q 1. Nun wird folgende Anweisung iteriert:

 Aktion einer Turing-Maschine im Zustand q unter dem Programm P :  Ist

 q =  q 0, so stoppt die Maschine. Andernfalls liest der Kopf den Inhalt  c  der Zelle

unter dem Kopf. Sei  P ( q, c) = ( p, b, d). Dann:

1. begibt sich die Maschine in den Zustand  p, 

2. löscht der Kopf die gelesene Zelle und beschriftet sie mit  b, 

3. bewegt sich der Kopf um eine Zelle nach links, falls  d =  
, und um eine

Zelle nach rechts, falls  d =  r  gilt. 

Wird der Haltezustand erreicht, so nennen wir die Anzahl der Einsen, die sich

am Ende auf dem Band befinden, das  Ergebnis der Berechnung  und bezeich-

nen es mit  P ( n 1 , . . . , nk). Wir sagen dann, dass das Programm  P  bei Input

( n 1 , . . . , nk)  konvergiert  oder  terminiert.  Wird der Haltezustand nicht erreicht, 

so sagen wir, dass das Programm  P  bei Input ( n 1 , . . . , nk)  divergiert. 

Eine Funktion  f :  A →  N mit  A ⊆  N k  heißt  (Turing-) berechenbar,  falls es ein

Turing-Programm  P  gibt, so dass für alle ( n 1 , . . . , nk)  ∈  N k  gilt:

(i) ( n 1 , . . . , nk)  ∈ A  genau dann, wenn  P  bei Input ( n 1 , . . . , nk) termi-

niert, 

(ii)  f ( n 1 , . . . , nk) =  P ( n 1 , . . . , nk) für alle ( n 1 , . . . , nk)  ∈ A. 

Wir geben zur Illustration ein einfaches Turing-Programm konkret an. Es

zeigt, dass die Addition  f : N2  →  N mit  f ( n, m) =  n +  m  Turing-berechenbar

ist. Das Verlaufsprotokoll rechts unten zeigt die Arbeitsweise des Programms. 
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Der Input ist (2 ,  4), was der Beschriftung

q1

0

→

q2

1

r

 . . .  01110111110  . . .  entspricht. Das

X“ deu-

q1

1

→

q1

1

r

” 

q2

0

→

q3

0

l

tet die Position des Kopfes an und rechts ist

q2

1

→

q2

1

r

jeweils der aktuelle Zustand notiert. Am Ende

q3

1

→

q4

0

l

bleiben 6 Einsen, wie es sein soll. 

q4

1

→

q5

0

l

Der Umfang der Turing-Berechenbarkeit ist

q5

1

→

q0

0

l

enorm: Jede Funktion  f :  A →  N, die mit Hilfe

einer modernen Programmiersprache berechnet werden kann, ist, wie man zeigen

kann, Turing-berechenbar! 


X

Mit Hilfe von Turing-Maschinen können

…0001110111110000…

q1


X

wir auch die Grenzen der Berechenbarkeit

…0001110111110000…

q1


X

aufzeigen. Ein  Biber  der Gewichtsklasse  n

…0001110111110000…

q1


X

ist ein Turing-Programm mit den Zuständen

…0001110111110000…

q1


X

 q 0 , . . . , qn+1, welches bei Eingabe des leeren

…0001111111110000…

q2


X

Bandes terminiert. Der  Fleiß  eines Bibers ist

…0001111111110000…

q2


X

das Ergebnis der Berechnung bei Eingabe des

…0001111111110000…

q2


X

leeren Bandes. Ein Biber  P  heißt ein  Gewin-

…0001111111110000…

q2


X

 ner  seiner Klasse, falls kein Biber derselben

…0001111111110000…

q2


X

Klasse fleißiger ist als  P . Für alle  n ∈  N de-

…0001111111110000…

q2


X

finieren wir Σ( n) =

der Fleiß eines Gewin-

…0001111111110000…

q3

” 


X

ners der Gewichtsklasse  n“. Die Zahl Σ( n)

…0001111111100000…

q4


X

ist also die größtmögliche Anzahl an Einsen, 

…0001111111000000…

q5


X

die eine Turing-Maschine mit den Zuständen

…0001111110000000…

q0

 q 0 , . . . , qn+1 auf ein leeres Band schreiben

kann. 

Die Funktion Σ wächst enorm. Der links

q1

0

q2

1

l

wiedergegebene Biber der Gewichtsklasse 4

q1

1

q1

1

l

wurde von H. Marxen und J. Buntrock ge-

q2

0

q3

1

r

q2

1

q2

1

r

funden. Er terminiert mit 4098 Einsen nach

q3

0

q1

1

l

über 10 Millionen Schritten. Biber der Klas-

q3

1

q4

1

r

se 5 können über 10100 Einsen schreiben, be-

q4

0

q1

1

l

vor sie terminieren. 

q4

1

q5

1

r

Man

kann

zeigen, 

dass

die

Biber-

q5

0

q0

1

r

Funktion Σ nicht berechenbar ist. Viele ande-

q5

1

q3

0

r

re Beispiele und allgemeine theoretische Er-

gebnisse zeigen: Zwischen Berechenbarkeit und Definierbarkeit liegen Welten, 

ebenso wie zwischen Definierbarkeit und abstrakter Existenz. 
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12.9

Formale Beweise und Modelle

Beweise werden in der Mathematik in einer nicht genau spezifizierten Form der

Umgangssprache geführt. Je nach Kommunikationsebene wird dabei ein unter-

schiedliches Maß an Ausführlichkeit, Genauigkeit und Bildhaftigkeit verwendet. 

In jedem Falle aber wird inhaltlich argumentiert. 

Dem semantischen Argumentieren steht der formale Beweisbegriff gegenüber, 

der das mathematische Beweisen als ein Operieren mit Zeichenketten auffasst, 

die nach den strengen syntaktischen Regeln eines sog. Kalküls umgeformt wer-

den. Statt von formalen Beweisen spricht man auch von  Herleitungen. 

Wir wollen hier das von Gerhard Gentzen entwickelte  nat¨

 urliche Schließen

vorstellen, das zwar ein formaler Kalkül ist, sich aber doch wie ein bis ins Detail

aufgelöstes mathematisches Argumentieren anfühlt und dadurch seine Bezeich-

nung natürlich“ rechtfertigt. Herleitungen haben hier die Form von Bäumen, 

” 

an deren Wurzel die bewiesene Aussage steht und an deren Blättern sich die

Annahmen befinden, die man bei der Beweisführung getätigt hat. Der Baum

selbst wird durch das Anwenden von Schlussregeln gebildet. 

Die wichtigste Schlussregel ist der  modus ponens  oder die  Pfeil-Beseitigung:

Haben wir  A → B  und  A  bewiesen, so haben wir auch  B  bewiesen. 

…

…

A → B


A

B


Das Diagramm oben zeigt die entsprechende Beweisfigur in unserem Baum-

kalkül. Die Punkte stehen dabei für Bäume mit Wurzel  A → B  bzw.  A, und

der Strich für das Anwenden der Schlussregel. Es entsteht ein neuer Baum, an

dessen Wurzel die Aussage  B  steht. 

Ein ebenso wichtiges Element unseres Baumkalküls ist das sog.  Abbinden von

 Annahmen  oder die  Pfeil-Einf¨

 uhrung. 

…


B

A


→ B

Haben wir  B  mit Hilfe einer Annahme  A  bewiesen, so haben wir  A → B  be-

wiesen, ohne dass wir dazu dann noch  A  annehmen müssten. Dies ist wichtig, da

wir ja unsere Ergebnisse mit möglichst wenigen Annahmen beweisen möchten. 

Das Diagramm rechts zeigt diesen Vorgang wieder als Figur. Beim Übergang zu

 A → B  werden alle Blätter des darüberliegenden Baumes, an denen  A  steht, als

gebunden“ markiert. Liegt ein Beweisbaum vor, dessen Blätter alle gebunden

” 

sind, so hängt die bewiesene Aussage von keiner Annahme mehr ab. 

Mit diesen beiden Schlussregeln leiten wir nun zur Illustration die Rückrich-

tung des Kontrapositionsgesetzes her, also die Aussage ( ¬B → ¬A)  → ( A → B). 

Da wir möglichst viele Implikationen zur Verfügung haben möchten, führen wir
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ein spezielles Aussagensymbol ein, das sog. Falsum  ⊥. Die Negation  ¬A  einer

Aussage ist dann gleichwertig mit  A → ⊥. Die zu beweisende Aussage lautet

nun also (( B → ⊥)  → ( A → ⊥))  → ( A → B). Eine nach den Regeln unseres

Kalküls gebildete Herleitung dieser Aussage ist der folgende Baum:

➀

➁

(B → ⊥) → (A → ⊥)

B → ⊥

➂

A → ⊥


A

⊥

(Abbinden von Annahme ➁)

➃ ((B→⊥)→⊥)→B

(B → ⊥) → ⊥


B

(Abbinden von Annahme ➂)

A → B

(Abbinden von Annahme ➀)

((B → ⊥) → (A → ⊥)) → (A → B)

Dieser Beweisbaum hat vier Blätter, nämlich die mit den Ziffern 1 bis 4 be-

zeichneten Aussagen. Jeder Schluss ist entweder eine Pfeileinführung oder eine

Pfeilbeseitigung. Die Pfeileinführungen zeigen, dass die an der Wurzel bewiese-

ne Aussage nicht mehr von den Annahmen 1 bis 3 abhängt, denn diese sind alle

mit gebunden“ markiert. Sie hängt nur noch von der nichtgebundenen vierten

” 

Annahme  ab, also von  ¬ ¬ B → B. Diese Aussage ist innerhalb der klassi-

schen Logik aber ein Axiom (Streichen einer doppelten Negation). Damit ist

die Rückrichtung des Kontrapositionsgesetzes im Rahmen der klassischen Logik

bewiesen. Es gibt, wie man zeigen kann, keinen Beweis, der auf das Streichen

einer doppelten Negation verzichten könnte. Damit beleuchtet der Kalkül das

Kontrapositionsgesetz auf eine neue Art und Weise. 

Neben der Pfeil-Beseitigung und Pfeil-Einführung hat der Kalkül des

natürlichen Schließens noch weitere Einführungs- und Beseitigungsregeln für

die anderen Junktoren und für die Quantoren, auf die wir hier nicht weiter

eingehen können. Insgesamt ergibt sich ein  korrekter  und  vollst¨

 andiger  Kalkül. 

Diese beiden Begriffe wollen wir nun noch erläutern. 

Hierzu brauchen wir den Begriff der  G¨

 ultigkeit (oder Wahrheit) einer formal

notierten Aussage  A  in einer  Struktur  oder einem  Modell M . Wir begnügen uns

mit einer anschaulichen Erläuterung dieses Begriffs. Als Beispiel für eine Aussage

 A  betrachten wir das formal notierte Kommutativgesetz für ein zweistelliges

Funktionssymbol  ◦:

 A =  ∀x ∀y ( x ◦ y =  y ◦ x)“. 

” 

Ist  M  eine nichtleere Menge und ist  ◦M :  M  2  → M  eine zweistellige Operation, 

so sagen wir, dass  A in M gilt  oder  A in M wahr  ist oder  M  ein  Modell von  A

ist, falls  A  gelesen über  M  zutrifft, d. h., für alle  x, y ∈ M  gilt  x ◦M y =  y ◦M x. 

Die Modelle von  A  sind also einfach die mit einer kommutativen Operation

ausgestatteten Mengen. 

Der Leser wird sich selbst leicht weitere Beispiel für die Gültigkeit von Aus-

sagen in Modellen zurechtlegen können. So gilt  ∀x ∃y ( y < x) in (Z , <  Z), nicht
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aber in (N , <  N). Die Aussage  ∀x ∃y ( y · y · y =  x) gilt in (R , · R), aber nicht in

(Q , · Q). 

Ist Σ eine Menge von Aussagen, so sagen wir, dass  M  ein  Modell von Σ ist, 

falls jedes  A  von Σ in  M  gilt. Besteht zum Beispiel Σ aus den Gruppenaxiomen, 

so sind die Modelle von Σ genau die Gruppen. Und die Modelle von Σ, in denen

die Aussage  ∀x ∀y ( x ◦ y =  y ◦ x) gilt, sind genau die kommutativen Gruppen. 

Ist Σ eine Menge von Aussagen, so sagen wir, dass sich eine Aussage  A aus

Σ  herleiten  oder  in Σ  formal beweisen  lässt, falls es einen Beweisbaum mit

Wurzel A gibt, dessen nichtgebundene Annahmen alle zu Σ gehören oder logische

Axiome sind (etwa der Form  ¬¬B → B). 

Wir können nun die Korrektheit und Vollständigkeit unseres Kalküls formu-

lieren. Relativ einfach zu zeigen ist der folgende  Korrektheitssatz , der besagt, 

dass die Schlussregeln des Kalküls semantisch korrekt“ sind:

” 

 Sei A eine Aussage, die sich aus einer Menge Σ  von Aussagen her-

 leiten l¨

 asst. Dann gilt die Aussage A in jedem Modell von Σ . 

Wir können also mit unserem Kalkül keinen Unfug herleiten. 

Die Umkehrung des Korrektheitssatzes ist als  G¨

 odelscher Vollst¨

 andigkeitssatz

bekannt. Er ist wesentlich schwieriger zu beweisen und gilt als einer der Eck-

pfeiler der mathematischen Logik:

 Sei Σ  eine Menge von Aussagen, und sei A eine Aussage, die in

 jedem Modell von Σ  gilt. Dann l¨

 asst sich A aus Σ  herleiten. 

Unser Kalkül ist also vollständig in dem Sinne, dass er das semantische Argu-

mentieren restlos einfängt: Ein üblicher mathematischer Beweis einer Aussage

 A, der sich auf eine Menge Σ von Voraussetzungen stützt, zeigt durch semanti-

sche Argumentation, dass A in jedem Modell von Σ gilt. Wenn wir zeigen wollen, 

dass  A  aus den Gruppenaxiomen Σ folgt, so beginnen wir unseren Beweis mit

dem Satz Sei  G  eine beliebige Gruppe“ und beweisen, dass die Aussage  A  in  G

” 

gilt. Damit haben wir gezeigt, dass  A  in jeder Gruppe gilt, also in jedem Modell

von Σ. Nach dem Gödelschen Vollständigkeitssatz existiert dann ein Beweis-

baum (ein syntaktisches Objekt) mit Wurzel  A  und ungebundenen Annahmen, 

die zu Σ gehören oder logische Axiome darstellen. Jedem informalen Beweis der

Mathematik entspricht in dieser Weise ein formaler Beweis, der sich aufgrund

seiner syntaktischen Natur mechanisch auf seine Richtigkeit überprüfen lässt. 

Man kann also den Gödelschen Vollständigkeitssatz so lesen, dass er den tieferen

Grund ans Licht bringt, warum in der Mathematik allenfalls über Annahmen, 

niemals aber über Argumentationen gestritten wird. 
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12.10

Die G¨

odelschen Unvollst¨

andigkeitss¨

atze

Die Gödelschen Unvollständigkeitssätze zählen zu den tiefsten Einblicken in die

Möglichkeiten und Grenzen einer axiomatisch begründeten Mathematik. Zu ih-

rer Motivation und exakten Formulierung schicken wir einige Begriffe voraus. 

Ein  Axiomensystem Σ ist ein System von Aussagen in einer bestimmten Spra-

che derart, dass wir von jeder Aussage der Sprache entscheiden können, ob sie

zu dem System gehört oder nicht. Beispiele sind die Axiomatik ZFC der  ∈-

Sprache, die zahlentheoretische Peano-Axiomatik PA der Sprache + , ·, S,  0, so-

wie die Gruppenaxiome der Sprache  ◦. Zwei klassische Forderungen, die man an

ein Axiomensystem stellt, sind seine Vollständigkeit und seine Widerspruchs-

freiheit. 

Die  Vollst¨

 andigkeit  eines Axiomensystems Σ bedeutet, dass sich für jede Aus-

sage A der Sprache der Axiomatik  A  oder  ¬ A  mit Hilfe von Σ beweisen lässt. 

Das System Σ lässt sich dann nicht mehr substantiell verstärken, es entscheidet

alle Aussagen seiner Sprache. Diese Vollständigkeit wird nur dann angestrebt, 

wenn man ein intendiertes Modell vor Augen hat, das man axiomatisch beschrei-

ben möchte. So soll PA vollständig sein, da das als eindeutig empfundene Modell

0, 1, 2, 3, . . . axiomatisch eingefangen“ werden soll. Die Axiome der Gruppen-

” 

theorie wollen dagegen gar nicht vollständig sein. Es geht hier darum, einen Satz

von Struktureigenschaften zu bündeln und zu analysieren, der in verschiedenen

mathematischen Kontexten auftritt. 

Die  Widerspruchsfreiheit  oder  Konsistenz  einer Axiomatik Σ bedeutet, dass

die Aussage  ∃x ( x =  x) mit Hilfe von Σ nicht bewiesen werden kann. Die Wider-

spruchsfreiheit ist offenbar für jede Axiomatik von Interesse. Ist eine Axiomatik

Σ widerspruchsfrei und vollständig, so ist für alle Aussagen  A  entweder  A  oder

 ¬ A  beweisbar. Für grundlagentheoretische Systeme wäre dies der Idealfall. 

Die beiden Gödelschen Unvollständigkeitssätze betreffen die Vollständigkeit

und die Widerspruchsfreiheit von fundamentstiftenden Systemen wie PA oder

ZFC. Der  erste G¨

 odelsche Unvollst¨

 andigkeitssatz  lautet:

 Die Axiomensysteme PA und ZFC sind, wenn sie widerspruchsfrei

 sind, unvollst¨

 andig: Ist PA widerspruchsfrei, so gibt es eine Aussa-

 ge A derart, dass weder A noch ¬A mit Hilfe von PA beweisbar ist. 

 Analoges gilt f¨

 ur ZFC. 

Allgemeiner gilt: Ist Σ ein widerspruchsfreies Axiomensystem, das ein ge-

wisses Maß an arithmetischer Argumentation zulässt, so ist Σ unvollständig. 

Damit sind insbesondere auch alle widerspruchsfreien axiomatischen Erweite-

rungen von PA und ZFC unvollständig. 

Die Idee des Beweises ist, das formale Beweisen innerhalb der betrachteten

Axiomatik Σ nachzubauen. Eine Axiomatik, die ein gewisses Maß an Arithmetik

zulässt, kann über Aussagen, Axiomensysteme, formale Beweise usw. reden. Am

Beispiel der Zahlentheorie geschieht dies vereinfacht geschildert wie folgt: PA
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spricht zunächst nur über natürliche Zahlen. Durch eine geeignete Kodierung

kann PA aber auch über endliche Folgen natürlicher Zahlen sprechen, damit

dann über endliche Zeichenketten, und damit dann über Axiomensysteme und

formale Beweise. Mit Hilfe einer diagonalen Konstruktion lässt sich nun eine

Aussage A angeben, die besagt: Ich bin nicht beweisbar.“ Diese Aussage erweist

” 

sich dann als weder beweisbar noch widerlegbar, es sei denn, das betrachtete

System PA ist widerspruchsvoll. 

Der  zweite G¨

 odelsche Unvollst¨

 andigkeitssatz  gibt eine unbeweisbare Aussage

an, die eine konkretere Bedeutung hat als die selbstbezügliche Aussage Ich bin

” 

nicht beweisbar“:

 Die Axiomensysteme PA und ZFC k¨

 onnen, wenn sie widerspruchs-

 frei sind, ihre eigene Widerspruchsfreiheit nicht beweisen: Ist

 Con(PA) die formalisierte Aussage

 Es gibt keinen Beweis in PA

 ” 

 von ∃x ( x =  x) “, so ist Con(PA) nicht in PA beweisbar (es sei

 denn, PA ist widerspruchsvoll). Das Gleiche gilt wieder f¨

 ur ZFC

 und axiomatische Verst¨

 arkungen von PA und ZFC. 

Um die Widerspruchsfreiheit von PA zu beweisen, muss man also mit einem

substantiell stärkeren Axiomensystem arbeiten. In der Axiomatik ZFC kann

man in der Tat die Widerspruchsfreiheit von PA relativ einfach zeigen, indem

man ein Modell der Peano-Arithmetik angibt: Die mengentheoretische Kon-

struktion von N zeigt, dass ZFC die Widerspruchsfreiheit von PA beweisen kann. 

Andererseits kann man, wenn ZFC widerspruchsfrei ist, in ZFC kein Modell von

ZFC konstruieren. Man kennt mittlerweile aber viele mathematisch interessante

Erweiterungen von ZFC, die die Widerspruchsfreiheit von ZFC beweisen. 

Die Gödelschen Unvollständigkeitssätze beendeten das sog.  Hilbertsche Pro-

 gramm.  Nach dem Aufkommen der mengentheoretischen Paradoxien wollte Hil-

bert die Mathematik mit finitären Methoden als widerspruchsfrei nachweisen. 

Prinzipiell konnte man hoffen, formalisierte Systeme wie PA und ZFC kombi-

natorisch auf ihre Konsistenz untersuchen zu können. Gödel zeigte, dass das

Programm zum Scheitern verurteilt war. Wir müssen mit der prinzipiellen

Möglichkeit eines Widerspruchs in starken grundlagentheoretischen Theorien

leben. Ob diese Gefahr nur theoretisch oder mit einem

Wohnen unter einem

” 

Vulkan“ zu vergleichen ist, lässt sich kaum beurteilen. 100 Jahre der Untersu-

chung von ZFC haben jedenfalls keinen Widerspruch ans Licht gebracht, und

die Widerspruchsfreiheit der Peano-Arithmetik wird heute nur von sehr wenigen

Mathematikern bezweifelt. 

Im Laufe der Zeit wurden weitere Belege der Unvollständigkeit von PA und

ZFC gefunden. Für die PA fanden Paris und Harrington eine in ZFC beweis-

bare Aussage mit einer greifbaren mathematischen Bedeutung, die in PA nicht

beweisbar ist. Für ZFC selbst liefert die Cantorsche Kontinuumshypothese ein

Beispiel für eine Aussage, die unter der Voraussetzung der Widerspruchsfreiheit

von ZFC weder beweisbar noch widerlegbar ist (siehe Abschnitt 12.12). 
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Eine lineare Ordnung auf einer Menge  M  heißt eine  Wohlordnung,  falls jede

nichtleere Teilmenge von  M  ein kleinstes Element besitzt. Beispiele für Wohl-

ordnungen sind, mit  k ∈  N beliebig:

0 ,  1 , . . . , k −  1 (Länge  k)

0 ,  1 ,  2 , . . . (Länge  ω)

1 ,  2 ,  3 , . . . ,  0 (Länge  ω + 1)

 k, k + 1 , k + 2 , . . . ,  0 ,  1 ,  2 , . . . , k −  1 (Länge  ω +  k)

0 ,  2 ,  4 ,  6 ,  8 , . . . ,  1 ,  3 ,  5 ,  7 ,  9 , . . . (Länge  ω +  ω =  ω ·  2) 0 ,  3 ,  6 ,  9 ,  12 , . . . ,  1 ,  4 ,  7 ,  10 ,  13 , . . . ,  2 ,  5 ,  8 ,  11 ,  14 , . . . (Länge  ω ·  3) ω  ist hier nur ein Zeichen, das an das Unendlichkeitssymbol  ∞  erinnert, und

wir verwenden arithmetische Notationen zur Bezeichnung der Länge“ der an-

” 

gegebenen Wohlordnungen. 

Ordnen wir die natürlichen Zahlen in einem quadratischen Schema wie rechts

an, so gewinnen wir, Zeile für Zeile lesend, die Wohlordnung

0 ,  2 ,  5 ,  9 , . . . ,  1 ,  4 ,  8 , . . . ,  3 ,  7 , . . . ,  6 ,  11 , . . . ,  10 , . . . 

der Länge  ω · ω =  ω 2. 

Ähnlich erhält man Wohlordnungen der Länge  ω 3 , ω 4 , . . . , ωω, . . . . 

Zur genaueren Untersuchung des Wohlordnungsbegriffs betrachten wir struk-

turerhaltende Abbildungen. Seien  M  und  N  Wohlordnungen.  M  und  N  heißen

 gleichlang,  wenn es einen Ordnungsisomorphismus zwischen ihnen gibt (siehe

Abschnitt 1.12).  M  heißt  k¨

 urzer  als  N , falls es ein  x ∈ N  gibt derart, dass  M

und das Anfangsstück  Nx =  {y ∈ N | y < x}  von  N  gleichlang sind. Man kann

nun zeigen: Je zwei Wohlordnungen sind gleichlang, oder die eine ist kürzer als

die andere. Dies motiviert folgende Abstraktion: Jeder Wohlordnung  M  ordnen

wir ein Zeichen  α  zu, das wir den  Ordnungstyp  oder die  L¨

 ange  von  M  nennen. 

Dies geschieht derart, dass gleichlange Wohlordnungen und nur diese das gleiche

Zeichen erhalten. Jedes solche Zeichen  α  heißt dann auch eine  Ordinalzahl . Ist  α

der Ordnungstyp einer Wohlordnung auf einer unendlichen Menge  M , so heißt

 α  eine  transfinite Zahl. 

Die Ordinalzahlen sind selbst in natürlicher Weise wohlgeordnet. Die ersten

Ordinalzahlen lauten, bei arithmetischer Zeichenvergabe:

0 ,  1 ,  2 ,  3 , . . . , ω, ω + 1 , ω + 2 , . . . , ω ·  2 , . . . , ω ·  3 , . . . , ω 2 , . . . , ωω, . . . , ωωω , . . . 

Jede Ordinalzahl  α  hat einen eindeutigen Nachfolger  α + 1. Im Gegensatz

zu den natürlichen Zahlen haben manche Ordinalzahlen ungleich 0 aber keinen

direkten Vorgänger mehr, etwa  ω,  ω ·  2,  ω 2. Diese Zahlen heißen  Limesordinal-

 zahlen,  Zahlen mit einem direktem Vorgänger dagegen  Nachfolgerordinalzahlen. 
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Wohlordnungen gibt es aber nun in so reichhaltiger Weise, dass arithmetische

Bezeichnungen nicht ausreichen. Wie die Ordinalzahlen allgemein und rigoros

definiert werden können, ist (wie die Definition der Mächtigkeit einer Menge)

eine nichttriviale Angelegenheit. Man isoliert hierzu eine Klasse von kanonischen

Wohlordnungen, die die Aufgabe der Zeichenzuordnung übernehmen können. 

Eine Definition, die dies leistet, ist erst 1923 von John von Neumann gefunden

worden, als die Ordinalzahlen in informaler Gestalt schon einige Jahrzehnte in

Gebrauch waren. Eine Menge  α  heißt  (von Neumannsche) Ordinalzahl,  falls gilt:

(i)  α  ist  ∈-transitiv, d. h., für alle  β ∈ α  und alle  γ ∈ β  gilt  γ ∈ α, 

(ii) die  ∈-Relation ist eine Wohlordnung auf  α. 

Die Mengen 0 =  ∅, 1 =  { 0 }, 2 =  { 0 ,  1 }, . . . ,  n =  { 0 , . . . , n −  1 }  erfüllen die Eigenschaften (i) und (ii) und können als natürliche Zahlen dienen. Damit liefert

die Definition auch gleich eine Definition von  ω = N =  { 0 ,  1 ,  2 , . . .}. Die Menge

 ω  ist selbst wieder eine von Neumannsche Ordinalzahl und zudem die erste

Limesordinalzahl. Der direkte Nachfolger von  ω  ist  ω ∪ {ω}. Allgemein ist für

alle  α  die Menge  α + 1 =  α ∪ {α}  der direkte Nachfolger von  α. 

Es lässt sich zeigen, dass es für jede Wohlordnung  M  eine eindeutig bestimmte

von Neumannsche Ordinalzahl  α  gibt, so dass  M  und  α  gleichlang sind. Dieses

 α  wird nun als der Ordnungstyp oder die Länge von  M  definiert. Damit sind

die Ordinalzahlen in rigoroser Weise eingeführt. Man kann zeigen, dass die Zu-

sammenfassung  {α | α  ist Ordinalzahl } ähnlich wie die Russell-Komprehension

keine Menge mehr bildet (siehe Abschnitt 12.3). 

Ordinalzahlen lassen sich addieren und multiplizieren, und man kann auch

eine Exponentiation auf ihnen einführen. Neben dem Vorhandensein arithme-

tischer Operationen gibt es noch eine andere entscheidende Eigenschaft, die

es rechtfertigt, die Ordinalzahlen als Fortsetzung der natürlichen Zahlen zu

betrachten: Die Methoden der Induktion und Rekursion lassen sich von den

natürlichen Zahlen auf die Ordinalzahlen erweitern. Man spricht dann von  trans-

 finiter Induktion  und  transfiniter Rekursion.  Ein wichtiges Beispiel für eine

transfinite Rekursion ist die sog.  von Neumannsche Hierarchie.  Hier definieren

wir durch Rekursion entlang der Ordinalzahlen:

 V 0 =  ∅,  Vα+1 =  P( Vα) für alle Ordinalzahlen  α, 



 Vλ =


V

 α<λ

 α  für alle Limesordinalzahlen  λ. 

Man kann mit Hilfe des Fundierungsaxioms zeigen, dass jede Menge ein Element

einer dieser Stufen  Vα  ist. Damit beschreibt die  Vα-Hierarchie das intendierte

” 

Modell“ der Theorie ZFC: Der Bereich aller Mengen wird ausgeschöpft, wenn

wir startend mit der leeren Menge entlang der Ordinalzahlen die Potenzmen-

genoperation iterieren. Alles entsteht aus dem Nichts. 

12.12

Die Kontinuumshypothese
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Die reellen Zahlen R sind überabzählbar, sie haben eine größere Mächtigkeit

als die natürlichen Zahlen N. Wie groß ist die Mächtigkeit von R genau? Zur

Präzisierung dieser Frage ist es nicht notwendig, einen allgemeinen Kardinal-

zahlbegriff einzuführen, der gleichmächtigen Mengen und nur diesen dieselbe

Kardinalzahl zuordnet. Wer über die Mächtigkeit von R nachdenkt, kann, wie

Cantor 1878, auf folgende  Kontinuumshypothese  stoßen:

 Sei A ⊆  R  überabzählbar. Dann gilt |A| =  | R |. 

Eine äquivalente Version lautet:

 Gilt | N | ≤ |M| und |M | ≤ | R | für ein M, so ist | N | =  |M | oder

 | R | =  |M|. 

In dieser Form besagt die Hypothese einfach, dass es keine Mächtigkeit gibt, die

echt zwischen den Mächtigkeiten von N und R liegt. 

Die erste durch N repräsentierte Unendlichkeitsstufe wird mit  ℵ 0 [lies:

Aleph 0] bezeichnet. Man kann nun zeigen, dass es eine kleinste Unendlichkeits-

stufe  ℵ 1 [lies: Aleph 1] gibt, die größer ist als  ℵ 0: Es gibt eine überabzählbare

Menge  M , so dass für jede überabzählbare  N  gilt, dass  |M | ≤ |N |. Mit Hilfe

dieses Satzes lässt sich die Kontinuumshypothese so formulieren:

R  repräsentiert die kleinste überabzählbare Mächtigkeitsstufe, d. h., 

 f¨

 ur alle ¨

 uberabz¨

 ahlbaren Mengen N ist | R | ≤ |N |. 

Die Mengen R,  P(N) und N { 0 ,  1 } =  {f | f : N  → { 0 ,  1 }}  sind gleichmächtig. 

Die Mächtigkeitsstufe dieser Mengen wird mit 2 ℵ 0 bezeichnet, was im Hinblick

auf die Menge N { 0 ,  1 }  nicht überrascht. (Hat eine endliche Menge  M  genau  n

Elemente, so hat  M { 0 ,  1 }  genau 2 n  Elemente. Ebenso hat für jede abzählbar

unendliche Menge  M  die Menge  M { 0 ,  1 }  die Mächtigkeit 2 ℵ 0 .) Damit erhalten

wir die bestechende arithmetische Version der Kontinuumshypothese:

2 ℵ 0 =  ℵ 1 . 

Das Kontinuumsproblem ist nun in einem gewissen Sinne ebenso gelöst wie

offen. Es gilt der folgende bemerkenswerte Satz von der  Unabh¨

 angigkeit der

 Kontinuumshypothese (Gödel 1937, Cohen 1963):

 Die Kontinuumshypothese ist in der Axiomatik ZFC weder beweisbar

 noch widerlegbar (vorausgesetzt, ZFC ist widerspruchsfrei). 

Während die Kontinuumshypothese also weder beweisbar noch widerlegbar

ist, ist diese Unbeweisbarkeit und Unwiderlegbarkeit selbst beweisbar. 
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In einfachen Fällen lassen sich derartige Unabhängigkeitsergebnisse leicht ge-

winnen. Es gilt z. B.: Das Kommutativgesetz Für alle  x, y  gilt  x ◦ y =  y ◦ x“

” 

ist unabhängig von den Gruppenaxiomen: Es ist mit Hilfe der Gruppenaxiome

weder beweisbar noch widerlegbar. 

Zum Beweis genügt es, eine kommutative Gruppe  G 1 sowie eine nichtkom-

mutative Gruppe  G 2 zu konstruieren. Denn jede Aussage, die sich mit Hilfe der

Gruppenaxiome beweisen lässt, gilt in jeder beliebigen Gruppe. Würde also das

Kommutativgesetz aus den Gruppenaxiomen folgen, so würde es in  G 2 gelten, 

was nicht der Fall ist. Würde die Negation des Kommutativgesetzes aus den

Gruppenaxiomen folgen, so würde sie in  G 1 gelten, was nicht der Fall ist. Die-

ses Gesetz ist also, auf der Basis der Gruppenaxiome, weder beweisbar noch

widerlegbar. Die Gruppenaxiome sind einfach nicht stark genug, diese Frage zu

entscheiden. 

Ein analoger Ansatz führt zum Beweis der Unabhängigkeit der Kontinuums-

hypothese: Zum Beweis der Unabhängigkeit werden zwei

Modelle“  M

” 

1 und

 M 2 der Theorie ZFC konstruiert. In  M 1 gilt die Kontinuumshypothese, in  M 2

ist sie verletzt. Im Gegensatz zum Beispiel aus der Gruppentheorie ist die

Durchführung dieses Ansatzes für die Kontinuumshypothese aber ein enorm

aufwändiges Projekt, bei dem logische Untiefen zu umschiffen sind, denn auf-

grund der Gödelschen Sätze können wir in ZFC kein Modell von ZFC konstru-

ieren. Insgesamt ist aber die Vorstellung, dass zwei Welten von ZFC konstruiert

werden, in denen die Kontinuumshypothese einmal gilt und einmal nicht, doch

die richtige. 

Die klassische Mathematik, konkretisiert durch ZFC, kennt also die Größe

ihrer Grundstruktur R nicht. Der Übergang von N zu R alias  P(N) bleibt

rätselhaft. Noch spannender als philosophische Betrachtungen über mathema-

” 

tische Wahrheit“ ist die Suche von

guten“ Erweiterungen von ZFC, die die

” 

Kontinuumshypothese entscheiden. Viele interessante – sich oft widersprechen-

de – derartige Erweiterungen sind gefunden worden. Viele Mathematiker haben

das Bild von Verzweigungen oberhalb einer Basistheorie“ akzeptiert, in jüngster

” 

Zeit sind dagegen Argumente für die Lösung 2 ℵ 0 =  ℵ 2 vorgebracht worden, bei

der R nicht die erste, sondern die zweite überabzählbare Stufe repräsentiert. 

Ist ZFC zu schwach für die Lösung der Kontinuumshypothese, so ist die Theo-

rie doch immerhin stark genug, um zu zeigen, dass für viele überabzählbare

 A ⊆  R gilt, dass  A  und R gleichmächtig sind. Diese Aussage gilt, wie man leicht

sehen kann, für alle offenen Teilmengen  A  von R. Cantor bewies sie 1884 für

alle abgeschlossenen Mengen  A, Hausdorff und Alexandrov konnten sie 1916 für

alle Borelmengen  A  zeigen, und Lusin und Suslin konnten das Ergebnis kurz

darauf noch einmal erweitern, nämlich auf die sog. analytischen Mengen. Für

noch kompliziertere Mengen schwinden dann aber nachweisbar die Kräfte von

ZFC, und wir brauchen wieder Erweiterungen der Axiomatik, um interessante

Klassen von definierbaren Teilmengen von R in den Griff zu bekommen. 
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